
FUZZY MODELS
AND ALGORITHMS FOR

PATTERN RECOGNITION
AND IMAGE PROCESSING

THE HANDBOOKS
OF FUZZY SETS SERIES

Series Editors
Didier Dubois and Henri Prade

IRIT, Universite Paul Sabatier, Toulouse, France

FUNDAMENTALS OF FUZZY SETS, edited by Didier Dubois and Henri Prade
MATHEMATICS OF FUZZY SETS: Logic, Topology, and Measure Theory, edited

by Ulrich H6hle and Stephen Ernest Rodabaugh
FUZZY SETS IN APPROXIMATE REASONING AND INFORMATION
SYSTEMS, edited by James C. Bezdeit, Didier Dubois and Henri Prade
FUZZY MODELS AND ALGORITHMS FOR PATTERN RECOGNITION AND

IMAGE PROCESSING, by James C. Bezdek, James Keller, Raghu Krisnapuram
and Nikhil R. Pal

FUZZY SETS IN DECISION ANALYSIS, OPERATIONS RESEARCH AND
STATISTICS, edited by Roman Slowinski

FUZZY SYSTEMS: Modeling and Control edited by Hung T. Nguyen and Michio
Sugeno

PRACTICAL APPLICATIONS OF FUZZY TECHNOLOGIES, edited by Hans-
JUrgen Zimmermann

FUZZY MODELS
AND ALGORITHMS FOR

PATTERN RECOGNITION
AND IMAGE PROCESSING

James C. Bezdek
University of West Florida

James Keller
University of Missouri

Raghu Krisnapuram
Colorado School of Mines

Nikhil R. Pal
Indian Statistical Institute

^ Springer

Library of Congress Cataloging-in-Publication Data

Fuzzy models and algorithms for pattern recognition and image processing 1 James C
Bezdek . . . [et al.].

p. cm. (T h e handbooks of hzzy sets series)
Includes hihliographical references and index.
ISBN 0-387-245 15-4 (softcover : alk. paper)
ISBN 0-7923-8521-7 (hardcover) O 1999 Kluwer Academic Publishers
I. Optical pattern recognition. 2. Fuzzy algorithms. 3. Cluster analysis. 4. Image

processing. 5. Computer vision. I. Bezdek, James C., 1939- 11. Series.

O 2005 Springer Science+Business Media, Inc. (First softcover printing)
All rights reserved. This work may not be translated or copied in whole or in part without
the written permission of the publisher (Springer Science+Business Media, Inc., 233 Spring
Street, New York, NY 10013, USA), except for brief excerpts in connection with reviews or
scholarly analysis. Use in connection with any form of information storage and retrieval,
electronic adaptation, computer software, or by similar or dissimilar methodology now
know or hereafter developed is forbidden.
The use in this publication of trade names, trademarks, service marks and similar terms,
even if the are not identified as such, is not to be taken as an expression of opinion as to
whether or not they are sub.ject to proprietaly rights.

Printed in the United States of America

9 8 7 6 5 4 3 2 1 SPIN 1 1384601

http://springeronline.com

Contents

Series Foreword v

Preface vii

1 Pattern Recognition 1
1.1 Fuzzy models for pattern recognition 1
1.2 Why fuzzy pattern recognition? 7
1.3 Overview of the volume 8
1.4 Comments and bibliography 10

2 Cluster Analysis for Object Data 11
2.1 Cluster analysis 11
2.2 Batch point-prototype clustering models 14

A. The c-means models 16
B. Semi-supervised clustering models 23
C. Probabilistic Clustering 29
D. Remarks on HCM/FCM/PCM 34
E. The Reformulation Theorem 37

2.3 Non point-prototype clustering models 39
A. The Gustafson-Kessel (GK) Model 41
B. Linear manifolds as prototypes 45
C. Spherical Prototypes 52
D. Elliptical Prototypes 54
E. Quadric Prototypes 56
F. Norm induced shell prototypes 64
G. Regression models as prototypes 69
H. Clustering for robust parametric estimation 75

2.4 Cluster Validity 87
A. Direct Measures 90
B. Davies-Bouldin Index 90
C. Dunn's index 92
D. Indirect measures for fuzzy clusters 96
E. Standardizing and normalizing indirect indices 105
F. Indirect measures for non-point prototype models 109
G. Fuzzification of statistical indices 117

2.5 Feature Analysis 121
2.6 Comments and bibliography 130

vi FUZZY PATTERN RECOGNITION

3 Cluster Analysis for Relational Data 137
3.1 Relational Data 137

A. Crisp Relations 138
B. Fuzzy Relations 143

3.2 Object Data to Relational Data 146
3.3 Hierarchical Methods 149
3.4 Clustering by decomposition of fuzzy relations 153
3.5 Relational clustering with objective functions 158

A. The Fuzzy Non Metric (FNM) model 159
B. The Assignment-Prototype (AP) Model 160
C. The relational fuzzy c-means (RFCM) model 165
D. The non-Euclidean RFCM (NERFCM) model 168

3.6 Cluster validity for relational models 178
3.7 Comments and bibliography 180

4 Classifier Design 183
4.1 Classifier design for object data 183
4.2 Prototype classifiers 190

A. The nearest prototype classifier 190
B. Multiple prototype designs 196

4.3 Methods of prototype generation 201
A. Competitive learning networks 203
B. Prototype relabeling 207
C. Sequential hard c-means (SHCM) 208
D. Learning vector quantization (LVQ) 209
E. Some soft versions of LVQ 211
F. Case Study : LVQ and GLVQ-F 1-nmp designs 212
G. The soft competition scheme (SCS) 219
H. Fuzzy learning vector quantization (FLVQ) 222
1. The relationship between c-Means and CL schemes 230
J. The mountain "clustering" method (MCM) 232

4.4 Nearest neighbor classifiers 241
4.5 The Fuzzy Integral 253
4.6 Fuzzy Rule-Based Classifiers 268

A. Crisp decision trees 269
B. Rules from crisp decision trees 273
C. Crisp decision tree design 278
D. Fuzzy system models and function approximation 288
E. The Chang - Pavlidis fuzzy decision tree 303
F. Fuzzy relatives of 1D3 308
G. Rule-based approximation based on clustering 325
H. Heuristic rule extraction 359
I. Generation of fuzzy labels for training data 368

4.7 Neural-like architectures for classification 370
A. Biological and mathematical neuron models 372
B. Neural network models 378
C. Fuzzy Neurons 393
D. Fuzzy aggregation networks 403
E. Rule extraction with fuzzy aggregation networks 410

Contents vii

4.8 Adaptive resonance models 413
A. The ARTl algorithm 414
B. Fuzzy relatives of ART 421
C. Radial basis function networks 425

4.9 Fusion techniques 442
A. Data level fusion 443
B. Feature level fusion 453
C. Classifier fusion 454

4.10 Syntactic pattern recognition 491
A. Language-based methods 493
B. Relation-based methods 507

4.11 Comments and bibliography 523

5 Image Processing and Computer 'Vision 547
5.1 Introduction 547
5.2 Image Enhancement 550
5.3 Edge Detection and Edge Enhancement 562
5.4 Edge Linking 572
5.5 Segmentation 579

A. Segmentation via thresholding 580
B. Segmentation via clustering 582
C. Supervised segmentation 588
D. Rule-Based Segmentation 592

5.6 Boundary Description and Surface Approximation 601
A. Linear Boundaries and Surfaces 603
B. Circular Boundaries 611
C. Quadric Boundaries/Surfaces 615
D. Quadric surface approximation in range images 621

5.7 Representation of Image Objects as Fuzzy Regions 624
A. Fuzzy Geometry and Properties of Fuzzy Regions 625
B. Geometric properties of original and blurred objects 630

5.8 Spatial Relations 639
5.9 Perceptual Grouping 651
5.10 High-Level Vision 658
5.11 Comments and bibliography 663

References cited in the text 681

References not cited in the text 743

Appendix 1 Acronyms and abbreviations 753

Appendix 2 The Iris Data: Table I, Fisher (1936) 759

Series Foreword

Fuzzy sets were introduced in 1965 by Lotfi Zadeh with a view to
reconcile mathematical modeling and human knowledge in the
engineering sciences. Since then, a considerable body of literature
has blossomed around the concept of fuzzy sets in an incredibly wide
range of areas, from mathematics and logic to traditional and
advanced engineering methodologies (from civil engineering to
computational intelligence). Applications are found in many
contexts, from medicine to finance, from human factors to
consumer products , from vehicle control to computational
linguistics, and so on.... Fuzzy logic is now used in the industrial
practice of advanced information technology.

As a consequence of this trend, the number of conferences and
publications on fuzzy logic has grown exponentially, and it becomes
very difficult for students, newcomers, and even scientists already
familiar with some aspects of fuzzy sets, to find their way in the
maze of fuzzy papers. Notwithstanding circumstantial edited
volumes, numerous fuzzy books have appeared, but, if we except very
few comprehensive balanced textbooks, they are either very
specialized monographs, or remain at a rather superficial level.
Some are even misleading, conveying more ideology and
unsustained claims than actual scientific contents.

What is missing is an organized set of detailed guidebooks to the
relevant literature, that help the students and the newcoming
scientist, having some preliminary knowledge of fuzzy sets, get
deeper in the field without wasting time, by being guided right away
in the heart of the literature relevant for her or his purpose. The
ambition of the HANDBOOKS OF FUZZY SETS is to address this
need. It will offer, in the compass of several volumes, a full picture of
the current state of the art, in terms of the basic concepts, the
mathematical developments, and the engineering methodologies
that exploit the concept of fuzzy sets.

This collection will propose a series of volumes that aim at
becoming a useful source of reference for all those, from graduate
s tudents to senior researchers, from pure mathematicians to
industrial information engineers as well as life, human and social
sciences scholars, interested in or working with fuzzy sets. The
original feature of these volumes is that each chapter - except in the
case of this volume, which was written entirely by the four authors -
is written by one or several experts in the topic concerned. It
provides an introduction to the topic, outlines its development,
presents the major results, and supplies an extensive bibliography
for further reading.

FUZZY PATTERN RECOGNITION

The core set of volumes are respectively devoted to fundamentals of
fuzzy sets, mathematics of fuzzy sets, approximate reasoning and
information systems, fuzzy models for pattern recognition and
image processing, fuzzy sets in decision research and statistics,
fuzzy systems in modeling and control, and a guide to practical
applications of fuzzy technologies.

D. Dubois H. Prade
Toulouse

Preface

The authors Rather than compile many chapters written by various
authors who use different notations and semantic descriptions for
the same models, we decided to have a small team of four persons
write the entire volume. Each of us assumed the role of lead author
for one or more of the chapters, and the other authors acted like
consultants to the lead author. Each of us helped the lead author by
contributing examples, references, diagrams or text here and there;
and we all reviewed the entire volume three times. Whether this
approach was successful remains to be seen.

The plan What we tried to do is this: identify the important work
that has been done in fuzzy pattern recognition, describe it, analyze
it, and illustrate it with examples that an interested reader can
follow. As Avith all projects of this kind, the material inevitably
reflects some bias on the part of its authors (after all, the easiest
examples to give already live in our own computers). Moreover, this
has become an enormous field, and the truth is that it is now far too
large for us to even know about many important and useful papers
that go unrecognized here. We apologize for our bias and our
ignorance, and accept any and all blame for errors of fact and/or
omission. How current is the material in the book? Knuth (1968)
stated that "It is generally very difficult to keep up with a field that is
economically profitable, and so it is only natural to expect that
many of the techniques described here eventually be superseded by
better ones". We cannot say it better.

The numbering system The atomic unit for the numbering system is
the chapter. Figures, tables, examples and equations are all
numbered consecutively within each chapter. For example. Figure
3.5 is Figure 5 of Chapter 3. The beginning and end of examples are
enclosed by goofy looking brackets, like this:

Example 5.4 Did you ever have to finally decide? To pick up on
one and let the other one ride, so many changes

The algorithms: art, science and voodoo There are a lot of
algorithms in the book. We ran many, but not certainly not all, of
the experiments ourselves. We have given pseudo code for quite a few
algorithms, and it is really pseudo in the sense that it is a mixture of
three or four programming languages and writing styles. Our intent
is to maximize clarity and minimize dependence on a particular
language, operating system, compiler, host platform, and so on. We
hope you can read the pseudo code, and that you cem convert it into
working programs with a minimum of trouble.

xii FUZZY PATTERN RECOGNITION

Almost all algorithms have parameters that affect their
performance. Science is about quantitative models of our physical
world, while art tries to express the qualitative content of our lives.
When you read this book you will encounter lots of parameters that
are user-defined, together with evasive statements like "pick a value
for k that is close to 1", or "don't use high values for m". What do
instructions such as these mean? Lots of things: (i) we don't have
better advice; (ii) the inventor of the algorithm tried lots of values,
and values in the range mentioned produced the best results for her
or him; (iii) 0.99 is closer to 1 than 0.95, and 22 is higher than 1.32,
you may never know which choice is better, and (unfortunately) this
can make all the difference in your application; (iv) sometimes we
don't know why things work the way they do, but we should be happy
if they work right this time - call it voodoo, or call it luck, but if it
works, take it.

Is this cynical? No, it's practical. Science is NOT exact, it's a
sequence of successively better approximations by models we invent
to the physical reality of processes we initiate, observe or control.
There's a lot of art in science, and this is nowhere more evident than
in pattern recognition, because here, the data always have the last
word. We are always at the mercy of an unanticipated situation in
the data; unusual structures, missing observations, improbable
events that cause outliers, uncertainty about the interactions
between variables, useless choices for numerical representation,
sensors that don't respect our design goals, computers that lose bits,
computer programs that have an undetected flaw, and so on. When
you read about and experiment with algorithmic parameters, have
an open mind - anjrthing is possible, and usually is.

The data Most of the numerical examples use small data sets that
may seem contrived to you, and some of them are. There is much to
be said for the pedagogical value of using a few points in the plane
when studying and illustrating properties of various models. On the
other hand, there are certain risks too. Sometimes conclusions that
are legitimate for small, specialized data sets become invalid in the
face of large numbers of samples, features and classes. And of
course, time and space complexity make their presence felt in very
unpredictable ways as problem size grows.

There is another problem with data sets that everyone probably
knows about, but that is much harder to detect and document, emd
that problem goes under the heading of, for example, "will the real
Iris data please stand up?". Anderson's (1935) Iris data, which we
think was first published in Fisher (1936), has become a popular set
of labeled data for testing - and especially for comparing - clustering
algorithms and classifiers. It is of course entirely appropriate and
in the spirit of scientific inquiry to make and publish comparisons
of models and their performance on common data sets, and the

Preface xiii

pattern recognition community has used Iris in perhaps a thousand
papers for just this reason or have we?

During the writing of this book we have discovered - perhaps others
have known this for a long time, but we didn't - that there are at least
two (and hence, probably half a dozen) different, well publicized
versions of Iris. Specifically, vector 90, class 2 (Iris Versicolor) in
Iris has the coordinates (5.5, 2.5, 4, 1.3) on p. 566, Johnson and
Wichem (1992); and has the coordinates (5.5, 2.5, 5, 1.3) on p. 224 in
Chien (1978). YIKES !! For the record, we are using the Iris data as
published in Fisher (1936) and repeated in Johnson and Wichern
(1992). We will use Iris (?) when we are not sure what data were used.

What this means is that many of the papers you have come to know
and love that compare the performance of this and that using Iris
may in fact have examples of algorithms that were executed using
different data sets! What to do? Well, there isn't much we can do
about this problem. We have checked our own files, and they all
contain the data as listed in Fisher (1936) and Johnson and Wichem
(1992). That's not too reassuring, but it's the best we can do. We have
tried to check which Iris data set was used in the examples of other
authors that are discussed in this book, but this is nearly
impossible. We do not guarantee that all the results we discuss for
"the" Iris data really pertain to the same numerical inputs. Indeed,
the "Lena" image is the Iris data of image processing, - after all, the
original Lena was a poor quality, 6 bit image, and more recent
copies, including the ones we use in this book, come to us with
higher resolution. To be sure, there is only one analog Lena
(although PLAYBOY ran many), but there are probably, many
different digital Lenae.

Data get corrupted many ways, and in the electronic age, it should
not surprise us to find (if we can) that this is a fairly common event.
Perhaps the best solution to this problem would be to establish a
central repository for common data sets. This has been tried several
times without much success. Out of curiosity, on September 7, 1998
we fetched Iris from the anonymous FTP site "ftp.ics.uci.edu" under
the directory "pub/machine-learning-databases", and discovered
not one, but two errors in it! Specifically, two vectors in Iris Sestosa
were wrong: vector 35 in Fisher (1936) is (4.9, 3.1, 1.5, 0.2) but in the
machine learning electronic database it had coordinates (4.9, 3.1,
1.5, 0.1); and vector 38 in Fisher is (4.9, 3.6, 1.4, 0.1), but in the
electronic database it was (4.9, 3.1, 1.5, 0.1). Finally, we are aware of
several papers that used a version of Iris obtained by multiplying
every value by 10, so that the data are integers, and the papers
involved discuss 10*lris as if they thought it was Iris. We don't think
there is a way to correct all the databases out there which contain
similar mistakes (we trust that the machine learning database will
be fixed after our alert), but we have included a listing of Iris in
Appendix 2 of this book (and, we hope it's right). What all this means

http://ftp.ics.uci.edu

xiv FUZZY PATTERN RECOGNITION

for you, the pattern recognition aficionado is this: pattern
recognition is data, and not all data are created equally, much less
replicated faithfully!

Numerical results We have tried to give you all the information you
need to replicate the outputs we report in numerical examples. There
are a few instances where this was not possible (for example, when
an iterative procedure was initialized randomly, or when the results
were reported in someone's paper 10 or 15 years ago, or when the
authors of a paper we discuss simply could not supply us with more
details), and of course it's always possible that the code we ran
implemented something other than we thought it did, or it simply
had undetected programming errors. Also, we have rounded off or
truncated the reported results of many calculations to make tables
fit into the format of the book. Let us know if you find substantial
differences between outputs you get (or got) cind the results we report.

The references More than one reference system is one too many. We
chose to reference books and papers by last names and years. As
with any system, this one has advantages and disadvantages. Our
scheme lets you find a paper quickly if you know the last name of
the first author, but causes the problem of appending "a", "b" and so
on to names that appear more than once in the same year. There
may be a mistake or two, or even 0(n) of them. Again, please let us
know about it. We have divided the references into two groups: those
actually cited in the text, and a second set of references that point to
related material that, for one reason or another, just didn't find
their way into the text discussion. Many of these uncited papers are
excellent - please have a look at them.

The acronyms Acronyms, like the plague, seem to spread unchecked
through the technical literature of pattern recognition. We four are
responsible for quite a few of them, and so, we can hardly hold this
bad habit against others. This book has several hundred acronyms
in it, and we know you won't remember what many of them mean for
more than a few pages. Consequently, Appendix 1 is a tabulation of
the acronyms and abbreviations used in the text.

Acknowledgments The authors wish to acknowledge their gratitude
to the following agencies, who graciously supplied partial support as
shown during the writing of this book:

J. C. Bezdek: ONR grant # NOOO14-96-1 -0642
NSF grant # lRI-9003252

J. M. Keller : ONR grant # NOOO 14-96-1-0439
ARO MURl grant # DAAG55-97-1-0014

R. Krishnapuram: ONR grant # NOOO 14-96-1-0439
NSFgrant # IRI-9800899

Preface xv

We also want to express our thanks to Andrea Baraldi, Alma Blonda,
Larry Hall, Lucy Kuncheva and Thomas Runkler, all of whom were
kind enough to review various parts of the manuscript and/or
supplied us with computations for several examples that we could
not find in the literature, and whose helpful comments save us at
least a few embarrassments.

The quotes Everyone nowadays seems to have a pithy quote at each
chapter head, at the end of each email, on their web page, tattooed on
their leg, etc., so we wanted to have some too. Rather than choose one
quote for the book that all of us could live with (quite a range of
tastes exists amongst us four), we decided to each supply one quote
for this preface. We give the quotes here, but don't identify who
contributed each one. That will be revealed in the pages of this
volume - but only to those readers alert enough to recognize the
patterns.

"What use are all these high-flying vaunts of yours?
O King of Birds! You will be the world's laughing stock.
What a marvel would it be if the hare
were to void turd the size of elephant dung!"

Vishnu Sharma, m Panchatantm, circa AD ^00

"Only the mediocre are always at their best"
^Slt^e Wave, circa 1995

"All uncertainty is fruitful ... so long as it is accompanied by the
wish to understand"

Antonio Machado, 'Juan de Mairena, 19A3

'You gotta pay your dues if you want to play the blues, and you know
that don't come easy"

l^ingo Starr, circa 1973

You may think you know which of us contributed each of these
quotes - but you might be surprised. Life is full of surprises, and so is
this book. We hope you enjoy both.

Jim Bezdek
Jim Keller

Rags Krishnapuram
Nik Pal

1 Pattern Recognition
1.1 Fuzzy models for pattern recognition

There is no lack of definitions for the term pattern recognition. Here
are a few that we like.

Fukunaga (1972, p. 4): "pattern recognition consists of two parts:
feature selection and classifier design."

Duda and Hart (1973, p. vli) "pattern recognition, a field concerned
with machine recognition of meaningful regularities in noisy or
complex environments".

Pavlidis (1977, p. 1): "the word pattern is derived from the same root
as the word patron and, in its original use, means something which
is set up as a perfect example to be imitated. Thus pattern
recognition means the identification of the ideal which a given
object was made after."

Gonzalez and Thomason (1978, p. 1) : "Pattern recognition can be
defined as the categorization of input data into identifiable classes
via the extraction of significant features or attributes of the data
from a background of irrelevant detail."

Bezdek (1981, p. 1) : "pattern recognition is a search for structure in
data"

Schalkoff (1992, p. 2) " Pattern recognition (PR) is the science that
concerns the description or classification (recognition) of
measurements."

And here is our favorite, because it comes from the very nice book by
Devijver and Kittler (1982, p. 2), titled Pattern Recognition: A
Statistical Approach: "pattern recognition is a very broad field of
activities with very fuzzy borders" !!!

What all these definitions should tell you is that it's pretty hard to
know what to expect from a book with the term pattern recognition
in its title. You will find texts that are mostly about computer
science topics such as formal language theory and automata design
(Fu, 1982), books about statistical decision theory (Fukunaga, 1972,
1991), books about fuz^ mathematics and models (Bezdek, 1981),
books about digital hardware (Serrano-Gotarredona et al., 1998),
handbooks (Ruspini et al., 1998), pure math books, books that
contain only computer programs, books about graphical
approaches, and so on. The easiest, and we think, most accurate
overall description of this field is to say that it is about feature
analysis, clustering, and classifier design, and that is what this
book is about - the use of fuz^ models in these three disciplines.

FUZZY PATTERN RECOGNITION

Regardless of how it is defined, there are two major approaches to
pa t t e rn recognition, nunaerical and syntactic. With the exception of
Section 4.10, this book is exclusively concerned with the numerical
approach . We character ize numer ica l pa t t e rn recognition with the
four major a r ea s shown in Figure 1.1. The nodes in Figure 1.1 are
not i n d e p e n d e n t . In prac t ice , a successfu l p a t t e r n recogni t ion
sys tem is developed by iteratively revisiting the four modules unti l
the sys tem satisfies (or is a t leas t optimized for) a given set of
performance requi rements a n d / o r economic const ra in ts .

Humans

Process Description

Feature Nomination

X = Numerical Object Data

= Pair-relational Data

Feature Analysis

Design Data Test Data

Sensors

Preprocessing
Extraction
Selection

Visual
• • •

Classifier Design

Classification
Est imat ion
Prediction

Control
• • •

Cluster Analysis

Tendency
Validity
Labeling

« • •

Figure 1.1 Typical elements of numerical pattern recognition

The uppe r block of Figure 1 . 1 - process description - is always done
by h u m a n s . Things t h a t m u s t be accomplished he re include the
selection of a model type, features to be measu red a n d sensors t h a t
can collect the data . This impor tant p h a s e of system design is not
well r epresen ted in the l i terature because there are m a n y factors
s u c h a s t ime, space, weight, cost, speed, etc. t h a t are too problem-
d e p e n d e n t to admi t m u c h generali ty. You need to give careful
t hough t to process description because your decisions here will be
reflected in the ul t imate performance of your system.

INTRODUCTION TO PATTERN RECOGNITION

^ Notation Vectors are boldface (x, v, V, etc.); x e 5RP is the px 1
matrix x = (x, x)^. Matrices and set names are not shown

boldface (even though a c x p matrix U is a vector in 9̂ ^̂ = R̂*̂ x 9tP).
For the matrix U e 9l̂ P, ŵ e may write the i-th row as U.̂ , e 9^P , and

the k-th column as Uĵ^ e Ŝ '̂ . By this convention, when interpreting
U a s a c p x l c o l u m n vector , we may wr i te
U = (Uj Up) = (U(i,,..., U(p))'^ e ĝ '̂ P. When interpreting the rows or
columns of a matrix as a set, we use set brackets; e.g., the c rows

U = (U(^,,...,U(^j) e gt'̂ P ^ U = {U(i),...,U(c)} c 9tP. We use 0 for the zero

vector in all vector spaces; specifically, in both 3i^ and 9t'̂ P.

Two data types are used in numerical pattern recognition: object
data (feature or pattern vectors); and (pairwise) relational data
(similarities, proximities, etc.). Object data are represented
throughout the volume as X = {x , x x } c 5RP, a set of n feature

vectors in feature space 9^P . Writers in some fields call the features
of each object "attributes", and others call them "characteristics".
The J-th object is a physical entity such as a tank, medical patient,
stock report, etc. Column vector x. is it's numerical representation;
Xĵ . is the k.-th feature or attribute value associated with object J.
Features can be either continuously or discretely valued in 31.

We will also deal with non-numerical data called categorical data in
Chapter 4. Categorical data have no natural order. For example, we
can represent animals with numerical attributes such as number of
legs, weight, etc. ; or we might describe each one with categorical
attributes such as skin texture, which itself has values such as furry,
feathery, etc. When needed, we denote the objects themselves as O =
{o , o , ..., 0 }. Chapter 2 is about clustering numerical object data.

Instead of object data, we may have a set of (mn) numerical
relationships, say {r,}, between pairs of objects (o., o) in

Oi X O2, |0i I = m, IO21 = n . The number r.ĵ represents the extent to
which o. e Oj is related to Oĵ e O2 in the sense of some binary

relation p. It is convenient to array the relational values as an m x n
relation matrix R = [r.J = [p(o,, Oĵ)]. Many functions can convert
object data into relational data. For example, every metric (distance
measure) 5 on 9tP x 9tP produces a square (dis)-similarity relation
matrix R(X; 6) on the n objects represented by X, as shown in Figure
1.1. If every r.^ is in {0, 1), R is a crisp binary relation. If any r j^ is in
[0, 1], we call R a fuzzy binary relation. Chapter 3 is about clustering
relational data.

FUZZY PATTERN RECOGNITION

One of the most basic structures in pattern recognition is the label
vector. No matter what kind of data you have (including the case of n
objects as opposed to numerical data that represent them), there are
four types of class labels - crisp, fuzzy, probabilistic and
possibilistic. Letting n be the number of objects (or feature vectors or
number of rows and columns in relational data) integer c denote the
number of classes, 1 < c < n. Ordinarily, c will not be 1 or n, but we
admit this possibility to handle special cases that sometimes arise.

We define three sets of label vectors in 3f as follows:

Np^={ye9t'^:y. e[0, 1] V i, ŷ > 0 3 i} = [0,1]=-{0};

N. y e N p c : I y i = l 'pc- ^Ji
i=l

Nhc = {y^N^c-yi^{o-iJ^4 = h ' « 2 ^c}

(1.1)

(1.2)

(1.3)

In (1.1) 0 is the zero vector in 'Si'^. Note that N^c c N ^ cNp,.. Figure
1.2 depicts these sets for c = 3. N is the canonical (unit vector) basis

of Euclidean c-space, so ej=(0, 0 ,..., 1 ,..., 0)^, the i-th vertex
i

of N, , is the crisp label for class i, 1 < i < c.
he

N h 3 = { 6 1 , 6 2 , 6 3 }

fo.r
0.6

10.3,

«'2 =
'0)
1
oj

Np3=[0 , lp- (0}
Nf3 = conv(Nh3)

Figure 1.2 Label vectors for c = 3 classes

INTRODUCTION TO PATTERN RECOGNITION

The set N , a piece of a hyperplane, is the convex hull of N . The
vector y = (0.1, 0.6, 0.3)"^ is a constrained label vector; its entries lie
between 0 and 1, and sum to 1. The centroid of N, is the

fc
equimembership vector l / c = (l / c , . . . , l / c) ^ . If y is a label vector
for some x e 5R̂ generated by, say, the fuzzy c-means clustering
method, we call y a fuzzy label for x. If y came from a method such as
maximum likelihood estimation in mixture decomposition, y
would be a probabilistic label In this case, 1 / c is the unique point
of equal probabilities for all c classes.

N = [0, IJ'̂ -fO} is the unit hypercube in 9^ ,̂ excluding the origin.
Vectors such as z = (0.7, 0.2, 0.7)"^ with each entry between 0 and 1
that are otherwise unrestricted are possibilistic labels in N .

p3
Possibilistic labels are produced by possibilistic clustering
algorithms (Krishnapuram and Keller, 1993) and by computational
neural networks that have unipolar sigmoidal transfer functions at
each of c output nodes (Zurada, 1992).

Most pattern recognition models are based on finding statistical or
geometrical properties of substructures in the data. Two of the key
concepts for describing geometry are angle and distance. Let A be
any positive-definite p x p matrix. For vectors x, v e 5tP, the
functions ()^:9tP X5RP K^ 91, || ||^:9^P ^ 91+, and 5^:9^P x9tP ^ 9?+

(x,v)^ = x'̂ Av ; (1.4)

\\x\\^=^[(^c^ = 4 ^ ^ ;and (1.5)

6^(x, V) = ||x - v||^ = V(x - v)'^A(x - V) , (1.6)

are the inner product (dot product, scalar product), norm (length),
and norm metric (distance) induced on 9tP by weight matrix A. We
say that x and v are orthogonal (normal, perpendicular) if their dot
product is zero, (x,v)^ =x^Av = 0. Sometimes we write x ± ^ v to
indicate this, and note particularly that orthogonality is always
relative to miatrix A that induces the inner product.

Equation (1.6) defines an infinite family of inner product induced
distances, the most important three of which, together with their
common names and inducing matrices, are:

• V •J{x-vf{x-v) Euclidean, A=l ; (1.7)
p

FUZZY PATTERN RECOGNITION

||x - V||Q-I = Vfx - v)^D ^(x - v) Diagonal, A=D -1

X - V M -i=S x - v) ' M " n x - v) Mahalanobis, A=M 1

(1.8)

(1.9)

^ Notation In (1.7) I is the p x p identity matrix. Henceforth, we
drop the subscript I , writing the Euclidean i

simply as (x, v), ||x|| and ||x - v|| respectively.

drop the subscript I , writing the Euclidean forms of (1.4)-(1.6) more

Equations (1.8) and (1.9) use M = cov(X) = I (x. -v)(x, -v)^ / n ,
k=i ^ ^

_ n
the covariance matrix of X, and v = J^x.^ / n, the grand mean of X.

k=l
We will always indicate sample means as in statistics, with an
overbar. The matrix D is the diagonal matrix extracted from M by
deletion of its off-diagonal entries, D = diag(M). D is not t h e
diagonalized form of M.

A second infinite family of lengths and distances that are
commonly used in pattern recognition are the Minkowski norm and
Minkowski norm metrics

I x , q > l

(
5 (x,v) X - V X - V

J J
q > l

(1.10)

(1.11)

Only three Minkowski distances are commonly used in pattern
recognition, and the Minkowski 2-norm is just the Euclidean norm,

X - V L = X - V :

X - V

F-v||2 =
^ P I |2

|{x - v||^ = max
isj<p

{h-v.ll

City Block (1 -norm); q= 1; (1.12)

Euclidean (2-norm); q=2; (1.13)

Sup or Max norm; q ^ oo. (1.14)

INTRODUCTION TO PATTERN RECOGNITION

A classifier is any function D:?^^ h-> N . The value y = D(z) is the

label vector for z in 9?^. D is a crisp classifier if D[5K]̂ = N ;
otherwise, the classifier is fuzzy or probabilistic or possibilistic.
Designing a classifier simply means finding the parameters of a
"good" D. This can be done with data, or it might be done by an expert
without data. If the data are labeled, finding D is called supervised
learning; otherwise, the problem is unsupervised learning. Notice
that we use the terms supervised and unsupervised to specifically
connote the use of labeled or unlabeled data - it is the labels that do
(or do not) supervise the design. When an expert designs a classifier,
this is certainly supervised design, but in a much broader sense than
we mean here. Chapter 4 is about fuzzy models for classifier design.

Since definite class assignments are usually the ultimate goal of
classification and clustering, outputs of algorithms that produce
label vectors in N or N are usually transformed into crisp labels.
Most non-crisp classifiers are converted to crisp ones using the
function H: N i-> N^ ,

pc he

H(y) = e o y - e < e j <=>y, >y, ; j^^ i • (1.15)
i r ill ' jii --i -'J

In (1.15) ties are resolved arbitrarily. H finds the crisp label vector e
in N closest (in the Euclidean sense) to y. Alternatively, H finds the
index of the maximum coordinate of y , and assigns the
corresponding crisp label to the object vector, say z, that y labels.
The rationale for using H depends on the algorithm that produces y.
For example, using (1.15) for outputs from the k-nearest neighbor
rule is simple majority voting. If y is obtained from mixture
decomposition, using H is Bayes decision rule - label z by its class of
maximum posterior probability. And if the labels are fuzzy, this is
called defuzzification by the maximum membership rule. We call
the use of H hardening.

1.2 Why fuzzy pattern recognition?

Rather than conclude the volume with the information in this
subsection, it is provided here to answer a basic question you might
have at this point: should you read on? Retrieval from the Science
Citation Index for years 1994-1997 on titles and abstracts that
contain the ke5mrord combinations "fuzzy" + either "clustering" or
"classification" yielded 460 papers. Retrievals against "fuzzy" +
either "feature selection" or "feature extraction" yielded 21 papers.
This illustrates that the literature contains a large body of work on
fuzzy clustering and classifier design, and relatively fewer studies of
fuzzy models for feature analysis. Work in this last area is widely

8 FUZZY PATTERN RECOGNITION

scattered because feature analysis is very data and problem-
dependent, and hence, is almost always done on a case by case basis.

A more interesting metric for the importance of fuzzy models in
pattern recognition lies in the diversity of applications areas
represented by the titles retrieved. Here is a partial sketch:

Chemistry: analytical, computational, industrial, chromatography,
food engineering, brewing science.

Electrical Engineering: image and signal processing, neural
networks, control systems, informatics, automatics, automation,
robotics, remote sensing and control, optical engineering, computer
vision, parallel computing, networking, instrumentation and
measurement, dielectrics, speech recognition, solid state circuits.

Geology/Geography: photogrammetry, geophysical research,
geochemistry, biogeography, archeology.

Medicine: magnetic resonance imaging, medical diagnosis,
tomography, roentgenology, neurology, pharmacology, medical
physics, nutrition, dietetic sciences, anesthesia, ultramicroscopy,
biomedicine, protein science, neuroimaging, drug interaction.

Physics: astronomy, applied optics, earth physics.

Environmental Sciences: soil sciences, forest and air pollution,
meteorology, water resources.

Thus, it seems fair to assert that this branch of science and
engineering has established a niche as a useful way to approach
pattern recognition problems. The rest of this volume is devoted to
some of the basic models and algorithms that comprise fuzzy
numerical pattern recognition.

1.3 Overview of the volume

Chapter 2 discusses clustering with objective function models using
object data. This chapter is anchored by the crisp, fuzzy and
possibilistic c-means models and algorithms to optimize them that
are discussed in Section 2.2. There are many generalizations and
relatives of these three families. We discuss relatives and
generalizations of the c-means models for both volumetric (cloud
shaped) and shell clusters in Section 2.3. Roughly speaking, these
two cases can be categorized as point and non-point prototype
models. Section 2.3 also contains a short subsection on recent
developments in the new area of robust clustering. Chapter 2
contains a long section on methods for validation of clusters after
they are found - the important and very difficult problem of cluster
validity. Separate subsections discuss methods that attempt to

INTRODUCTION TO PATTERN RECOGNITION 9

validate volumetric and shell type clusters; and this section
concludes with a discussion of fuzzy versions of several well known
statistical indices of validity. This is followed by a short section on
feature analysis with references to a very few fuzzy methods for
problems in this domain. Finally, we close Chapter 2 (and all
subsequent chapters as well) with a section that contains comments
and related references for further reading.

Chapter 3 is about two types of relational clustering: methods that
use decompositions of relation matrices; and methods that rely on
optimization of an objective function of the relational data. This is
a much smaller field than clustering with objective function
methods. The main reason that relational models and algorithms
are less well developed than those for object data is that sensors in
fielded systems almost always collect object data. There are,
however, some very interesting applications that depend on
relational clustering; for example, data mining and information
retrieval in very large databases. We present the main topics of this
area in roughly the same chronological order as they were
developed. Applications of relational clustering are also discussed
in the handbook volume devoted to information retrieval.

Chapter 4 discusses fuzzy models that use object data for classifier
design. Following definitions and examples of the nearest single
and multiple prototype classifiers, we discuss several sequential
methods of prototype generation that were not covered in Chapter 2.
Next, k-nearest neighbor rule classifiers are presented, beginning
with the classical crisp k-nearest neighbor rule, and continuing
through both fuzzy and possibilistic generalizations of it. Another
central idea covered in Chapter 4 is the use of the fuzzy integral for
data fusion and decision making in the classification domain.
Following this, rule based designs are introduced through crisp and
fuzzy decision trees in Section 4.6, which contains material about
the extraction of fuzzy rules for approximation of functions from
numerical data with clustering.

Chapter 4 next presents models and algorithms that draw their
inspiration from neural-like networks (NNs). Two chapters in
Nguyen and Sugeno (1998) by Pediycz et al.,(1998) and Prasad (1998)
discuss the use of fuzzy neurons and fuzzy NNs in the context of
control and functional approximation. These chapters provide good
ancillary reading to our presentation of related topics in the context
of pattern recognition. The feed forward multilayered perceptron
trained by back propagation (FFBP) is the dominant structure
underlying "fuzzy neural networks" (neurofuzzy computing, etc.), so
our discussion begins with this network as the standard classifier
network. Then we present some generalizations of the standard
node functions that are sometimes called fuzzy neurons. We discuss
and il lustrate perceptrons, multilayered perceptrons, and
aggregation networks for classification. Then we discuss the crisp

10 FUZZY PATTERN RECOGNITION

and several fuzzy generalizations of adaptive resonance theory
(ART), including a short subsection on radial basis function
networks. Section 4.9 is concerned with the increasingly important
topic of classifier fusion (or multistage classification). The last
section in Chapter 4 is a short section on the use of fuzzy models in
syntactic pattern recognition. Our Chapter 4 comments include
some material on feature analysis in the context of classifier design.

Chapter 5 is about image processing and computer vision. It is here
that the models and algorithms discussed in previous chapters find
realizations in an important application domain. Chapter 5 begins
with low level vision approaches to image enhancement. Then we
discuss edge detection and edge following algorithms. Several
approaches to the important topic of image segmentation are
presented next, followed by boundary description and surface
approximation models. The representation of image objects as fuzzy
regions is followed by a section on spatial relations. The last section
in Chapter 5 discusses high level vision using fuzzy models. Chapter
7.3.2 of volume 7 of this handbook (Bezdek and Sutton, 1998)
contains an extended discussion of fuzzy models for image
processing in medical applications.

1.4 Comments and bibliography

There are many good treatments of deterministic, statistical and
heuristic approaches to numerical pattern recognition, including
the texts of Duda and Hart (1973), Tou and Gonzalez (1974), Devijver
and Kittler (1982), Pao (1989) and Fukunaga (1991). Approaches
based on neural-like network models are nicely covered in the texts
by Zurada (1992) and Haykin (1994).

The earliest reference to the use of fuzzy sets in numerical pattern
recognition was Bellman, Kalaba and Zadeh (1966). RAND Memo
RM-4307-PR, October, 1964, by the same authors had the same title,
and was written before Zadeh (1965). Thus, the first application
envisioned for fuzzy models seems to have been in pattern
recognition.

Fuzzy techniques for numerical pattern recognition are now fairly
mature. Good references include the texts by Bezdek (1981), Kandel
(1982), Pal and Dutta-Majumder (1986) and the edited collection of
51 papers by Bezdek and Pal (1992). Chi et al. (1997) is the latest
entrant into this market, with a title so close to ours that it makes
you wonder how many of these entries the market will bear. Surveys
of fuzzy models in numerical pattern recognition include Keller and
Qiu(1988), Pedrycz (1990b), Pal (1991), Bezdek (1993), Keller and
Krishnapuram (1994), Keller et al. (1994) and Bezdek et al. (1997a).

2 Cluster Analysis for Object Data
2.1 Cluster analysis

Figure 2.1 portrays cluster analysis. This field comprises three
problems: tendency assessment, clustering and validation. Given an
unlabeled data set, (T) is there substructure in the data? This is
clustering tendency - should you look for clusters at all? Very few
methods - fuzzy or otherwise - address this problem. Panajarci and
Dubes (1983), Smith and Jain (1984), Jain and Dubes (1988), Tukey
(1977) and Everitt (1978) discuss statistical and informal graphical
methods (visual displays) for deciding what - if any - substructure is
in unlabeled data.

Unlabeled Data Set

X = {Xi,X2 X„}c9lP

i
^^^ Assessment

X has clusters ?

±Yes

(2)
Clustering

i^ pen J

I
No

® Validity
No

U is OK ?

No : Stop

Yes:
Stop

Figure 2.1 Cluster analysis: three problems

Once you decide to look for clusters (called U in (I), Figure 2.1), you
need to choose a model whose measure of mathematical similarity
may capture structure in the sense that a human might perceive it.
This question - what criterion of similarity to use? - lies at the heart
of all clustering models. We will be careful to distinguish between a
model, and methods (algorithms) used to solve or optimize it. There
are objective function (global criteria) and graph-theoretic (local
criteria) techniques for both relational and object data.

12 FUZZY PATTERN RECOGNITION

Different algorithms produce different partitions of the data, and it
is never clear which one(s) may be most useful. Once clusters are
obtained, how shall we pick the best clustering solution (or
solutions)? Problem (T) in Figure 2.1 is cluster validity, discussed in
Section 2.4.

Problem @ in Figure 2.1 is clustering [or unsupervised learning) in
unlabeled data set X = {x , x x }, which is the assignment of (hard
or fuzzy or probabilistic or possibilistic) label vectors to the {x }.
The word learning refers to learning good labels (and possibly
protot3^es) for the clusters in the data.

A c-partition of X is a c x n matrix U = [U U ... U] = [u], where U
I K ri lie K.

denotes the k-th column of U. There are three sets of c-partitions
whose columns correspond to the three types of label vectors
discussed in Chapter 1

Mp,„ = j U e 91^-: Uk e Np,Vk; 0 < ̂ I u^, Vi ̂ ; (2.1)

fen
{UeMp^„:U,EN^^Vk} : (2.2)

M,en = {u-M^^^:U^eN^^Vk} . (2.3)

Equations (2.1), (2.2) and (2.3) define, respectively, the sets of
possibilistic, fuzzy or probabilistic, and crisp c-partitions of X. Each
column of U in M (M, , M,) is a label vector from N (N, , N,).

pen fen' hen' pc fc he
Note that M-^^^ ^ ^fen ^ ^pen • Ou'" notation is chosen to help you
remember these structures; M = (membership) matrix, h=crisp
(hard), f= fuzzy (or probabilistic), p=possibilistic, c=number of
classes and n=number of data points in X.

^ Notation For U in M^ c=l is represented uniquely by the hard

1-partition In = [l 1 ••• 1]. which asserts that all n objects belong
n times

to a single cluster; and c=n is represented uniquely by U= I , the n x n
identity matrix, up to a permutation of columns. In this case each
object is in its own singleton cluster. Crisp partitions have a
familiar set-theoretic description that is equivalent to (2.1). When
U = {X^ X } is a crisp c-partition, the c crisp subsets {X,}cX

satisfy [jX^ = X; Xj n X j = 0if i ?i j ;and Xj 5 t0Vi . We denote the

cardinality of a crisp set of n elements as |X| = n , and |Xi| = nj V i.

CLUSTER ANALYSIS 13

Choosing c=l or c=n rejects the h3T)othesis that X contains clusters
in these cases. The lack of a column sum constraint for
U e (Mp(,n -Mfcn) means that there are infinitely many U's in both

(M pin •Mfinjand (M -M^^) pnn
n

The constraint 0< XUjk Vi in equation (2.1) guarantees that each
k=l

row in a c-partition contains at least one non-zero entry, so the
corresponding cluster is not empty. Relaxing this constraint results
in enlarging M to include matrices that have zero rows (empty
clusters). From a practical viewpoint this is not desirable, but we
often need this superset of M ^̂ for theoretical reasons. We designate
the sets of degenerate (crisp, fuzzy, possibilistic) c-partitions of X as

I M)
fcnO' pcnO-''

(M. „„, M,_„, M^
hcnO'

The reason these matrices are called partitions follows from the
interpretation of their entries. If U is crisp or fuzzy, u is taken as
the membership of Xĵ in the i-th partitioning fuzzy subset (cluster) of
X. If U is probabilistic, u is usually the (posterior) probability
p(i IX) that, given x^, it came from class (cluster) i. We indicate the
statistical context by replacing U = [u] Avith P = [p] = [p(i | x)]. When
U is possibilistic, u is taken as the possibility that x belongs to
class (cluster) i.

Clustering algorithms produce sets of label vectors. For fuzzy
partitions, the usual method of defuzzification is the application of
(1.15) to each column U of matrix U, producing the maximum

membership matrix we sometimes call
formalize this operation as equation (2.10).

U MM
from U. We will

Example 2,1 Let X = {Xj = peach, x^ = plum, Xg = nectarine}, and let
c=2. Typical 2-partitions of these three objects are:

U i e M h 2 3 U a e Mf23 U 3 e M p 2 3

Object

Peaches
Plums

X X„ X„
1 2 3

1.0 0.0 0.0
0.0 1.0 1.0

X X„ X„
1 2 3

1.0 0.2 0.4
0.0 0.8 0.6

X, X„ X„
1 2 3

1.0 0.2 0.5
0.0 0.8 0.6

The nectarine, Xg, is labeled by the last column of each partition,
and in the crisp case, it must be (erroneously) given full membership
in one of the two crisp subsets partitioning this data. In U , Xg is
labeled "plum". Non-crisp partitions enable models to (sometimes!)

14 FUZZY PATTERN RECOGNITION

avoid such mistakes. The last column of U allocates most (0.6) of
the membership of Xg to the plums class; but also assigns a lesser
membership (0.4) to Xg as a peach. U illustrates possibilistic label
assignments for the objects in each class.

Finally, observe that hardening each column of U^ and U with
(1.15) in this example makes them identical to U . Crisp partitions
of data do not possess the information content to suggest fine details
of infrastructure such as hybridization or mixing that are available
in U and U . Consequently, extract information of this kind before
you harden U!

Columns like the ones for the nectarine in U and U serve a useful
purpose - lack of strong membership in a single class is a signal to
"take a second look". In this example the nectarine is a peach-plum
hybrid, and the memberships shown for it in the last column of
either U or U seem more plausible physically than crisp
assignment of Xg to an Incorrect class. M ^̂ and M̂ .̂ ^ can be more
realistic than M because boundaries between many classes of real
objects are badly delineated (i.e., really fuzzy). M^̂ ^ reflects the
degrees to which the classes share {x,}, because of the constraint

'^ k

inherited from each fuzzy label vector (equation (1.2)) we have
Xf=i u., = 1 • M ^̂ reflects the degrees of typicality of {x } with respect
to the prototypical (ideal) members of the classes.
We believe that Bill Wee wrote the first Ph.D. thesis about fuzzy
pattern recognition (Wee, 1967); his work is summarized in Wee and
Fu (1969). Ruspini (1969) defined M^̂ ,̂ and Ruspini (1970) discussed
the first fuzzy clustering method that produced constrained c-
partitions of unlabeled (relational) data. Gitman and Levine (1970)
first attempted to decompose "mixtures" (data with multimodality)
using fuzzy sets. Other early work includes Woodbury and Clive
(1974), who combined fuzziness and probability in a hybrid
clustering model. In the same year, Dunn (1974a) and Bezdek (1974a)
published papers on the fuzzy c-means clustering model. Texts that
contain good accounts of various clustering algorithms include
Duda and Hart (1973), Hartlgan (1975), Jain and Dubes (1988),
Kaufman and Rouseeuw (1990), Miyamoto (1990), Johnson and
Wichern (1992), and the most recent members of the fold, Chi et al.
(1996a) and Sato et al. (1997).

2.2 Batch point-prototype clustering models

Clustering models and algorithms that optimize them always
deliver a c-partition U of X. Many clustering models estimate other

CLUSTER ANALYSIS 15

parameters too. The most common parameters besides U that are
associated with clustering are sets of vectors we shall denote by
V = {vj, V2,..-, Vg} c 91^. The vector v. is interpreted as a point
prototype (centroid, cluster center, signature, exemplar, template,
codevector) for the points associated with cluster i. Point prototypes
are regarded as compact representations of cluster structure.

As j u s t defined, v. is a point in 31^, hence a point-prototype.
Extensions of this idea to prototypes that are not just points in the
feature space include v.'s that are linear varieties, hyperspherlcal
shells, and regression models. General prototype models are covered
in Section 2.3. Probabilistic clustering with normal mixtures
produces simultaneous estimates of a c x n partition P (posterior
probabilities), c mean vectors M = {m m }, c covariance matrices

{S , ..., S } and c prior probabilities p = (p , ..., p)^. Some writers
regard the triple (p., m., S.) as the prototype for class i; more
typically, however, m, is considered the point prototype for class i,
and other parameters such as p. and S are associated with it through
the model.

The basic form of iterative point prototype clustering algorithms in
the variables (U, V) is

(Ut,Vt) = e(X:Ut_i ,Vt_J, t>0 , (2.4a)

where G stands for the clustering algorithm and t is the index of
iteration or recursion. Non-iterative models are dealt with on a case
by case basis. When G is based on optimization of an objective
function and joint optimization in (U, V) is possible, conditions
(2.4a) can be written as (Uj,V^) = e(X:Hg(U^ ,̂ V^ j)), where H^ is
determined by some optimality criterion for the clustering model.
More typically however, alternating optimization (AO) is used,
which takes the form of coupled equations such as

Ut = ?e(Vt-i) ; Vt = 5fe(Ut) [V-initialization]; or (2.4b)
Vt = ^e(Ut-i):Ut = 3e(Vt) [U-initialization]. (2.4c)

The iterate sequences in (2.4b) or (2.4c) are equivalent. Both are
exhibited to point out that you can start (initialize) and end
(terminate) iteration with either U or V. Specific implementations
use one or the other, and properties of either sequence (such as
convergence) automatically follow for iteration started at the
opposite set of variables. Examples of clustering models that have
(U, V) as joint parameters are the batch hard, fuzzy and possibilistic
c-means models. Alternating optimization of these models stems
from functions J and Q which arise from first order necessary

16 FUZZY PATTERN RECOGNITION

conditions for minimization of the appropriate c-means objective
function.

A. The c-means models

The c-means (or k-means) families are the best known and most
well developed families of batch clustering models. Why? Probably
because they are least squares models. The history of this
methodology is long and important in applied mathematics because
leas t - squares models have many favorable mathematical
properties. (Bell (1966, p. 259) credits Gauss with the invention of the
method of least squares for parameter estimation in 1802, but states
that Legendre apparently published the first formal exposition of it
in 1806.) The optimization problem that defines the hard {H), fuzzy
(F) and possibilistic (P) c-means (HCM, FCM and PCM, respectively)
models is:

mlnj j„ (U,V;w)= i iuS^D2i, + I w , 1 (1 - U i k r j , where (2.5)
{U/V)i i=lk=l i=l k=l J

U e M , M, or M for HCM, FCM or PCM respectively
hen fen pen

V = (v , V ,..., V) e ĝ cp; v̂ e ĝ p is the i-th point prototype
T w = (w , w w) ; Wj e 9̂ + is the i-th penalty term (PCM)

m > 1 is the degree of fuzzification

D^ =i|x, - V
2

ik II k IIIA

Note especially that w in (2.5) is a fixed, user-specified vector of
positive weights; it is not part of the variable set in minimization
problem (2.5).

^ Caveat: Model optima versus human expectations. The
presumption in (2.5) is that "good" solutions for a pat tern
recognition problem - here clustering - correspond to "good"
solutions of a mathematical optimization problem chosen to
represent the physical process. Readers are warned not to expect too
much from their models. In (2.5) the implicit assumption is that
pairs (U, V) that are at least local minima for J will provide (i)
good clusters U, and (ii) good prototypes V to represent those clusters.
What's wrong with this? Well, it's easy to construct a simple data set
upon which the global minimum of J leads to algorithmically
suggested substructure that humans will disagree with (example 2.3).
The problem? Mathematical models have a very rigid, well-defined
idea of what best means, and it is often quite different than that held
by human evaluators. There may not be any relationship between
clusters that humans regard as "good" and the various types of

CLUSTER ANALYSIS 17

extrema of any objective function. Keep this in mind as you try to
unde r s t and your d isappointment about the terrible clusters your
favorite algorithm jus t found. The HCM, FCM and PCM clustering
models are summarized in Table 2 .1 . Problem (2.5) is well defined

for any distance function on 9f{P. The method chosen to approximate
solutions of (2.5) depends primarily on Dik. Ĵ^̂ is differentiable in U
unless it is crisp, so first order necessary conditions for U are readily
obtainable. If Dik is differentiable in V (e.g., whenever Dik is an inner
product norm), the mos t popular technique for solving (2.5) is
grouped coordinate descent (or alternating optimization (AO)).

Table 2.1 Optimizing Ji„(U,V;w) when ^ik = p - V :

Minimize

First order necessary conditions for

(U, V) when Dik = ||^ k " '^ij^ > 0 V i, k

(inner product norm case only)

HCM

Ji(U,V;w)

over(U,V)

inMhenXR^P
W: = OV i

^ ^ ^ ^ | l ; D i , . D y , j . i l . ^ .

0; otherwise]

V,- =

SUikXk
k=l

k=l

E x k

n:
V i

(2.6a)

(2.6b)

FCM

>Jm(U,V;w)

over(U,V)

inMfc„xR<=P

m >1

w, = O V i

u ik

/ _ \
ik D

VDjk/

m - l
Vi ,k ;

Vk-1 / k-1 /
V i

(2.7a)

(2.7b)

PCM

Jm(U,V;w)

over(U,V)

inMp,„xR^P

Wj > 0 V i

Uik = l + (D, l /wi) - i

Vk-1 / k - l /

Vi ,k ;

V i

(2.8a)

(2.8b)

Column 3 of Table 2.1 shows the first order necessary conditions
U, = JtC^t-i) ; ^t = ^ c (U) ^'^^ ^ ^^'^ ^ *̂- local extrema of J tha t
each model requires at extreme points of its functional when the
d is tance m e a s u r e in (2.5) is an inner p roduc t no rm metr ic .
Derivations of the FCM and PCM conditions are made by zeroing the
gradient of Jm with respect to V, and the gradient of (one term of) the

18 FUZZY PATTERN RECOGNITION

LaGrangian of J with respect to U. The details for HCM and FCM
can be found in Bezdek (1981), and for PCM, see Krishnapuram and
Keller (1993).
The second form, Vj for v^in (2.6b), emphasizes that optimal HCM-
AO prototypes are simply the mean vectors or centroids of the points
in crisp cluster i, Uj = |U(j)|, where U is the i-th row of U. Conditions
(2.7) converge to (2.6) and J ^ J as m->l from above. At the other

^ m l

extreme for (2.7), lim {u^^^} = 1/c V i, k as m increases without bound,
m-><»

and lim {Vi} = v = I x^ / n V i (Bezdek, 1981).
i ^ ^ k=l /

Computational singularity for u in HCM-AO is manifested as a tie
in (2.6a) and may be resolved arbitrarily by assigning the
membership in question to any one of the points that achieves the
minimum. Singularity for u in FCM-AO occurs when one or more

12
= 0 at any iterate. In this case (rare in practice), (2.7a)

cannot be calculated. When this happens, assign O's to each non-
singular class, and distribute positive memberships to the singular

c
classes arbitrarily subject to constraint X u,k = 1. As long as the w 's

1=1 '

are positive (which they are by user specification), PCM-AO cannot
experience this difficulty. Constraints on the {u } are enforced by
the necessary conditions in Table 2.1, so the denominators for
computing each v. are always positive.

Table 2.2 specifies the c-means AO algorithms based on the
necessary conditions in Table 2.1 for the inner product norm case.
The case shown in Table 2.2 corresponds to (2.4b), initialization and

termination on cluster centers V. The rule of thumb c < Vri in the
second line of Table 2.2 can produce a large upper bound for c. For
example, this rule, when applied to clustering pixel vectors in a
256 X 256 image where n=65,536, suggests that we might look for c =
256 clusters. This is done, for example, in image compression, but
for segmentation, the largest value of c that might make sense is
more like 20 or 30. In most cases, a reasonable choice for c can be

max
made based on auxiliary information about the problem. For
example, segmentation of magnetic resonance images of the brain
requires at most c = 8 to 10 clusters, as the brain contains no more
than 8-10 tissue classes.

All three algorithms can get stuck at undesirable terminal estimates
by initializing with cluster centers (or equivalently, rows of U) that
have the same values because U,, and v are functions of just each

(i) 1 •'

CLUSTER ANALYSIS 19

other. Consequently, Identical rows (and their prototypes) will
remain identical unless computational roundoff forces them to
become different. However, this is easily avoided, and should never
present a problem.

Table 2.2 The HCM/FCM/PCM-AO algorithms

Store Unlabeled Object Data X c 9^P

Pick

number of clusters: 1 < c < n
maximum number of iterations: T

weighting exponent: 1 < m < <» (m=l for HCM-AO)

Ml = ^"Ax
V, - V, , = big value

t II t t-iii ^

termination threshold: 0 < e = small value
weights w > 0 V i (w = 0 for FCM-AO/HCM-AO)

«" inner product norm for J :

••• termination measure: E, =

Guess initial prototjqjes: V^ = (v^, -V^oJeSt'^P (2.4b)

Iterate

t « - 0
REPEAT

t < - t + l
Ut = 5e(Vt_i) where ?e(Vt-i) (cf- 2.6a, 2.7a or 2.8a)
Vt = Ge (Ut) where g^ (U)̂ (cf. 2.6b, 2.7b or 2.8b

UNTIL (t=T or E^<e)
(U,V)^(Ut,Vt)

The rows of U are completely decoupled in PCM because there is no
c

constraint that X Ujĵ = 1. This can be an advantage in noisy data
i=l

sets, since noise points and outliers can be assigned low
memberships in all clusters. On the other hand, removal of the

c

constraint that J û ĵ = 1 also means that PCM-AO has a higher

tendency to produce identical rows in U unless the initial prototypes
are sufficiently distinct and the specified weights {w} are estimated
reasonably correctly (Barni et al., 1996, ICrishnapuram and Keller,
1996). However, this behavior of PCM can sometimes be used to
advantage for cluster validation - that is, to determine c, the number
of clusters that are most plausible (ICrishnapuram and Keller (1996)).
Krishnapuram and Keller recommend two ways to choose the
weights w for PCM-AO,

w< K
n

k=l
D ik

k=l
K > 0 ; or (2.9a)

20 FUZZY PATTERN RECOGNITION

w , = IDfk /|U(i,„| , (2.9b)

where U is an a-cut of U,,, the i-th row of the initiaUzing c-
(i)a (i) °

partition for PCM-AO. An initial c-partition of X is required to use
(2.9), and this is often taken as the terminal partition from a run of
FCM-AO prior to the use of PCM-AO. However, (2.9a) and (2.9b) are
not good choices when the data set is noisy. It can be shown (Dave
and Krishnapuram, 1997) tha t the membership function
corresponds to the idea of "weight function" in robust statistics and
the weights {w.} correspond to the idea of "scale". Therefore, robust
statistical methods to estimate scale can be used to estimate the {w}
in noisy situations. Robust clustering methods will be discussed in
Section 2.3.

Clustering algorithms produce partitions, which are sets of n label
vectors. For non-cr isp part i t ions, the u s u a l method of
defuzzification is the application of (1.15) to each column U, of
matrix U. The crisp partition corresponding to the Tnaximum
membership partition of any U e M is

U" = H(U,) = e o u > u , J9^i;Vk . (2.10)
k k I ik jk -*

The action of H on U will be denoted by U" = [H(Uj)--H(U^)]. The
conversion of a probabilistic partition P e M by Bayes rule (decide
X e class i if and only if p(i | x)] > p(j | x)]for jV i) results in the crisp

partition P" . We call this the hardening of U with H.

Example 2,2 HCM-AO, FCM-AO and PCM-AO were applied to the
unlabeled data set X illustrated in Figure 2.2 (the labels in Figure
2.2 correspond to HCM assignments at termination of HCM-AO).
The coordinates of these data are listed in the first two columns of
Table 2.3. There are c=3 visually compact, well-separated clusters in

The AO algorithms in Table 2.2 were run on X using Euclidean

distance for J and Ê until E^= ||Vt -Vt_ i | < e = 0.01. All three
algorithms quickly terminated (less than 10 iterations each) using
this criterion. HCM-AO and FCM-AO were initialized with the first
three vectors in the data. PCM-AO was initialized with the final
prototypes given by FCM-AO, and the weight w for each PCM-AO
cluster was set equal to the value obtained with (2.9a) using the

CLUSTER ANALYSIS 21

terminal FCM-AO values. The PCM-AO weights were w^=0.20,
FCM-AO and PCM-AO both used m = 2 for the W2=0.21 andWg= 1.41

membership exponent, and all three algorithms fixed the number of
clusters at c = 3. Rows U, of U are shown as columns in Table 2.3.

(1)

14

12

10

8

6

4

+ +
+ +

i^fo^

2 • •m

Terminal
HCM labels

+ = 3
o=2

• = 1

10 12 14

Figure 2.2 Unlabeled data set X 30

The terminal HCM-AO partition in Table 2.3 (shaded to visually
enhance its crisp memberships) corresponds to visual assessment of
the data and its terminal labels appear in Figure 2.2. The cells in
Table 2.3 that correspond to maximum memberships in the
terminal FCM-AO and PCM-AO partitions are also shaded to help
you visually compare these three results.

The clusters in this data are well separated, so FCM-AO produces
memberships that are nearly crisp. PCM-AO memberships also
indicate well separated clusters, but notice that this is evident not by

22 FUZZY PATTERN RECOGNITION

many memberships being near 1, but rather, by many memberships
being near zero.

Table 2.3 Terminal partitions and prototypes for X^^

DATA HCM-AO FTM-AO PCM-AO
PT.

^1 ""2 u7, vL vL u7, u,"!;, u;",, "^, u7. u^
(1) (2) (3) (1) (2) (3)

0.36
(2)

0.01
(3)

1 1.5 2 .5 1.00 0.00 0.00 0.99 0.01 0 .00 0.36
(2)

0.01 0.01
2 1.7 2 .6 1.00 0.00 0.00 0 .99 0.01 0 .00 0..S8 0.01 0.01
3 1.2 2 .2 1.00 0.00 0.00 0 .99 0.01 0 .00 0.27 0.01 0 .01
4 2 2 1.00 0.00 0.00 0 .99 0.01 0 .00 0.94 0 .01 0 .01
5 1.7 2 .1 1.00 0.00 0.00 1 0.00 0 .00 0.81 0.01 0.01
6 1.3 2 .5 1.00 0.00 0.00 0.99 0.01 0 .00 0.26 0.01 0.01
7 2 .1 2 1.00 0.00 0.00 0.99 0.01 0.00 0 .83 0.01 0.01
8 2 . 3 1.9 1.00 0.00 0.00 0 .98 0.02 0.00 0.52 0.01 0 .01
9 2 2 .5 1.00 0.00 0.00 0.99 0.01 0.00 0.51 0.01 0.01
10 1.9 1.9 1.00 0.00 0.00 0.99 0.01 0.00 0.86 0.01 0.01
11 5 6.2 0.00 1.00 0.00 0 .00 1.00 0.00 0.01 0.57 0.02
12 5.5 6 O.(H) 1.00 0.00 0.00 1.00 0 .00 0.01 0.91 0.02
13 4 .9 5.9 0.00 1.00 0.00 0.01 0.99 0 .00 0.01 0.46 0.02
14 5 .3 6 .3 0.00 1.00 0.00 0.00 1.00 0 .00 0.0] 0 .78 0.02
15 4 .9 6 0.00 1.00 0.00 0 .01 0 .99 0 .00 0.0] 0 .48 0.02
16 5.8 6 0.00 1.00 0.00 0.01 0.99 0 .00 0.0] 0.52 0.02
17 5.5 5.9 0.00 1.00 0.00 0 .00 1.00 0 .00 0 .0] 0.82 0.02
18 5.2 6.1 0 .00 1.00 0.00 0 .00 1.00 0 .00 0.0] 0 .87 0.02
19 6.2 6.2 0.00 1.00 0.00 0.02 0 .97 0.01 0.01 0 .23 0.02
20 5.6 6.1 0.00 1.00 0.00 0 .00 1.00 0.00 0.01 0.79 0.02
21 10.1 12.5 0.00 0.00 1.00 0 .01 0.02 0.97 0.00 0.00 0 32
22 11.2 11.5 0.00 0.00 1.00 0 .00 0.01 0.99 0.00 0.00 0 .63
2 3 10.5 10.9 0.00 0.00 1.00 0 .01 0.04 0 .95 0.00 0.00 0 30
24 12.2 12.3 0.00 0.00 1.00 0 .00 0.01 0.99 0.00 0.00 0.89
2 5 10.5 11.5 0 .00 0.00 1.00 0 .00 0.02 0 .98 0.00 0 .00 O.IO
26 11 14 0.00 0.00 1.00 0.01 0.02 0 .97 0.00 0.00 0 .40
27 12.2 12.2 0.00 0.00 1.00 0 .00 0.02 0 .98 0.00 0.00 0.89
2 8 10.2 10.9 0.00 0.00 1.00 0.01 0 .05 0.94 0.00 0.00 0 .25
29 11.9 12.7 0.00 0.00 1.00 0 .00 0.01 0.99 0.00 0.00 0.84
30 12.9 12 0.00 0.00 1.00

v „

0 .01 0 .03 0 .96

v „

0.00 0 .00 0 .53

V , v „ v~ V , v„

1.00

v „ V , v„

0 .96

v „ V , v„ v „
1 2 3 1 2 3 1 2 3 1 2 3

1.77 5.39 11.3 1.77 5.39 11.3 1.77 5.39 11.28 1.92 5.37 11.8
2.22 6.07 12.0 2.22 6.07 12.0 2.22 6.07 12.0 2.08 6.07 12.2

For example, the third cluster has many relatively low maximum
memberships, but the other memberships for each of points 21 to 30
in cluster 3 are all zeroes. The greatest difference between fuzzy and
possibilistic partitions generated by these two models is that FCM-
AO memberships (are forced to) sum to 1 on each data point, whereas
PCM-AO is free to assign labels that don't exhibit dependency on
points that are not clearly part of a particular cluster. Whether this
is an advantage for one algorithm or the other depends on the data
in hand. Experiments reported by various authors in the literature
support trying both algorithms on the data, and then selecting the
output that seems to be most useful.

Because the columns of U in M are independent, PCM actually
seeks c independent possibilistic clusters, and therefore it can locate
all c clusters at the same spot even when an algorithm such as FCM
is used for initialization. In some sense this is the price PCM pays -

CLUSTER ANALYSIS 23

losing the ability to distinguish between different clusters - for the
advantage of getting possibilistic memberships that can isolate
noise and outliers.
The bottom three rows of Table 2.3 enable you to compare the point
prototypes produced by the three algorithms to the sample means
{Vj, V2, Vg} of the three clusters. HCM-AO and FCM-AO both
produce exact (to two decimal places) replicates; PCM-AO cluster
centers for the second and third clusters are close to V2 and Vg,
while the PCM-AO prototype for cluster 1 differs by about 15% in
each coordinate. This is because PCM memberships vary
considerably within a cluster, depending on how close the points are
to the prototype.

Applying (2.10) to the FCM-AO and PCM-AO partitions in Table 2.3
results in the same terminal partition as found by HCM-AO (i.e., the
shaded cells in Table 2.3 show that U^^^ = U^^j^ = Uj^^^). This
happens because the data set is small and well-structured. In large,
less well structured data sets, the three algorithms may produce
partitions that, when hardened, can be significantly different from
each other. Needless to say, the utility of a particular output is
dependent on the data and problem at hand, and this determination
is, unfortunately, largely up to you.

B. Semi-supervised clustering models

Objective functions such as J and J that minimize sums of
squared errors are well known for their propensity to find solutions
that "balance" the number of members in each cluster. This
illustrates the sometimes confusing and always frustrating fact that
lower values of J do NOT necessarily point to better partitions of X.

Semi-supervised c -means clustering models attempt to overcome
this limitation. In this category are models due to Pedrycz (1985),
Hirota and Iwama (1988) and Bensaid et al. (1996a). They are
applicable in domains where users may have a small set of labeled
data that can be used to supervise clustering of the remaining data
(this is often the case, for example, in medical image segmentation).
Algorithms in this category are clustering algorithms that use a

finite design set X*̂ c 9̂ ^ of labeled (crisp or otherwise) data to help
clustering algorithms partition a finite set X" c 9^P of unlabeled
data. These algorithms terminate without the capability to label
additional points in 9^P - that is, they do not build classifier

functions. X is used to guide FCM-AO to a good c-partition of X".
Let X = X"̂ u X", Ix'*] = n^, |x" | = n^, |X| = n^ + n^ = n. Without loss
we assume that the labeled data are the first n points in X,

24 FUZZY PATTERN RECOGNITION

X^

labeled

^US „ u _ u —V
2L. , i . „ , . . . , * .

unlabeled

y-x^ux". (2.11)

Pedrycz (1985) defined pointer b = 1 if x̂ ^ is labeled, and b = 0

otherwise. Then he defined the matrix F = [fi]ĵ] with the given
label vectors in appropriate columns and zero vectors elsewhere.
Pedrycz modified J at (2.5) to the new functional

J„(U, V) = a I . I (u,, - b, f,)"D:^ + I I , (ujrn
l=lk=l ik k i k ' Ik l=lk=l Ik' Ik '

(2.12)

where a > 0 and U in M, is a c x n matrix to be found by
ten

minimizing (2.12). Under the same assumptions as in Table 2.2,
Pedrycz derived first order necessary conditions for Ĵ ^̂ by
differentiating (2.12) with respect to U and V in the usual fashion.
The formula for V remains (2.7b), while (2.7a) is replaced by the
more complicated expression

u
1

ik
1 + a l/{m-l)

l + [ocl/(m-l)j
1 -bk I f jk + ai/'™-"btf k^ik

. | ^ (D i k / D j k)
\2/(m-l)

(2.13)

Replacing (2.7a) with (2.13) 3delds the semi-supervised FCM-AO of
Pedrycz which we call ssJcm-AO. J^ includes a new term whose
minimization "forces" U to follow F for the patterns that are already
labeled. Weight factor a is used to balance unequal cluster
population. Notice especially that U is a new partition of all of X. so
at termination the supervising labels are replaced by the computed
labels.

The approach to semi-supervision taken by Bensaid et al. (1996a) is
to heuristically alter the equations for FCM-AO given in (2.7). Their
premise is that the supervising data are labeled correctly, so the n

labels (crisp or fuzzy) in U'' should be fixed. They use AO scheme

(2.4c), and take the initial matrix as U^ = [U |U^], where only UQ is

initialized. The terminal matrix has the form U^ = [U |Uj 1.

CLUSTER ANALYSIS 25

In ordinary HCM-AO or FCM-AO, once U is determined, the next
step is to compute cluster centers {v } using all n columns of U .
However, since the last n columns of U„ are user-initialized, these

u 0

authors compute the first set of cluster centers using only the n
columns in U''. This is justified by their belief that using only the
labeled data to find the initial cluster centers makes them "well-
seeded". Consequently, they calculate

1,0=I Kor^k / 1 K,or. 1 î̂ c X
k;=l'

(2.14)

Next, AO c-means ordinarily calculates U using the {v } to update
all n columns of U . However, Bensaid et al. use the functional form
at (2.7a) and update only the n columns in U" by calculating, for 1 <
i < c; 1 < k < n ,

u . lk,t I x " - v
k i.t-1

J , t - l |

2
m-1

,t=l,...,T. (2.15)

The cluster centers are then allowed to migrate in feature space, by
using all n columns of U to subsequently recompute the {v } after
the first pass. To counter the possible effect of unequal cluster
populations, the few samples that are labeled are weighted more
heavily than their unlabeled counterparts. This is done by
introducing non-negative weights w = (w , w ,..., w) as follows:

V =
i.t

/ d \"
W, U ,

1 k l ik.t/ k k ^ i \ ik.t

^ ' ^ k « t V k=l k^ ik.t iKf
, l<i<c;t=l , . . . ,T (2.16)

x^is replicated w times by this weighting scheme. Equations (2.14)-
(2.16) comprise the basis of the semi-supervised FCM (ssFCM)
algorithm of Bensaid et al. (1996a). The major difference between
ssFCM and ssfcm-AO is that Pedrycz's scheme is an attempt to solve
a new (different than (2.5)) optimization problem, whereas Bensaid
et al.'s method is a heuristically defined approach based on (2.5) that
is not a true optimization problem (and hence, does not bear the
designation AO).

Each point in X'* can be given a different weight in ssFCM. The vector
of weights in (2.16) is analogous to the factor a in (2.13): it is chosen
by the user to induce the labeled data to drive the clustering

26 FUZZY PATTERN RECOGNITION

algorithm towards a solution that avoids the problem of population
balancing that is illustrated in our next example.

Example 2.3 Figure 2.3(a) shows the results of processing a data set
given in Bensaid et al. (1996a) called X , which has c = 2 visually
apparent clusters, with FCM-AO. Cluster 1 (X) on the left has 40
points, while cluster 2 (X) on the right has only 3.

Figure 2.3(a) A hardened FCM-AO partition of X
43

Data very similar to these appear on p. 220 of Duda and Hart (1973),
where they were used to illustrate the tendency of J to split large
clusters. Figure 2.3(a) is essentially the same as Figure 6.13(a) in
Duda and Hart, except that our figure is a crisp partition of X

43
obtained by hardening the terminal partition of a run of FCM-AO.
The basic parameters used were the Euclidean norm for both J and

E^.c m 2 and e= 0.0001. The terminal cluster centers are
indicated by the symbol i'^). Notice how the large number of points
in X draws v far to the left of its visually desirable position. Here,
unequal cluster sizes cause J to identify a visually disagreeable
solution. This exemplifies our caveat about mathematical models:
J prefers this partition to the one we would choose because its
measure of similarity and method of aggregation is only a crude and
very limited representation of what we do in order to see the obvious
structure in the data.

CLUSTER ANALYSIS 27

View 2.3(b) shows a partition obtained by hardening the terminal
ssFCM (Bensald et al., 1996a) partition of X found using the same
basic parameters as for FCM-AO. As shown in Figure 2.3(b), ssFCM
used four points from X and 1 point from X as the supervising
labeled data (so n = 5), and equal weights w.= 6 for each supervising
point. Apparently ssFCM overcomes the problem illustrated in
Figure 2.3(a). The three points in X are isolated from the large
cluster in the hardened partition, and v occupies a position that is
visually correct. However, the supervising points for the left cluster
were well chosen in the sense that they, like v , occupy the visually
apparent center of X . Loosely speaking, the weight w = 6 essentially
gives these four points 6 times as much influence as any unlabeled
individual during iteration of ssFCM.

^ Supervising points

Figure 2.3(b) A hardened ssFCM-AO partition of X 43

View 2.3(c) shows a partition obtained by hardening the terminal
ssfcm-AO (Pedrycz) partition of X found using the same basic
parameters and supervising points as for ssFCM, with scale factor a
in (2.12) set at a = 200. Figures 2.3(a) and 2.3(c) are very similar, and
based on the difference between views 2.3(b) and 2.3(c), it appears
that ssFCM-AO is superior to ssfcm-AO. However, this may be due
more to a fortuitous choice of supervising points and weights than
by any inherent superiority in ssFCM. Some insight into this aspect
of comparing various miethods is gained by simply altering the
points used for supervision of ssfcm-AO, with all other parameters
fixed.

28 FUZZY PATTERN RECOGNITION

© Supervising points

Figure 2.3(c) A hardened ssfem-AO partition of X
43

Supervising points

Figure 2.3(d) Another hardened ssfcm-AO partition of X
43

Figure 2.3(d) shows the Pedrycz (1985) ssfcm-AO result vv̂ hen the six
points shown there are used to supervise it. For this alternate choice
of supervision, the algorithm of Pedrycz produces a hardened
partition that is quite similar to the one shovm in view 2.3(b); only 2
of the 43 points are mislabeled in this crisp partition of the data. We
have no doubt that some combination of supervising points and
algorithmic parameters would enable ssfcm-AO to produce the same
partition that ssFCM does here. This emphasizes an important
point. Most clustering methods will produce almost identical results

CLUSTER ANALYSIS 29

if you have enough time to find the parameters that yield the same
solution. For p > 3, the luxury of choosing supervising data that are
"Just right" is not available even when some of the data are labeled.
See Bensaid et al. (1996a) for further discussion about this problem.

C. Probabilistic Clustering

Chapter 6 of Duda and Hart (1973) gives a very readable account of
the decomposition of normal mixtures using maximum likelihood.
This subsection follows their development closely. More complete
accounts of probabilistic clustering are found in Everitt and Hand
(1981), Titterington et al. (1985), and McLachan and Basford (1988).

The expectation-Tnaximization (EM) algorithm is used to optimize
the maximum likelihood model of the data, and it generates
probabilistic labels for X under the assumptions of statistical
mixtures (Titterington et al., 1985). We briefly discuss the
connection between this scheme and fuzzy clustering. X is assumed
to be drawn from a mixed population of c p-variate statistical
distributions that have, for i = 1, 2, ... c: random variables {X}; prior
probabilities {n,}; and class-conditional probability density
functions (PDFs) {g(x | i)}. The PDF formed by taking the convex
combination

f(x)=l7Cig(x|i)
1=1

(2.17)

is a distribution which is called a mixture of the components
{7i,g(x I i)}. Each component g(x | i) can be continuous or discrete, and
(2.17) can have some components of either type. The case that
dominates applications is when every component of f(x) is
multivariate normal. Then the PDF of component i has the familiar
form

7(jJi, E.) = g(x|i) = e 2» '̂ '" î 7(2n)2.^/detE

jA. = (ji ,..., >L .) = population mean vector of class i; and

where (2.18a)

(2.18b)

Z. =[cov(X.)] =

^1,11 ^1,12 • •• a . ip

^ i . 2 1 ^1 ,22 ; • ^ i .2p

i .p l ^ l . p 2 • • a
1 ,pp

(2.18c)

30 FUZZY PATTERN RECOGNITION

Z. is the (positive definite) population covariance matrix of class i.

^'ijk - cov(Xij, Xjjj) is the population covariance between variables j
and k for class i and the norm in (2.18a) is the Mahalanobis norm
for class i (equation (1.9)) computed with the population parameters

Let the a posteriori probability that, given x, x came from class i, be
denoted by 7i(i|x). Bayes rule relates the elements of (2.18) to the
probabilities {7i(i|x)} as follows:

7r(i|x) = 7iig(x|i)/f(x) . (2.19)

For a sample of n points X = (x , x x } assumed to be drawn
independently and identically distributed (iid) from (2.17) with
PDFs as in (2.18), the c x n posterior matrix 11= [n = 7t(i | x)] is in

^fcn' ^^^ ^^^ °^ constrained c-partitions of X. n (or more accurately,
estimate p of it) is a probability that plays much the same role in
statistical clustering that the membership value u plays in fuzzy
clustering.

The scheme usually employed for mixture decomposition assumes
the Gaussian functional form (2.18a) for the {g(x|i)}. Under this
hypothesis, we attach an unknown parameter vector p to each PDF
in the mixture:

f(x:B)=l7tig(x|i;pi) . (2.20)
i= l

The mixture density now depends on a parameter vector B = (P ,...,

P) where the parameters for class i are p. = (TI , jji , E,) for component
PDFs as in (2.18a). Alternatively, estimates for posterior matrix n
can be viewed as the parameters of (2.20) since equation (2.19)
couples n to the parameters B we use here.

One of the most popular ways to estimate B using either labeled or
unlabeled data is maximum, likelihood estimation (MLE). Given X =
{x , X ,..., X }, we form the log-likelihood function ln[L(B; X)] of the
samples as a function of B and try to maximize it (In denotes the
logarithmic function to the base e). When the component densities
are Gaussian, g(x|i) = H(ji.,Xj), first order necessary conditions for

the MLE (p ,m ,S) of each p = (n ,)i. Z) are known (Wolfe, 1970).
i i i 1 l i , i

Letting P = [p J denote the MLE of n = [n j , Wolfe showed that

CLUSTER ANALYSIS 31

m = i P . .X . / i n ; l < i < c ;
1 k=i ^ik k/ k=i ^ik

p^g(x,^|i:(p,,m,,S^))
' i k l < i < c l < k < n .

IPjg(XklJ:(P
j=i

(2.21a)

(2.21b)

{2.21c)

(2.22)
j .m^.S^))

The vector of m e a n s , M= (m m) at (2.21b) is a set of c point
pro to types ana logous to the vector V of c luster centers in the c-
m e a n s models; and the matr ix P a t (2.22) is the obvious analog to U
for the FCM model. Equat ions (2.21) are a set of highly non-l inear
equa t ions t h a t a re coupled th rough Bayes rule (2.22) to t he MLE
e s t i m a t o r s for t h e popu la t ion p a r a m e t e r s of t he c c o m p o n e n t
n o r m a l dens i t i e s . Hence , numer i ca l m e t h o d s are u s e d to find
cand ida tes for local maxima of ln[L(B; X)]. The AO algorithm given
in Table 2.4 t h a t is based on equat ions (2.21) and (2.22) for normal
mix tu res is called the Gaussian mixture decomposition (GMD-AO)
AO algorithm : it is a special case of the EM algorithm.

Table 2 .4 The GMD-AO algorithm for normal mixtures

Store Unlabeled Object Data X c 9tP

Pick

number of clusters: 1 < c < n. Rule of thumb: c < Vri
max imum n u m b e r of i terations: T

no rm for termination: E = P̂ . - P ^ . J = big value

terminat ion criterion: 0 < e = small value

Guess initial part i t ion: P„ e M^
'^ 0 fen

(2.4c)

is (2.21a-c)

is (2.22)

t < - 0
REPEAT

Iterate t <- t + 1

Bt=^EM(Pt- i) where g^^(P^_j)

Pt=^EM(Bt) where P^ = ^^„(B^)
UNTIL (t=T or E^<e)

(P ,B)^(P^,B^)

W h e n t h e covar iance s t r u c t u r e of one or more c o m p o n e n t s is
a rb i t ra ry , ln[L(B; X)] may not have a finite m a x i m u m (Duda a n d
Hart , 1973). Nonetheless , numer ica l solut ions of th i s sys tem are
known to p roduce useful e s t ima to r s in m a n y real p rob lems , so

32 FUZZY PATTERN RECOGNITION

probabilistic clustering {that is, estimates of the matrix P) is
popular. The efficacy of this approach depends mainly on the data
satisiying the assumption that it be drawn iid from mixture (2.17)
with components (2.18a). If this is not the case (and often, it is not),
subs t ruc tu re found by maximizing ln[L(B; X)] can be very
misleading.

Note that Mahalanobis distances are needed in (2.18a), and
therefore in (2.22) as well, so each iteration of GMD-AO requires the
inversion of the c (pxp) covariance matrices at (2.21c). Hence, GMD-
AO is quite a bit more computationally intense than any of the c-
means algorithms. In view of this, and because the EM algorithm is
very sensitive to initialization, many authors prefer to preprocess X
with a simpler scheme to improve the chance that GMD-AO gets
started at a point in its parameter space that is close to a useful
solution (Duda and Hart, 1973).

It has been shown that FCM-AO can provide good initializations for
GMD-AO (Bezdek and Dunn, 1975, Bezdek et al., 1985, Davenport et
al., 1988). Gath and Geva (1989b) also studied the estimation of
components of normal mixtures using a fuzzy clustering approach
that we discuss in Section 2.3. These papers point out the
similarities of and differences between estimates produced by FCM-
AO and GMD-AO algorithms. See Hathaway and Bezdek (1986b) for
an example that proves that the point prototypes {v,} from FCM-AO
cannot be a statistically consistent estimator of the means {m }
from an arbitrary univariate mixture. Another approach to
initialization by clustering with a deterministic competitive
learning model is given by McKenzie and Alder (1994). Many fuzzy
clustering algorithms have been proposed that are either hybrids of
or are related to GMD-AO, or that use the maximum likelihood
principle in some other way. Among these, we mention the paper by
Kaufman and Rouseeuw (1990), and we discuss the model of Gath and
Geva (1989a) in Section 2.4.

Example 2.4 Data set X from Table 2.3 was processed with the
GMD-AO algorithm using the same initialization and termination
parameters as in Example 2.2. Specifically, v =: (1.5, 2.5)^, v =
(1.7, 2.6)"^ and v^^ = (1.2, 2.2)"^-The results are shown in Table 2. 5.
Since GMD-AO produces a partition in M, , we compare P„ .„ „ to

^ ^ fen GMD-AO

the terminal U produced by FCM-AO for m=2 that appears in the
third set of columns in Table 2.3. The hardened versions of both
partitions are also identical, ^QMD ~ ^FCM ~ ^HCM-

CLUSTER ANALYSIS 33

Table 2.5 Terminal EM and FCM partitions and prototypes for X
30

Pt. Data Pt. GMD-AO FCM-AO (m =2)

^ 1 ^ 2 Ml)
PT
* (̂2)

PT
M3)

u,T) U,''2) Ui's)
1 1.5 2 .5 1.00 0 .00 0 .00 0 .99 0 .01 0.00
2 1.7 2 .6 1.00 0 .00 0 .00 0 .99 0 .01 0.00
3 1.2 2 .2 1.00 0 .00 0 .00 0 .99 0.01 0.00
4 2 .0 2 .0 1.00 0 .00 0 .00 0 .99 0.01 0.00
5 1.7 2 .1 1.00 0 .00 0 .00 1.00 0 .00 0.00
6 1.3 2 .5 1.00 0 .00 0 .00 0 .99 0 . 0 1 0.00
7 2 .1 2.0 1.00 0 .00 0 .00 0 .99 0 .01 0.00
8 2 .3 1.9 1.00 0 .00 0 .00 0 .98 0 .02 0.00
9 2 .0 2 .5 1.00 0 .00 0 .00 0 .99 0 .01 0.00
10 1.9 1.9 1.00 0 .00 0 .00 0 .99 0 .01 0.00
11 5.0 6.2 0 .00 1.00 0 .00 0 .00 1.00 0.00
12 5.5 6.0 0 .00 1.00 0 .00 0 .00 1.00 0.00
13 4 . 9 5.9 0 .00 1.00 0 .00 0 .01 0 .99 0.00
14 5 .3 6 .3 0 .00 1.00 0 .00 0 .00 1.00 0.00
15 4 .9 6.0 0 .00 1.00 0 .00 0.01 0 .99 0.00
16 5.8 6.0 0 .00 1.00 0 .00 0 .01 0 .99 0.00
17 5.5 5.9 0 .00 1.00 0 .00 0 .00 1.00 0.00
18 5.2 6.1 0 .00 1.00 0 .00 0 .00 1.00 0.00
19 6.2 6.2 0 .00 1.00 0 .00 0 .02 0 . 9 7 0.01
2 0 5.6 6.1 0 .00 1.00 0 .00 0 .00 1.00 0.00
2 1 10.1 12.5 0 .00 0 .00 1.00 0 .01 0 .02 0.97
2 2 11.2 11.5 0 .00 0 .00 1.00 0 .00 0 .01 0.99
2 3 10.5 10.9 0 .00 0 .00 1.00 0 .01 0 .04 0.95
2 4 12.2 12 .3 0 .00 0 .00 1.00 0 .00 0 .01 0.99
2 5 10 .5 11.5 0 .00 0 .00 1.00 0 .00 0 .02 0.98
2 6 11.0 14.0 0 .00 0 .00 1.00 0 .01 0 .02 0.97
2 7 12.2 12.2 0 .00 0 .00 1.00 0 .00 0 .02 0.98
2 8 10.2 10.9 0 .00 0 .00 1.00 0 .01 0 .05 0.94
2 9 11.9 12.7 0 .00 0 .00 1.00 0 .00 0 .01 0.99
3 0 12.9 12.0 0 .00 0 .00 1.00 0 .01 0 . 0 3 0.96

V l V2 V3 ™1 ™2 n i g
^ 1 ^ 2 ^ 3

1.77 5 .39 11 .3 1.77 5 .39 11 .27 1.77 5 .39 11.28
2.22 6 .07 12 .0 2 .22 6 .07 11 .99 2 .22 6 .07 12.00

To two significant digits, the terminal GMD-AO partition is crisp

before hardening, PQMD ~ ^HCM • ^^^i^ i^ "^^ unexpected in view of the
well separated, Gaussian-like clusters in X . A similar very crisp
result can be obtained by setting the FCM parameter m to a value
close to 1. The terminal estimates {m.} of the (assumed normal)

means are practically identical to the FCM cluster centers {v.} and
the sample means {v.}. Also available at termination of GMD-AO
are the covariance matrices,

34 FUZZY PATTERN RECOGNITION

Si
"0.11
-0.05

- .05"
0.07 • ' % =

"0.16 0.01"
0.01 0.02 ;and S^ = '0.84 0.24"

0.24 0.57

and estimates of the prior probabilities, which were all p = 1/3 to six
significant digits. The terminal covariance matrices are useful for
analysis of the shape of each cluster - this will become evident in
Section 2.3. To summarize, when the clusters are well separated and
essentially spherical and well distributed throughout their basic
domains as they are in X , the mixture decomposition and fuzzy c-
means models produce almost identical results. This is, of course,
not always the case.

D. Remarks on HCM/FCM/PCM

The remaining paragraphs of this section offer comments on
various aspects of the point prototype c-means models.
Generalizations based on prototypes that are not points in feature
space is so large and important that we will devote Section 2.3 to
this topic.

Choice of parameters. HCM-AO, FCM-AO and PCM-AO share the
algorithmic parameters (U /V T, ||*||̂ , *\\^^, c and e). FCM-AO adds
weighting exponent m, and PCM-AO adds m and the weight vector w
to this list. Variation in any of these parameters can affect
algorithmic results for a fixed set of unlabeled data. Choosing the
most basic parameter, c = the number of clusters, will be discussed in
Section 2.4.

Justifying your choice of m is always a challenge. FCM-AO will
produce partitions that approach U = [1 / c] as m increases. In
theory, this happens as m -> oo, but in practice terminal partitions
usually have memberships close to (1/c) for values of m between 10
and 20. At the other extreme, as m approaches 1 from above, FCM
reduces to HCM, and terminal partitions become more and more
crisp. Thus, m controls the degree of fuzziness exhibited by the soft
boundaries in U. Most users choose m in the range [1.1, 5], with m = 2
an overwhelming favorite. See Bezdek (1976) for an electrical analog
of J that offers a physical explanation for preferring m = 2.

Macbratney and Moore (1985) discuss an empirical scheme for
choosing m.

Choice of norms. Many authors have used distances (1.7), (1.8) and
(1.9) for D, with J . The results do not indicate a clear advantage for

ik m ^
any distance, nor should they. The data themselves have the last say
about which distance will provide the best results. Euclidean
distance is the overwhelming favorite, probably because it is the one
we live with. Mahalanobis distance is useful when there are large

CLUSTER ANALYSIS 35

disparities in the ranges of the measured features because it rotates

the basis of 9̂ ^ so that the data are scaled equally and are pairwlse
uncorrelated.

Differentiability of the inner product norm leads to the conditions
for V shown in Table 2 .1 . When D^̂ in (2.5) is replaced by a
Minkowski norm other than the 2-norm, this property fails, and
other means are necessary for finding the function Q^ tha t is
needed for V̂^ = Q^ (U^). Authors who have studied the use of the city
block (1- norm) and sup norm (°o norm) for J include Bobrowski

m
and Bezdek (1991), Jajuga (1991) and Kersten (1995). Q^ in Table 2.2
is defined by a method such as linear programming or Newton's
method when these norms are used. Kersten (1995) has shown that
^g for the 1-norm is the weighted (or fuzzy) median. Trauwaert
(1987) also discusses several issues and algorithms related to the use
of the 1-norm in fuzzy clustering.

Initialization. Initialization is important. Many examples have been
published that show termination at different solutions when c-
means AO algorithms are initialized from different starting points.
There is no general agreement about a good initialization scheme.
The three most popular methods are: (1) using the first c distinct
points in the data; (li) using c points randomly drawn from a
hyperbox containing X; and (ill) using c points uniformly distributed
along the diagonal of the hyperbox containing X. Some authors
recommend initializing FCM with the output of HCM, and in turn,
some initialize PCM with FCM. Be careful not to initialize any of
these algorithms with equal rows in U or equal cluster centers in V ,

because iterative updates cannot subsequently change them unless
there is a benevolent roundoff error that upsets equality.

Termination. The tradeoff between speed and accuracy is affected by
both E and e. The 1, 2 and sup norms have all been used for E . The
most popular norm for E is certainly the Euclidean norm, but the 1 -
norm probably provides comparable results at a savings in time.
The choice of e controls the duration of Iteration as well as the
quality of terminal estimates. If e is too small, limit cycles may
occur. Most authors report good success with e In the interval [0.01,
O.OOOIJ.

The choice of initialization in V as in (2.4b) or U as in (2.4c) is
almost a matter of taste. However, there is a large and important
difference In terms of storage and speed. When Initialization and
termination are made on U as in (2.4c), (en) variables must all be
close before termination occurs, and two c x n matrices must be
stored. On the other hand, only (cp) variables must have small

36 FUZZY PATTERN RECOGNITION

successive differences when initializing and terminating with V,
and storage for successive iterates of V requires only two cxp
matrices. To see the difference, suppose you apply c-means to a
256x256 monochromatic image. Then n=65,536 whereas p=l. Since
c is common to both schemes, initializing and terminating on V
realizes an O(IO^) savings in storage and usually reduces CPU
[central processing unit) time considerably. On the other hand, e
will usually have to be smaller to achieve termination at estimates
comparable to using U for initialization and termination instead of
V. Some authors normalize the termination error by the number of
variables being estimated, comparing e to either

k-Ut-iH,J|Vt-Vt-i||_
en cp

Convergence. Convergence always means in some well-defined
mathematical sense; termination is when and where an algorithm
stops. Sequences converge, algorithms terminate - hopefully, close
to a point of convergence. FCM-AO generates an iterate sequence
that contains a subsequence that converges q-linearly from any
initialization to a local minimum or saddle point (local maxima are
impossible) of J . Convergence theory for FCM (and HCM as well)
began with Bezdek (1980), and has progressed through a series of
papers that include Selim and Ismail (1984), Ismail and Selim
(1986), Hathaway and Bezdek (1986a, b), Sabin (1987), Bezdek et al.
(1987b), Hathaway and Bezdek (1988), Kim et al. (1988) and Wei and
Mendel (1994).

Acceleration. In this category are methods that seek to improve
computational properties (speed and storage) of the c-means AO
algorithms. The algorithms in Table 2.2 require many distance
calculations as well as fractional exponentiation at each half
iterate. For large data sets (e.g., images), this can mean relatively
slow iteration and lots of storage. Two methods for acceleration are
used: exploitation of special properties of the data; and alteration
the equations used for iteration.

As an example of exploiting special properties of the data, consider
the case when X is an 8 bit image. Since there are only 256 possible
values for each x , a great reduction in both memory and CPU time
can be realized by using the frequency of occurrence of each gray
level as follows. Let the number of pixels with gray level q be f . All
of these pixels will have the same membership in all c clusters. Let
u be the membership of all pixels with gray level q for cluster i, 1 < i
< c. There are 256 values of u. , one for each gray level.

CLUSTER ANALYSIS 37

Now consider the computa t ion of, say, the i-th c lus ter center for
FCM with equat ion (2.7b) w h e n the image h a s 2 5 6 x 2 5 6 = 65 ,536
pixels:

65536 /65536 255 /255
I U ^ X k / I U S = I fqUj^Xk / S fqU- '

k=l / k=l q=0 / q=0

The second form on the r ight follows b e c a u s e all of t he pixels
(exactly f of them) wi th gray level q will have t he ident ica l

member sh ip u. . This m e a n s t h a t only 256 membersh ip vectors in

gjc need to be stored and used, a s opposed to 65,536. Histogramming
easily obtains the (f }, a n d equat ions (2.6) - (2.8) for all the c -means
models can be implemented m u c h more efficiently.

The approximate FCM (AFCM-AO) a lgor i thm of C a n n o n et al .
(1986a) w a s t he first t echn ique s tudied to speed u p FCM-AO by
changing equat ions (2.7), and it also made u s e of the special n a t u r e
of image da ta . AFCM-AO reduced the CPU time for FCM-AO by
replacing the exact necessary conditions a t (2.7) with approximate
ones t h a t could be implemented us ing six look-up tables. However,
AFCM-AO was restricted to discrete da ta (such a s image data), a n d
con ta ined several approx imat ions t h a t degraded o u t p u t quali ty.
AFCM-AO saved roughly a n order of magnitude in time, b u t h a s been
largely overshadowed by more recent developments s u c h a s those
given by Kamel and Selim (1994), Shanka r a n d Pal (1994), Cheng et
al. (1995) and Hershfinkel and Dinstein (1996).

E. The Reformulation Theorem

Minimization of the c-means functionals can be a t tempted in m a n y
ways bes ides AO. Hathaway and Bezdek (1995) show tha t problem
(2.5) can be reformulated by eliminating ei ther U or V from J by

direct subs t i tu t ion of the necessary conditions for one or the o ther
from Table 2.1 into equat ion (2.5). This idea had its roots in Bezdek
(1976), where the reformulation of J for FCM was exhibited, b u t the

m
effect of us ing it to replace the original optimization problem w a s
not d iscussed. The reformulations of J as a function of V alone for
the three cases are:

R i (V;0)= I min{Djj^,D2j^,...,D^^} ; (2.23a)
k=l

^ \ l - m

Rm (V; 0) = I I Dj/'i-'") ; (2.23b)
k=iU=i J

R ^ (V ; w) = i X (D|i^'^-"^' + wJ/»-™'f ' " . (2.23c)
i=lk=l^ '

38 FUZZY PATTERN RECOGNITION

Let J denote a particular instance of (2.5) (hard, fuzzy or
possibilistic) and R denote the corresponding reformulated version
in (2.23). Let M be M^ , M, , or M , and U = ?(V) denote the

hen fen pen "̂
function of V defined by the right hand side of (2.6a), (2.7a) or (2.8a),
depending on the model used. Let the distances D , for i=l c and
k=l,...,n, be continuous functions of V e V, where V is an open subset
of 9t̂ * and V e 9̂ *̂ *. (Using t instead of p admits more general
prototypes than points in 9^ ;̂ the theorem holds for many non-
point prototype cases which are discussed later.) Let V be such that
the corresponding distances satisfy D > 0, for i=l,...,c and k=l,...,n.
Then:

For the hard, fuzzy or possibilistic cases:

(i) (U, V) globally minimizes J over MxV => V globally
minimizes R over V; and

(ii) V globally minimizes R over V ^ (5(V), V) globally minimizes
J over MxV.

For either the fuzzy or possibilistic case:

(iii) (U, V) locally minimizes J => V locally minimizes R; and

(iv) V locally minimizes R => {J{y), V) locally minimizes J.

This theorem can be used to convert problem (2.5) into an equivalent
unconstrained optimization problem where R in (2.23) is minimized
with any optimization scheme. Without the reformulation theorem,
there is no assurance that AO and R - based solutions will even be
similar, much less the same. This theorem guarantees that while
approaches based on reformulation will undoubtedly have different
computational properties (such as speed and storage), they will not
produce markedly different clustering solutions from AO-based
solutions.

For example, consider optimization of J using a genetic algorithm
(GA) approach (Goldberg, 1989). One of the most important issues for
using GA is representation of the model in a form that is amenable
to the GA paradigm. J in (2.5) is not well suited to be a fitness
function for this type of optimization because of the constraints on
the (u,}. Reformulations of J in terms of V alone are much more

ik m
likely to be good fitness functions, because the number of
parameters that must be represented and estimated in the
reformulation is far less than in the original form. For example,
consider segmenting an unlabeled magnetic resonance image of size
256x256 in its standard three dimensional parameter space. For c=

CLUSTER ANALYSIS 39

10 tissue classes, the number of unknowns sought by FCM-AO is
c(n+p)= 10(65,536+3) = 655,363; but the reformulated version, FCM-
R, seeks only cp = 10(3) = 30. Moreover, (2.5) demands maintaining
65,536 constraints on the memberships, which makes the use of GA
on J quite impractical.

Several authors have experimented with the GA approach to solving
(2.5) via (2.23). The reformulation theorem gives this idea a solid
footing. Desired (but not guaranteed) advantages include
elimination of dependency on good initialization as well as
avoidance of local trap states. For small problems (that is, small
values of n and p), the GA approach seems to deliver good solutions.
As the size of the data set increases, however, it is less clear that
optimization of J by GA methods is an improvement to AG
schemes. This is a fairly new area: representative papers include
Hathaway and Bezdek (1994a) and Hall et al. (1994).

2.3 Non point-prototype clustering models

An important aspect of clustering with the EM method is that the
eigenstructure of the covariance matrices {S.} at (2.21c) lets clusters
assume locally different hyperellipsoidal shapes. This enables the
GMD-AO algorithm to represent each cluster drawn from a normal
mixture more accurately than the c-means models. When using the

norm D%^ = \\x^ - VJI in (2.5), only one cluster shape can be matched
well - the hj^erellipsoidal shape determined by the eigenstructure of
the fixed weight matrix A. This is fine if all c clusters have that
shape, but most real data have more variability than this. The
deficiency of global minima for least squared error functions that is
illustrated by Figure 2.3(a) is due at least in part to exactly this
limitation, and ssFCM can be viewed as an attempt to trick the FCM
functional in hopes of overcoming this problem. Knowledge of this
deficiency may have been one of the reasons that Gustafson and
Kessel (1979) introduced the model we discuss next.

The basic variables that can be altered in the c-means models are
the way proximities {D } of x to the point prototypes (v } are
measured; and the kind of prototypes that are used. Geometric
shapes in clusters can be matched eiliier by adjusting the norm (and
hence, the shape of open and closed unit balls in feature space), or by
changing the fitting prototypes V. There have been many studies on

the effect of changing A in D%. = \\xy. - Vj ||̂ on the assumption that
all of the clusters in X have roughly the same A-norm geometry and
that they are "cloud-like" - that is, they are more or less uniformly
distributed over their convex hulls. Gustafson and Kessel (1979)
introduced the first fuzzy method for localized shape matching via
individual norms that adapted to the shapes of individual clusters.
Algorithms of this kind are called adaptive because individual

40 FUZZY PATTERN RECOGNITION

norms change at each iteration in an attempt to adapt to the
geometry of individual clusters.

Some authors prefer to interpret the weight matrix A inducing an
individual norm for a cluster as part of the prototype of the cluster.
This leads to the idea of choosing non-point prototypes to match the
shape of the expected clusters. A linear prototype, rather than a
point, could be used to represent line-like clusters, and a circular
prototype could be used to find ring-shaped clusters. Clusters which
have no "interior points" are called shell clusters to distinguish
them from cloud type or volumetric structures. Figure 2.4 illustrates
this idea for three two-dimensional structures that are best
represented by different kinds of prototypes. The volumetric cloud
on the left is represented by a point prototjqje, while the linear and
circular shells in the other two views are best represented by more
general (non-point) prototypes, namely, a line and a circle.

V = Point B = Line B = Circle

ooo

Figure 2.4 Appropriate prototypes for various clusters

Sets of c point prototypes are called V, and the collection of c non-
point prototypes will be denoted by B. Sometimes, but not always, a
model admits V as a special case of B. Non-point prototype-based
clusters are usually defined by least-squared error models that
attempt to fit the prototypes to the clusters. The generalization of
problem (2.5) for non-point prototypes is

min J (U, B; w) = 2 I u"D^ + X w. I 1 - u , } , where (2.24a)

B = (|3 ,̂ p^,..., p^); p J is the i-th non-point prototype; and (2.24b)

Dfî = S(Xi^,Pi) measures the proximity or similarity
of X to the i-th non-point prototype. (2.24c)

The exact nature of p, (and hence S) depends on the particular model.
A variety of models and AO algorithms have been developed by
varying p . and S. In AO algorithms the membership update equation
Ut = ^e(Bt-i) is still given by (2.6a), (2.7a) and (2.8a) for the hard,

CLUSTER ANALYSIS 41

fuzzy and possibilistic cases respectively, except that D now
represents an appropriate proximity measure ra ther than
ll̂ k "'"'iiA- ^^^ prototype update equation B̂ . =^^(11^) depends on
the particular choice of the prototype. In this section we discuss
several non-point prototype models.

A. The Gustafson-Kessel (GK) Model

Gustafson and Kessel (1979) proposed that the matrix A in equation
(2.5) be a third variable. They put A = (A ,..., A), A being a positive-
definite p x p matrix, and modified (2.5) to

Hii3 \ J CK^^' V. A) = I £ u";||x - V II' \ . (2.25)

det(A')=p,

The variables estimated by the GK model are the triplet (U, V, A)
where V is still a vector of point prototypes. This model predates
possibilistic partitions by some 15 years, so the weights {wj in (2.5)
are all zero. The important idea here is that the i-th cluster in U
might be best matched by a hyperellipsoidal shape generated by the
eigenstructure of the variable matrix A, much like S does for GMD-

AO at (2.21c). The additional constraint that det(Aj) = p. > 0
guarantees that A is positive-definite; p. is a user defined constant
for each cluster. Gustafson and Kessel showed that minimization of
J with respect to A leads to the necessary condition

m , G K '̂ ^ I •'

A. = [p. det(C,)]'^^C-i, 1 < i < c . (2.26)

In (2.26) C. is the fuzzy covariance matrix of cluster i.

0 = 1 u'"(x -v.)(x -v.f/l u " , l < i < c ; m > l , (2.27)
1 j£rj ik k 1 k 1 / ^ i ik

where v, is the i-th point prototype or cluster center. In the sequel we
may represent the set of fuzzy covariance matrices calculated with
(2.27) as the vector C = (C^ C J e 9^'='P''P'. Gustafson and Kessel

used p,= I for all 1. With this choice, the fixed norm D^ = |xi,. - Vi||^
used for the c distances from x to the current {v.} during calculation
of (2.7a) is replaced in the GK-AO algorithm with the c distances

42 FUZZY PATTERN RECOGNITION

DL.GK=det(Cj i /PK-Vi |g- i , l < i < c . (2.28)

When crisp covariance matrices are used, the distance measure in
(2.28) is the one suggested by Sebestyen (1962). This distance
measure was also used by Diday (1971), Diday et al. (1974) and Diday
and Simon (1976) in their adaptive distance dynamic clusters
(ADDC) algorithm. Thus, the GK-AO algorithm can be viewed as the
fuzzification of ADDC, and may be regarded as the first (locally)
adaptive fuzzy clustering algorithm.

For AO optimization of J (U,V, A), the partition U and centers
(vj are updated using (2.7a, b) as in FCM-AO, and the covariance
matrices are updated with (2.26). The GK-AO algorithm is more
sensitive to initialization than FCM-AO because its search space is
much larger. Typically, FCM-AO is used to provide a reasonably
good initialization for this algorithm. Experimental evidence
indicates that 1 < m <2 gives good results, with m = 1.5 often being
the recommended value.

Example 2.5 Figure 2.5 shows two data sets that were processed with
the FCM-AO, GK-AO, and the GMD-AO algorithms. The parameter m
was set at 2.0 for FCM-AO, and 1.5 for the GK-AO algorithm. All runs
were initialized with the first two points in the left views (v = (30,

35)^, V = (42, 45)^) or first three points in the right views (v = (21,

104)"̂ , V = (22, 101)'̂ and v^ ̂ = (22, 104)"̂). The termination criterion

was E = j|V(. - Vt_i|| < e = 0.001. The Euclidean norm was used for J .

The left side of Figure 2.5 contains points drawn from a mixture of c
= 2 fairly circular Gaussians. The clusters on the right are drawn
from a mixture of c = 3 bivariate normals, one of which (in the upper
right portion of each view) has a covariance structure that tends
toward linear correlation between x and y. The three clusters on the
right exhibit visually different shapes, so we expect GK-AO and
GMD-AO to use their localized adaptivity to find these clouds more
accurately than FCM-AO, which has a fixed norm-inducing weight
matrix.

Terminal partitions hardened with (2.10) are shown in Figure 2.5 by
assigning different symbols to the crisp clusters. The shaded areas
in views a, b, d, e and f correspond to the points that, when compared
with the labels of the samples drawn, were labeled incorrectly. For
the data on the left, FCM-AO tends to divide the data into circular
(because the norm is Euclidean) clusters of roughly equal size (the
problem illustrated in Figure 2.3(a)). The GK-AO result in view 2.5(b)
shows an even stronger encroachment of the right cluster into the

CLUSTER ANALYSIS 43

left one. View 2.5(c) shows that GMD-AO labels every point in the 2
clusters data correctly; it reproduces the a priori labels flawlessly.

(a) FCM

• • • .t—

,.pk f . In

(d) FCM

• Q

(b)GK (e)GK
++

US

+

D D

(c) GME
•

»

»
m •

* •• • • .
• •

* •

• •

(f)GMD
T T *

"S*

• > " CD.

^ no ' l^^ l
• •

D •

Figure 2.5 Hardened partitions for 2 sets of Gaussian clusters

44 FUZZY PATTERN RECOGNITION

The GMD-AO model also produces visually better results with the
three clusters on the right side of Figure 2.5. Here FCM-AO draws
four points up towards the linear cluster from the centrally located
large group, and loses three points from the linear cluster to the
lower cluster on the right (7 mistakes). GK-AO draws three points to
the left from the lower right hand cluster and loses one point to the
linear cluster (4 mistakes). GMD-AO reproduces the a priori labels
almost flawlessly, missing just one point in the bottom right cluster
to the linear cluster {1 mistake).

Visually, GMD gives much better results than FCM or GK for both
data sets in Figure 2.5. Is GMD generally superior? Well, if the data
are really from a mixture of normals, the GMD model matches the
data better than the other two models. But if the geometry of the data
does not fit the pattern expected for draws from a mixture of
normals very well, GMD does not produce better results than other
models. Moreover, (2.28) reduces to the Euclidean distance when

Ci = of I. If this is true for all i = 1 c, the behavior of GK and FCM
are very similar.

Bezdek and Dunn (1975) studied the efficacy of replacing GMD-AO
parameter (P, M) with terminal (U, V)'s from FCM, and then
calculating the remaining MLE of components (the priors and
covariance matrices) of normal mixtures non-iteratively.
Hathaway and Bezdek (1986b) proved that this strategy could not
produce correct MLEs for (P, M) in even the univariate case.

Gath and Geva (1989a) discuss an algorithm they called fuzzy
maxlTnum likelihood estimation (FMLE). Specifically, they used the
fuz^ covariance matrix C at (2.27) with m = 1 (this does not mean or
require that the partition matrix U is crisp) to define an exponential

e ' , where p is the estimate of
P- *

the prior probability of class i shown in (2.21a). This distance was
then used in FCM formula (2.7a) with m = 2, resulting in the

distance D^ ^^

memberships <u^ . | (^ . , G G / D „ , O G) ^ which were taken as

estimates for the posterior probabilities in equation (2.22). It is not
hard to verify that this with updating scheme û ĵ is identical to p
in (2.22). It is not hard to show that the update equations for FMLE
are identical to those for GMD-AO. Thus, FMLE is essentially
equivalent to GMD-AO with the {p } interpreted as fuzzy
memberships. We will illustrate FMLE in Section 2.4 in conjunction

CLUSTER ANALYSIS 45

with several measures of cluster validity defined in Gath and Geva
(1989a).

Although the GK algorithm was developed for, and both it and GMD-
AO are used to detect ellipsoidal clusters, since lines and planes can
be viewed as extremely elongated or flat ellipsoids, these two models
can also be used to detect lines and planes. Other algorithms that
generate prototypes of this kind are described in the next subsection.
Chapter 5 contains a more detailed discussion of how the clustering
algorithms described in this subsection can be used for boundary
description.

B. Linear manifolds as prototjrpes

The earliest reference to the explicit use of non-point prototypes in
connection with generalizations of FCM was Bezdek et al. (1978).
These authors discussed a primitive method for fitting fuzzy clusters
with lines in the plane. The fuzzy c-varieties (FCV) models (Bezdek et
al. 1981a,b) grew out of this effort, and were the first generalizations
of FCM that explicitly used many kinds of non-point prototypes.
FCV uses r-dimensional linear varieties, 0 < r < p-1 as prototypes in
(2.24a). This model predates possibilistic partitions, so the weights
{w.} in (2.24) are zero for the FCV objective function. The linear

variety (or manifold) of dimension r through the point v e ĝ p

spanned by the linearly independent vectors {bj^, bj2,..., bj^} c 9tP is

L ={ye9tP|y = v -h t t b . ;t 6 9t} , (2.29)

SO p. = {v.,b ,b b } are the parameters of L . These prototypes

can be thought of as "flat" sets in <^v. Dimension r is the number of

directions in which the flatness extends. FCV uses the perpendicular
distance from x to L as the distance measure in (2.24a). When the

k ri

{b .} are an orthonormal basis for their span, the orthogonal

projection theorem yields

2 II l | 2 r / \ 2
Df - k - ' » ' - - l (x ^ - v . , b . .) . (2.30)

L,„ II k IIIA J=I\ k 1 ij/^

D is just the A-norm length of (x -v) minus the A-norm length of
r.lk

its unique best approximation by a vector in the span of the {b. j

j=l,...,r}. When r = 0 equation (2.30) reduces to Df̂ = ||Xk - V J I ^ as

46 FUZZY PATTERN RECOGNITION

used in (2.5), so for r = 0, FCV reduces to FCM. For r = 1, FCV becomes
Fuzzy c-Lines (FCL), for r = 2, Fuzzy c-Planes (FCP), etc., and for r = p
- 1 , Fuzzy c-Hyperplanes (FCHP). In the FCV-AO algorithms derived
to optimize the FCV model, the fuzzy c-partitlon matrix U and the
centers {v.} are updated with FCM formulae (2.7a, b) except that the

squared distance in (2.30) is used In place of D%^ = jxy^ - Vi|^. First
order necessary conditions for minimizing the FCV functional now
include the spannl
iteration by finding
include the spanning vectors {b }, which are updated at each

b = the J-th unit eigenvector of C j=l, 2, ...p , (2.31)

where the {b } are arranged in the same order as the descending
eigenvalues of C., and C is the fuzzy covariance matrix of cluster i
given by (2.27). The eigenvectors are assumed to be arranged
corresponding to a descending ordering of their eigenvalues. For r >
0 it Is of course necessary to get the eigenvalues and eigenvectors of
the fuzzy covariance matrices at each pass through FCV-AO. This is
usually done with singular value decomposition, and makes FCV
and its relatives more computationally Intense than the simpler
point prototype models.

Since FCV-AO uses perpendicular distance to the linear varieties, it
does not take into account the extent (i.e., length, area, etc.) of the
flat clusters being sought. For example, if r = 1, FCV seeks (infinitely
long) lines, and thus can lump approximately coUinear clusters
together, even when they are very far apart (see Figure 24.1 in Bezdek
(1981)). One solution to this problem is to choose a distance measure
given by

D^ =aD^ +(l -a)D^ ; 0 < a < l • (2.32)

lines points

which is a convex combination of the perpendicular distance from
X, to L, ., and the point distance from x, to v . See Figure 4.50 for a
geometric Interpretation of the distance in equation (2.32).
Parameter a can vary from 0 for spherical clusters (having point
prototypes) to 1 for linear clusters (having line prototypes).

The algorithm resulting from first order necessary conditions for
J (U, B) with distance (2.32) is called the fuzzy c -elliptotypes (FCE-
AO) algorithm (Bezdek et al., 1981b). More generally, AO algorithms
to optimize any convex combination of FCV terms with dimensions
(r) and convex weights {a} were derived by Bezdek et al. (1981a, b).
The purpose of this is to allow the clusters to have shapes built from
convex combinations of flat shapes. However, the actual prototypes

CLUSTER ANALYSIS 47

from the convex combinations model are not easily recognizable
geometric entities such as ellipses; rather, they are mathematical
entities described in terms of level sets of certain functions.

While the parameters V and A in the GK model can be jointly viewed
as "generalized" prototypes, FCV was the first generalization of FCM
that explicitly used non-point prototypes for B. The FCV algorithms
and the particular convex combination FCE have found various
applications over the years (Jacobsen and Gunderson, 1983,
Gunderson and Thrane, 1985, Yoshinarl et al., 1993). However, a
rough idea of the shape of the clusters in the data set must be known
a priori (which is impossible for p > 3} to select proper values for the
dimensions {r.} and convex weights {a.}. An important exception is

rule extraction for function approximation in fuzzy input-output
systems. FCE seems well suited to this problem because the input-
output space of often ĝ 3̂ and linear Takagi-Sugeno (1985) output
functions can be fitted quite well with FCE (Runkler and Palm, 1996;
Runkler and Bezdek, 1998c; and Example 4.17).

Adaptive fuzzy c-elliptotypes (AFCE). Perhaps the biggest drawback
of FCV and convex combinations like FCE is that these models find
c clusters with prototypical "shapes" that are all the same. The
reason for this is that FCV uses the same real dimension (r) and its
convex combinations all use the same "mixture of dimensions" for
all c clusters, so cluster substructure having these characteristics is
imposed on the data whether they possess it or not. This problem
resulted in the first locally adaptive fuzzy clustering method (the GK
model), and the next generation of locally adaptive clustering
methods followed rapidly on the heels of the FCV models.

There are a number of ways to make FCV adaptive. The earliest
scheme for local adaptation in the FCV models was due to Anderson
et al. (1982). They suggested that the value of a used in convex
combinations of the FCV functionals should be different for each
cluster, reflecting a customized distance measure tha t best
represents the shape of each cluster. When convex combinations are
used, there is no dimensionality of prototypes. (We remind you that
it is the distances in the FCV objective function that become convex
combinations in Bezdek et al. (1981a, b), and not the fitting
prototypes. The fitting prototypes in AFCE, as in FCE, are no longer
recognizable geometric entities.) The basic idea in FCE is to mediate
between geometric needs for point prototypes (central tendencies)
and varietal s t ruc ture (shape or dispersions). But convex
combinations of FCV such as FCE fix the amount by which each
factor contributes to the overall representation of all c clusters.

Anderson et al. (1982) regulated each cluster through the shape
information possessed by the eigenstructure of its fuzzy covariance

48 FUZZY PATTERN RECOGNITION

matrix. Adaptation is with respect to the convex weights in (2.32)
used for each cluster. For X c 9t̂ the modification of FCE to AFCE is

1 - ^ ^ 2 ^ , 1 = 1,2 , (2.33)
"•I,max

where X is the larger eigenvalue and X is the smaller
i.max ° i.min

eigenvalue of the 2 x 2 fuzzy covariance matrix C. of cluster i, 1=1,2.
Equation (2.33) covers only the 2D case. Extensions to higher
dimensions may be found in Phansalkar and Dave (1997) and Km
(1997). The AFCE-AO algorithms are exactly the same as the FCE-AO
methods just described except that the convex weights in (2.32) are
updated at each iteration with (2.33).

Example 2.6 Figure 2.6 shows the results of clustering two data sets
with FCL-AO, AFCE-AO and GK-AO. Each of these models has a
different kind of prototype (lines, elliptotypes and points,
respectively); all three are configured for possible success with data
of this kind. FCL, however, is more rigid than the other two because
it does not have a feature that enables localized adaptation. The left
panel depicts three intersecting noisy linear clusters of different
sizes, and the right side shows three noisy linear clusters, two of
which are collinear.

Run time protocols for this example were as follows. The covariance
matrices for all three methods were initialized with the (U, V) output
of the fifth iteration of FCM-AO, m = 2, c = 3 using the Euclidean
norm. FCM-AO was Itself initialized with the first 3 points in each
data set ((v^ ^ = (80, 81)"̂ , v^ ̂ = (84, 84)"̂ and v^ ^ = (87, 89)"̂) in the left

views, and (v, ^ = (10, 11)"̂ , v _ = (11, 189)'^and v^„ = (14, 14)"̂) in the
Jl,U ^t\) o,U

right views). Termination of all three methods by either of
||Vt+i - V t L ^O.OOlor ||Ut+i -UtIL <0.01 yielded the same results.
FCV and AFCE both used m=2, and GK used m = 1.5 (our experience is
that GK does much better with a value near 1.5 than it does with a
value near 2).

The results shown are terminal partitions hardened with (2.10),
each cluster identified by a different symbol. In the collinear
situation for the right hand views, FCL finds two almost
coincidental clusters and the points belonging to these two clusters
are arbitrarily assigned to the two prototypes in view 2.6d. The
AFCE result in 2.6f is much better, having just two squares that are
erroneously grouped with the dots. GK makes perfect assignments,
as shown in Figure 2.6e. Terminal values of a for i\FCE were very
nearly 1 for both data sets.

CLUSTER ANALYSIS 49

(a) FCL

D

a .

+ •<l3

•̂ 1,
a
a

D
•

a
a

t (d) FCL

\

\ if

(b)GK

+

+ p

D++

4
4-

4-
4

(c) AFCE

4-

1 °
+ •

n +
4
4-+

4
• 4 -

+

1^^ (f) AFCE 13

••• • • • •

Figure 2.6 Detection of linear clusters with FCL, GK and AFCE

For the three well separated lines (the right views in Figure 2.6), all
three values were 0.999; for the intersecting lines in the left views of
Figure 2.6, the three terminal values of a were 0.999, 0.997 and

50 FUZZY PATTERN RECOGNITION

0.999. These are the expected results, since the clusters in both data
sets are essentially linear, so the ratio of eigenvalues in (2.33) is
essentially zero.

The tendency of FCV to disregard compactness is seen in the cluster
denoted by the six "+" signs in panel 2.6(a). Here the pluses and dots
are clearly interspersed incorrectly. For this data, both GK and
AFCE produce flawless results. One possible explanation for this is
that the FCV functional is more susceptible to being trapped by local
minima, since it cannot adapt locally like GK and AFCE.

AFCE is called AFC (adaptive fuzzy clustering) in many of the later
papers on this topic, especially those of Dave (1989a, 1990a). Because
several other adaptive schemes discussed in this chapter are not
based on FCE, we prefer to call this method AFCE. Dave and Patel
(1990) considered the problem of discovering the unknown number
of clusters. They proposed progressive removal of clusters that are
good fits to subsets of the data. This idea was further developed for
lines and planes in Krisnapuram and Freg (1992).

Adaptive Fuzzy c-Varieties (AFCV) Gunderson (1983) introduced a
heuristic way to make the integer dimension (r.) of the fitting
prototype for class i independent of the dimensions used by other
clusters sought in the data. His adaptive Juzzxj c - varieties (AFCV)
scheme is based on the eigenstructure of the fuzzy covariance
matrices {CI at (2.27) that are part of the necessary conditions for
extrema of the FCV functional.

Gunderson observed that the distance calculations made in the
necessary conditions for U , the i-th row of partition matrix U
shown at (2.7a), are independent of how the distances themselves are
computed - that is, (2.7a) does not care what value of r is used in
equation (2.30). He reasoned that making a heuristic adjustment to
the optimality conditions by allowing different D^ 's to be used in

(2.7a) for different i's might enable FCV to seek manifolds of
different dimensions for the various clusters . A second
modification of the necessary conditions was to introduce a non-
convex weight d into distance equation (2.30) as follows:

K,.^ =K -Villi -dfl(xk -v„byf] • (2.34)

The user defined parameter d in (2.34) essentially controls the
importance of the non-point or r > 0 part of the distance calculation
for each cluster, and not much guidance is given about its selection.
Gunderson's modification of FCV also calls for the selection of (p-1)

CLUSTER ANALYSIS 51

shaping coefficients {a : 1 < r < p -1} which are compared to ratios of
eigenvalues from the fuzzy scatter matrices {C.} at (2.27). In

particular, if {A, < A, <• • • < A, I are the ordered eigenvalues of C ,
^ ip i,p-i 11 1

Gunderson adapts the dimension of each FCV prototype during
iteration as follows: If there exists a least integer k, k = 1, 2, p-1 so
that (A,., , /A,.,) < a, ; 1 < i < c, set r = k; otherwise, set r = 0. The

•• i ,k+l/ i,k k i ' 1

parameter a is also user defined, and again, is fine tuned during
iteration, much like many other algorithmic parameters, to secure
the most acceptable solution to the user. Then, U is updated with r =
r, in (2.30). These two changes are analogous to the modifications of
FCM that Bensaid et al. (1996a) used to create ssFCM: the resultant
algorithm no longer attempts to solve a well-posed optimization
problem.

Example 2.7 Figure 2.7 is adapted from Figure 5 in Gunderson (1983).
Figure 2.7 shows the output obtained by applying Gunderson's
adaptive FCV to a data set in 5K̂ that contains four visually
apparent clusters. The two upper clusters are roughly circular,
cloud-type structures while the two lower are elongated, linear
structures.

Using the Euclidean norm, c =4 and m = 1.75 in (2.24), and d = 0.95
in (2.34), Gunderson's algorithm iteratively chooses r = r = 0, so
that the cloud shaped clusters are represented, respectively, by the
point prototypes v and v as shown in Figure 2.7. And the algorithm
settles on r = r = 1, so that the linear clusters have prototypes that
are shown as the lines L „ and L, in Figure 2.7. The value of a, is not

13 14 =" k

specified.
Summarizing, Gunderson's method makes FCV adaptive with
respect to the dimensions {r} of the linear varieties {L }. Different

^ 1 rl
clusters are allowed to have representation as linear manifolds of
possibly different dimensions. In contrast, the adaptive GK model
does not provide non-point prototypes; instead, it adapts the norms
{A.} of the clusters so that their level sets implicitly match the
cluster shapes.

52 FUZZY PATTERN RECOGNITION

o o ©

® ©
o ©

o

© o ©

© L = V
O 02 2

© ©

Ll3 = ^ 3 - ^ * 3 1

®

Figure 2.7 Gunderson's FCV for two clouds and two lines

C. Spherical Prototypes

Coray (1981) first suggested the use of circular prototypes for clusters
resembling circular arcs - that is, shell-like structures, as opposed to
cloud like structures (it is arguable whether linear clusters such as
those in Figure 2.6 are clouds or shells - they seem to be the
boundary case between the two types of structures). This line of
research evolved to the fuzzy c-shells (FCS) algorithms (Dave and
Bhamidipati, 1989, Dave, 1990b, 1992) and the fuzzy c-spherical
shells (FCSS) algorithms of Krishnapuram et al. (1992). In these
a lgo r i t hms the i-th p ro to type is t he h y p e r s p h e r e

CLUSTER ANALYSIS 53

S.(x; V ,r) = | x e S '̂': X-V. = r icentered at V with radius r , so (3 =

(v , r) . The proximity measure D used by these two models is

different, and hence, the parameters p are updated differently.
Dave's FCS uses the exact distance from feature vector x, to the

k
spherical shell of cluster i,

D̂ =[ix - v | | - r
ik \|| k ill i

(2.35)

This distance, illustrated in Figure 2.8 for p=2, is the (squared)
Euclidean distance between data point x and (the tangent to) the
prototypical circle S that lies along a radius directed towards the
datum.

Figure 2.8 The distance basis for Dav6's FCS

Minimization of (2.24a) in the non-possibilistic case when all
distances between data and point prototypes {v} are non-zero and
distance (2.35) is used for (2.24c) yields the usual necessary
conditions for U (namely, PCM equation (2.7a)). However,
differentiation with respect to v and r when (2.35) is used 5delds the
necessary conditions

k=l 'k

r
(^ k - V

k=i *
IK-''^ll-r.

Ml k ill i j
= 0

, and (2.36a)

(2.36b)

These equations are not explicit in r and v . Therefore a technique
such as Newton's method that solves a set of coupled nonlinear

54 FUZZY PATTERN RECOGNITION

equations must be used at each half iterate to estimate these
parameters. This makes FCS computationally expensive. Bezdek
and Hathaway (1992) showed that an exact solution of (2.36) is not
required. Instead, only one step of Newton's method is needed at
each half iterate. Man and Gath (1994) have suggested another
variant of FCS in which the center and radius estimates are updated
independently rather than found by simultaneous solution using
(2.36). This avoids the need for numerical techniques, but may
increase the overall number of iterations required for termination.

Krishnapuram et al.'s FCSS avoids the need for numerical solution
of necessary conditions at each half iterate by using the
algebraically defined proximity

ik Ml k

Defining

(2.37)

1
and Pi(Vi,ri)

-2v,

v ; v i
(2.38)

it is easy to show that this minor modification of (2.35) makes the
parameter update equations explicit:

p =- lH:y, , where (2.39)

H |,"X< and w. \1,<K\K (2.40)

In theory the exact geometric distance used in FCS gives more
accurate results than the algebraically motivated distance used in
FCSS, but in most practical applications the difference may not
Justify the higher computational cost of FCS. As a compromise, FCS
is typically applied to the data after FCSS terminates (that is, FCS is
often initialized with the terminal outputs from FCSS). There are
quite a few early papers on these two algorithms, but both have been
subsumed by the more general case of elliptical prototypes, so an
example of spherical prototypes is deferred to a later subsection.

D. Elliptical Prototjrpes

Dave and Bhaswan (1992) proposed the adaptive fuzzy c-shells
(AFCS) model for elliptical shells. This model uses a hyperellipse
for the i-th prototype,

E (x ; v , A) = <{x69tP:| |x-vf =lj- , (2.41)
•• ' ' II H I A ,

CLUSTER ANALYSIS 55

where A. is a positive definite symmetric matr ix which de te rmines
the major a n d minor axes lengths a s well a s the orientat ion of the
hyperellipse, a n d v is i ts center. Consider the dis tance D ^ defined

by

ik
X - V - 1

li illA.
(2.42)

Dave a n d Bhaswan showed t h a t minimization of (2.24a) w h e n all
d i s tances between da t a a n d point prototypes {v.} are non-zero with

D?IJ a s in (2.42) resu l t s in the following equat ions for upda t ing the
parameters p̂ = (v., A) of ellipse E :

k=l ik

f
D<w

\

V
X - V

1 ^ .

(X, • v) - 0 , and (2.43a)

k = l Ik

f
%

\

\
X - V

1 ̂ .

(X . vp(x^-v/=0 (2.43b)

Like (2.36), system (2.43) m u s t be solved numerical ly a t each half
s tep in the iteration. The u s u a l necessary condit ions for U hold for
AFCS. The evolution of AFCS is traced through Dave a n d Bhasw an
(1991a,b), Dave (1992) and Dave and Bhaswan (1992).

In the i r fuzzy c-elUpsoidal shells (FCES) model , Fr igui a n d
PWshnapuram (1996a) use the "radial distance" defined by

Dl =
(X.. • V .) - 1

1 IIA, K-i
(2.44)

D^ is a good approximation to the exact (perpendicular) d i s tance
^ik

be tween the ellipse E. a n d po in t s located close to i ts major a n d

minor axes. If z denotes the point of intersection of the line joining

V. to X, and E., then D
R,-ik

(2.44) t h a t D 2 = D
Ik ' ik

= l l ^ k - 2 k

l|2
X, - V ,

We also see from (2.42) a n d

" ' T h u s , D-̂ i s a
ik

56 FUZZY PATTERN RECOGNITION

normalized version of D^ , with the normalization a function of
Hk

the position of x . D^ has the advantage of being simpler to
^ik

compute when compared with the exact distance to E (see next
subsection). Minimization of (2.24a) when all distances between
data and point prototypes {v.} are non-zero with D^ in (2.24c)

results in the following update equations for p̂ = (v̂ , A)̂:

/

k;=l *

D„

X, - V
K-^iK-^^^^k-^^ , and (2.45a)

k=i ' "

D
p I

X, - V .

k IIIA,

D^

P k - ^ i
(X. - v .) = 0 .
' k i'

(2.45b)

Equations (2.45) can be solved numerically with the Levenberg-
Marquardt algorithm. Frigui and Krishnapuram (1996a) have
shown that D^ performs better than D , especially when the data

Ik

are scattered and when the ellipses are of widely varying sizes.

E. Quadric Prototypes

(Krishnapuram et al., 1991) first generalized shell clustering to the
quadric case. The general hyperquadric shell in ĝ p with coordinate
axes X X can be written as

1 p

Q^(x;p^) = {x€9tP;(p^,q) = 0}

P j P i i ' • • • ' Pp i ' P(p+l)i' • • • ' Prf' P(r+l)l P(r+p)r P{r+p+l)i

• [^l X p , X 1 X 2 , . . . , Xp_jXp, X j , . . . , X p , IJ

, where (2.46a)

(2.46b)

and (2.46c)

r = p(p+l)/2 . (2.46d)

Define the algebraic (or residual) distance from a point x to

prototype Q with parameters Pi = p as

CLUSTER ANALYSIS 57

Dt T T , where (2.47a)

Ik ' • •^pk'^ lk^2k' • ^ (p - l) k \ k ' ^ l k ' pk (2.47b}

In order to obtain a fuzzy c-partition of the data, Krisnapuram et al.
minimize the non-possibihstic form of (2.24a) when all distances
between data and point prototypes {v} are non-zero with D^ as the

underlying distance measure. However, since the objective function
is homogeneous with respect to pj, we need to constrain the problem
in order to avoid the trivial solution. In their fuzzy c-quadrics (FCQ)
model Dave and Bhaswan (1992) use the constraint P.. = 1- However,
the resulting proximity is not invariant to rotation. Moreover, it
precludes linear prototypes and certain paraboloids. Another
possibility is (Krishnapuram et al., 1991)

Pu+-+Ppi+iP(Vi)i^- + i P ' 1 (2.48)

This constraint was used by Bookstein (1979) for fitting quadrics
and has the advantage that the resulting distance measure is
invariant to rigid transformations of the prototype. However, it
does not allow the solution to be linear or planar. Many other
constraints are also possible. Krishnapuram et al. (1995a) have
shown that the above constraint is the best compromise between
computational complexity and performance in the 2-D case. If for
the i-th prototype we define

a.. = Pii
- ^ ; p +1< j < r
V2

, and (2.49a)

b.. =p. . forj = r + l,r + 2 r + p + 1 (2.49b)

then the constraint in (2.48) simplifies to a J =1 . It is easy to show
that the necessary conditions under this constraint are

a = eigenvector of (Fj - G^Hj"^Gj) for its smallest eigenvalue;(2.50a)

b =-H"^Ga
1 1 1 1

; where (2.50b)

.m T .m^ _T .mj. ^r F = I u " r X , G = I u " t X . H. = I u" t t ; .
1 j ^ i ik k k i j ^ i ik k k i j ^ j Ik k k

(2.50c)

58 FUZZY PATTERN RECOGNITION

< -
2 2 r-

X . . . , X V2X X ,
Ik pk Ik 2k

. . ,V2X X
(p-l)k pk

and (2.50d)

and t.
Ik

. , X , 1
pk (2.50e)

The algebraic distance in (2.47a) is highly nonlinear in nature.
When there are curves (surfaces) of highly-varying sizes, the
algebraic distance is biased toward smaller curves (surfaces), and for
a particular curve (surface) the distance measure is biased towards
points inside the curve (surface) as opposed to points outside. This
can lead to undesirable fits (Dave and Bhaswan, 1992,
Krishnapuram et al. 1995a). To alleviate this problem, use the exact

(perpendicular) distance denoted by Dp̂ ^ between the point Xĵ^ and

the shell Q,. To compute Dp ĵ̂ , (2.46a) is first rewritten as

x^A X + x^b + c = 0 (2.51)

In (2.51), it is assumed that the coordinate system has been rotated
to make the matrix A, diagonal. The closest point z on the

II ||2
hyperquadric to point xj^ can be obtained by minimizing j \ ~ z||
subject to

z'^Az + z'^b +c 0 (2.52)

By using a LaGrange multiplier X, the solution is found to be

i (l - ^ 0 - \ X b i + 2 x ^) (2.53)

In the 2-D case (i. e., p=2), substituting (2.53) into (2.52) yields a
quartic equation in X, which has at most four real roots A,., j =1 4.
The four roots can be computed using the standard closed-form
solution. For each real root A., the corresponding z vector z. can be

computed with (2.53), and D is finally computed using

D
ik min

J

(2.54)

Minimization of the non-possibilistic form of (2.24a) with respect to
p when all distances between data and non-point prototypes (p } are

non-zero (with Dp as the underlying proximity measure) can again
ik

be achieved only by numerical techniques. To reduce the

CLUSTER ANALYSIS 59

computational burden, we assume we can obtain approximately the
same values for p. by using (2.49) and (2.50), which will be true if all
the feature points lie reasonably close to the hyperquadric shells.
The resulting algorithm, in which the memberships are updated
using Dp of (2.54) in (2.7a), but the prototypes are updated using

Ik

D?, , is known as the fuzzy c -quadric shells (FCQS) algorithm. The

2D case leads to a quartic equation whose roots can be found in
closed form; for higher dimensions, we must resort to numerical
solutions.

Krishnapuram et al. (1995a) have shown that FCQS is adequate for
some boundary description applications, and we return to this
application in Chapter 5. The procedure described above to solve for
the exact distance is practical only in the 2-D case. In higher
dimensions, one needs to solve for the roots of a sixth (or higher)
degree polynomial. To overcome this, Krishnapuram et al. (1995a)
developed an alternative algorithm that uses an approximate
distance (Taubin, 1991). Roughly speaking, this approximate
distance corresponds to the first-order approximation of the exact
distance. It is given by

n2 _ ^Qik _ P^qkqkPi ,<) cc^

r^Qik PI °k^kPi

where VDQ.ĵ is the gradient of p^q evaluated at x . In (2.55) the
matrix D is the Jacobian of q evaluated at x . The minimization

2
Alk

with respect to p. of the non-possibilistic form of (2.24a) with D
as the underlying proximity measure leads to coupled nonlinear
equations which can be solved only iteratively. To avoid this
problem, Krishnapuram et al. (1995) choose the constraint

p ' ^ G p = n , i = l c ,where (2.56)
1 1 1 1

G. = i u™D D'^ and n, = X u™ . (2.57)
1]^i ik k k 1 1^1 ik

This constraint is a generalization of the constraint used by Taubin
(1991) for the (crisp) single curve case. Minimization of (2.24a)
subject to (2.56) yields complicated equations that cannot be solved
explicitly for p.. To avoid iterative solutions we assume that most of
the data points are close to the prototypes, so the memberships {u }
will be relatively crisp (i. e., close to 0 or 1). This assumption is also
valid if we use possibilistic memberships.

60 FUZZY PATTERN RECOGNITION

The magnitude of the gradient at all points with high memberships
in cluster i is approximately constant, i.e., pjDy.D^Pi ~l. In fact,

the condition pTOi^Djpj = 1 holds exactly for the case of
lines/planes and certain quadrics such as circles and cylinders.
Since D^ and D^ differ only in the denominator which is = 1, we

will obtain approximately the same solution if we minimize (2.24a)
with Dg (rather than D\) as the distance measure subject to the
constraint in (2.56). This leads to the generalized eigenvector
solution for the prototype update:

where (2.58)

(2.59)
k=l

Unfortunately, since G is rank-deficient, (2.58) cannot be converted
to the standard eigenvector problem. (The last row of D = [0,...,0].)
However, (2.58) can still be solved using other techniques that use
the modified Cholesky decomposition (Taubin, 1991), and the
solution is computationally inexpensive when p=2 or 3.

The assumption that p^D D^p = 1 is not valid for many geometric

shapes when p > 3. One solution is to treat p^D D^p. as a weighting
factor which is treated as a constant while deriving the update
equation for p . If we assume that the value of p does not change
drastically from iteration to iteration, the weighting factor can be
computed using the parameter values from the previous iteration. In
this case, the update equation for p. will remain the same as (2.58),
except that

Fi(t) = IuJgW(t,kqkqk. where w^^^^ = p^ D D'^P
Mt- l) I k k*^(t-l)i

-1
(2.60)

In (2.60), the subscripts in parentheses indicate iteration numbers.
Since this reweight procedure is heuristic, it is not guaranteed that
the fit obtained after reweighting will always be better than the one
without reweighting. Therefore, it is necessary to compute the
parameter vector p both with and without the weights and accept the
p. resulting from the reweight procedure only when the error of fit
decreases. The sum of exact or approximate distances for each
individual cluster may be used as a measure of the error of fit. The
reweight procedure is highly recommended when p > 3.

CLUSTER ANALYSIS 61

Since constraint (2.56) allows lines and planes in addition to
quadrics, the algorithm that uses (2.55) to update memberships and
(2.58) (with or without reweighting) to update prototype parameters
is known as the fuzzy c - plano-quadric shells (FCPQS) algorithm.
Krishnapuram et al. (1995a) have also generalized the FCPQS
algorithm to the case of hypersurfaces defined by sets of higher-
order polynomials.

Shell clustering algorithms are very sensitive to initialization.
Initializing FCQS and FCPQS randomly works well only in the
simplest cases. When the data contain highly intermixed shell
clusters, reliable initialization can sometimes be obtained with
another clustering algorithm (or several of them), as illustrated in
Example 2.8. We will return to the issue of sensitivity to
initialization for shell clustering algorithms in Section 2.4.F.

Example 2.8 Figure 2.9 shows a typical example of the results
obtained by the FCQS algorithm on a S5Tithetic data set containing
about 200 points. Fig. 2.9(a) shows the original data set, a pair of
randomized ellipses. Noise uniformly distributed over [-1.5, 1.5] was
added to the x and y coordinates of data points generated by
sampling functional representations of the three curves so that the
points do not lie on ideal curves. Figure 2.9(b) shows the resulting
prototype curves superimposed on the original data set when c=3
was used.

(a) Data

XX X " X
' Hx

' , X ^

X ' ^ ' X , X X

X ^x « „ „ X
"X X X

X It X X

X " "

" » » . . »

Figure 2.9 Two randomized ellipses and a circle

The results in Figure 2.9 were obtained by the sequential application
of four algorithms, viz., FCQS o FCSS o GK o FCM. First, FCM with m
= 3 is applied to the data for 10 iterations. This locates initial cluster
centers and memberships for the GK method. Then, 2 iterations of

62 FUZZY PATTERN RECOGNITION

the GK algorithm are made with m = 2, resulting in longer, thinner
clusters than are produced by FCM. The GK outputs are then used to
initialize FCSS, which is again run for 5 iterations. This converts
the long thin clusters to circular arcs. Finally, the FCSS outputs are
used as inputs to the shell clustering method FCQS, which is run to
termination with the outputs shown in Figure 2.9(b). The
termination criterion for this example was to stop when the
maximum change in the membership of any point in any cluster
was less than 0.01. This hybrid FCQS model typically terminates in
about 20 iterations and the CPU time on a Sun Sparc 1 workstation
is less than 10 seconds.

Although we have only discussed the fuzzy cases in detail, the non
point-prototype algorithms discussed in this section can all be used
either in the hard, fuzzy or possibilistic modes. The possibilistic
mode, with an initialization provided by the fuzzy mode, may be

c
useful in noisy situations. This is because the constraint J û ĵ = 1

i=l

will cause noise points to have relatively high memberships in the
fuzzy clusters, which can lead to unacceptably high errors in
prototype parameter estimates. However, the possibilistic mode
requires that we estimate the scale parameter w for each cluster. In
most shell clustering models, w may be set equal to the square of the
expected thickness of the shells (Krishnapuram et al. 1995a,b).

Example 2.9 The top left view of Fig. 2.10 shows two visually
apparent ellipses imbedded in a very noisy environment. Crisp,
fuzzy and possibilistic quadric c-shells were all applied to this data
set. All parameters for these runs were as in Example 2.9 except that
c=2 and the initializations varied. Specifically, the initialization
schemes were hybrid sequences of different algorithms that were
applied to the data sequentially. The crisp case was the sequence of
algorithms HCQSoHCSSo ADDCo HCM. The fuzzy case was the
sequence FCQS o FCSS o GK o FCM. The possibilistic case was
initialized by the output of FCQS, so that the bottom right view in
Figure 2.10 is the result of a five algorithm sequence,
PCQS o FCQS o FCSS o GK o FCM •

CLUSTER ANALYSIS 63

Figure 2.10 Three outputs for two ellipses in noise

Figure 2.10 (con't.) Three outputs for two ellipses in noise

The top right view of Figure 2.10 depicts the result of a HCQS with
the prototypical ellipses superimposed on the data. The fits are very-
poor. The bottom left in Figure 2.10 shows the result of the FCQS
algorithm. This is an improvement over the HCQS result, but the
effect of the noise points on the fits is still fairly significant. The
bottom right view in Figure 2.10 displays the result of PCQS. The fit
to the underlying pair of ellipses is quite good. This is a nice
illustration of the power of hybrid models.

64 FUZZY PATTERN RECOGNITION

F. Norm induced shell protot3rpes

Bezdek et al. (1995) introduced a method that generates shell
prototypes corresponding to level sets of any norm on 9^^. To
describe this model we need to define norm-induced shell-
prototypes. The level set of any norm function for constant A, > 0 is

Another common notat ion for L„ „
INII.^ emphasizes that this is also the closed (boundary) ball centered at 0

(the zero vector in 3i^) of radius A. in the norm IWI, i.e.

H.x aB||^||(0.?.): {xe9lP:| |x-0| | = ||x|| = M.

Figure 2.11 NISPs for various norms on 9t

For many, the word ball connotes roundness, and this is indeed the
case for ||*||2, the Euclidean norm. More generally, the shape of the
ball is determined by level sets of the norm. Figure 2.11 depicts some
level sets (they are the boundaries shown) of various norm functions

on 91 . For A, = 1, the boundaries are jus t the unit vectors for the
norm in question. Along the boundary of the unit circle, for
example, the Euclidean is 1, ||x||2 = 1. All of the level sets of ||x||2 are
hyperspherical. If A is any positive-definite p x p matrix, the inner

CLUSTER ANALYSIS 65

product norm ||x||^ = Vx^Ax has hyperelliptlcal level sets, such as

the one depicted In Figure 2.11 where ||x||^ = 1 . In other words, the

ellipse where ||x||^ = 1 is the set of points that are equidistant from

the origin of 9? when ||x||^ is the measure of distance. Inner product
norm-induced shells, are sets generated this way.

More generally, any norm on 3i^ has such level sets, and these are
responsible for the shape of open and closed balls in their particular
topology. Shown in Figure 2.11, for example, are the unit vectors
(closed balls of unit radius) in the 1 and sup or oo n o r m s .

^ P ^
ll̂ lli I and |x||^ = maxj x >. These two norms are special

i<j<p
cases of the infinite family of Minkowski q-norms in (1.10). These
norms cannot be induced by an inner product (except at q=2, the
Euclidean norm), but they generate norm-induced shell prototypes
Just the same. Of particular importance for the example to follow is
the shell induced by | |* | j , which is the "diamond" shown in Figure

2.11 for ||x|^ = 1, xin 9^ .̂ The points on the diamond are equidistant
from the origin in the 1-norm.

Another important fact about norms is that the square of any inner
product norm is everywhere differentiable, while the squares of
almost all non-inner product norms are not. This causes a great
shift in the importance of using AO for approximate minimization
of functionals that use norms to define the measure D^ = S(xij,pi)
in (2.24c), because most easily obtainable AO algorithms depend on
solving necessary conditions obtained through differentiation. This
has impeded the development of norm-induced shell prototypes that
use non-inner product norms.

Recall that the FCS model of Dave is based on AO of the fuzzy
version of (2.24a) with distance (2.35). Bezdek et al. (1995) proved
that Dave's formula (2.35) was much more generally applicable. The
main result is stated here as

Theorem NISP. Let x and v e 9t^, r > 0, || * || be a given norm on 9t^

and 3B,. ,,(v,r) = {y e 9tP|||y-vlj = r} be the closed ball of radius r
11*11 '

centered at v. Then the shortest distance, as measured by || • ||, from

any point in 3B|| ,,(v,r) tox is | ||x - v|| - r |.

This result is the basis of the NISP-AO algorithms which iteratively
optimize (2.24a) when the distance in (2.24c) is defined by any norm

66 FUZZY PATTERN RECOGNITION

on g^p. For example, this means that any Minkowski norm can be
used in (2.24c), and theorem NISP tells us how to achieve the
minimization of (2.24a) with respect to the parameters p. = (v., r) of

the i-th shell, whose equation is 5B„ „(v , r) = {y e S '̂'
* i i

• V = r
1 i

Theorem NISP enables us to use other families of norms in (2.24c),
by redefining (3; to include the shell center v , radius r , and all other
parameters needed to specify a particular member of the family of
norms. As an example, suppose we seek a framework whereby it is
possible to specify any rectangle in the plane as the i-th cluster
shell. One possibility is to define a family of norms using the two
real parameters a and G as

|lx||̂ Q = maxja.|x^ cos(0.) + x^ sin(e.)|,|-Xj sin(e.) + x^ cos(ej)|},(2.61)

where 0< a. < 1 and 0 < 9 < TI. The NISP corresponding to the i-th shell
is lust the closed ball centered at v , with radius r for which, in this

•' i i
norm, x - v = r as shown in Figure 2.12.

II ' H a , 9 1
1 1

Figture 2.12 Rectangular NISP corresponding to x - v
illa,,e,

CLUSTER ANALYSIS 67

To verify tha t (2.61) is a vector norm on 5K̂ , note tha t
||x||̂ g = ||AQx|L, where A and Q Eire nonsingular matrices, so it is just

a weighted version (weighted by nonsingular matrix AQ) of another
'a, 0"

norm. The nonsingular weighting matrix is AQ, where A 0 1

and Q =
cos(6i) sin(6i)

-sin(Gi) cos(0i) Nonsingularity is crucial to insure that

the norm property ||x|| = 0 implies that x = 0 holds. The two matrices
correspond to the operations that are required to turn the square
into the rotated rectangle, namely: a rotation through 9 (represented

by Q), and a stretch (represented by A) .We then let |3 =(v., r , a , 0) and
2

useDik(xk,Pi) = F k - V i | L „ in (2.24c). Optimization of (2.24a)

in all three cases (hard, fuzzy and possibilistic) can be done using AO
directly or after reformulation as in (2.23) via the reformulation
theorem. Alternatively, optimization can be done using, say, a
genetic algorithm approach. In example 2.10 from Bezdek et al.
(1995), a hybrid algorithm composed of FCM followed by
reformulation optimization is used.

Example 2.10 The data for this example are a pair of diamond
shaped shells, shown as hollow circles in Figures 2.13(a) and 2.13(b).
The first stage in this example uses the FCM point-prototypes
algorithm to find shell parameters that fit the data reasonably well.
FCM estimates for the shell parameters in this problem correspond
to shell centers (the terminal cluster centers v and v found by

FCM); and shell radii computed as r = J I u™D, / I u™ for 1 < i <
i ^k=i Ik ik k=i ^

2 and the terminal FCM partition U. Here D is the 1-norm on 3i^ -
i.e., the NISP norm of choice for this problem. We initialized FCM
with a partition U„ e M, . The choice of U did not matter in the

^ 0 hen 0
cases examined, and the standard choice was to simply alternate I's
and O's in each row of U. This choice is a poor initialization since
every other point in each diamond starts out belonging to the wrong
cluster.

68 FUZZY PATTERN RECOGNITION

0.8 ~

0.7 o^ O N .

0.6 N P O /

O \
0 X

O X

0.5

0.4

\ o
car o X

0.3

^

/

0.2 1— 1 1 1
0.2 0.4 0.6 0.8

Figure 2.13(a) Stage 1 NISP shells obtained using FCM

In 18 iterations FCM with c = m = 2 and the Euclidean norm for J
2

terminated with ||Uj - Ut_i||^ < 0.001, approximate cluster centers v
= V and V = V and a fuzzy partition U = U . The terminal cluster

centers were used to calculate the squared distances D = x - 1
y II J ,

for i=l,2 and J=l n, which were then used with U to calculate the
initial shell radii r and r . The stage one shell estimates are shown
in Figure 2.13(a). They fit the overlapping diamonds pretty well, but
further processing with NISP-AO will improve the fit.

In stage 2 the fuzzy c-means shell estimates from stage 1 are used to
initialize an optimization routine (we used the function "fmins"
from the MATLAB optimization toolbox) that is then applied to the

n f c III ,, |2 / (l -m)y" '"
fuzzy reformulation Riu(p) = X Z Pk "''''i h ~ "̂i °f
(2.24a) using the l-norm as the shell inducing norm with m= 2. The
final results produced using this two stage approach is shown in
Figure 2.13(b). The l-norm induced shell prototypes (the two
diamonds) shown in Figure 2.13(b) fit the data quite well.

CLUSTER ANALYSIS 69

0.8 h

0.7

0.6 -

0.5 -

0.4

0.3

0.2
0.2 0.4 0.6 0.8

Figure 2.13(b) Stage 2 NISP shells obtained by fmins on R

If the matrix A in equation (1.6) or the power q in the Minkowski
norm in equation (1.11) are considered part of the prototype along
with V and r., it can be shown that the shapes generated by the NISP
model using these two families of norms are superquadrics (Solina
and Bajczy, 1990). We will discuss a recent model due to Hoeppner
(1997) in chapter 5 - the fuzzy c-rectangular shells model - that is
very similar to and in some ways slightly more general than the
NISP model. To appreciate how similar the two models are, peek
ahead to Figure 5.39, and compare it to Figure 2.12.

G. Regression models as prototypes

Another family of objective functions that use non-point prototypes
was introduced in Hathaway and Bezdek (1993). They called this
family fuzzy c-regression models (FCRM). Minimization of
particular objective functions in the family yields simultaneous
estimates for the parameters of c regression models; and a fuzzy c-
partitioning of the data.

Let S = {(x , y) (x , y)} be a set of data where each independent

observation x e 9̂® has a corresponding dependent observation y e

70 FUZZY PATTERN RECOGNITION

9t^ In the simplest case we assume that a single functional
relationship between x and y holds for all the data in S. In many
cases a statistical framework is imposed on this problem to account
for measurement errors in the data, and a corresponding optimal
solution is sought. Usually, the search for a "best" function is
partially constrained by choosing the functional form of f in the
assumed relationship

y = f(x; B) + c , (2.61)

where B e Q c 9̂ *̂ is the vector of parameters that define f to be
determined, and c Is a random vector with mean vector jji = 0 e '3i^
and covariance matrix X. The definition of an optimal estimate of B

depends on distributional assumptions made about c, and the set Q
of feasible values of B. This type of model is well known and can be
found in most texts on multivariate statistics.

The model considered by Hathaway and Bezdek (1993) is known as a
switching regression model (Hosmer, 1974, Kiefer, 1978, Quandt and
Ramsey, 1978, De Veaux, 1989). We assume S to be drawn from c
models

y = f(x;p.) + Cj , l < i < c , (2.62)

where p e £2 c 9?^', and c is a random vector with mean vector u = 0
' i l l '^1

e Si^ and covariance matrix X. Good estimates for the parameters B
= {p ,-•••,P } are desired as in the single model case. Here, as in (2.24),
P. is the set of parameters for the i-th prototype, which in this case is
the regression function f. However, we have the added difficulty that
S is unlabeled. That is, for a given datum (x ,y), it is not known
which model from (2.62) applies.

One approach for estimating the parameters {|3 } is to use the GMD-
AO algorithm (Table 2.4).The approach taken here is more akin to
fuzzy cluster analysis than statistics. The main problem is that the
data in S are unlabeled, so numerical methods for estimation of the
parameters almost always lead to equations which are coupled
across classes. If S were partitioned into c crisp subse t s
corresponding to the regimes represented by the models in (2.62),
then estimates for {p p } could be obtained by simpler methods.
One alternative to using GMD-AO is to first find a crisp c-partition
of S using an algorithm such as HCM; and then solve c separate
single-model problems using S. with (2.61). This is usually not done

CLUSTER ANALYSIS 71

because it may not explain the data structure properly. The
effectiveness using of (2.61) for each crisp cluster depends on how
accurate the crisp clusters are.

Hathaway and Bezdek formulated the two problems (partitioning S
and estimating {[3 p }, the parameters of the prototype functions

{f.(x; p.)}) so that a simultaneous solution could be attempted. A
clustering criterion is needed that explicitly accounts for both the
form of the regression models as well as the need to partition the
unlabeled data so that each cluster of S is well-fit by a single model
from (2.62). For the switching regression problem we interpret u as
the importance or weight attached to the extent to which the model
value f.(x ; p.) matches y . Crisp memberships (O's and I's) in this
context would place all of the weight in the approximation of y by

f (x • p.) on one class for each k. But fuzzy partitions enable us to
represent situations where a data point fits several models equally
well, or more generally, may fit all c models to varying degrees.

The measure of similarity in (2.24c) for the FCRM models is some
measure of the quality of the approximation of y by each f: for

l<i<c; l<k<n, define

E., (P.) = measure of error in f (x ;P.) = y. . (2.63)
IK 1 1 K 1 K

The most common example for such a measure is the vector norm
E (P) = II f (x,; P) - y, II. The precise nature of (2.63) can be left

I k ' i I ' i k ' i ' k " '•

unspecified to allow a very general framework. However, all choices
for E are required to satisfy the following minimizer property. Let
a = (a,,a^,....a)Twitha >0 V i, and E.(p.) = (E.fp.),...,E. (p.))T 1 < i < c.

1. ^ n. 1 1 1 11 1 ixi 1

We require that each of the c Euclidean dot products
(a ,E i (p i)) ; l< i<c (2.64)

have a global minimum over Q., the set of feasible values of p.. The
general family of FCRM objective functions is defined, for U e M

and (P ,...,p) e O.^Y.Q.^Y.---y.Q.^&'^^ v-'^'^y.-'-y.'^'^, by the fuzzy
instance of (2.24a) with (2.63) that satisfy (2.64) inserted into (2.24c)
- that is, D^ = Ey^(pj). The basis for this approach is the belief that
minimizers (U, B) of J (U, B) are such that U is a reasonable fuzzy
partitioning of S and that {pj p̂ ,} determine a good switching
regression model.

72 FUZZY PATTERN RECOGNITION

Minimization of (2.24a) under the assumptions of FCRM can be done
with the usua l AO approach whenever grouped coordinate
minimization with analytic formulae is possible. Specifically,
given data S, set m > 1, choose c parametric regression models {f (x;

p)}, and choose a measure of error E = {E } so that E (|3) > 0 for i and
k, and for which the minimizer property defined by (2.64) holds.
Pick a termination threshold t > 0 and an initial partition U e
M, . Then for r = 0,1,2,...: calculate values for the c model

fen

parameters p.''^' that globally minimize (over Q x D. x x Q.) the

restricted obiective function J (U , p ,,...,p). Update U -^ U e M,
-" m r ' 1 ' c r r+1 fen

with the usual FCM update formula (2.7a). Finally, compare either
||Ur+i-Ui.|| or ||Bj.^i-Br|| in some convenient matrix norm to a
termination threshold e. If successive estimates are less than e, stop;
otherwise set r = r+1 and continue.
Solution of the switching regression problem with mixture
decomposition using the GMD-AO algorithm can be regarded as the
same optimization approach applied to the objective function
L (U , Y ^ , . . . , Y J = I Iu.j^(Eji^(Yj + ln(u.^)), see equation (11) of

k=l i=l

Bezdek et al. (1987a). In this case, the [y] are the regression model
parameters (the {B}), plus additional parameters such as means,
covariance matrices and mixing proportions associated with the c
components of the mixture. Minimization with respect to B is
possible since the measure of error satisfies the minimizer property
and J can be rewritten to look like a sum of functions of the form

m

in (2.64).

For a specific example, suppose that t=l , and for l<i<c: k. = s, Q. =

9^s, f(x^; p̂) = (x /p^ , and Ejp^) = (y^ - [x^V^^]^. Then J^(U, B) is a
fuzzy, multi-model extension of the least squares criterion for
model-fitting, and any existing software for solving weighted least
squares problems can be used to accomplish the minimization. The
explicit formulae for the new iterates p ', 1 < i < c, can be easily

derived using calculus. Let X denote the matrix in 9?"̂ having x as

its k-th row; Y denote the vector in 9t" having y as its k-th

component; and D. denote the diagonal matrix in 5R"" having (u)™
as its k-th diagonal element. If the columns of X are linearly
independent and u > 0 for 1 < k < n, then

p.'"''= [X'̂ DXI-̂ X'̂ DY . (2.65)

CLUSTER ANALYSIS 73

If the columns of X are not linearly independent, p ''̂ ^ can still be
calculated directly, bu t techniques based on orthogonal
factorizations of X should be used. Though it rarely occurs in
practice, u can equal 0 for some values of k, but this will cause
singularity of [XTD.X] only in degenerate (and extremely unusual)

cases. As a practical matter, p ''̂ ' in (2.65) will be defined throughout
the iteration if the columns of X are linearly independent.

Global convergence theory from Zangwill (1969) can be applied for
reasonable choices of E.. (P) to show that any limit point of an
iteration sequence will be a minimlzer, or at worst a saddle point, of
J (U,p ,...,P). The local convergence result in Bezdek et al. (1987a)

states that if the error measures {E (p.)} are sufficiently smooth and
a standard convexity property holds at a minimizer (U, B) of J ,
then any iteration sequence started with U sufficiently close to U
will converge to (U, B). Furthermore, the rate of convergence of the
sequence will be q-linear.

The level of computational difficulty in minimization of J with
respect to B is a major consideration In choosing the particular
measure of error E, (p). The best situation is when a closed form

ik ' 1

solution for the new iterate p exists such as in the example at
(2.65). Fortunately, in cases where the minimization must be done
iteratively, the convergence theory in Hathaway and Bezdek (1991)
shows that a single step of Newton's method, rather than exact
minimization, is sufficient to preserve the local convergence
results. The case of inexact minimization in each half step is further
discussed and exemplified in Bezdek and Hathaway (1992) in
connection with the FCS algorithm of Dave.

-tfy^ Nip''
Example 2.11 This example illustrates the use of FCRM to fit c = 2
quadratic regression models. The quadratic models are of the form

y = P„ + Pj2X + PigX̂ , and (2.66a)

y = 1̂21 + ̂ 22^-^1^23 '̂ • (2.66b)

The four data sets A, B, C and D specified in Table 2.6 were generated
by computing y from 2.66(a) or 2.66(b) at n /2 fixed, equally spaced x-
values across the interval given in Column 3 of Table 2.6. This
resulted in sets of n points (which we pretend are unlabeled), half of

74 FUZZY PATTERN RECOGNITION

which were generated from each of the two quadratics specified by
the parameters in Columns 4 and 5 of Table 2.6. These four data sets
are scatterplotted in Figure 2.14.

Table 2.6 Data from the qiiadratic models y = p̂ ^ + ̂ ^^x + PiaX^

n x - in t e rva l
Pi h

A 46 [5, 27.5] |3 j^=(21,-2, 0.0625) P ^ = (- 5 , 2,-0.0625)
B 28 [9, 22.5] I3^g=(21,-2, 0.0625) p2B= (-5.2,-0.0625)

C 30 [9, 23.5] P^^= (18.-1,0.03125) p2c= (-2. 1,-0.03125)

D 46 [10.5, 21.75] p^j^= (172,-26,1) p2P= (364.-38,1)

FCRM iterations seeking two quadratic models were initialized at a
pair of quadratics with parameters P , „= (-19. 2, 0); ^„= (-31, 2, 0).
Since the coefficients of the x^ terms are zero, the initializing
models are the dashed lines shown in Figure 2.14. FCRM run

parameters were c = m = 2 and E^(pj) = (Y^ " Pa " ^n\' ^ta^^^- Iteration
was stopped as soon as the maximum change in the absolute value of
successive pairs of estimates of the six parameter values for that
model was found to be less than or equal to e =.00001, that is.

»r+l < 0.00001.

Data Set A

\

\

) (

/ i- r .

\

Data Set B

16
Data Set C

0
32 0

X '' '

1 1

. . /
il6

0

16
Data Set D

16 32 0 32

Figure 2.14 Initial (dashed) and terminal (solid) models

CLUSTER ANALYSIS 75

Figure 2.14 shows the initial (dashed lines) and terminal regression
models FCRM found when started at the given initialization. The
initializing lines were neither horizontal nor vertical - they were
inclined to the axes of symmetry of the data in every case. This
initialization led to successful termination at the true values of the
generating quadratics very rapidly (6-10 iterations) for all four data
sets. The terminal fits to the data are in these four cases good
(accurate to essentially machine precision). In the source paper for
this example FCRM detected and characterized the quadratic models
generating these four data sets correctly in 9 of 12 attempts over
three different pairs of initializing lines.

FCRM differs from quadric c-shells most importantly in the sense
that the regression functions - which are the FCRM prototypes - need
not be recognizable geometric entities. Thus, data whose functional
dependency is much more complicated than hyperquadric can (in
principle at least) be accommodated by FCRM. Finally, FCRM
explicitly recognizes functional dependency between grouped
subsets of independent and dependent variables in the data, whereas
none of the previous methods do. These are the major differences
between FCRM and all the other non-point prototype clustering
methods discussed in this section. In the terminology of Section 4.6,
FCRM is really more aptly described as a "system identification"
method, the system being the mixed c-regression models.

H. Clustering for robust parametric estimation

The term "robust clustering", sometimes used to describe the
algorithms in this subsection, is somewhat of a misnomer, since it
seems to promise a clustering method that is somehow "more
robust" than, for example, the c-means models. However, the
algorithms in this subsection do not look for clusters in the same
circumstances as our previous models. Here, we develop methods
that can be used as tools to make (more) robust estimates of
statistical parameters than, say, GMD-AO could, when certain
assumptions are made about the data. Consequently, this topic fits
equally well into the framework of subsection 4.6.G, where we
discuss the use of clustering as a tool for estimating parameters of
two kinds of fuzzy systems tha t are used for function
approximation. This is really the aim of robust clustering too -
estimation of model parameters that provide good approximations
to unknown parameters of the assumed model.

To understand the intent of robust statistics, imagine that you are
measuring electronically the weights (w) of Chinook Salmon as they
are being taken out of a fishing net. The weights of all Chinook
Salmon will almost certainly resemble a normal distribution

i^[[i,a^), and you hope to estimate the parameters of this

76 FUZZY PATTERN RECOGNITION

distribution using the collected samples. Suppose the population
mean weight of all the fish of this species (excluding fish less than 6
inches long) is 10 pounds, with a standard deviation in the
population of 1 pound. Then your expectation is that about 95% of
all the measured weights will fall in the weight interval [8, 12],
accounting for two standard deviations on either side of the mean.
You will have no trouble visualizing the scatterplot of the first
10,000 samples of this process along the real line - it should look
much like Sketch A.

• • — • — • • • • • • • > w

0 5 10 15 20

Sketch A 10,000 samples of /̂ (lO, 1]

The probability of seeing even one observation close to 5 or 15 in
this situation is so small that the observations shown in sketch A
are already far-fetched. If you ran the HCM algorithm with the
Euclidean norm on the data in Sketch A with c = 1, all the points
would be put unequivocally into one cluster. What estimate would

you get for the cluster center? Since p = 1, ||xk - v|| = (xĵ ^ - v)^ and
Ui]j = l V k , the cluster center estimated with (2.6b) would be

10,000
V = IXk /10,000, the arithmetic mean of the 10,000 points. This

k=l
is exactly what you want, and the estimate would be very close to 10.
Of course, you can compute this statistic without clustering, but this
illustrates how clustering can be used in statistical estimation.

Now suppose the voltage to the electronic scale that is measuring the
w's suddenly jumps, causing the sensor to record Just one
measurement of, say, w = 10,000 (this is a fish the authors would like
to catch!). Most estimates we might make for |j. and a from the data
collected would be effected dramatically by this single mistake,
since now the situation in sketch A becomes that of sketch B.

- • • • -> w
0 10,000
Sketch B 9,999 samples of A7(10, 1) + one sample with value 10,000

If you ran HCM with c = 1 on the data in Sketch B, the estimate of the
mean would be pulled far to the right, as it would if you simply
computed the new arithmetic mean of the data. This sensitivity to
"noise", or "outliers", or whatever you prefer to call unusual
perturbations of the data, is termed lack of robustness. In this
example, we say that the statistic used (here the arithmetic mean)
has a breakdown point of 1/n = 1/10,000 - that is, 1 bad point in n

CLUSTER ANALYSIS 77

samples can give an estimate that Is arbitrarily far from the true
value.

According to Huber (1981), a robust procedure for statistical
parametric estimation can be characterized by the following: (1) it
should have a reasonably good efficiency (statistically) at the
assumed model, (2) small deviations from the model assumptions
should impair the performance only by a small amount, and (3)
larger deviations from the model assumptions should not cause a
catastrophe.

Statistics that can overcome sensitivity to outliers (to various
extents) are called robust estimators. For example, if you use the
median instead of the mean to estimate |j. for the data in Sketch B,
you will still obtain a very reasonable estimate, because all but one
of the points to the right of the median is very close to \x relative to
the one outlier. This estimate can also be obtained by clustering the
Sketch B data with HCM if you replace the Euclidean norm in J by
the 1-norm. In this case the necessary conditions (2.6) do not apply,
and there are a number of alternative methods that find estimates of
extreme points of J . In particular, the median of the data is known
to minimize J in the situation of Sketch B (Kersten, 1995), so again,
we can obtain a reasonable estimate of the mean |J,, using a
clustering algorithm that is robust in this well defined statistical
sense. Two things to note: first, we still run the clustering algorithm
at c = 1, presumably because the physical process here tells us it must
be 1 (unless there is a large school of giant Chinooks somewhere,
feeding on sperm whales); and second, although we know (or suspect)
that the collected samples are contaminated by noise, we don't know
which ones are the bad ones.

The question is not "how many clusters are there in sketches A and
B" - there are two; rather, the question posed in robust statistics is
"how badly will the estimators of the mean and variance of the
single distribution we assume produced these samples be affected by
the addition of the "noise point" whose value is 10,000. To
underscore this more dramatically, suppose 45% of the 10,000
points were "accidentally" recorded at values near 10,000. This
would result in the situation shown in Sketch C.

^> w
0 10,000

Sketch C 5,500 samples of ;̂ (10,1) + 4,500 samples
with values near 10,000

From the point of view of clustering, the data in Sketch C have -
without question - two visual clusters, and any clustering algorithm

78 FUZZY PATTERN RECOGNITION

we have discussed so far would find these two clusters in short order
- provided we ran itatc = 2. But from the point of view of parametric
estimation, if we knew (or assumed, anyway) that the data must
come from a single normal distribution, we would want a method
tha t somehow still produced reasonable estimates for the
parameters of A7(10,1). The corrupted observations may or may not
form a "cluster", but are still perfidious to statistical estimators.

Ordinary statistics such as the average of the 10,000 samples, which
in this case would produce an estimate of about 4,500 for the mean,
would be unreliable. In fact, the mean can be made arbitrarily far
from the "correct" estimate by increasing the values of the
"corrupted" observations. On the other hand, in the overdramatized
situation depicted in Sketch C, the median will do much better, since
the estimate produced by it will not be arbitrarily far from the
actual (population) value, no matter how high the values of the
corrupted observations are. The median will break down only when
the fraction of corrupted samples exceeds 50% - i.e., the breakdown
point of the median is 50%.

So, this is the problem set out for "robust clustering" : to find
reasonable estimates for the model parameters under the
assumptions that: (i) the model is known, and (il) there are
(unknown) samples in the data that are aberrant. Fuzzy clustering
algorithms have been used to estimate parameters of normal
mixtures for quite a while (Bezdek and Dunn, 1975, Bezdek et al.,
1985, Gath and Geva, 1989b), but the methods used are "intolerant"
to the problem of robust estimation. Non-point prototype clustering
algorithms such as fuzzy c-lines (FCL) and fuzzy c-shells (PCS) can
be used to estimate lines and curves in unlabeled data, and these
algorithms may suffer from the same intolerance to aberrant data.
The aim of the techniques discussed in this subsection is to design
clustering models (albeit not quite unsupervised) that overcome or
at least obviate sensitivity to noise under the specific assumptions
just stated.

In robust statistics, the breakdown point of an estimator is defined
to be the smallest fraction of noise or outlier points that can result
in arbitrarily large errors in the estimate (Hampel, 1975). (Outliers
are misrecorded observations or points otherwise included in data
whose values can be arbitrarily distant from the correct ones.)
Prototype-based clustering algorithms may be viewed as estimators
of prototypes. Therefore, when the prototype es t imates
corresponding to the global minimum of the objective function can
have arbitrarily large errors, we may say that the (formulation of
the) clustering algorithm breaks down.

The breakdown point of a clustering algorithm can be used as a
measure its robustness. When there is only one cluster in the data,
theoretically the best breakdown point one can be achieve is 0.5 (or

CLUSTER ANALYSIS 79

50%). This Is because if the noise points "conspire" to form a cluster
t h a t is equal in size to the good cluster, and if the noise c luster is
arbi trar i ly far away, t hen there is no way to guarantee t h a t any
c lus t e r ing a lgor i thm will pick t he r ight c lus te r i n s t ead of t he
spu r ious one. (If the algori thm picks the wrong one, the es t imate
will be arbitrarily off.) Similarly, when we have a known n u m b e r of
c lus te r s in t he da t a set, the bes t breakdown point any cluster ing
algorithm can achieve is Unjin/n, where n^m is the n u m b e r of points
in the smallest "good" cluster (Dave and Krishnapuram, 1997).

Bobrowski and Bezdek (1991) first investigated the use of the 1-norm
in t he FCM model. Kaufman a n d Rousseeuw showed t h a t the c-
m e a n s algorithm can be made more robust by us ing the l -norm (see
Kaufmann and Rousseeuw, 1990). Kersten (1995) later showed tha t
when the 1-norm is used, the upda te equation for the cluster centers
is the fuzzy median. Dave (1991a) proposed the idea of a noise cluster
(NC) to deal with noisy da ta . In this approach, noise is considered to
be a separa te class, and is represented by a fictitious prototype t h a t

h a s a constant distance 5 from all the data points . The membersh ip
u.j^of point Xk in the noise cluster is defined to be

u.^ = l - I u . j ^ . (2.66)

T h u s , the membersh ip constra int for the good clusters is effectively
c

relaxed to X u.. < 1, a strategy tha t is very similar to the use of slack
i=l 'J

var iables in other optimization domains . This allows noise points
to have arbitrarily small membersh ip values in good c lus ters . The
objective function for the fuzzy noise clustering (FNC) model is

J N C (U , V ; 0) = i i u - D f , + i u - 5 2 . (2.67)
i=lk=l k=l

Jnj(U,V;0)

The second te rm on the r ight side of (2.67) cor responds to the
weighted s u m of d i s tances to the noise c luster . The m e m b e r s h i p
u p d a t e equa t ion in Dave 's FNC modification of FCM-AO t h a t
replaces necessary condition (2.7a) is, for m > 1 and all i, k

" ,1 = c , , ;;i/.n°;i' , , - „ , „ . . - i • « .68)

Together with necessary condition (2.7b), (2.68) forms a n AO pair for
the fuzzy robust clustering (FRC) a lgor i thm. When the init ial

80 FUZZY PATTERN RECOGNITION

prototypes are reasonably close to the actual ones, D , i = 1,..., c, in
(2.68) will be large for outliers, so the numerator and the first term
in its denominator will be small relative to the second term in the
denominator. This results in small membership values in the good
clusters for the outliers. Dave and Krishnapuram (1997) have shown
that the FNC approach is essentially the same as Ohashi's (1984)
method. (To our knowledge, Ohashi's work was never published, but
a brief description of this method can be found in DeGruijter and
McBratney, 1988.)

In the FNC approach, 5 plays a role similar to that of Wj in PCM (see
(2.5)). PCM and FNC can be shown to be equivalent to the M-
estimator technique of robust statistics (Huber, 1981). As a result,
their asymptotic breakdown point is limited to 1 / n , where n is the
number of parameters to be estimated. Dave and Krishnapuram
(1997) discuss the connection between several robust techniques,
including the mountain method (Yager and Filev, 1994a); the
generalized minimuTn volume ellipsoid (GMVE) algorithm (Jolion et
al. 1991), and a method that seeks to minimize the probability of
randomness (MINPRAN, Stewart, 1995).

The approach in (Frigui and Krishnapuram, 1995, 1996a), discussed
later in this section, was the earliest attempt to incorporate a robust
statistical loss function into fuzzy clustering. There have been
several other methods studied to make FCM more robust (Frigui and
Krishnapuram, 1995; Kim et al., 1995; Choi and Krishnapuram,
1996; Nasraoui and Krishnapuram, 1997). The methods in last three
papers jus t mentioned are based on the reformulation theorem,
equations (2.23), of Hathaway and Bezdek (1995). All of these
algorithms have the potential to achieve the theoretical breakdown
point of nuiin/n.

Recall that the reformulated objective function for FCM is (2.23b):

n f c , ., y-™ n
R^(V,0)= S ID/1-™ = I Hĵ , (2.69)

™ k=ili=i '" J k=i ^

where H, =
k

>£j~)i/(i m) j ^ ^ jg 1/c times the harmonic mean of

the distances {D.j^:j = l c) when m=2. Since the H^ values
(measured from true prototypes) corresponding to outliers are large,
the idea is to design the objective function so that its global
minimum is achieved when large H^ are discounted or even
completely ignored. The objective function of Choi and
Krishnapuram (1996) that defines the robust FCM (RoFCM) model
and whose gradient supplies necessary conditions for the
corresponding AO algorithm is

CLUSTER ANALYSIS 81

R R O F C M (V . O) = X P (H ,) . (2.70)
k = l

This objective function applies a loss function p(.) to each of the H 's
to reduce the effect of outliers (Ruber, 1981). The loss function is
typically chosen to be linear for small distances and then it
saturates for larger distances. The membership update equation for
this formulation remains the same as that of the original FCM, i.e.,
u is computed with (2.7a). However, update equation (2.7b) for the
cluster centers is replaced by, for m > 1,

^1=^ , i = l c , (2.71)
X»kuS

k = l

where (o^ = co(Hĵ) = dp(Hj^) / dH^ can be interpreted as the degree of
"goodness" of point Xk- The RoFCM algorithm is AO of the pair (2.71)
and (2.7a). Ideally, for noise points, co should be as low as possible.

In robust statistics, the function co is typically chosen as

fl; Hk<ymed{H„}l

..=<»(»,)={„^ „the™.y • '̂ •̂ '̂
In (2.72) Y is called the tuning constant, and is typically between 2
and 8. Note that cô must be updated at every iteration because the
{Hĵ } change whenever the {v̂ } do. Moreover, there is no guarantee
that AO achieves the global minimum of (2.70), and other
optimization methods may be more effective for some problems.

The objective function of the fuzzy trimmed c-prototypes (FTCP)
model of Kim et al. (1995, 1996) is

Rj^cp(V,0)= i H,^, , (2.73)

where H|y is the k-th item when the quantities Hj, i=l,.. . ,n are
arranged in ascending order, and q is a value less than n. The idea
here is to place the c prototypes in such a way that the sum of the
smallest q H 's is minimized. If the value of q is set equal to n-
nmin+1 > FTCP will achieve the theoretical breakdown point.

The fuzzy c-least median of squares (FCLMS) algorithm (Nasraoui
and Krishnapuram, 1997) replaces the summation that appears on

82 FUZZY PATTERN RECOGNITION

the right side of (2.69) with the median. The objective function of
FCLMS is

RFCLMs(V.O) = med{H,} . (2.74)

The crisp version of this algorithm minimizes the median of the
distances from the points to their closet prototypes. The median can
be replaced by the q-th quantile (e. g. q=n-niiiin+l}. AO algorithms
that heuristically minimize the FTCP and RoFCM functionals can
(but are not guaranteed to) achieve a high breakdown point with
relatively low computational complexity. However, the AO
technique cannot be applied in these two cases, which both require a
random (or exhaustive) search procedure. Kim et al. (1996) give a
heuristic AO technique to minimize (2.73). A genetic search is used
for minimizing the FCLMS functional at (2.74) in (Nasraoui and
Krishnapuram, 1997).

Recently, Frigui and Krishnapuram (1996b, 1997) have introduced
an algorithm based on competitive agglomeration (CA). This
algorithm tries to determine the number of clusters in a data set
automatically, without the use of an explicit validity measure. (See
Section 2.4 for a detailed discussion on cluster validity.) CA
combines the advantages of agglomerative and partitional
clustering and achieves relative insensitivity to initialization by
initially approximating the data set by a large number of small
clusters. Agglomerative (hierarchical) clustering (see Section 3.3)
has the advantage that it is insensitive to initialization and local
minima, and that the number of clusters need not be specified.
However, one cannot incorporate a priori information about the
shape and size of clusters, as can be done in partitional prototype-
based clustering. Agglomerative algorithms produce a nested
sequence of partitions (dendrograms), and they are static in the
sense that data points that are committed to a cluster in early stages
cannot move to another cluster. In contrast, partitional prototype-
based clustering is dynamic. The fuzzy CA model uses the following
objective function, which seems to combine the advantages of both
paradigms

J ^ ^ (U , V ; a) = i i u 2 ^ D f , - a i
i=ij=i 1=1

JgtU.ViO)

n

.k=l "^.
(2.75)

c
This objective function is minimized subject to £ Ujĵ = 1, and a is a

i=l
user defined constant. The first term in (2.75) is J ^ at (2.5) with m=2
and w = 0. It represents the sum of fuzzy Intracluster distances,
allows us to obtain compact clusters and is minimized when c=n.
The second term (including the minus sign) is minimized when all

CLUSTER ANALYSIS 83

good data points are lumped into one cluster. Thus, conceptually
(2.75) tries to find a balance between c=n and c=l, and thereby
attempts to partition the data set into the smallest possible number
of compact clusters. Using LaGrange multipliers, it can be shown
that the membership update equation for AO of the function at (2.75)
is given by

where u '̂̂ '*' is the FCM membership with (2.7a) at m = 2, i.e.,
Ik

FCM _
" i k

c
I

J = l

D̂ k

V Df
(2.77)

and u^'^^ is the bias membership given by

^Bias « (N ^ _ N J . (2.78)
' ^ ik

n
In (2.78) N, = X u,, is the cardinality of cluster i and N, is the

' k=i "" ^
weighted average of cardinalities of all clusters (from the point of
view of X),

__ ,i(l/Df,)N,
Nĵ = i^V- — • (2.79)

1=1

The second term in (2.76) can be either positive or negative, and it
allows strong clusters to agglomerate and weak clusters to
disintegrate. CA is usually initialized by appl)^ng FCM to X with a
large value of c to find an initial U and V. The value of c is
continually updated in CA as clusters become extinct. After the
memberships are updated, if the cardinality of a cluster falls below a
specified threshold, the prototype corresponding to that cluster and
the corresponding row in U are discarded. When this happens, the
memberships are redistributed amongst the remaining clusters
according to (2.77). The value of a needs to be initially increased
slowly, beginning from a = 0, to encourage agglomeration, and is
then gradually reduced. The following "annealing schedule" is
recommended for the control of a:

84 FUZZY PATTERN RECOGNITION

/

« t = 1 l t
'^,,-^, " i k , t - l Ik,t-1

n I
.k=l

U
ik , t - l

where (2.80)

\ 0

- t / T .
(2.81)

In (2.80) and (2.81) a, ri, u^, and D.ĵ are shown as functions of
iteration number t. Values for TIQ, to and t are typically 1, 5 and 10
respectively. Equation {2.i
then decays towards zero.
respectively. Equation (2.81) shows that r]^ increases until t = t , and

The CA technique can potentially find clusters of various types if we
use appropriate prototypes and distance measures in the first term
of (2.75). Since the second term in (2.75) does not involve protolypes,
the update equations for the prototype parameters are the same as
those in the corresponding fuzzy clustering algorithms that do not
use the second term.

Frigui and Krishnapuram (1995) present a robust clustering
algorithm called the robust c-prototypes (RCP) based on the M-
est imator . This algori thm uses the objective function

'RCP (U,B) = X XufkPi(Dut;). where p is the loss function for cluster i.
l = l k = l '•

Each cluster in RCP has its own loss function, as opposed to RoFCM
in (2.70), which has only one loss function for all c clusters. Dave
and Sen (1998) have shown that with suitable modifications, FNC
(see equation (2.67)) can be made to behave like RCP.

CA can be made robust (Frigui and Krishnapuram, 1996b) by
incorporating the RCP approach into (2.75), resulting in the
objective function

J R C A (U , B : w , a) = i i u ^ P i (D f k) - a i
i=lk=l 1=1.

n2

k = l
(2.82)

Thus, the objective function for robust CA (RCA) applies a loss
function p (*) to the squared distances to reduce the effect of outliers
(Huber, 1981). However, unlike RoFCM, which associates only one
weight with each point, RCA uses c robust (possibilistic) weights
with each point, where w.. e [0,1] is the typicality of x with respect to
cluster i. As is customary in robust statistics, the robust weights are
related to the loss function viaw.j^ = Wj(Dĵ ĵ) = dp.(D ĵ̂) / dD^.

CLUSTER ANALYSIS 8 5

If a point X is an outlier, the weights {w } will be low for the proper
choice of p.W, and the second term in (2.82) will effectively ignore the
contribution of such points. Thus, the second term in (2.82) can be
interpreted as the sum of squares of robust cardinalities. The
memberships u^'^'^ and Uĵ ''̂ ^ are now given by

u,,
IK

C

I
J=l

P,(D:

V
p (D i)

l/(m-l)

and (2.83)

u
B i a s _ « (^ - N ,)
Ik P.K)

(2.84)

where N, = £ w.ĵ u,ĵ is the robust cardinality of cluster i, and N^ is
k=l

the weighted average of robust cardinalities of all clusters given by

N = i ^
k

i (l /p ,(Df,))N.

l (l /p , (Df ,))
(2.85)

The prototype update equation for prototype [31 of cluster i (which
could be a scalar, vector or a matrix), can be obtained from the
following necessary condition:

dJRCA(U.B:w,a)^ " 2 dpi dPfi,
d|3, - h^"^ dD^ dp,

2.Uu,Wj]^ —rr- - U.
i=l dp,

(2.86)

A proper loss function p.(*) is needed for this algorithm to get good
results. An alternative to simply guessing p (*) is to estimate w(*)
from the data at each iteration and then compute p.(*) as the integral
of w(*). Example 2.12 illustrates this approach.

Example 2.12 Figure 2.15(a) shows a synthetic data set consisting of
six Gaussian clusters of varied sizes and orientations. Uniformly
distributed noise was added to the data set so that the noise points
constitute about 40% of the total points. The distance measure used

in this example, D?,j=|Ci| ^(x^ - v,)^Cj"^(xjj - V;), is due to
Gustafson and Kessel (see (2.28)). The initial value for c was
overspecified as c = 20. RCA-AO was initialized by running 5
iterations of GK-AO on the data; GK-AO was initialized by randomly

86 FUZZY PATTERN RECOGNITION

choosing 20 points in the data for V . When v̂ ̂ - v̂ j._j < 0.001V i,
termination occurred.

For this distance measure the update equations for the center and
the covariance matrix of cluster i can be shown to be:

k=l

; and (2.87)

I w^^uf^lx^-VjKx^-Vjf
C, = _ k=l lk" lk^

n
I W,̂ U

k=l

l < i < c
2

i k " i k

(2.88)

The weight function is estimated as follows. In each iteration, the
fuzzy partition is hardened. Let Xj denote the i-th cluster of the
hardened partition, let Ti denote the median of the distances D^
such that Xk 6 X;, and let Sj denote the median of absolute deviations
(MAD) of D^̂ for Xĵ e X^. The weight function is chosen such that
points within Tj of the prototype have a weight > 0.5, points within
TJ+TSI of the prototype have a weight < 0.5, and points beyond TJ+TSJ

have a weight of 0:

w.^ =W.(D2,) =
ik 1 ^ ik '

D ik

2Tf

2Y2sf

:Df,e[O.TJ

; D ^ E [T ^ , T , + YSJ

:Df,>T^+7S,

(2.89)

This weight function (softly) rejects 50% of the points within each
component while updating the prototype parameters. Thus, it can
tolerate up to 50% outliers In each component. The loss function p (*)
which Is needed to update u is obtained by integrating the weight
function. Figure 2.15(a) shows the input data, which has six clusters
which are visually apparent due to higher local densities than the
data distribution over the rest of the square. The initial prototypes,
obtained by running the GK algorithm for 5 iterations with c=20, are
shown in Figure 2.15(b), where the ellipses enclose points with a
Mahalanobis distance less than 9. After 6 iterations of RCA-AO the

CLUSTER ANALYSIS 87

robust cardinalities of the remaining clusters have dropped below
the threshold (=3), so the number of clusters is reduced to 9 as shown
in Figure 2.15(c). The final result, after 10 iterations of RCA-AO, is
shown in Figure 2.15(d).

•• :̂ y-:^S : • • • • : = • .

• • • . • -

• : ; • • • • • . • • ' . • . • •

>••.'•

• • • . • -

• : ; • • • • • . • • ' . • . • •

• • • • • • : • • ••:

: . : • • ' ' '••' •

' • • . - • • • • • • • • • • • •

• ' . • . _ , | •. • •

' • $:

•'•;•': ;• }

'.' . " • ; " . • • • . •
: • " • ' •

" • . • . ' \

(a) input data (b) After 5 (^ iterates

(c) After 6 RCA iterates (d) Final RCA result

Figure 2.15 The robust competitive a^omeration technique

2.4 Cluster Validity

Now that we have some ways to get clusters, we turn to the problem
of how to validate them. Figure 2.3(a) shows that the criterion
driving a clustering algorithm towards an optimal partition
sometimes produces a result that is disagreeable at best, and wrong
at worst. This illustrates the need for approaches to the problem of
cluster validity.

Clustering algorithms {G} will produce as many partitions as you

have time to generate. Let /^ = {ej(X) = Uj eMp^n:! ^ J ^ N}, where

index (j) indicates: (i) clustering X with one C at various values of c;
(ii) clustering X over algorithmic parameters of a particular Gj or

88 FUZZY PATTERN RECOGNITION

(ill) applying different G's to X. Cluster validity (problem (3), Figure
2.1) is an assessment of the relative attractiveness of different U's in
p. The usual approach is computational, and is based on one or more
validity Junctionals V: D t-> 91, D denoting the domain of V, to rank
each U. e P.

You may wonder: if the global minimum of, say J , cannot produce
the clusters you want, then why not directly optimize a validity
functional V? First, no model can capture all the properties that
"good' clusters might possess, and this of course includes any
particular V we might propose. For example, we seek, from data set
to data set, clusters with: compactness, isolation, maximal
crispness, density gradients, particular distributions, etc. And more
importantly, many of the validity indices that will be discussed do
not fit naturally into a well behaved framework for mathematical
optimization. So, we use validity measures as an "after the fact" way
to gain further confidence in a pgirticular clustering solution.

There are two ways to view clustering algorithms. First, it is
possible to regard G as a parametric estimation method - U and any
additional parameters such as B in the c-means and c-shells models
are being estimated by C using X. In this case V is regarded as a
measure of goodness of fit of the estimated parameters (to a true but
unknown set!). This interpretation is usually (but not exclusively)
made for validity measures in the context of probabilistic
clustering.

The second interpretation of C is in the sense of exploratory data
analysis. When 1/ assesses U alone (even if the measure involves
other parameters such as B), V is interpreted as a measure of the
quality of U in the sense of partitioning for substructure. This is the
rationale underlying most of the methods discussed in this section.

When D,, = M. , we call V a direct measure; because it assesses
V hen

properties of crisp (real) clusters or subsets in X; otherwise, it is
indirect. When Dy = M ĉn x other parameters, the test V performs is

e.g. prototypes B
still direct, but addition of the other parameters is an important
change, because these parameters often contain valuable
information about cluster geometry (for example, measures that
assess how well the prototypes B fit the cluster shapes). We call
indices that fall into this category direct parametric indices.

When U is not crisp, validity measures are applied to an algorithmic
derivative of X so they are called indirect measures of cluster
validity. There are both indirect and indirect param.etric measures
of partition quality.

CLUSTER ANALYSIS 89

Finally, many validity measures also use X. This is a third
important aspect of validity functionals: do they use the vectors in X
during the calculation of V? We indicate explicit dependence of V on
X by adding the word data when this is the case. Let Q, represent the
parameter space for B. Table 2.7 shows a classification of validity
functionals into six types based on their arguments (domains).

Table 2.7 One classification of validity measures

Type of Index Variables Domain D^ of V

Direct U Mhcn

Direct Parametric (U,B) M h c n X ^

Direct Parametric Data (U, B, X) M, xQx9?P
hen

Indirect U (M p e n - M h e n)

Indirect Parametric (U,B) (M p c n - M h c n) x "

Indirect Parametric Data (U, B, X) {M - M .) x t 2 x 9 t P
^ pen hen'

Choosing c=l or c=n constitutes rejection of the hypothesis that X
contains cluster substructure. Most validity functionals are not
equipped to deal with these two special cases. Instead, they
concentrate on 2 < c < n, implicitly ignoring the important question
of whether X has clusters in it at all.

^ Notation It is hard to choose a notation for validity indices that
is both comprehensive and comprehensible. Ordinarily, validation
means "find the best c", so the logical choice is to show V as V(c). But
in many cases, c doesn't even appear on the right side of an equation
that defines V. X in Table 2.7 is fixed, but U and B are functions of c
through the algorithm that produces them, so any index that uses
either of these variables is implicitly a function of c as well. A
notation that indicates functional dependency in a precise way
would be truly formidable. For example, the Xie and Beni (1991)
index (which can be used to validate the number of clusters found)
depends on (U, B, X), U and B depend on C, the clustering algorithm
that produces them, and C either determines or uses c, the number of
clusters represented in U. How would you write the independent
variables for this function? Well, we don't know a best way, so we
will vacillate between two or three forms that make sense to us and
that, we hope, will not confuse you. Dunn's index (Dunn, 1974a), for
example, will be written as Vp(U;X)when we feel it important to
show the variables it depends upon, but when the emphasis is on its
use in its application context, recognizing the fact that U is a
function of c, we will write VQ{C). The partition entropy defined

90 FUZZY PATTERN RECOGNITION

below depends on both U (and hence c) as well as (a), the base of the
l o g a r i t h m i c func t ion chosen : t h u s , we may u s e
Vpg(U.c,a),Vpg(U)orVpg(c).

A. Direct Measures

If U e Mĵ ^̂ is crisp, it defines nonjuzzy subsets in X, and there are
many validity functionals that can be used to assess U. Most direct
validity indices are based on measuring some statistical or
geometric property that seems plausible as a definition of good
clusters in X. Statistical indices tend to be estimators of the
goodness of fit of the clusters to an assumed distribution. Usually,
cluster free data are assumed to be uniformly or randomly
distributed over some sampling window, and statistical indices
measure the departure of a proposed set of clusters from this
assumption. Geometric indices are based on properties such as
cluster volume, cluster density and separation between clusters (or
their centroids).

B. Davies-Bouldin Index

Davies and Bouldin (1979) proposed an index that is a function of
the ratio of the sum of within-cluster scatter to between-cluster
separation. Let U = (Xj, ...,X^} be a c-partition of X, so that

U Xj = X; Xj n Xj = 0 if i 5̂ j ; and Xj ^̂ 0 V i. Since scatter matrices
i

depend on the geometry of the clusters, this index has both
statistical and geometric rationales, and is designed to recognize
good volumetric clusters.

VDB.at(c)=|̂ J.i max|(ai,t + aj,t)/(| |vi-Vj|| ; t , q > l , (2.90a)

ai,t = ij^-vtii7lXi
i / t

,i=l c,t>I

Vi= I x / | X i | , i = l , . . . , c
xeX;

, and (2.90b)

(2.90c)

Integers q and t can be selected independently. In (2.90a) Irllqis the

Minkowski q- norm. In (2.90b) ||*||* is the t-th power of the Euclidean
norm. For p = q = 2, Davies and Bouldin state that the term

(ai2 + aj,2)/lllv Vjll I is the reciprocal of Fisher's classical measure

CLUSTER ANALYSIS 91

of separation between clusters X and X (Duda and Hart, 1973, p. 116).
However, it differs from Fisher's criterion by having square roots on
each term in the numerator, and by using cardinalities of the crisp
clusters in the denominator. In any case, these two criteria share
similar geometric rationales.

V (1) is undefined, and V (I) = 0. Since minimum within-
DB.qt Ixn DB.qt n'

cluster dispersion and maximum between-class separation are both
desirable, low values of V^„ are taken as indicants of good cluster

DB.qt °

structure. In our classification of validity indices in Table 2.7,
VQB qt is a direct parametric data index. As a reminder, this would be
formally indicated by writing V^g qj as a function of U, V and X,
Vjjg |̂ (U, V;X). We avoid this cumbersome notation when discussing
its use by writing 1/^^ .(c).

Araki et al. (1993) proposed a fuzzy generalization of VoB.qt that is

explicitly tied to the FCM clustering algorithm. For U^^j^ e M̂ .̂ ^ and
point prototypes V generated from X at some value of m> 1, they
define

« i , t =

k=i ""

where v^ k=l ^^ ^

V k = l J

,i = l,...c.

Notice that the square root is not taken, as it would be in (2.90) for t =
2. Moreover, Araki et al. also use q = 2 in (2.90) without taking the
square root.

Substituting {dj^land (Vj} for {ttj J and {Vj} respectively into (2.90),
Araki et al. arrive at a well defined indirect parametric data index
V^^2 for validation of fuzzy clusters in U. V^^2 is a fuzzy
generalization of Vogqj, but cannot be called the fuzzy Davies-
Bouldin index because of its explicit dependence on FCM.
Furthermore, V^^2 does not reduce to Vjjg.qt when U is crisp.

Araki et al. incorporate 1/0^22 i'^to FCM by adding an external loop
for c = 2 to c = c to the iteration phase of FCM in Table 2.2. At

m a x '•

termination, this outputs the (U, V) found by FCM that minimizes
T̂ DB̂ 2 over candidate pairs generated by FCM for 2 < c< c . They
report that this strategy leads to good segmentations of thermal
images.

92 FUZZY PATTERN RECOGNITION

C. Dvmn's index

Dunn (1974a) proposed an index based on geometric considerations
that has the same basic rationale as V^„ ^ in that both are designed

DB.qt "^

to identify volumetric clusters that are compact and well separated.
Let S and T be non empty subsets of 9^^, and let 5:5RP X 9?P H^ 5̂ + be
any metric. The standard definitions of the diameter A of S and the

set distance 5 between S and T are

Ai{S) = max{5(x,y)}
x.yeS

; and (2.91)

5i(S,T)=mln{5(x,y)}
xeS

(2.92)

y e '

Dunn defined the separation index for the crisp c-partition
U o { X , , . . . , X } ofXas

I 2.' c

VD(U;X) = min
l<i<c

min<!
l<j<c

8 i (X „X j)

max{Ai(Xk)}
l<k<c

(2.93)

The quantity 5i(Xi,Xj) in the numerator of V^ is analogous to

SJXj.X,) measures the in the denominator of 1/̂ „ :
DB.qt

distance between clusters directly on the points in the clusters,

whereas Vj - v J uses the distance between their cluster centers for
II Jllq

the same purpose. The use of A (X) in the denominator of 1/^ is

analogous to a^ * in the numerator of 1/̂ „ ;̂ both are measures of
=' '^•t DB.qt

scatter volume for cluster X,. Thus, extrema of V„ and V^„ ^ share
k D DB.qt

roughly the same geometric objective: maximizing intercluster
distances while simultaneously minimizing intracluster distances.
Since the measures of separation and compactness in V^ occur
inversely to their appearance in V , large values of V^
correspond to good clusters. Hence, the number of clusters that
maximizes V^ is taken as the best solution. V^ is not defined on
1„ when c= 1 or on 1 when c=n.

" n

CLUSTER ANALYSIS 93

Dunn called U compact and separated (CS) relative to the (point)
metric 6 if and only if: for all s, q and r with q̂ r̂, any pair of points
X, y e X are closer together (with respect to 5) than any pair u,v with

u G X and v e X Dunn proved that X can be clustered into a compact
and separated c-partition with respect to 6 if and only if

max I V (c) [> 1. Dunn's indexis a direct data index.
UeM,

Example 2.13 Table 2.8 shows values of ^^^ 22 ^^<^ ^D ^°^ terminal
partitions of X produced by HCM-AO using the same protocols as in
Example 2,2. Table 2.8 reports values of each index for c=2 to 10.
Each column of Table 2.8 is computed by appl5rlng the two indices to
the same crisp c-partition of X. The highlighted (bold and shaded)
entries correspond to optimal values of the indices.

Table 2.8 Direct cluster validity for HCM-AO partitions of X30

2 3 4 5 6 7 8 9 10
V„

DB,22
0.35 0.18 0.48 0.63 0.79 0.87 0.82 0.88 0.82
0.96 1.53 0.52 0.12 0.04 0.04 0.04 0.04 0.04

Figure 2.16 V^ and V ĝ ̂ 2 ^°™^ Table 2.8 for HCM-AO on X 30

94 FUZZY PATTERN RECOGNITION

^DB 22 indicates c = 3 by its strong minimum value of 0.18. The table
shows only two significant digits so ties may appear to occur in it,
but there are no ties if four digit accuracy is retained. For this very
well separated data set, V^, which is to be maximized, also gives a
very strong indication that c = 3 is the best choice.

Figure 2.16 is a graph of the values in Table 2.8 that shows how
strongly c = 3 is preferred by both of these direct indices. Don't expect
these (or any other) indices to show such sharp, well-defined
behavior on data that do not have such clear cluster structure.
Another point: don't forget that the graphs in Figure 2.16 are explicit
functions of HCM-AO, the clustering algorithm that produced the
partitions being evaluated. You might get different graphs (and infer
a different best value of c) simply by changing the initialization, or
the norm, or the termination criterion e, etc. of HCM.

Our next example illustrates the use of V^ and Vjjg22 °^ clusters
found by HCM-AO in the ubiquitous Iris data (Anderson, 1935).
Interestingly, Anderson was a botanist who collected the data, but
did not publish their values. Fisher (1936) was apparently the first
author to publish the data values, which he used to illustrate the
method of linear discriminant analysis. Several scatterplots of Iris
are shown in Section 4.3. And finally, please see our comments in
the preface about the real Iris data.

Example 2.14 Iris has n = 150 points in p = 4 dimensions that
represent 3 physical clusters with 50 points each. Iris contains
observations for 50 plants from each of three different subspecies of
Iris flowers, but in the numerical representation in 9t* of these
objects, two of the three classes have substantial overlap, while the
third is well separated from the others. Because of this, many
authors argue that there are only c=2 geometric clusters in Iris, and
so good clustering algorithms and validity functionals should
indicate that c=2 is the best choice. Table 2.9 lists the values of V^

and T̂Qg 22 °^ terminal HCM-AO partitions of Iris. All parameters of
the runs were as in Example 2.2 except that the initializing vectors
were from Iris. Figure 2.17 shows graphs of the values of V^ and

^DB.22 in Table 2.9.

The Davies-Bouldin index clearly points to c = 2 (our first choice for
the correct value), while Dunn's index seems to equally prefer c = 3
and c = 7. To four place accuracy (not shown here), c = 3 is slightly
higher, so Dunn's index here would (weakly) indicate the partition
corresponding to c = 3. The lesson here is not that one of these

CLUSTER ANALYSIS 95

answers is right. What is important is that these two indices point to
different "right answers" on the same partitions of the data.

Table 2.9 Direct cluster validity for HCM-AO partitions of Iris

c 2 3 4 5 6 7 8 9 10
V„

DB,22
0.47 0.73 0.84 0.99 1.00 0.96 1.09 1.25 1.23
0.08 0.10 0.08 0.06 0.09 0.10 0.08 0.06 0.06

0 10

Figure 2.17 V^ and V^g 22 ^°™ Table 2.9 for HCM-AO on Iris

The numerator and denominator of V^ are both overly sensitive to

changes in cluster structure. 5̂ can be dramatically altered by the
addition or deletion of a single point in either S or T. The
denominator suffers from the same problem - for example, adding
one point to S can easily scale Ai(S) by an order of magnitude.
Consequently, V^ can be greatly influenced by a few noisy points
(that is, outliers or inliers to the main cluster structure) in X, and is
far too sensitive to what can be a very small minority in the data.

To ameliorate this Bezdek and Pal (1998) generalized 1/^ by using
two other definitions for the diameter of a set and five other

96 FUZZY PATTERN RECOGNITION

definitions for the distance between sets. Let A be any positive semi-
definite [diameter] function on PCSi^), the power set of 9t^. And let 5
denote any positive semi-definite, symmetric (set distance) function

on P(3iP)xp{'3iP). The general form of V^ ustag 5 and A is

V-. (U; X) = V-. (c) = min<̂
1<1<C

min-<
1<J<C

6(Xj,Xj)

max
l<k<c

{A(X,)}
(2.94)

Generally speaking indices from family (2.94) other than V^ show
better performance than V^. The classification of Vĝ as in Table

2.7 depends on the choices of 5 and A. All of these indices are direct
data indices (they all use U and X), and several also use the sample
means V.

D. Indirect measures for fiizzy clusters

If U e (Mpcn - Mĵ cn) is not crisp, there are two approaches to validity

assessment. First, direct measures such as 1/„„ ^ and 1/„ can be
DB.qt D

applied to any crisp partition derived from U. For example, we can
harden U using (2.10) cind then assess the resultant crisp partition as
in Examples 2.13 and 2.14. Other defuzzifications of U (e.g., a-cuts at
different levels) can produce different crisp partitions, and hence,
different values for validity indices.
The alternative to hardening U followed by direct validation is
validation using some function of the non-crisp partition, and
possibly, X as well as other parameters found by C. Almost all of the
measures in this category have been developed for fuzzy partitions
of X, so we concentrate on this tj^je of index.

Indirect indices that do not involve B and X are nothing more than
estimates of the fuzziness (or typicality if U is possibilistic) in U. As
such, it is not possible for them to assess any geometric property of
either the clusters or prototypes that some algorithm chooses to
represent them. Given this, it may surprise you to discover how
much effort has gone into the development of indirect measures.

A measure of fuzziness estimates the average ambiguity in a fuzzy
set in some well-defined sense (Pal and Bezdek, 1994). (Measures of
fuzziness and imprecision are covered extensively in Volume 1 of
this handbook.) Our discussion is limited to the use of such
measures as indicants of cluster validity.

CLUSTER ANALYSIS 97

The first measure of fuzziness was the degree of separation between
two discrete fuzzy sets Ufu and U(2)On n elements (Zadeh, 1965):

p{U,i),U(2,) = l - v { U i k A U 2 k)
k=l

(2.95)

Zadeh used p to characterize separating hyperplanes; he did not
impose the crisp or fuzzy partitioning constraint (u + u) = 1 on

each pair of values in the vectors U(i) and U(2). That is, they were not
necessarily fuzzy label vectors (p is applicable to possibilistic
labels, however).

The first attempt to use a measure of fuzziness in the context of
cluster validity was discussed by Bezdek (1973), who extended p to c
fuzzy sets (the rows of U in M) by writing

P.(UeM,^ 1 = 1 -
n c
V (A U

k=l 1=1
i k ' (2.96)

Pp, which can be interpreted as (1- the "height" of the intersection of
the c fuzzy sets), is inadequate for cluster validity. To see this,
consider, for odd n,

0.5
0.5

0.5
0.5

1 • • 1 0.5 0 • • 0
0 • •• 0 0.5 1 • • 1 = 0.5. (2.97)

In (2.97) the membership 0.5 occurs 2(n-2) times in the first fuzzy 2-
partition, but only twice in the second one. The value P̂ , = 0 . 5
indicates that the two partitions at (2.97) are in some sense [exactly,
in the sense of P !̂) equivalent, but the structure these two partitions
portrays is certainly very different. The first partition has one point
each in two clusters, and (n-2) shared equally between them, while
the second has just one shared point and ((n-l)/2) points in each of
two distinct sets.

The failure of Pj, led to the first pair of (sometimes) useful indirect
validity measures for U in M , viz., the partition coefficient and
partition entropy of U (Bezdek, 1973).

2/p^(U,c) = i I l u ^ tr(UU'^)

n n
; and (2.98)

98 FUZZY PATTERN RECOGNITION

2/pg(U,c,a) = -
n

|^JKK("ik)] (2.99)

In (2.99) a e (1, °°) is the logarithmic base, and is a direct extension to
c-partitions of the fuzzy entropy of Deluca and Termini (1972).
Properties of these two indices as functions of U and c were studied
in Bezdek (1973, 1974b, 1975). For convenience, we drop dependency
on c and a. Here are the main results:

^pc(u) = i « VU)^ 0 «=> U e M^^^ is crisp; and (2.100a)

V(U) = - « V(U)-LnJc) « U U. {2.100b)

Equation (2.100) shows that 1/^ maximizes (and ^p„ minimizes) on
PE

every crisp c-partition of X. And at the other extreme, 1/ takes its

unique minimum (and V^^ takes its unique maximum) at the

centroid U = [l/c] = U of M . u ^̂ the "fuzziest" partition you can
get, since it assigns every point in X to all c classes with equal
membership values l / c . Observe that both of these indices take
extremal values at the unique crisp partitions 1 = [1 1 • • • 1] at

c=l and I , the n x n identity matrix for c = n. Neither of these
indices can be used to accept or reject the hypothesis that X contains
cluster substructure (i.e., they cannot be used for tendency
assessment) because they cannot discriminate between different
hard partitions of the data.

The bounds in (2.100a) seem to justify the heuristic validation
strategy of, for example, maximizing Vp^ over candidate U's to pick
the best one, where "best" means nearest to some crisp partition in
the sense of the 2-norm of U. This is a weak strategy, however, for
several reasons. First, there are an infinite number of different
fuzzy partitions that produce any fixed value of V^^ in the open

interval (l / c , 1), or of 1/^^ in the open interval (0, Ln c), because a
fixed value of either functional can be used to define a hypersphere

in 'iK'^"^ centered at [l/c] = U whose radius gives a surface upon which
the fixed value is attained. Consequently, every crisp partition of X -
a vertex of the convex hull of the degenerate partition set M - is
equidistant from the surface of the hj^ersphere! Thus, all these two
indices really measure is fuzziness relative to partitions that yield
other values of the indices. Second, there are roughly fc"/c \\ crisp

CLUSTER ANALYSIS 99

matrices in M̂^ ^, and V^^ is constantly 1 [y^^ is constantly 0) on all

of them. For example, Vp^[\3^) = l on:

Ui =
"1 0 0" "1 1 1" "0 0 0" '0 0 0"
0 1 0 ,U2 = 0 0 0 ,U3 = 1 1 1 ,U4 = 0 0 0
0 0 1 0 0 0 0 0 0 1 1 1

(2.101)

The first matrix in (2.101) has c = 3 singleton clusters. Each of the
other three partitions has only c = 1 cluster. Since the last three
matrices put all the data into class 1, 2 or 3, respectively, these are 4
very different partitions of the n=3 objects. But they are all equally
valid in the eyes of V^^ and V^^.
M.

Since ?/„„= 1 (lJp^= 0) for every U in

hen
it is misleading to infer that just because V^^ is near 1 (or V^^

is near 0), U is a good clustering of X.

On the other hand, in the context of validation it is clear that when
an algorithm produces a partition U that is close to Jj, that
algorithm is not finding distinct cluster structure. This may be the
fault of the algorithm, or the data simply may lack substructure.
Consequently, values near the unique minimum of V^^ (or

maximum of V^^) are helpful in deciding when structure is not being
found. It is less clear, as shown in (2.101), that when U approaches
M , cluster structure has been found. Empirical studies vary: some

show that maximizing V^^ (or minimizing V^^) leads to a good
interpretation of the data; others have shown that different indirect
indices such as the proportion exponent (Windham, 1981, 1982) and
Rouben's indices (1978) are sometimes more effective. This simply
confirms what we already know: no matter how good your index is,
there's a data set out there waiting to trick it (and you).

V^^ and p̂g, essentially measure the distance U is from being crisp
by measuring the fuzziness in the rows of U. Normalizations of both
indices that scale their ranges so that it is fixed are discussed in the
next subsection. A much more subtle point, the dependency of V^^

and 'Z/pg on secondary parameters of the algorithm producing U
(specifically, m in FCM-AO) are considered in Pal and Bezdek (1995).

The separation coefficient of Gunderson (1978) was the first indirect
validity index that explicitly used the three components (U, V; X),
where U e M and V is a vector of c prototypes that are associated
with the clusters in U - in the language of Table 2.7, the first indirect
parametric data index. More recent indices in this category include
the functionals of Fukuyama-Sugeno (1989) and Xie-Beni (1991).
The Xie-Beni index V^^ is defined as

A D

100 FUZZY PATTERN RECOGNITION

2: I xrjx •
V (U,V;X)= =̂̂ =̂̂ " X B '

n
sep(V) (2.102)

Xie and Beni interpreted their index by writing it as the ratio of the
totcxi variation a of (U, V) and separation sep(V) between the vectors
inV:

a(U,V;X) 5̂: S < x (2.103)

sep(V) = niin<̂ v. - v. (2.104)

If (U, V) is an extrema of the FCM functional J then a = J . A good (U,
V) pair should produce a small value of a because u is expected to be

high when is low, and well separated v 's will produce a high

value of sep(V). So, when ^'^(U .V-X) <«/_(U .V-X) for either of
XB 1 1 XB 2 2

these reasons (or both), U is presumably a better partition of X than
U . Consequently, the minimum of ^^^ over p is taken as the most
desirable partition of X. This strategy makes sense, because the
geometric and statistical flavor of 2̂ ^̂ is very similar to the Davies-
Bouldin index: the numerators of both are functions of the
Euclidean distances I Ix^ ~ '̂ 1 f ^"^^ ^^^ denominators both depend

on measures of separation (distances j Vj - Vj i) between the cluster

centers.

Example 2.15 Table 2.10 shows values for the five indices discussed
in this section on terminal FCM-AO partitions of X . Processing
parameters were: m = 2, the Euclidean norm for both similarity and
termination, e = 0.001, and initialization by random selection of c
distinct points in the data. Crisp partitions of the data for the direct
indices 1/^ and ^DB22 were obtained from terminal FCM-AO

estimates by hardening with (2.10). The values for V^ and l̂ pg 22 i"
Table 2.10 are slightly different than those in Table 2.8 because the
hardened partitions from FCM for c > 4 were slightly different. As

CLUSTER ANALYSIS 101

expected, all five indices point to the visually correct partition of the
data at the value c = 3.

Table 2.10 VaUdity for terminal FCM-AO partitions of X 30

c V V^ V^^ V^^ V^rr.
DB,22 D PC PE XB

2 0.35 0.96 0.91 0.18 0.70
3 0.18 1.53 0.97 0.08 0.02
4 0.48 0.52 0.92 0.15 0.05
5 0.65 0.13 0.86 0.25 0.41
6 0.77 0.13 0.83 0.77 0.13
7 0.70 0.10 0.80 0.38 0.53
8 0.65 0.18 0.79 0.41 0.23
9 0.54 0.18 0.79 0.41 0.21
10 0.54 0.18 0.77 0.46 0.21

Our next example replicates the experiments jus t described in
Example 2.15 using the Iris data instead of Xg^.

Example 2.16 Table 2.11 shows values for the five indices on
terminal FCM-AO partitions of Iris obtained with the same
protocols as in Example 2.15, including hardening of the fuzzy
partitions before validation with V^ and V^g 22 • Pl63.se compare the
first two columns of Table 2.11 with the corresponding values in the
rows of Table 2.9 for c = 2 to 6 to see that only three of the 10 pairs of
corresponding values are the same. This is because the hardened
FCM partitions of Iris are somewhat different than the crisp
partitions obtained directly from HCM except in these three cases.
Four of the five indices in Table 2.11 agree that the best partition
occurs for c = 2; only Dunn's index, applied to the hardened partition
obtained by FCM-AO, points to c = 3.

Table 2.11 Validity for terminal FCM-AO partitions of Iris

c V 1/ 11 ^ V^r. V^r.
DB,22 D PC PE XB

2 0.47 0.08 0.89 0.20 0.04
3 0.76 0.10 0.78 0.39 0.09
4 1.03 0.04 0.68 0.58 0.57
5 1.07 0.05 0.62 0.71 0.30
6 1.07 0.06 0.59 0.80 0.27
7 1.15 0.08 0.55 0.91 0.50
8 1.21 0.08 0.52 1.05 0.38
9 1.37 0.08 0.48 1.11 0.33
10 1.41 0.08 0.45 1.18 0.63

http://Pl63.se

102 FUZZY PATTERN RECOGNITION

In the four dimensional data space chosen by Anderson there are
two geometrically well-defined clusters, so the best partition of Iris
from {four of the five) indices' point of view, c = 2, is (perhaps)
correct. Since the best solution from the modeler's point of view is
(perhaps) c=3, this again illustrates the caveat about models and our
expectations for them stated immediately after equation (2.5). And
we again see disagreement among validity indices about the best
value for c on the same partition of the data.

to'Z/^, «/gp(U,V;X)= I
k=i ""

V — V
i J Ay

Several generalizations and relatives of the Xie-Beni index have
been studied recently. See, for example. Pal and Bezdek (1995), who
define and analyze limiting properties of the index V^^, which is
the Xie-Beni index with memberships raised to the power m > I that
is explicitly tied to FCM.

Bensaid et al. (1996a) introduced another validity index similar

I
and call the ratio inside square brackets the compactness to
separation ratio of cluster i. They illustrate the use of this index for
progressive clustering (adjustments to individual clusters during
processing) for different tissue types in magnetic resonance images
of the brain.

The last indices covered in this subsection are due to Gath and Geva
(1989a), who introduced three very useful indirect parametric data
indices. These indices involve one more set of clustering outputs
than any of the previous measures that are constructed by
algorithms such as GK, FCV, GMD and FMLE which produce point
prototypes V, (fuzzy or probabilistic) partitions U and covariance
matrices (C}. Chronological order would place our discussion of

these indices before the Xie-Beni index, but we prefer to discuss them
here, jus t before validation of shell clusters, because these three
indices involve one more set of parameters, and because they have
played an important role in generalizations for shell validity. Gath
and Geva (1989a) defined the Juzzy hypervolume of u G MJ^^ as

VHv(C)=iVdet(Ci) , (2.105)
i=l

where C = (Cj,..., C ,̂) e 9̂ *̂ '?̂ ?' is the set of fuzzy covariance matrices
given by (2.27) with m=l (this amounts to using the covariance
matrices at (2.21c)). C is a function of (X, U, V), but only C appears on
the left side of (2.105). To be consistent with the notation in Table
2.7, we call VHV an indirect index. This index should be small when

CLUSTER ANALYSIS 103

clusters are compact, so good clusters are identified by minima of
VHV • F°r consistency with the next two indices, users often calculate
1/ VHV ^^^ search for the maximum.

Gath and Geva (1989a) also discussed an indirect parametric data
measure of dispersion they called the average partition density Vp^y
ofUeMfc„:

VpD(U,C) = - i
Ci= l Vdet(Ci)

(2.106)

where C0i=jxe9tP:|x-Vi||^^_i < l [, i = l,...,c is the open ball centered

at V of radius 1 with respect to the fuzzy Mahalanobis norm

||x - Vj 1 ,̂-1. This index measures the compactness of points in each

cluster that have a strong central tendency - the more points within
cOj, the larger will be Vp^, so this index should be maximized. Lastly,
they defined the partition density Vp^of U e Mf̂ .̂ as

1=1

\
l u ik

VPD(U,C)=^ V fA • (2.107)

We classify (2.106) and (2.107) as indirect parametric indices. Vp̂ ^
should maximize when clusters which are geometrically desirable
are submitted to it, achieved either by a large numerator (dense
clusters), or a small denominator (compact clusters), or both. This
index has a geometric rationale that is quite similar to Dunn's index
(and the inverse of the Davies-Bouldin index). Gath and Geva
illustrate the use of these measures on clusters in various data sets.
For example, Vj^ and Vp^ both select c = 3, the physically correct
choice, for the Iris data when tested in a situation analogous to the
experiments described in Tables 2.9 and 2.11.

Example 2.17 This example is a combined illustration of the Gath
and Geva (1989a) clustering algorithm called FMLE and cluster
validation with their three indices at (2.105)-(2.107). Recent papers
of Geva and his coauthors call the combination of FMLE Avith the
use of these three validity indices the unsupervised optimal fuzzy
clustering UOFC) algorithm. As pointed out in Section 2.3, this
method is essentially GMD-AO. The data we chose for this example

104 FUZZY PATTERN RECOGNITION

is the unbalanced data set called X shown in Figure 2.3(a) that has
40 points in the left cluster and 3 points in an isolated cluster on the
right. Although the sample size is quite small, the data can be
viewed as having been drawn from a mixture of c = 2 (roughly)
circular bivariate Gaussian distributions. Computing protocols for
this example: m = 2 in both the FCM and FMLE clustering stages
(don't forget that m = 1 when using (2.27) with FMLE).

The algorithm was initialized at c = 1. No clusters are computed for
this value, but the GG validity indices do take meaningful values.
Subsequently, c was incremented from 2 to 5, and for each value of c,
FMLE was executed to termination. Initialization at each new value
of c is done as explained in Gath and Geva's 1989a paper, by adding
one more cluster prototype to the set found at the previous value. The
new prototype is placed very far away from every point in X.
Specifically, the distance from all data points to the new center are
set to 10 times the sum of the variances of all 43 data points.

Table 2.12 lists the values of I / V H V T̂ PD ^^^ ^PD obtained on the
terminal outputs of FMLE for each c from 2 to 5. All three indices are
to be maximized. First note that the fuzzy hj^ervolume points to c =
3, which is clearly wrong. This index is felt by Gath and Geva to be
least reliable of the three in this group, but it is needed to compute
the other two in any case. The average partition density points to c =
4, which is also wrong, and the partition density points to c = 2. We
conclude from this (again) the same thing that we learn from
previous examples: using Just one index of validity is a very
dangerous strategy, for there is great inconsistency in the
recommendations that various indices can make.

Table 2.12 Validity measures for FMLE partitions of X^3

c -> "
1/V,

''PD

HV

V,

0.00045 0.00049 0.00040 0.00044
0.0025 0.0015 0.0036 0.0027

0.0050 0.0044 0.0047 0.0043
PD

(Right cluster) terminal FMLE memberships for c = 2

datapt. l^ft-"ik "ght:u2^

\ i 0.000310 0.999690
X 0.000221 0.999729

42

X 0.000053 0.999947
43

At c = 2 the terminal FMLE partition of X has cluster memberships
that are crisp up to 3 or 4 places past the decimal for the 40 points in
the left cluster. Membership columns in both clusters for the three

CLUSTER ANALYSIS 105

points in the right cluster are shown in the bottom portion of Table
2.12. As you can see, the FMLE algorithm solves the problem
illustrated in Example 2.3 without recourse to the trick of semi-
supervision illustrated there. Hardening the terminal FMLE
partition of X found at c = 2 produces the visually correct solution.

The terminal cluster centers for c = 2 were, to two decimal places,
v ™ = (4 4 . 8 , 4 8 . 8 r and v^^^f = (91,49)'^. The labeled sample
means for the two visually apparent clusters in X are exactly these
values!

Remark Processing X with the standard GMD-AO algorithm gives
the same result as long as a solution is requested for c = 2. Thus, the
added value of FMLE seems to be the three validity indices. On the
other hand, all three of these indices fail to indicate c = 3 on data set
X in Figure 2.2 (possibly because the small number of points in
each of the three clusters in X do not follow the expected shapes of
samples from 2D Gaussians very well). This illustrates the point we
continue to emphasize: no validity index has proven very reliable
across wide variations of data, clustering algorithms, or partitions.

E. Standardizing and normalizing indirect indices

Indirect indices such as v^^ and V-p^ have at least four problems.
First, they are at best indirectly connected to real substructure in X.
Second, justification for using them often relies on heuristic
rationales - e.g., U is better than U if U is "crisper" than U . We
have shown this to be a misleading heuristic. Third, many indirect
indices can be shown to be, or have been experimentally observed to
be, monotonic in c. And fourth, their range is sometimes itself a
function of c. This last property makes their use for cluster validity
problematical.

For example, equation (2.100) shows that 1/c < l/p^A^) ̂ 1 for every

UeMfcn- Thus, as c increases from 2 to n-1 , the range of v^^

increases: c = 2 =* W PC i,l
2 n - 1 => ^pc ' .1

n - 1
«/pE has

the same problem. Moreover, the range of V^^ is also a function of
logarithmic base a.

Variable ranges make interpretation of values of V^^ and V^^
difficult, since they are not referenced to a fixed scale. The
significance, for example, of ^pj,(U) = 0.04 is not as high when
c = n - 1 as it would be for c « n because of the change in the range of

106 FUZZY PATTERN RECOGNITION

^_„. Moreover, V^„ = 0 at 1, = [1 1 • •• 1] at c=l and at I , for c =
rb Pĥ Ixn nxn

n. Hence, minimization of 1/^^ is confined to c e {2,3, . . . ,n- l} .

Many authors have attempted to address this problem through
standardizations and normalizations of various indices. The first
normalization of this kind was introduced by Bezdek (1974a), who
transformed the partition entropy V.p^ by a simple scaling so that
the normalized index was valued in the unit interval,

In c
V B (U) = ^^^—,UEMf,„ . (2.108)

The limits for V^^ given at (2.100) immediately yield

P̂E,B (U) = 0 o «/pE (U) = 0 <=> U e Mfen is crisp ; and (2.109a)

^pg 3 (U) = 1 o V (U) = In^ c o U = U . (2.109b)

This scaling fixes the range of 2/pE,B so that V^^ ^ (U) e [0,1] is

independent of c. This makes the comparison of values of V^^ ^ at
different numbers of clusters more appealing than the direct use of
?/pg. Roubens (1978) gave a similar normalization of the partition
coefficient.

i.vUs^i,MzlU 'pc,Ri^^-| ——. I'UeMfcn • (2.110)

Comparing (2.100) with (2.110) establishes that

-Z/pcR (U) = 1 <=> ^pc{U) = 1 <=> U € Mfcn is crisp ; and (2.11 la)

^p (U) = Oo^Pc(U) = -<=>U = U . (2.111b)
c

Consequently, Roubens' normalization of V^^ scales its range so

that ^PC,R{U) 6 [0,1] for any value of c. Backer (1978) discussed the

related index ^pc,Ba(U)= (l-^pc(U)) = 1-^PC,R. but used his

index as an objective function upon which a cluster seeking
algorithm was based. Apparently unaware of Roubens work, Dave
(1996) recently {re)introduced ^PC,R with a new name, viz., the

CLUSTER ANALYSIS 107

modified partition coefficient (MPC). In any case, ^PC,R is, in the

end, jus t like ^'PE.B • Both of these indices are normalized measures
of the fuzziness in U, and as such, really address just one of the four
problems mentioned above - the problem of variable range.

Dunn (1977) first suggested that normalizations of indirect validity
indices be referenced somehow to data substructure - i.e., that they
be held accountable more directly for substructure in the data. Dunn
proposed the index

?/pE(U) fn^pE(U)

This quas i - s t a t i s t i ca l normalizat ion was given a s an
approximation to the ratio of i/p^ (U) to the null hj^othesis value we
call ^pEo(U). Dunn used FCM on a reference set X of n vectors

uniformly distributed over a hypercube in 9t^ to estimate ^pEo(U).
which he took to be approximately (n-c)/n. Dunn's idea was that if X
contained c compact, well-separated clusters, the value ^pg(U) on
any reasonable partition U of X should be low relative to the value
^PEo(U} onX . Roughly speaking, ?/pE,D takes the form of an inverse

likelihood ratio test, so minimizing ^PE,D ostensibly corresponds to
maximizing the approximate likelihood that X contains cluster
substructure.

Dunn used FCM to generate the clusters that lead to his
approximation of '̂pE.otU), so (2.112), like ^ ^ ^ 2 of Araki et al.
(1993), is implicitly linked to the fuzzy c-means model. Whether the
same approximation is useful for fuzzy clusters found by other
algorithms is an open question.

Numerical experiments given by Dunn (1977) indicate that ^PE,D is a

useful modification of Vp^. However, substituting U = U into (2.112)

with the upper bound for ^pj.(U) in (2.100b) gives the upper bound

^PE,D(U) =
r77._fn«'pE(U) = ^^^- at the equi-membership partition

n - c J V n - c J
of X, which is again a function of c. Thus, Dunn's normalization of
^pj, does not solve the variable range problem, bu t it does
(approximately) reference the indirect index ^pg to a property that
seems desirable for characterizing data with clusters: namely, that
data with cluster structure be non-uniformly distributed over a
hypercube in g^p.

108 FUZZY PATTERN RECOGNITION

Bezdek et al. (1980) gave probabilistic s tandardizat ions for bo th 1/^^

a n d 1/p^ b a s e d on t h e well k n o w n fact t h a t t h e l i n e a r

X — u
t r a n s f o r m a t i o n Y = ^-^ of t h e r a n d o m variable X with m e a n

Ox
a n d s t a n d a r d deviation (JJ-X'^^X) ^̂ ^ r andom variable whose m e a n
a n d s t a n d a r d deviation are [\i^,ay) = (0,1). The assumpt ion used in
the i r ana ly s i s w a s t h a t t he validity ind ices in ques t ion were
r a n d o m variables uniformly distr ibuted over the degenerate fuzzy c-
par t i t ions M of X. This is necessary because the derivations are
done on one column of U, and it is necessary to have independent (in
the probabilist ic sense) co lumns to aggregate the resu l t s across a n
entire part i t ion of X. They derived the mean and s t anda rd deviation
of ?/pp and ^pg u n d e r th is assumpt ion . Specifically, they prove t h a t
for u e Mfcno - ^^^ expected value (E) and variance (var) of 1/^^ a n d
2/pE are

E(?/pc(U))
1

c + 1

var(^Pc(U)) =
4 (c - l)

n(c + l)^(c + 2)(c + 3)

(2.113a)

(2.113b)

E (^ P E (U)) = I
= 2 k k=2

(2.114a)

var(2/pE(U)) = -
n k=2 k

(c -1)
(c + 1) 6

^J
(2.114b)

Results (2.113) can be used with Y :
X - ^ ,

to standardize Vp„, 2^PC,R

X

and ^pcBa- ^ ^ ^ resul ts (2.114) can be used to standardize 1/^^, 'Op^^

and ?̂ pE,D the same way.

For large e n o u g h n, t h e cen t ra l limit t h e o r e m tells u s t h a t a
s tandard ized r a n d o m variable is approximately normal (Gaussian)
with m e a n 0 a n d variance 1, indicated as w(0, 1). Thus , for example,
when u e Nf̂ is uniformly dis t r ibuted over the fuzzy label vectors

N,, and because M, c: M, . , we have the s tandardizat ions
fc ten IcnO

CLUSTER ANALYSIS 109

v;^[v) =
n(c + 2)(c + 3) 0.5 f(c + l)^p^(U]-2^

A7(0,l). (2.115a)

V(U)^
^ E (U) -

k=2 k

(1 c - 1
k=2lnk^j l̂ c + 1

^712
sO.5 «(0,1). (2.115b)

6 n
/y

Since X is always finite, the actual distribution of standardizations
such as these can be far from normal. Nonetheless, they provide
another way to link statistical tests to properties of substructure in
X by providing a basis for significance tests for cluster validity. Like
Dunn's normalization of V^^, these standardizations are attempts
to characterize clusters statistically as a departure from uniformity
in the feature space. And again, this happens at the expense of a
fixed range for the validity measure in question.

F. Indirect measures for non-point prototype models

The validity criteria discussed so far were designed largely on the
expectation that X contains volumetric or cloud type clusters. This
is mirrored in the use of functions that measure central tendency
(means) and dispersion (variances) about the means. All of the direct
indices discussed above (Davies-Bouldin, Dunn's index and the
generalized Dunn's indices) are designed for cloud type clusters, as
are the indirect parametric indices of Gath and Geva and the
indirect parametric data index of Xie and Beni.

In order to evaluate partitions that represent shell clusters,
different validity measures are needed. To see this, let X be any finite
set of points uniformly distributed on the surface of a hypersphere

in 9t^ with radius 1; and let lOOX be the same data drawn from a
hypersphere of radius 100. These data sets will have the same
statistic, V, as their classical measure of central tendency of the
points. The covariance structure of X will also be the same, even
though X is more compact than lOOX. The surface density of X is
much greater than that of lOOX. But when these points are regarded
as shell clusters, the correct hyperspherical prototypes fit them
equally well, so measures of validity should indicate this. The
standard measures that assess them for central tendency and
dispersion can be very misleading.

Several indirect validity measures that relate to the fitting
prototypes have their roots in the work of Gath and Geva (1989a).
Their three indices were not designed for shell clusters - they
measure properties which are optimized by compact clouds.
However, these indices paved the way towards similar measures that

110 FUZZY PATTERN RECOGNITION

are customized for shell clusters. Man and Gath (1994) defined
indices for shell clusters that are related to the measures of Gath and
Geva (1989a), and Dave (1996) refined the hypervolume and
partition density measures for the cases of spherical and ellipsoidal
shells. Krishnapuram et al. (1995b) generalized these definitions to
more general shell types; the development of these measures
follows.

Let p be the parameters of (i.e., coefficients of the equation ot) a shell

prototype S which is a hyperquadric surface in 9t^. For any

x^ e5RP, define
k

'•Ik (2.116)

where z|̂ is a closest point (measured in Euclidean distance) on the
shell S, to X . When S. is a hypersphere with center v and radius r the

vector zj in (2.116) takes the explicit form zl =v, + r, -^ ^7. For

other h5rperquadric surfaces z\^ can be determined using (2.53). For

more general types of shells zĵ may be difficult to compute. In these
cases we can use a convenient point on the shell or simply use the
"approximate closest point" (Krishnapuram et al., 1995b) on the
shell. For example, in the case of ellipsoidal shells, we can use the
point of intersection of the radial line joining x and v with the
ellipsoidal shell (cf. ellipsoidal prototypes. Section 2.3). The fuzzy
shell covariance matrix for shell S is defined as

Csi=^^=^l^ , l < i < c . (2.117)

k = l

Let Cs = (Csj Cs^) e 9t'='P''P'. The shell hypervolume of a fuzzy c-

partition U of X with parameters B = (p ,..., p) is defined as

VsHv(Cs)=iVdet(CsJ . (2.118)

Equation (2.118) is a direct generalization of (2.105) for
hyperquadric shells. The extension of (2.106) and (2.107) to the non-
point prototype case requires some terminology associated with

shell clusters. We illustrate the basic ideas using 9t̂ as the feature

CLUSTER ANALYSIS H I

space with circular prototypes, but many of these ideas can be

extended to 9t^ and other t3^es of hjrperquadric prototypes.

Figure 2.18 "Circular" clusters with different properties

First we point out that clusters are necessarily finite sets of points,
while non-point prototypes (shells) that the clusters may be fitted to

are continuous structures. So, for example, a circle in 5R has
infinitely many points, but a "circular cluster" has only finitely
many. The following definitions assume a spatial grid of pixels with
fixed resolution underlying the points in the clusters. We assume
that each pixel can be represented by a square. See Chapter 5 for
more on this terminology, which is derived from image processing
considerations.

We will say that a "circular" cluster of pixels is dense (or not sparse)
if and only if its points are either 4-connected or 8-connected in the
plane. A circular cluster that is not dense will be called sparse. A
circular cluster is complete if and only if each point on the prototype
touches or falls within some (square) pixel belonging to the cluster
of pixels. A circular cluster that is not complete will be called a
partial circular cluster. The thickness of a circular cluster is the
average distance from its points to the circular prototype. These
definitions are illustrated in Figure 2.18. During optimization of
functions designed to find good circular prototypes to represent

112 FUZZY PATTERN RECOGNITION

clusters of pixels such as these, the distance used is almost always
measured from the "center" of the pixel to the fitting prototype.

Extending (2.106), Krishnapuram et al. define the average shell
partition density V^p^ for a fuzzy c-partltlon U of X with parameters
B = (V, Cg) as

V, SPD (U,Cs) = - i
C 1=1 VdettCg.)

(2.119)

where cOg. =-^x e 91P:|X-Vj||^_i < i k i = 1 c. Finally, the shell

partition density for a c-shell partition U of X with parameters B =
(V, Cg) is defined as (cf (2.107))

' ^SPD(U.CS):

c

I
1=1

\^Xk60)Sf J

V. SHV (Cs)
(2.120)

Krishnapuram et al. also proposed an alternative definition for cogj,
the core or central members in X whose memberships are used in the
calculation of the numerators of (2.119) and (2.120),

«Si = {Xk e ^^''^lltiklH ^max,i;i = l . - - - .c} (2.121)

where x^,^; is the expected thickness of the i-th shell. When
posslbllistlc versions of the shell clustering algorithms are used,
Krishnapuram et al. suggest tmax, i=V^- Dave (1991b, 1996)
proposed an indirect parametric data validity index V^^ for fuzzy
partitions that consist of c hyperspherlcal shells with parameters B,

c

I
i=l

VST(U,B;X) = -

k = l
-.r

l u ' "
k = l

Ik

cyi=i

(2.122)

CLUSTER ANALYSIS 113

Recall \\K^ - v j - r ; as shown in Figure 2.8 when interpreting this
equation. Each factor of the numerator of (2.122) is interpreted as
the thickness of the i-th hyperspherical shell since it is a
generalized average distance from the points in the i-th cluster to
the i-th shell. The denominator in (2.122) is called the average
radius of the shells and is used to normalize this index so that the
shell thickness is measured relative to the size of the circles. The
index Vg^ can be extended to ellipsoidal shells, and is to be
minimized for identification of the best partition of X.

Krishnapuram et al. (1995b) also define the total fuzzy average shell
thickness V^-j- for fuzzy partitions that consist of c hyperquadric
shells with parameters B = ((3 ,..., |3) as

V S T (U , B) = I
1=1

Miitikir
k=l

k=l

(2.123)

The validity measures in equations (2.118), (2.119), (2.120), (2.122)
and (2.123) suffer from many drawbacks. Their biggest problem is
large variability depending on the size, sparsity and incompleteness
of shell clusters. They also lack normalized or standardized
(theoretical) values to compare against the validity of a particular c-
partition. Hypervolume and shell thickness may be misleadingly
small when c is overspecifled because there may be only a few points
in each shell cluster. For example, if there are only three points in a
circular shell cluster, the error of a perfect fit is zero, the volume is
zero while the density is infinite, regardless of the relative
placement of the three points.

With a view towards ameliorating these drawbacks, Krishnapuram
et al. (1995b) introduced a surface density criterion for validation of
hyperquadric shell clusters. In the two-dimensional case, the shell
surface density VssDi2 ^^ the i-th cluster of a fuzzy partition U whose

parameters are |3. = (v, C.) is defined as the number of points per unit
of estimated surface density (along the fitting prototype), i. e..

VsSD,2(U,CJ = -

c
I
i=l XkemSi

ik

27i^Tr(Ci
(2.124)

C in (2.124) is the fuzzy covarlance matrix in (2.27), not the shell
covariance matrix at (2.117), and it is not involved in the iterative

114 FUZZY PATTERN RECOGNITION

calculations of the algorithm; rather, this matrix is computed once
after the algorithm terminates. The quantity •^Tr(Ci) in the
denominator of (2.124) is interpreted as the effective radius,
•^/TY(C^ = r̂ ff [, of the i-th shell because the "equivalent circle" with
radius ^fTr[C^ has the same second moment as the shell cluster

under consideration. 27i-^Tr(Ci) is an estimate of the arc length of
the prototype that represents the (possibly partial) cluster, since the
exact arc length cannot be computed easily for clusters that are
sparse or partial. In the continuos case for a complete circle of

radius r. it can be shown that rj = yTY(CJ .

In the three-dimensional case, the shell surface density VggQ ^ of
1̂3

the i-th cluster of a fuzzy partition U whose parameters are P = (
is defined as

I
1=1 XkemSi

'l/ssD,JU,C,) = —^^-—Hrr - . lS i^c , (2.125)
SSD131 i> 4n(Tr(Ci))

where Tr(Cj) = r̂ ff j is the square of the effective radius. In this case
Vggp measures the number of points per unit of estimated surface
area of the i-th shell. The average shell surface density in the two
(VssD2) °^ three (VgsDs) dimensional cases is

VssD2 (U, C) = -^f i VssD.2 (U, C,)j ; (2.126b)

'^ssD3(U,C) = -^fiVssDi3(U.C,)j . (2.126b)

These measures are used to evaluate fuzzy hyperquadric c-shell
partitions U of X characterized by the shell parameters B. After the
algorithm terminates, if desired, the parameters (V, C) are computed
non-iteratively.

Example 2.18 Figure 2.19 shows a 158-point data setX consisting
of three shell clusters (a circle, an ellipse and a parabola).
Initialization and termination criteria were the same as those used

CLUSTER ANALYSIS 115

in Example 2.8. To decide on the central members of each cluster,
(2.121) was used with x = 2 V i .

=;*•

X X

X X

a a X

" " S V X X X

V K X J * X
V " X ^ ..X ''

XX
X« K" •

X ^ X

X X X

Xx

Figure 2.19 Three shell clusters X
158

The FCQS algorithm was applied to X^^^ for c=2 10, and the

validity indices y^^., VgHy, VpQ, and VSSD2 were computed using
terminal partitions and parameters from FCQS. Table 2.13
summarizes the validity values obtained.

Table 2.13 Validity measures for FCQS partitions of X
158

c Vg-p ' '^SHV VpD ^ S S D 2

2 296.14 127.35 0.13 0.021
3 4.87 1.69 75.93 0.138
4 40.89 16.33 7.10 0.070
5 19.29 7.44 15.25 0.067
6 13.86 5.70 21.34 0.070
7 15.35 4.93 26.28 0.058
8 6.88 1.72 83.85 0.071
9 4,35 1.64 89.65 0.050
10 9.36 2.58 54.56 0.052

T/gsQ , which is to be maximized, indicates the visually correct
value of c=3. The other three measures all indicate that the optimum
number of clusters is 9. As mentioned Just below equation (2.123),
this is because memy clusters are able to provide good (low error) fits
to various pieces of the shell clusters.

To provide a better understanding of this problem, the left view in
Figure 2.20 shows the prototypes obtained with c = 3 superimposed

116 FUZZY PATTERN RECOGNITION

on X . The right view in Figure 2.20 shows the prototypes obtained
with c=9 superimposed on X

validity functionals VST

This does not to imply that the
id VpQ are without mierit. When

used in conjunction with VSSD2 they can provide valuable
information in boundary description applications (cf. Chapter 6).

Figure 2.20 FCQS prototypes (left, c=3) and (right, c=9)

We have already mentioned the idea of progressive clustering in
connection with the work of Bensaid et al. (1996a). The indirect
validity measures for non point prototypes discussed in this section
may be used to determine the optimal number of clusters in a c-
shells partition of X. However, repetitively clustering the data for an
entire range of c-values is very time consuming, and is never
guaranteed to work due to local minima of the objective function,
particularly for noisy or complex data sets. Progressive clustering
based on the validity of individual clusters seems very appropriate
for shell type algorithms, and will be discussed in more detail in
Chapter 6.

Equation (2.94) provides a very general paradigm for defining

cluster validity indices. Appropriate definitions of 5 and A lead to
validity indices suitable for different t j^es (e.g., clouds or shells) of
clusters. Pal and Biswas (1997), for example, used minimal
spanning trees, relative neighborhood graphs and Gabriel graphs to
define the denominator of (2.94). These modifications result in
graph theoretic validity indices that are applicable to chain or shell
type clusters. These authors also extended the Davies-Bouldin index
for chain type clusters using graph theoretic concepts.

CLUSTER ANALYSIS 117

G. Fuzzification of statistical indices

Table 2.7 provides one classification of validity measures and
procedures. Jain and Dubes (1988) offer another way to subdivide
validation methods for crisp partitions of the data. Specifically,
they discuss (i) external criteria; (ii) internal criteria; and (iii)
relative criteria for validation of: (a) a particular clustering method;
(b) nested hierarchies of clusters found by methods such as single
linkage (see Chapter 3); (c) individual partitions; and (d) individual
clusters. This provides 12 subgroups of methods, all for crisp
partitions of X.

External criteria are those that match the structure of a partition
U M computed with X to a partition U* of X that pertains to the data
but which is independent of it. For example, every crisply labeled
data set comes with a crisp partition U* of X. Or, an investigator may
hypothesize a partitioning U* of X under some assumption (e.g., the
random label hypothesis used by Hubert and Arable (1985)). When a
measure is a function of (U*, U(X)), it is called an external criterion.
None of the criteria discussed in this section are external.

Internal criteria a ssess the goodness of fit between an
algorithmically obtained crisp partition U(X) and the input data
using only the data themselves, usually in the form of the distance
matrix D(X) = [5(Xi, Xj l̂ xn of the data. This group of indices are thus
functions of (U(X), D(X) or X), and it intersects (but is not equal to) the
measures we call direct data indices in Table 2.7.

Relative indices are used to decide which of two crisp partitions, U(X)
or V(X), is a "better choice", where better is defined by the measure
that is being used. The Davies-Bouldin index discussed earlier, for
example, is a member of this group. This group includes almost all
Internal indices, which are simply used differently for this different
problem, and almost all of the non-crisp indices that have been
discussed in this section, most of which apply to fuzzy partitions as
well as (hardened) crisp ones derived from them. Most of these crisp
validation methods are statistically oriented, and require
assumptions about the distribution of the data that are often hard to
justify. Nonetheless, several are widely used and have recently been
fuzzifled, so we provide a short discussion of two popular external
indices for crisp partitions.

Let U, S e M ĉn be crisp partitions of X. Define four counts on pairs
of objects (Xj, X) e X X X

A = # of pairs in the same cluster in U and S
B = # of pairs in the same cluster in U but not S
C= # of pairs in the same cluster in S but not U

(2.127a)
(2.127b)
(2.127c)

D = # of pairs in different clusters in both U and S. (2.127d)

118 FUZZY PATTERN RECOGNITION

A convenient formulation of the indices we describe next is in terms
of the entries of the so-called cxc matching matrix M of U and S,

M(U,S) = M = [my] = US'r (2.128)

Associated with M are three numbers that aggregate the counts in
(2.127):

Vj=ii=i ' v

P = I
i=l 1^^

c f c

• n

•n

9= I Em n

; (2.129a)

; (2.129b)

; (2.129c)

For U.S e M, Rand (1971) defined the crisp validity measure

V m s) - ! A + D ^_ 2 T - P - Q + n (n - l) (2.130)

It is easy to show that

V =1
R

u = s
V^ = 0 => U and S contain no similar pairs
0<V^<lV(U,S)eMj^^^xM^^„

(2.131a)
(2.131b)
(2.131c)

Consequently, high values of l^nare taken as indicants of a good
match between U and S. Several corrections of V_, based on
normalizations that are in spirit very similar to the ones shown in
(2.115) have been proposed to offset its monotone increasing
tendency with c. Jain and Dubes (1988) provide a nice discussion of
such corrections.

A second external index to compare two crisp partitions of X that is
often cited is the index of Fowlkes and Mallow (1983), which for
U, S e M. is defined as

hen

^ F M (U , S) =

r T A
(2.132)

CLUSTER ANALYSIS 119

Just as in (2.131), we have

V j , ^ = l o U = S ; (2.133a)
Vp^ = 0 <=>U and S are completely different ; (2.133b)
0<V,^<lV(U,S)eM^^„xM,^„ . (2.133c)

High values of V-^^ are again interpreted as indicating a good match
between U and S. l/^j^ tends to decrease with increasing c. Milligan
and Cooper (1986, e.g.) have studied at least 30 external indices of
this type in a series of papers over several years, and they conclude
that the adjusted Rand index and the Fowlkes - Mallow measure are
probably more reliable than mciny others of this kind.

Back and Hussain (1995) proposed fuzzy generalizations of V^ and
Vpj^. Given two fuzzy partitions U, S e Mj. , define, in direct analogy
with (2.128), the c x c fuzzy matching matrix between U and S as

Mj(U,S) = Mj.=[mj..] = US'^ . (2.134)

Entries in M are no longer counts of matches and mismatches
between pairs in XxX; rather, m is now interpreted as the
similarity between the fuzzy cluster whose membership values are
the i-th row of U and the fuzzy cluster whose membership values are
the j - th row of S (which is the J-th column of S^).

The numbers T, P and Q in (2.129) are well defined for M^ and can be

used to make direct extensions of 1/„ and V™.. For U, S e M, , Back
R FM fen

and Hussain define the fuzzy Rand index and fuzzy Fowlkes-Mallow
index as, respectively.

^R,f(U.S) =

^™.f(U,S) =

2 T - P - 9 + n (n - l)

V n (n - l)
r rr. \

(2.135)

(2.136)

The partition coefficient Vp̂ , at (2.98) is a function of UU^ instead

of US"̂ as in (2.134). Thus, one way to interpret (2.135) or (2.136) is
that they are generalizations of Vp̂ ,̂ which really compares U to

itself, whereas Vĵ ̂ and V^^ ^ compare U to a second fuzzy partition

120 FUZZY PATTERN RECOGNITION

S in different ways. Properties of these two indices are Interesting.
For example,

V, R.f
1=>U = S , U,SGMf^„

• U and S are completely dissimilar

0<V^^ ,< lV(U,S)eM^^„xM^^„

(2.137a)

(2.137b)

(2.137c)

1/ĵ J c anno t be u sed to compare two truly fuzzy part i t ions because

the implication in (2.137a) is one way; in part icular , Vĵ ̂ (U.U) ît 1

for U e Mj.̂ ^ - Mj^ ,̂̂ , so i ts usefulness lies in validation of a fuzzy U

aga ins t a crisp V. Resul ts similar to (2.137) hold for VpMC Si'^ce

ne i t he r V^ ^ no r V^^ ^ c an be u s e d to compare two t ruly fuzzy

par t i t ions of X to each other, Back and Hussa in propose a measu re

t ha t they call the MC index for this job. Let U, S e Mj.^^, and define

V ,̂(U,S) = l - [^ Y i i(u^-s.,)M = l.
MC* 2 n

(2.138)

From (2.98) ^ (U) = | | u f / n so ^p^(U - S) = ||U - S | V n . Compar ing
this with (2.138), we have

V^e(U,S) = l -
V „ , (U - S)

PC (2.139)

Thus , the MC index is a relative of the parti t ion coefficient t h a t can
be u s e d for the compar ison of U to S. If Vĵ ,̂ = 1 , U a n d S are

identical . If Vj^^ = 0, U a n d S are crisp a n d sha re no object in the

s ame c lass . In th is case V^^ becomes the ratio of equally labeled

objects in U and S.

To s u m m a r i z e , (2.137a) m e a n s , for example , t ha t V^^ is really
useful only for comparing a fuzzy U to a crisp S. When might th i s
h a p p e n ? Often. For example . Table 2 .3 in Example 2.2 shows
te rmina l FCM a n d PCM part i t ions of X . Our compar ison of the
three matr ices in Table 2.2 was confined to hardening the FCM and
PCM par t i t i on m a t r i c e s a n d t h e n no t ing t h a t all t h r e e were
identical. If we let S be U*, the visually correct 3-partition of X , we

can compare it to U from FCM us ing ei ther Vj^^ a n d '^pMf This
extends the idea of external cluster validation for different terminal
fuzzy par t i t ions of X to t he case where the re is a known crisp

CLUSTER ANALYSIS 121

partition of the data (usually just the labels of labeled data, such as
we have for Iris) without using the defuzzification or hardening of U.

2.5 Feature Analysis

Methods that explore and improve raw data are broadly
characterized as feature analysis. This includes scaling,
normalization, filtering, and smoothing. Any transformation
<l):9tP i-> 9̂ '̂ does/eature extraction when applied to X. Usually q «
p, but there are cases where q ^ p. For example, transformations of
data can sometimes make them linearly separable in higher
dimensions (cf. functional link nets, Zurada, 1992). For a second
example where q > p, in image processing each pixel is often
associated with a vector of many variables (gray level at the pixel,
gradients, texture measures, entropy, average, standard deviation,
etc.) built from, for example, intensity values in a rectangular
window about the pixel. Examples of feature extraction
t r ans fo rma t ions inc lude Fourier t r ans forms , pr inc ipa l
components, and feature vectors built from window intensities in
images.

The goals of extraction and selection are: to improve the data for
solving a particular problem; to compress feature space to reduce
time and space complexity; and to eliminate redundant (dependent)
and unimportant (for the problem at hand) features. When p is large,
it is often desirable to reduce it to q « p . Feature selection consists of
choosing subsets of the original measured features. Features are
selected by taking <1> to be a projection onto some coordinate

subspace of 9t^. If q « p, time and space complexity of algorithms
that use the transformed data can be significantly reduced. Our next
example uses a cartoon type illustration to convey the ideas of
feature nomination, measurement, selection and the construction
of object vector data.

Example 2.19 Three fruits are shown in Figure 2.21; an apple, an
orange and a pear. In order to ask and attempt to answer questions
about these objects by computational means, we need an object
vector representation of each fruit. A human must n o m i n a t e
features that seem capable of representing properties of each object
that will be useful in solving some problem. The choices shown in
column two are ones that allow us to formulate and answer some
(but not all!) questions that might be posed about these fruits.

Once the features (mass, shape, texture) are nominated, sensors
measure their values for each object in the sample. The mass of each
fruit is readily obtainable, but the shape and texture values require
more thought, more time, more work, and probably will be more
expensive to collect.

122 FUZZY PATTERN RECOGNITION

Nominate
Features

I
Mass

Shape

Texture

Sensor
Measures

I
Weight

Diameter

Smooth
^ A =

Object
Data

I
1.2

V 0 ,

Mass

Shape

Texture

Mass

Shape

Texture

Weight

Diame

Rough

a 6̂
Diameter v =

^o

Smooth

Figure 2.21 Feature analysis and object data

A number of definitions could yield shape measures for the
diameter. We might take the diameter as the maximum distance
between any pair of points on the boundary of a silhouette of each
fruit. This will be an expensive feature to measure, and it may not
capture a property of the various classes that is useful for the
purpose at hand. Finally, texture can be represented by a binary
variable, say 0 = "smooth" and 1 = "rough". It may not be easy or
cheap to automate the assignment of a texture value to each fruit, but
it can be done. After setting up the measurement system, each fruit
passes through it, generating an object vector of measurements. In

Figure 2.21 each feature vector is in p=3 space, x^ e 9t^.

Suppose the problem is to separate the citrus fruits from the non-
citrus fruits, samples being restricted to apples, oranges and pears.
Given this constraint, the only feature we need to inspect is the third
one (texture). Oranges are the solution to the problem, and they will
(almost) always have rough texture, whereas the apples and pears

CLUSTER ANALYSIS 123

generally will not. Thus, as shown in Figure 2.21, we may select
texture, and disregard the first and second features, when solving
this problem. This reduces p from 3 to 1, and makes the
computational solution simpler and possibly more accurate, since
calculations involving all three features use measurements of the
other variables that may make the data more mixed in higher
dimensions. The feature selection function O that formally
accomplishes this is the projection 0(x,, x^, x„) = Xo. It is certainly

possible for an aberrant sample to trick the system - that is, we
cannot expect a 100% success rate, because real data exhibits noise
(in this example noise corresponds to, say, a very rough apple).

Several further points. First, what if the data contained a
pineapple? This fruit has a much rougher texture than oranges, but
is not a citrus fruit, so in the first place, texture alone is insufficient.
Moreover, the texture measurement would have to be modified to,
perhaps, a ternary variable; 0 = smooth, l=rough, and 2 = very
rough. Although it is easy to say this verbally, remember that the
system under design must convert the texture of each fruit into one
of the numbers 0, 1 or 2. This is possible, but may be expensive.

Finally, the features selected depend on the question you are
attempting to answer. For example, if the problem was to remove
from a conveyor belt all fruits that were too small for a primary
market, then texture would be useless. One or both of the first two
variables would work better for this new problem. However, the
diameter and weight of each fruit are probably correlated.
Statistical analysis might yield a functional relationship between
these two features. One of the primary uses of feature analysis is to
remove redundancy in measured features. In this example, the
physical meaning of the variables suggests a solution; in more
subtle cases, computational analysis is often the only recourse.

It is often unclear which features will be good at separating the
clusters in an object data set. Hence, a large number - perhaps
hundreds - of features are often proposed. While some are intuitive,
as those in Example 2.19, many useful features have no intuitive or
physically plausible meaning. For example, the coefficients of the
normalized Fourier descriptors of the outline of digitized shapes in
the plane are often quite useful for shape analysis (Bezdek et al.,
1981c), but these extracted features have no direct physical
interpretation as properties of the objects whose shapes they
represent. Even finding the "best" subset of selected features to use is
computationally so expensive as to be prohibitive.

Any feature extraction method that produces Y = <I>[X] c 9?i can
be used to make visual displays by taking q = 1, 2, or 3 and plotting Y

124 FUZZY PATTERN RECOGNITION

on a rectangular coordinate system. In this category, for example,
are feature extraction functions such as the linear transformations
defined by principal components matrices, and feature extraction
algorithms such as Sammon's method (Sammon, 1969). A large
class of transformations, however, produce only visual displays
from X (and not data sets Y c % 5R̂ or 9?)̂ through devices other
than scatterplots. In this category are functions such as
trigonometric plots (Andrews, 1972) and pictogram algorithms such
as Chernoff faces (Chemoff, 1973), and trees and castles (Kleiner and
Hartlgan, 1981).

The simplest and most natural method for selecting 1, 2 or 3 features
from a large feature set is to visually examine each possible feature
combination. Even this can be computationally challenging, since p
features, for example, offer p(p-l) two dimensional planes upon
which to project the data. Moreover, visual assessment of projected
subsets can be very deceptive, as we now illustrate.

Example 2.20 The center of Figure 2.22 is a scatterplot of 30 points X
= {(x , X)} whose coordinates are listed in columns 2 and 3 of Table
2.14. The data are indexed so that points 1-10, 11-20 and 21-30
correspond to the three visually apparent clusters. Projection of X
onto the first and second coordinate cixes results in the one-
dimensional data sets X and X . This illustrates feature selection.

1 2

Xa X = XiXX2c5K^ Xi + X^ c9 t

Xa c 9̂ <~-

1

i

0

'o8

10

-^i-"-Q!^Bccv'^"'-^^--^^-"-€ix3rTr^'^

^

^ > X i

15

XjcSt

Figure 2.22 Feature selection and extraction

CLUSTER ANALYSIS 125

The one dimensional data ^(X^ +X2) in Figure 2.22 (plotted to the
right of X, not to scale) is made by averaging the coordinates of each
vector in X. Geometrically this amounts to orthogonal projection of
X onto the line x. X . This illustrates feature extraction.

Table 2.14 Data and terminal FCM cluster 1 for four data sets

^ 1 ^ 2
Init Init Init X

^ 1 iix^+x^) ^ 2

u
(10)

u
(20)

u
(30)

U(l, " (1) " (I) U(l)

^ 1
1.5 2.5 1 0 0 0.99 1.00 1.00 0.00

^2
1.7 2.6 0 1 0 0.99 1.00 0.99 0.03

X 3 1.2 2.2 0 0 1 0.99 0.99 0.98 0.96

X4 1.8 2.0 1 0 0 1.00 1.00 1.00 0.92

X5 1.7 2.1 0 1 0 1.00 1.00 1.00 0.99

^ 6 1.3 2.3 0 0 1 0.99 0.99 0.99 0.63

^ 7
2.1 2.0 1 0 0 0.99 0.99 1.00 0.92

Xg 2.3 1.9 0 1 0 0.97 0.98 1.00 0.82

Xg 2.0 2.4 0 0 1 0.99 1.00 0.98 0.17

^ 1 0
1.9 2.2 1 0 0 1.00 1.00 1.00 0.96

^ 1 6.0 1.2 0 1 0 0.01 0.01 0.01 0.02

^ 1 2
6.6 1.0 0 0 1 0.00 0.00 0.00 0.00

^ 1 3
5.9 0.9 1 0 0 0.02 0.02 0.07 0.02

"^14
6.3 1.3 0 1 0 0.00 0.00 0.00 0.07

^ 5
5.9 1.0 0 0 1 0.02 0.02 0.05 0.00

^ 6
7.1 1.0 1 0 0 0.01 0.01 0.02 0.00

^ 7
6.5 0.9 0 1 0 0.00 0.00 0.00 0.02

^ 8
6.2 1.1 0 0 1 0.00 0.00 0.01 0.00

"^19
7.2 1.2 1 0 0 0.02 0.02 0.03 0.02

^ 2 0
7.5 1.1 0 1 0 0.03 0.03 0.04 0.00

^ 2 1
10.1 2.5 0 0 1 0.01 0.01 0.01 0.00

^ 2 2
11.2 2.6 1 0 0 0.00 0.00 0.00 0.03

^ 2 3
10.5 2.5 0 1 0 0.01 0.01 0.00 0.00

^ 2 4
12.2 2.3 0 0 1 0.01 0.01 0.01 0.63

"^25
10.5 2.2 1 0 0 0.01 0.01 0.01 0.96

^ 2 6
11.0 2.4 0 1 0 0.00 0.00 0.00 0.17

^ 2 7
12.2 2.2 0 0 1 0.01 0.01 0.01 0.96

"^28
10.2 2.1 1 0 0 0.01 0.01 0.02 0.99

^^29
11.9 2.7 0 1 0 0.01 0.01 0.01 0.09

^ 3 0
11.5 2.2 0 0 1 0.00 0.00 0.00 0.96

126 FUZZY PATTERN RECOGNITION

Visual inspection should convince you that the three clusters seen in

X, X and i (X^ + X2) will be properly detected by most clustering
algorithms. Projection of X onto its second axis, however, mixes the
data in the two upper clusters and results in Just two clusters in X .
This illustrates that projections of high dimensional data into
lower (often visual) dimensions cannot be relied upon to show much
about cluster structure in the original data as explained next.

The results of applying FCM to these four data sets with c = 3, m = 2, e
= 0.01, and the Euclidean norm for both termination and J are

m
shown in Table 2.14, which also shows the (poor) initialization
used. Only memberships in the first cluster are shown. In Table 2.14
the three clusters are blocked into their visually apparent subsets of
10 points each. As expected, FCM discovers three very distinct fuzzy
clusters in X, X, and i (X, + X„) (not shovm in Table 2.14). For X, X

and ^(Xj + X2) all memberships for the first ten points are > 0.97,
and memberships of the remaining 20 points in this cluster are less
than or equal to 0. 07. For X , however, this cluster has eight
anomalies with respect to the original data.

When the columns of U ^.. forX„ are hardened, this cluster contains
FCM 2

the 12 points (underlined in Table 2.14) numbered 3, 4, 5, 6, 7, 8, 10,
24, 25, 27, 28 and 30; the last five of these belong to cluster 3 in X,
and the points numbered 1,2, and 9 should actually belong to this
cluster, but do not.

Example 2.20 shows the effects of changing features and then
clustering the transformed data. Conversely, clustering can
sometimes be used to extract or select features. Bezdek and
Castelaz(1977) illustrate how to use terminal point prototypes from
FCM to select subsets of triples from a set of 11 (binary-valued)
features for 300 stomach disease patients. Their experiments
showed that the average error committed by a nearest prototype
classifier (cf. Chapter 4) was nearly identical for the original data
and the selected feature triples. We discuss this in more detail in
Chapter 4, but mention it here simply to illustrate that fuzzy
clustering can be used in the context of feature analysis.

Another possibility is to use the c distances from each point in the
original data to the cluster centers as (c-dimensional) extracted
features that replace the original p-dimensional features. We close
chapter 2 with an example that shows how important feature
selection can be in the context of a real data application -
segmentation of a digital image.

CLUSTER ANALYSIS 127

Example 2.21 To show how feature selection can effect a real world
pattern recognition problem, consider the segmentation of a 7
channel satellite image taken from (Barni et al., 1996,
&ishnapuram and Keller, 1996). Figure 2.23(a) shows channel 1.
Barni et al. applied FCM pixel-based clustering with c = 4 to this
multispectraJ image, which had p = 7 bands with spatial dimensions
512x699. Thus, data set X contained n = 512x699 = 357,888 pixel
vectors in p = 7-space. (pixel vector x .̂ =(Xj......,x^..)^ e X is the

vector of 7 intensities taken from the spatial location in the image
with address (i,j), 1 < i < 512; 1 < j < 699.) In this example we
processed the image for two sets of features wiih FCM using c = 4, m =
2, the Euclidean norm for both termination and J , and e = 0.1. FCM

m
was initialized v r̂ith the first four pixel vectors from the image as V .

Figure 2.23 (a) Channel 1 of a 7 band satellite image

While this image has 4 main clusters (water, woods, agricultural
land, and urban areas), when viewed in proper resolution there are
many regions that do not fit into any of the four main categories.
For example, what about beaches? Do we distinguish between roads,
bridges and buildings or lump them all into the category of urban
areas? In the latter case, do the features allow us to do that?

128 FUZZY PATTERN RECOGNITION

-'" \

\

\

\

\
)• »:.

Figure 2.23 (b) FCM segmentation using all 7 features

\

^' • <

.^'

. > •

^'

t . ^ ^ '
\

\ ' .

Figure 2.23(c) FCM segmentation using only 2 features

CLUSTER ANALYSIS 129

The seven channels in this image are highly correlated. To illustrate
this, we show the FCM segmentation when all 7 channels are used
(Figure 2.23(b)), and when only channels 5 and 6 are used (Figure
2.23(c)). Visually similar results imply that channels 1-4 and 7 don't
contribute much to the result in Figure 2.23(b). From Figure 2.23(b) it
appears (visually) that the FCM misclassification rate is high. This
is mainly due to the choice of these features, which are not
sufficiently homogeneous within each class, and distinct between
classes to provide good discrimination.

250-

100 150

channel 5

250

Figure 2.24 Scatter plot of channel 5 vs 6 of satellite image

Figure 2.24 is a scatterplot of the two features (channels 5 and 6) used
for the segmentation shown in Figure 2.23(c). Since the number of
data points is very large (512x699), to prevent clutter, only a
subsample of the data set is shown, and in the subsample only two
distinct clusters can be seen. The water region appears as the
smaller and denser cluster, because in this region, there is relatively
less variation in the intensity values in all 7 channels. The highly
reflective areas that appear white in the image show up as outliers in
this mapping.

The larger cluster includes samples from all the remaining regions,
and it is hard if not impossible to distinguish the remaining three
classes within this cluster. If this data were to be used for classifier
design (instead of clustering) we could tell from the scatterplot that

130 FUZZY PATTERN RECOGNITION

the features would not be sufficient to distinguish 4 classes. Other
more complex features, such as texture, would be needed.

2.6 Comments and bibliography

Clustering algorithms

The crisp or hard c-means clustering model has its roots in the work
of Gauss, who wrote to Olbers in 1802 about the method of least
squared errors for parameter estimation (Bell, 1966). Duda and Hart
(1973) credit Thorndike (1953) as the first explicit user of the HCM
functional for clustering. There are now thousands of papers that
report theoretical results or applications of the HCM model. There is
also a very large body of non-fuzzy work in the signal and image
processing literature that is a very close relative of (indeed, perhaps
it is] HCM. The basic method for this community is the Lloyd-Buzo-
Gray (LBG) algorithm. See Gersho and Gray (1992) for an excellent
summary of this material. A new approach to signal processing
based on clustering has been recently discussed by Geva and Pratt
(1994).

The FCM model and FCM-AO were introduced by Dunn (1974a) for
the special case m=2, and both were generalized by Bezdek (1973,
1974a) for any m > 1. PMshnapuram and Keller's (1993) PCM model
and PCM-AO was published in 1993. The newest entrant to the c-
means families is a mixed fuzzy-possibilistic c-means (FPCM)
model and AO algorithm for optimizing it that simultaneously
generates both a fuzzy partition of and typicality matrix for
unlabeled data set X (Pal et al., 1997a). See Yang (1993) for a nice
survey of many other generalizations of the basic FCM model,
including some to the case of continous data processes, in which the
double sum for J is replaced by integrals.

There are several points to be careful about when reading papers on
c-means clustering. First, many writers use k instead of c for the
integer that denotes the number of clusters. Our notation follows
Duda and Hart (1973). Second, many papers and books refer to the
sequential version of c or k-means more simply as, e.g., "k-means".
The well-known sequential version is not an AO method and has
many adherents. Its basic structure is that of a competitive learning
model, which will be discussed in Chapter 4. Be very careful, when
reading about c-means or k-means, to ascertain whether the author
means the sequential (Section 4.3.C) or batch version (Section
2.2.A); their properties and performance can be wildly different.

The term ISODATA was used (incorrectly) for both HCM-AO and
FCM-AO in early papers that followed the lead of Dunn (1974a) and
Bezdek (1973). Conditions (2.6) were used by Ball and Hall (1967) in
their crisp ISODATA [iterative self-organizing data analysis)

CLUSTER ANALYSIS 131

algorithm, which is our HCM-AO combined with a number of
heuristic procedures for (dynamic) determination of the correct
number of clusters to seek. Early papers by Dunn and Bezdek called
the FCM-AO algorithm "fuz2y ISODATA", even though there were no
heuristics attached to it analogous to those proposed by Ball and
Hall. Later papers replaced the term fuzzy ISODATA by fuzzy c-
means, but the incorrect use of fuzzy ISODATA still occurs now and
then. To our knowledge, a generalization of crisp ISODATA that
could correctly bear the name fuzzy ISODATA has - surprisingly- yet
to be studied. There is a crisp iterative self-organizing entropy
(ISOETRP) clustering algorithm due to Wang and Suen (1984) that
uses some of the same heuristics as ISODATA. ISOETRP is an
interactive clustering model that builds classifier decision trees,
and it attempts to optimize an entropy functional instead of J : we

will discuss this method in Section 4.6.

Suppose you have T sets of unlabeled data, X = {X^,...,X.j,}, where

X . = { x . , X. }c:9?P,
J j l j n '

X,
J

= n , for J = 1 to T. Sato et al. (1997) call

data of this kind 3-way object data, and refer to X as the j - th
situation in the data. Data like these are common. For example, in
estimates of brain tumor volume such as those made by Clark et al.
(1998), X corresponds to the j - th slice in a set of T slices of 3D
magnetic resonance images. In this example, the data are not
collocated either spatially or temporally. For a second example, X
might be the j - th image in a temporal sequence of frames collected
by an imaging sensor such as a Ladar on a flying seeker platform
that sweeps the scene below it. In this second case the data are not
temporally collocated, but after suitable adjustments to register the
images, they are spatially collocated.

In the first step of tumor volume estimation in Clark et al. (1998)
each of the T magnetic resonance slices is independently segmented
by unsupervised FCM, leading to a set of T computationally
uncorrelated terminal pairs, say {(Uj,Vj) (U.j,,V.j,)} for the input
data sets X = {X^,..., X^}. In such a scheme the number of clusters
could be - and in this application should be - a variable, changing
from slice to slice as the number of tissue classes changes. In the
seeker example, however, when images are collected at very high
frame rates, only the locations of the targets (the V, ' s) in the
images should change. The number of clusters for each frame in a
(short time window) of this temporal data should be fixed. You can
cluster each image in such data independently with c fixed, of
course, and the sequence {(Uj,V^),...,(U.j,,V.j,)} might be a useful
representation of unfolding events in the illuminated scene.
However, Sato et al. (1997) discuss a different approach to this

132 FUZZY PATTERN RECOGNITION

problem that involves a very minor change to the FCM functional
that seems like a useful alternative.

Sato et al. extend the basic FCM function J (U, V) = S X u^D?, by
i=ik=i "^

adding together T terms (one for each X), and each term is weighted
with a user specified weight co , j = 1 T. Their temporal fuzzy c-

means (TFCM) function is defined as J^''^'"(U.{V.}) = Io)jJ^(U, Vj),

CO > 0 for all i. (TFCM is our name for their model and algorithm;
j •'

they don't really give it a name.) J^FCM jg ^ positive linear
combination of T copies of the FCM functional, so an easy corollary
that follows from the proofs for necessary conditions (Bezdek, 1981)
yields necessary conditions for AO minimization of J^^^^'^that are
simple extensions of (2.6a) and (2.6b). The fuzzy partition common
to all T terms of j " ^ ^ * ^ " ^ is calculated as

m

U i ik

c

I
s=l

If«j8 (Xjk.Vji)
J=l
I03t8^(Xtic.Vts)

t=l

m - l

- 1

, l < i < c , l < k < n . (2.140a)

The c prototypes V , one for each data set X, are updated with the
common fuzzy c-partition in (2.140a) using the standard equation in
(2.7b),

£"S-,., / n ^
k=i y

l< j<T , l < i < c (2.140b)

In (2.140) the values {u } define a common fuzzy c-partition for all T

data sets X = {X̂ X^}, and for each data set X, there is a set of c

point prototjrpes, V = {v ,..., v } c 3i'^^. Sato et al. only discuss the
j i ' jc

case where 6 is the Euclidean norm, but equations (2.140) are easily
generalized to any inner product norm, and, we suspect, are also
easily generalizable to many instances of non-point prototype
models as well. AO between (2.140a) and (2.140b) produces, at
termination, the set {(U, V^),...,(U,V.j,)}. Thus, U is a common fuzzy
c-partition of all T situations, and the {V } provide an estimate of
the trajectory of the c point prototypes through time (that is,
through the 3-way data). Because tumors come and go in a set of
magnetic resonance image slices of a human with a brain tumor.

CLUSTER ANALYSIS 133

TFCM seems inappropriate for the application discussed by Clark et
al. (1998), but we can imagine the sequence {V } being very useful in
si tuations such as the seeker example in automatic target
recognition, or hurricane tracking via real time satellite imagery.
However, it is clear that the effectiveness of TFCM is very dependent
upon "good" choices for the T fixed, user-defined weights {co.}.

Sato et al. give severed examples of TFCM, including a data set of 60
dental patients who have had underbite treatment. Each patient has
p=8 numerical features measured at T=3 different post-treatment
times. TFCM with c = 4, m = 2 and the Euclidean norm are applied to
this data, and the resultant prototypes of the four clusters seem to
have physically interpretable meanings over time. The only
complaints we have about the examples in Sato et al.'s book are that
none of them are compared to other methods (such as applying FCM
to each data set in the sequence independently); and no guidance is
given about the choice of the T weights {co.}. Nonetheless, we think
this is a very promising extension of FCM ^or some problems with a
temporal aspect.

Much of the general theory for AO (also called grouped coordinate
descent) is contained in Bezdek et al. (1986a, 1987a), Redner et al.
(1987) and Hathaway and Bezdek (1991). AO schemes are essentially
split gradient descent methods, and as such, suffer from the usual
numerical analytic problems. They need good initializations, can
get trapped at undesirable local extrema (e.g., saddle points), and can
even exhibit limit cycle behavior for a given data set. Karayiannis
(1996) gives fuzzy and possibilistic clustering algorithms based on a
generalization of the reformulation theorem discussed in Section
2.2.E.

There are many hybrid clustering models that combine crisp, fuzzy,
probabilistic and possibilistic notions. Simpson (1993) uses fuzzy
sets to find crisp clusters (directly, without hardening). Moreover,
this method adjusts the number of clusters djniamically, so does not
rely on posterior validation indices. The method of Yager and Filev
(1994a) called the "mountain clustering method" is often described
as a fuzzy clustering method. However, this method, and a relative
called the sub tractive clustering method (Chiu, 1994) are not fuzzy
clustering methods, nor are they even clustering methods. They both
seek point prototypes in unlabeled data without reference to good
partitions of the data, and then use the discovered prototypes non-
iteratively to construct crisp clusters with the nearest prototype rule
(equation 2.6a). These models will be discussed in Chapter 4.

Runkler and Bezdek (1998a) have recently introduced a new class of
clustering schemes that are not driven by objective function models.
Instead, they propose alternating cluster estimation (ACE), a scheme
whereby the user selects update equations for prototypes and

134 FUZZY PATTERN RECOGNITION

memberships from toolbars of choices for each of these sets of
variables. All of the AO models of this chapter can be imbedded in
the ACE framework (including probabilistic models), and
additionally, ACE enables users to build new clustering algorithms
by a "mix and match" paradigm, that is, by mixing formulae from
various sources. This type of algorithm trades mathematical
interpretability (the objective function and necessary conditions for
it) for user-defined properties of presumably desirable prototypes
and membership functions (e.g., convexity of membership
functions, a property not enjoyed by continuous functions
satisfying the FCM necessary condition (2.7a)).

Cluster Validity

A third way (besides direct and indirect validity measures) to assess
cluster validity is to assign each U e P some task, and then compare
its performance on the task to other candidates in p (Backer and
Jain, 1981). For example, the labels in U can be used to design a
classifier, and empirical error rates on labeled data can then be used
to compare the candidates. This is performance-based validity. It is
hard to give more than a general description of this idea because the
performance criteria which dictate how to select the best solution
are entirely context dependent. Nonetheless, for users with a real
application in mind, this is an important methodology to
remember. A best strategy when the end goal is known may be to
first eliminate badly incorrect clustering outputs with whatever
validity measures seem to work, and then use the performance goal
to make a final selection from the pruned set of candidates.

Our discussion of cluster validity was made in the context that the
choice of c is the most important problem in validation studies.
Duda and Hart (1973) call this the "fundamental problem of cluster
validity". A more complete treatment of cluster validity would also
include validation of clustering methods as well as validation of
individual clusters, neither of which was addressed in Section 2.4.

Applying direct, indirect or performance-based validity criteria to
each partition in P is called static cluster validity. When assessment
criteria are integrated into the clustering scheme that alter the
number of clusters during computation (that is, other than in the
obvious way of clustering once at each c in some prespecified range),
as in Ball and Hall's (1967) ISODATA or Tou's (1979) DYNOC, the
resulting approach is called dynamic cluster validation. In this
approach P is not generated at all - rather, an algorithm generates U,
assesses it, and then adjusts (or simply tries other) parameters (and
possibly algorithms) in an attempt to find a "most valid" U or P for
X. Surprisingly enough, a fuzzy version of ISODATA per se has never
been developed. However, many authors have added merge-split (or
progressive) clustering schemes based on values of various validity
functionals to FCM/PCM in an attempt to make them dynamic (see

CLUSTER ANALYSIS 135

Dave and Bhaswan, 1991b, Krishnapuram and Freg, 1992, Bensaid
et al., 1996b, Frlgui and Krishnapuram, 1997).

Given the problems of indirect indices (functions of U alone, which
are usually mediocre at best), it is somewhat surprising to see so
much new work on functionals of this type. For example, Runkler
(1995) discusses the use of a family of indirect indices (the mean,
median, maximum, minimum and second maximum) of the c row
maximums {Mj = max{U(j5},i = 1 c} of U for validation of clusters

l<k<n
found by the FCE algorithm. Continued interest in measures of this
type can probably be attributed to three things: their simplicity; the
general allure of computing "how fuzzy" a non-crisp entity is; and
most importantly, how important cluster validity really is for users
of clustering algorithms. Trauwaert (1988) contains a nice
discussion of some of the issues raised here about the use of the
parti t ion coefficient (historical note: Trauwaert mistakenly
attributed the partition coefficient to Dunn in the title of and
throughout his paper; Bezdek (1973) introduced the partition
coefficient to the literature). See Cheng et al. (1998) for a recent
application of the partition entropy at (2.99) to the problem of
(automatically) selecting thresholds in images that separate objects
from their backgrounds.

There are several principles that can be used as guides when building
an index of validity. First, computational examples on many data
sets with various indices suggest that the more reliable indices
explicitly use all of the data in the computation of the index. And
second, most of the better indices also use the cluster means V(U) if
U is crisp or whatever prototjqjes B in (2.24a) are available in their
definition. Even when X is not used, using V(U) or B implicitly
involves all of X, and insulates indices from being brittle to a few
noisy points in the data.

If it is possible to know, or to ascertain, the rough structure of the
data, then of course an index that is designed to recognize that type
of structure is most appealing. For example, mixtures of normal
distributions with roughly equal covariance structure are expected
to generate hyperellipsoidal clusters that are most dense near their
means, and in this case any index that optimizes for this type of
geometry should be more useful than those that do not. Bezdek et al.
(1997b) discuss this idea at length, and show that both crisp and
fuzzy validity indices as reliable as many of the most popular
probabilistic criteria for validation in the context of normal
mixtures.

When an indirect index is used (partition coefficient, partition
entropy, etc.), the quality of B either as a compact representation of
the clusters or as an estimate of parameters is never directly

136 FUZZY PATTERN RECOGNITION

measured, so this class of indices cannot be expected to perform well
unless the data have very distinct clusters. Thus, indirect Indices that
Involve only U are probably not very useful for volumetric or shell
cluster validation - in either case they simply measure the extent to
which U is a non-crisp partition of the data. When parameters such
as B are added to an indirect index (Gath-Geva or Xie-Beni for
example), the issue of cluster type becomes more important. When the
clusters are volumetric (because they are, or because the algorithm
that produced them seeks volumetric structure), B should be a set of
point prototypes. When the clusters use B, a parameter vector of a set
of non-point prototypes as representatives, the cluster structure is
shell like. In either case, the validity index should incorporate B into
its definition. We feel that the best indices are direct or indirect
parametric data indices. This is why we chose the classification of
indices in Table 2.7 as the fundamentally important way to
distinguish between types of measures.

The literature of fuzzy models for feature analysis when the data are
unlabeled as in this chapter is extremely sparse and widely scattered.
The few papers we know of that use fuzzy models for feature analysis
with labeled data will be discussed in Section 4.11.

Finally, we add some comments about clustering for practitioners.
Clustering is a very useful tool that has many well documented and
important applications: to name a few, data mining, image
segmentation and extraction of rules for fuzzy systems. The problem
of validation for truly unlabeled data is an important consideration
in all of these applications, each of which has developed its own set of
partially successful validation schemes. Our experience is that no
one index is likely to provide consistent results across different
clustering algorithms and data structures. One popular approach to
overcoming this dilemma is to use many validation indices, and
conduct some sort of vote among them about the best value for c.
Many votes for the same value tend to increase your confidence, but
even this does not prevent mistakes (Pal and Bezdek, 1995). We feel
that the best strategy is to use several very different clustering
models, vary the paramiCters of each, and collect many votes from
various indices. If the results across various trials are consistent, the
user may assume that meaningful structure in the data is being
found. But if the results are inconsistent, more simulations are
needed before much confidence can be placed in algorithmlcally
suggested substructure.

3 Cluster Analysis for
Relational Data

3.1 Relational Data

In Chapter 1 we mentioned that two types of data, object (X) and
relational (R), are used for numerical pat tern recognition.
Relational methods for classifier design are not as well developed as
methods for object data. The most compelling reason for this is
probably that sensors collect object data. Moreover, when each
object is not represented by a feature vector, the problem of feature
analysis is non-existent. Consequently, the models in this chapter
deal exclusively with clustering. There are many applications that
depend on clustering relational data - e.g., information retrieval,
data mining in relational databases, and numerical taxonomy, so
methods in this category are important. Several network methods
for relational pattern recognition are given in Chapter 5.

The basic idea in relational clustering is to group together objects in
an object set O that are "closely related" to each other, and "not so
closely" related to objects in other clusters, as indicated by relative
relational strengths. The objects are usually implicit, so we find
groups in O by clustering based on the strength of relationships

between pairs of objects. If we have object data XcSt^ , we can
generate many relations R(X) from X.

Relational clustering algorithms are usually hierarchical (local,
graph theoretic) or partitional (global, objective function driven).
Many hierarchical algorithms are designed to find clusters in any
proximity relation and hence, these methods will also work for
fuzzy relational data. Consequently, this chapter describes several
non-fuzzy methods that produce crisp partitions; and several fuzzy
methods that can produce crisp or fuzzy partitions from proximity
relations.

Hierarchical clustering can be divided into agglomerative (bottom
up, clumping) and divisive methods. Agglomerative algorithms start
with each object in its own singleton cluster (c=n), and subsequently
merge similar clusters until the procedure terminates at a single
cluster (c=l). In the top down or divisive approach all points begin in
a single cluster (c=l) and then clusters are split by some rule until
every object eventually ends up in its own singleton cluster (c=n).
Good expositions of many of these methods appear in Sneath and
Sokal (1973) and Jain & Dubes (1988). We will briefly describe one
family of agglomerative algorithms - the linkage algorithms -
because of their connection to some fuzzy relational methods that
produce hierarchical clusters. The chapter concludes with

138 FUZZY PATTERN RECOGNITION

discussions about several partitional algorithms that are driven by
minimizing relational objective functions.

A. Crisp Relations

Relations on finite data sets need not be square nor binary, but in
pattern recognition they almost always are square and binary, so
our presentation is confined to this special case. Let the set of objects
be O = {oj,..., Ojj}. A crisp binary relation /? in O is a crisp subset
/ ? c O x O . Pairs of objects, say (04,0.) are either fully related under
/€, or they are not related at all. Since /€ is a crisp subset, we can
describe it by a membership function, say p:OxO i-> {0,1}. The n^
numbers {p(Oi,Oj)} characterize the membership of (o^Oj) in the
relation /€, and we write p(Oj,Oi) = 1 <^ o./^o. <=>o is /€-related to 0 .

J J i j

It is convenient to array the relationships as an n x n relation

matrix R(p;0) = fri. = p(Oj,o,)| . We may write R{p;0) simply as R,

and we follow others in sloppily calling the matrix R variously "the
relation (even though the subset /€ actually is, by writing, e.g., aRb
instead of a/€b)", "the relation matrix'" and even "the relational
data". This terminology accrues from crisp relations where the three
descriptions of R are equivalent. Since crisp relations are crisp
subsets, the notation /€̂ c ^2 is well defined for two relations
/?,,/€„ c O x O . We extend this notation to the relation matrices R,
and R of /€ and f? by writing R < R , meaning r .. < r for 1 < i,j < n.

More generally, real binary relations in O are functions
p: O X O —> 5R called proximity relations that represent similarity or
dissimilarity between pairs of objects. In this case R is a proximity
matrix. When p(Oi,Oj)«{0,1}, it is customary to regard r . as the
strength of the relationship between o, and o.. Given an object data

set X = {Xj,...,x^} c 9?P, X. G 9tP characterizing object Op there are
many functions that can be used to convert X into a proximity
relation. For example, every metric 6 on 91^x5^^ produces a
proximity relation in X x X. We discuss this in detail in Section 3.2.

The conceptual basis of relational clustering is p: O x O -> 5R. We
identify three basic types of relations:

p: O X O -> SiReal Binary Relation (on or in) O (3. la)

p: O X O -^ [0,1] Fuzzy Binary Relation (on or in) O (3. lb)

RELATIONAL CLUSTERING MODELS 139

p: O X O -> {0,1} Hard Binary Relation (on or In) O (3.1c)

These relations are binary because p has two arguments. Equation
(3. Ic) displays the membership function of a crisp subset /€ c O x O.
Similarly, equation (3. lb) shows that we can regard fuz2y relations
in O as fuzzy subsets of O x O characterized by the membership
function r. An arbitrary finite proximity relation R can always be
converted into a fuzzy relation by a suitable normalization.

A (square binary) relation R is reflexive if r̂ ^ = p(Oj, o.) = 1 V o. e O.

(I < R). Reflexivity means that every element is fully related to

itself. R is symmetric when r
jk

:r^. V j , k (R = R^). This means that

whenever o is related to o, at emy level, o, is related to o at the same
j k -̂ k J

level. R is transitive if r., =1 whenever, for some i, r., =1 and
jk ' j i

r i k = U R L
of R with itself, [R2^^\, = ^v^(r^ A r,.)).

R(VA)R = R, where R is the Boolean matrix product

A finite crisp binary relation on O x O can be viewed as a graph G =
(V, E) where V={o} are the vertices of G; and E is the set of edges in G,

(o., o.) e E o r.. = 1. In this context R is the adjacency matrix of G. A
path from o, to o. in G is any set of nodes that have edges connecting
o. and o.. The path length is the number of edges in the path. R is
transitive if, whenever there is a path of length greater than 1 from
o to o , there is a direct path of length 1 from o to o .

1 j f O J J

Example 3.1 Let O = {a, b, c, d} and R ••
1 1 1 0
1 1 1 0
1 1 1 0
0 0 0 1

be a relation on

O x O . This R is reflexive, symmetric and transitive. Reflexivity is
represented by self loops at each node as in Figure 3.1(a) ; symmetry
is expressed by pairs of edges (shown in Figure 3.1(b) as edges
directed in both directions) between pairs of related nodes. Figure
3.1(c) gives the complete graphical representation of the reflexive,
symmetric, and transitive relation R.

140 FUZZY PATTERN RECOGNITION

(a) Reflexivity (b) Symmetry (c) The graph of R

Figure 3.1 Reflexivity, symmetry and transitivity of R

It is easy to see that R is transitive: the only paths of lengths > 1 in R
are paths of length 2 between any pair of the nodes 1,2 and 3; and for
each such path, there is a direct path of length 1. So transitivity adds
no edges to the graph of this relation that are not required for
reflexivity and symmetry.

DeHnition 3.1 A crisp square binary relation R in O x O is an
equivalence relation (ER) if it is (i) reflexive, (ii) symmetric and (iii)
transitive. The set of all ERs on n objects will be called R^.

The ER is important in pattern recognition because it defines a set of
c equivalence classes which are isomorphic to a crisp c- partition of

O. To see this, let C ĵ = joj: OjRoj, Oj G O\ be the set of objects that are
equivalent to o.. Then for two objects o. and o, since the relation is

transitive, either C
Oi Coj or Coj n Coj

J
0 . Moreover, U C^. = 0 .

01 eO '

In Example 3.1 R is a crisp ER, and it induces the unique 2-partition
{a, b, c} u {d} on the objects O = {a, b, c, d}.

An important concept for any crisp relation R is its closure with
respect to a given property P that R might possess. Generally, the P-
closure of R is the smallest relation containing R that has property
P. The symmetric closure of R = {(a, b), (a, c), (c, a), (b, c), {c, b)} on {a, b,
c} is formed by adding the single pair (b, a) to R. Other pairs such as
(a, a) can be added too, but the smallest relation that is symmetric
and contains R as a subset is {{a, b), (b, a), (a, c), (c, a), (b, c), (c, b)}. R is
not reflexive either. The reflexive closure of R is formed by adding
the three pairs (a, a), (b, b) and (c, c) to the original relation R without
adding (b, a). The smallest relation that contains R that is both
reflexive and symmetric is the union of its reflexive and symmetric
closures, obtained by adding the four pairs just displayed to R.

RELATIONAL CLUSTERING MODELS 141

Similarly, t he transitive closure R°° of a cr isp relat ion R is t he
sma l l e s t t r ans i t ive re la t ion t h a t con ta in s R a s a s u b s e t . The

cons t ruc t ion of R°° from a given R does no t require t h a t R be
reflexive or symmetr ic . If R is no t transit ive, we add Jus t enough
pa i rs to the relation to give it th is property. In the example of the
preceding paragraph , making R symmetric also makes it t ransi t ive
(coincidental ly) , a n d h e n c e , t h e u n i o n of t h e reflexive a n d
symmetric closures of this R is a n ER on {a, b , c}.

If R is no t a n ER, we can take its closure with respect to the three

propert ies required by Definition 3 .1 . This gives u s an ER R on the
objects which is the smallest extension of R tha t is a n ER. Clus ters

in the given objects are obtained from the equivalence classes of R.

E x a m p l e 3 . 2 Let 0 = {a,b,c,d,e} a n d R = be a

0 1 1 0 0
0 1 0 0 0
0 1 0 0 0
0 0 0 1 1

^ 0 0 0 0 1
re la t ion on O x O . R is no t reflexive, symmetr ic or t rans i t ive .
Adding I 's a t addresses (1,1) and (3,3) yields the reflexive closure of
R. Adding I ' s a t add re s se s (2,1), (2,3), (3,1) a n d (5,4) yields t he
symmetr ic c losure of R. Taking the un ion of these two c losures

" 1 1 1 0 0"
1 1 1 0 0
1 1 1 0 0
0 0 0 1 1
0 0 0 1 1

yields the relation R = Every pa th between pa i rs of

nodes in R can be realized by a direct path, so R = R°° is a n ER on O,
a n d t h e u n i q u e par t i t ion it co r r e sponds to is the 2 -par t i t ion

{a,b,c}u{d,f} of O- This part i t ion of O is based on R, not on the

given da ta R. Since R is a transformation of the given data , it is no t
correct to asser t tha t (a, b, c} u (d, f} is a parti t ion of O obtained from
R. It is proper to regard th is partit ion as the parti t ion of O suppor ted
by the ER closest to R.

Comparing matr ices of the ERs in Examples 3.1 and 3.2, notice t ha t
they bo th have c sub-blocks of I 's t h a t are n x n in size, where n is

•̂ i l l

the n u m b e r of po in ts in the equivalence c lass (and therefore, t he
n u m b e r of points in the i-th crisp cluster in O). This is always the
case, u p to a permuta t ion of the objects (and hence the columns) of
the matr ix representing the ER.

142 FUZZY PATTERN RECOGNITION

R°° can be cons t ruc ted in var ious ways. Conceptually, the easiest
me thod is the well known resu l t t h a t combines the n (Boolean)
powers of R:

R~ = R V R 2 V...VR" , where (3.2)

the k - th power, for k > 2, is defined as R^^ = R(VA)R(VA)-- -{VA)R.

When R is symmetric and transitive (3.2) collapses to
k times

R: R n-1 {<=>In < R a n d R = R'^) (3.3)

These equat ions are convenient for small n, b u t direct calculation of

R°° by ma t r ix mult ipl icat ion h a s t ime complexity 0(n*) , so th i s
method is impractical for large n (Cormen et al., 1990). Warshal l ' s
algori thm for the transitive closure of a crisp relation is 0(n^), and
there are minimal spanning tree approaches (Dunn, 1974b) t h a t are
O(n^). Nonetheless, (3.2) is useful for small to moderately sized da ta
se ts a n d also for pedagogical purposes , so we i l lustrate i ts u s e in
Example 3.3.

Example 3 . 3 Find the transit ive closure of R =

we compute the max-min powers of R:

1
0
0
0

First

RvA -

RvA =

R

1 0 1 0"
0 1 0 1
0 0 0 0
0 0 0 0

0 1 0 1"
1 0 1 0
0 0 0 0
0 0 0 0

1 0 1 0"
0 1 0 1
0 0 0 0
0 0 0 0

It is easy to check tha t all higher even powers will equal R , a n d

tha t all h igher odd powers will equal R^^. Now use (3.2): take the
element by element maximum of all three relations:

RELATIONAL CLUSTERING MODELS 143

R^/. —

0 1 0 0"
1 0 1 0
0 0 0 1 V

0 0 0 0

1 0 1 0"
0 1 0 1
0 0 0 0 V

0 0 0 0

0 1 0 1"
1 0 1 0
0 0 0 0
0 0 0 0

1 1 1 r
1 1 1 1
0 0 0 1
0 0 0 0

Notice that R°° Is neither reflexive or symmetric, so it is not an ER
and does not induce a crisp partition on its set of objects.

B. Fuzzy Relations

Symmetry and reflexivity extend uniquely and naturally to fuzzy
relations. Extending transitivity, however, is a much more subtle
task. A fuzzy relation R can be regarded as a weighted graph G = (V, E,
R), with R the (weighted) adjacency matrix of G. r̂ . = o^Ro is the

weight of edge (o,, o.) e E. This view is advantageous for interpreting
transitivity in fuzzy relations.

max For a crisp relation [R^^I = v (rjj,. Arj^.). The min and

operators correspond to intersection and union in crisp logic. Fuzzy
transitivity is defined in terms of two more general operators that
are used for the intersection and union of pairs of fuzzy sets.
Specifically, intersections are represented by T-norms and unions
with S-norms (T co-norms) of fuzzy sets (Klir and Yuan, 1995).

We use © , ® respectively as the S and T-norms of any pair of real
numbers a, b in [0, 1], S(a, b) = a © b , T(a, b) = a (8) b . (There are seven
infinite families of T and S norms. See Volume 1 of this handbook
for an extensive treatment.) In the fuzzy literature the min and max
operators are called T and S , T3(a,b) = a A b , S3(a,b) = a v b .

The ij-th element of the n x n relation matrix in the © - ®
composition of two square fuzzy relations R and R is

[Ri(®(8))R2l.. = © (r, ik ® r , ki). If R, = R„ = R the k-th power of R, for k
•"J k = l • ' •' 1 2

> 2, is R | » = R(©®)R(©®)---(©(g))R.
k times

Definition 3.2 Zadeh (1971) A square fuzzy relation R is v-(8)

transitive if and only if r > v (r
y k=l

Ik
r..) V i^tj (i.e.. R>R^«),

k j ' J >• > v g) '

where (8) is associative and monotone non-decreasing in each of its
arguments.

144 FUZZY PATTERN RECOGNITION

Zadeh (1971) gave T and T as examples of intersection operators
that could be used for ® in Definition 3.2. Bezdek and Harris (1978)
studied v - A transitivity for Tj(a,b) = aAb = maxfO,a + b - 1 } , and
interpreted fuzzy v - ® transitivity graphically for T , T and T .
More generally, a fuzzy relation R is ©-(E) transitive when

r >r2 ^ = ® (rjj^®r) V i , j , (R > R | g) , but this is a little too
J •>• k = l •'

general for our purposes. In practice, the only S norm that finds
applications in pattern recognition is Sg = v. Zadeh used his
concept of fuzzy v -(B) transitivity to extend the concept of ERs to
fuzzy relations as follows:

Definition 3.3 Zadeh (1971) A fuzzy relation R is a fuzzy similarity
relation (or fuzzy equivalence relation) if R is reflexive, symmetric
and V - ® transitive.

The set of all fuzzy v - ® transitive similarity relations on n objects
will be called R^ ,̂. The sets {R^̂ :̂ ® is a T-norm} are important in
relational clustering, so we formalize them as

R^«={Re9t"": I„<R, R = R T , R>R(v®)R} . (3.4)

If R is crisp and ® = A, the condition in Definition 3.3 guarantees
that R is a crisp equivalence relation, so R^ c R^^. Zadeh noted that
because ab < a A b , R̂ c R^, For the choice ® = A the condition

rj- > V (rjk A ry) V i^ j requires that the weight of any direct path
k = l

in G = (V, E, R) from node i to node j be at least as large as the smallest
weight of any other path from i to j . Not surprisingly, Zadeh used
this to show that R e R^^ o 5(Oi, Oj) = 1 - r^ was an ultrametric on
the object set. Bezdek and Harris (1978) established that
R G RvA "^ ^(Oi'Oj) = l~rij was a psuedometric, and exhibited a
hierarchy of seven nested sets of fuzzy similarity relations, the most
important of which are R c R c R c R . .

^ n — VA — v» — v A

Zadeh (1971) also gave the first exposition of transitive closures of
fuzzy relations, confining his analysis to the V - A case. More
generally, the v - ® transitive closure R^g, of fuzzy relation R is the

smallest fuzzy relation containing R that is v - ® transitive. R~
can be computed as

RELATIONAL CLUSTERING MODELS 145

R: R V R 2 V. . .VR" (3.5)

Furthermore, if R Is reflexive and sjonmetric, then at worst we need
only the (n- l)-st power of R,

R : ® = Rv®. where k = min {J: R^^ = RJ^'}
l<J<n-l

(3.6)

Example 3.4 Find the v - A transitive closure of R =
LO 0.4 0.5
0.4 LO 0.3
0.5 0.3 LO

RvA -

LO 0.4 0.5
0.4 LO 0.4
0.5 0.4 LO

; RvA

LO 0.4 0.5
0.4 LO 0.4
0.5 0.4 LO

= R 2 = R ~ , the last

equality holding because R is reflexive and symmetric.

Table 3.1 The v - ® transitive closure by matris multiplication

Store R e [0,1]"^" (fuzzy) or R e (0,1}"''" (crisp)
Pick (S)= any T-norm. If R e (0,1}"^", ® = A

Ry® — R
Forj = 2 to n

Do

RJ^^=RJ,-̂ (̂v(8))R
lf(l < R a n d R = R'^andRJ =RJ-i)

^ n v® V ® '

R : ® = R I ® ; stop
Next J
R°° — R^

For j = 2 to n
Rv® — Ry® ^ Ry®

Next J

Equations (3.5) and (3.6) can be used to compute the v - ® transitive
closure of a fuzzy relation, and like (3.2) and (3.3), they both have
complexity O(n^). Faster algorithms for computing R̂ ^̂ will be
discussed in the next section. Table 3.1 gives the naive algorithm for
R~g, based on (3.5) and (3.6). Since every crisp relation is fuzzy, this
algorithm also produces the transitive closure of any crisp relation
via (3.2) or (3.3) provided the T-norm is the minimum, ® = A. Bezdek
et al. (1986b) showed that the algorithm in Table 3.1 was correct for

146 FUZZY PATTERN RECOGNITION

the Six T-norms now called TQ , T^, Ti 5, Tg, Tg 5, Tg. See Nguyen and
Sugeno (1998) for a more complete discussion of T-norms.

3.2 Object Data to Relational Data

Before discussing algorithms that find clusters in relational data,
we discuss some methods for constructing a proximity relation

matrix R(X) from an object data X c 9tP. Once this is done, clustering
may be done in X (as in Chapter 2), or in R(X) using methods
discussed in this chapter. Sometimes it is advantageous to make
this conversion from object data to relational data.

A similarity measure is a real binary relation s:OxO -^3i^. s{Oj,o)
is the similarity (for dissimilarity, we use 5(Of,Oj)) between Oj and
Oj. The values {s(Oj,o)} or {5(Oi,Oj)} are sometimes assigned by an
expert. For example, this is often the case in numerical taxonomy
(Sneath and Sokal, 1973). More commonly, {s(Oj,o)} or {5(Oi,Oj)}

are computed from characteristics - numerical or otherwise - of
pairs of the objects. There are many similarity measures: for
example, measures of association, resemblance, correlation,
matching, and so on. Similarity measures may be based on
heuristic, probabilistic, deterministic, fuzzy or semantic principles.

An object data set X c 9^P can be converted into a dissimilarity
relation R = [r..] using any metric 5 on SRP x 9^P,

ry =p(Oi,Oj) = 5(Xi,Xj), l < i , j < n . (3.7)

If the objects aire characterized by qualitative attributes, e.g., color €
{red, blue, green}, then we cannot use (3.7) directly. Using numerical
representations such as 1 for red, 2 for blue and 3 for green before
applying (3.7) may distort structural relationships that exist or do
not exist between pairs in the qualitative data. For example, any
distance relation using these numerical values for colors suggests
that 3 is closer to 2 than it is to 1, even though red, blue and green are
qualitatively equivalent.

Numerical representation of qualitative features can be based on
binary vectors. For example, red, blue and green can be represented
by the strings 100 = red, 010 = blue and 001= green. More generally, if
there are p qualitative features and the i-th feature can take n

p
values, then the original p features can be represented by a p = X n

1=1

dimensional binary vector x e {0,1}^. With this representation (3.7)
can be used because distances between any two vectors are unbiased

RELATIONAL CLUSTERING MODELS 147

and well defined. On the other hand, the feature values may or may
not make sense physically, and the dimension of x can be very large.
In our colors example, the Euclidean distance between any pair of
colors is 1, so false proximity is not imposed on the data by this
numerical representation.

Table 3.2 lists a few of the many different ways object data can be
converted to relational data. In this table the data type real means

that X and y are in 9^^, and data type 0-1 means that x and y are in

{0,1}P-

Table 3.2 Some transformations of X c 5RP into R e 91"''"

Symbol Name Data
Type

A-Norm Real
(1.6) or 0-1

q-Norm Real
(1.11) or 0-1

cos{x_y) Real
if real or 0-1

Tanimoto Real
coefficient or 0-1

simple 0-1
match
double 0-1
match
double 0-1

mismatch
ignore 0-0 0-1

(Jacard)

Formula for p(x,y)

DM

'DMM

||x-y|^=V(«-y)''A(x-y)

II J - ' J
.q>l

î ll l|y||

(x,x) + (y ,y) - (x ,y)
a + d

P
2(a + d)

2(a -(- d) + b + c
a + d

a + d + 2(b + c)
a

a + b + c

In Table 3.2 the last four similarity coefficients are shown as
functions of a, b, c and d. These four numbers are computed from the
binary vectors x and y as follows:

a = # of 1-1 matches
b = # of 1-0 mismatches
c = # of 0-1 mismatches
d = # of 0-0 matches

between the p binary coordinates in x and y. For example, if
x"̂ =(100111) , y"̂ = (0 0 1 0 1 0) , then a = l,b = 3 , c = l,d = l .

148 FUZZY PATTERN RECOGNITION

Example 3.5 For the 10 dimensional binary vectors x and y given by
x'r = (0 0 1 1 0 1 0 1 1 0) and y"̂ = (1 0 0 1 1 1 0 0 1 0), we have
a=3, b=2, 0=2 and d =3. Consequently,

8i(x,y) = 4
82(x,y) = 2
6^(x.y) = l

s^(x,y) = ^ ^ ^ = - ^ = 0.60
l|y|| VsVs

s^(x,y) = -. .) "[. r = ^ " ^ = 0.42
T (x,x) + (y ,y) - (x ,y) 5 + 5 - 3

Ss{x.y) = 0.60
s„„(x,y) = 0.75;

DMM
(x,y) = 0.42;

s,(x,y) = 0.42

As an example of transforming an object data set X into relational
data, we transform data set X (the first two rows of Table 3.3 and
Figure 3.2) by the Euclidean norm, which yields the relation R in
the last nine rows of Table 3.3. We show only the lower triangular
part of the symmetric relation R . R will be used to exempliiy
several of the clustering algorithms in subsequent sections of this
chapter.

Table 3.3 Xg and relational data Rg = S^IXc

X 1 2 2 1 4 5 4.5 5 4
y 1 1 3 3 1.5 1.5 1.5 2.5 2.5

^ 1 ^ 2 ^ 3 \ ^ 5 ^ 6 ^ ^ 8 ^ 9

^ 1 0

\ 1.00 0

^ 3
2.24 2.00 0

^ 4
2.00 2.24 1.00 0

^ 5
3.04 2.06 2.50 3.35 0

^ 6
4.03 3.04 3.35 4.27 1.00 0

^ 7
3.54 2.25 2.92 3.81 0.50 0.50 0

\ 4.27 3.35 3.04 4.03 1.41 1.00 1.12 0

\ 3.35 2.50 2.06 3.04 1.00 1.41 1.12 1.00 0

RELATIONAL CLUSTERING MODELS 149

y

3-- o

1 • •

4- +

#9 f s

® ® ®
^ 5 ^ 7 ^ 6

- > x
1

Figure 3.2 Data set X^

3.3 Hierarchical Methods

Sequential Agglomerative Hierarchical Non-Overlapping (SAHN)
models (Sneath & Sokal, 1973) yield crisp clusters in fuzzy
relations. Cluster merger (agglomeration, clumping) is based on a set

distance 6 (X, Y) between crisp sets X and Y. The three most common

set distances used are 8 . = 8, at (2.92), 5 and 8 „.
nun 1 ^ ' max avg

Figure 3.3 depicts the geometric meaning of these three set distances.

8 , and 8 are the nearest and furthest distances (as measured by
m m max ^ •'

any metric 8 on X x Y) between pairs of points in X x Y. 8 is the
average of all the pairwise distances between points in the two sets,
and uses their cardinalities, n = | X | , n = lYI.

We describe and illustrate the SAHN bottom up approach with
relational data set R . Each object begins in its own singleton cluster
so c = n = 9. Next, find the pair of most closely related objects, as
indicated by values in relational data matrix R (find the pair of
indices in R that satisfy some criterion for merger). To group the two
objects in X that are closest in the sense of Euclidean distance,
search R and find the minimum distance (0.50) : this occurs at two
pairs (5,7) and (6,7). Deciding ties arbitrarily, suppose we merge

points 5 and 7. At this first step the set distance 8 plays no role -
two objects will be merged if their dissimilarity is minimum (or
their similarity is maximum). We now have c=8 clusters in R and

150 FUZZY PATTERN RECOGNITION

X , The cluster {x , x } has two points, and the other 7 points are still
singleton subsets of X„.

* 9

X

, ' - ' 3^3 '«

y . ;

. xi / 6^i„(X,Y) = min{5(x.y)} = §(x2,yi)

yeY

•^.^1 >
8 „ ^ (X, Y) = niax{6(x. y)} = 8(x3, y 3)

xeX
yeY

y' ^3 ;

I X

nxny

Figure 3.3 Inter-cluster distances 5 , , 5 and 6
^^ min max avg

Next, merge the two clusters in the current set of 8 that are closest to

each other in the sense of set distance 8 . Two other singletons
might merge, or perhaps one or more singletons will Join {x , x }. In

RELATIONAL CLUSTERING MODELS 151

any case, different 5 's may result In different ensuing sequences of
crisp clusters. This merging process continues until c=l.

The SAHN procedure is hierarchical in that c proceeds from c=n to
c=l, nesting more and more objects together as it proceeds. Since the
process is non-iterative, there is no need for initialization, and the
clusters found at each value of c are unique. The algorithms that use

8 . , 5 and 5 „ are known as the single, complete and average
mm max avg c ' x- c?

linkage clustering algorithms respectively. The linkage methods are
well defined for any relational data matrix that has positive real-
valued proximities. In particular, these algorithms generate
hierarchies of crisp partitions in the object set from arbitrary/uzzy
relational data.

Partition hierarchies produced by single and complete linkage
applied to R are displayed as dendrograms (trees) in Figure 3.4. The
left half of Figure 3.4 shows the dendrogram obtained by single

linkage for R . The vertical scale is set distance 5 , . This indicates
c' 9 min

the level at which clusters are merged. At the top of the tree each
point is in its own cluster and c=9. For single linkage at the first
stage points (5 and 7) and (6 and 7) are possible candidates for
merging. Breaking ties arbitrarily, suppose we merge (5 and 7) first,
and then this cluster merges with 7 at the same level in the next step.

Then, at level 5ĵ in = l. points 1 and 2 merge, as do points 3 and 4, and
5,7,6 merge with 8 and 9. In this example single linkage never
produces, e.g., c=7 clusters if we generate clusters by cutting the
dendrogram horizontally. However, in the process of development
of the dendrogram a unique (up to arbitrary breaking of ties)
partition is generated for every possible value of c, 1 < c < n . Cutting
the dendrogram horizontally at any level in-between merger levels
shows c as the number of vertical lines cut. In Figure 3.4 at

6ĵ ĵ = 1.60, the single linkage cut shows 3 clusters resulting in the
crisp 3 - partition {1,2} u {3,4} u {5,6,7,8,9}.

The right half of Figure 3.4 shows the complete linkage dendrogram
using set distance 5 ^ ^ . Comparing the single and complete linkage
solutions shows that the two hierarchies are structurally quite
different. For example, c = 3 at 5 , =1.60, but c = 4 for 5 = 1.60.

'^ mln max

152 FUZZY PATTERN RECOGNITION

Single Linkage Complete Linkage

1 2 3 4 5 6 7 8 9 o 1 2 3 4 5 6 7 8 9

0.00

c = 3 0 = 4

8r!]:i: 61

4.10

Figure 3.4 Single and complete linkage dendrograms on Rg

In terms of the fuzzy graph G = (V, E, R), the single linkage algorithm
can be interpreted as follows. At initialization, each object (node) is
in its own singleton cluster; this corresponds to a forest of n trees in
G. At any succeeding time in the procedure, say at c = q, the graph is
composed of q subtrees that are again a forest in G. Each merger of
two clusters via gmin corresponds to adding a minimum weight edge
between the two closest subtrees, thereby creating a forest with one
less tree. At termination of single linkage there is c = 1 cluster. In
terms of G, the sequence of linking edges is at this point a minimal
spanning tree (MST). This is essentially Kruskal's (1956) MST
algorithm, which has complexity 0(|E|log2|V|) for a relation on

|V| = n objects that has |E| edges.

RELATIONAL CLUSTERING MODELS 153

3.4 Clustering by decomposition of fuzzy relations

Clustering in fuzzy relational data often utilizes a-cuts of R. An a-
cut or crisp a-level-set, a e (0,1], of a fuzzy relation R is the crisp

binary relation /€„ = l(Oi ,Oj)eOx Orry =p(Oi ,Oj)>a|. As a runs

through (0, 1], the a- cuts of R form a nested sequence of crisp
relations such that a^ >a2 =>/?„, c/€„„ , Le., R„, <R, • /? c/€ ie ' a i "c (2 -

In this section we give two methods for fuzzy relational data that
jdeld sets of crisp c-partitions of the objects. One method produces
hierarchically nested clusters while the second approach does not.
We begin with clustering in the max-min transitive closure of R.
Given a fuzzy similarity relation, Zadeh's (1971) resolution identity
can be used to generate nested partitions of the objects. The
algorithm is based on:

0 < a < 1 where R, , = aR is the fuzzy
(a) a •'

Theorem Z (Zadeh, 1971): Any fuzzy relation R on X x X has the
decomposition R = V R(„)

a

fa; if R(x,y) > a
0; otherwise

relation defined by R, Jx.y) : (3.8)

We give an example illustrating the use of Zadeh's theorem to
decompose a fuzzy relation on 3 objects.

Example 3.6

R =
0.5 0.0 0.7
0.3 LO 0.0
0.5 0.3 LO

0.3 0.0 0.3
0.3 0.3 0.0
0.3 0.3 0.3

= 0.3
1 0 1
1 1 0
1 1 1

V
0.5 0.0 0.5
0.0 0.5 0.0
0.5 0.0 0.5

V

V 0.5
1 0 1
0 1 0
1 0 1

0.0 0.0 0.7
0.0 0.7 0.0
0.0 0.0 0.7

V 0.7
0 0 1
0 1 0
0 0 1

V

V 1

0 0 0
0 1 0
0 0 1

0 0 0
0 1 0
0 0 1

If R is a V - A transitive similarity relation, then R̂^̂ is an
equivalence relation on O. To see this, note that reflexivity and

154 FUZZY PATTERN RECOGNITION

symmet ry are preserved for all a. Now suppose (i, j) e R , a n d

(J ,k)eRj^j , t h e n ry > a a n d r j ^ S a . Since R is V - A t rans i t ive

rjk > max{min{ris,rsk}} => rjj, ^ min{rij,rjk}=> r^^ > a=:> (i,k) e R,^,.

Therefore for V - A t rans i t ive similari ty re la t ions on n objects
theorem Z will generate a unique set of nested crisp part i t ions of the
objects.

Examples .? R

1.0 0 .8 0 .4 0.8 0.8
0.8 1.0 0 .4 0 .8 0.9
0 .4 0 .4 1.0 0 .4 0 .4
0.8 0 .8 0 .4 1.0 0.8
0.8 0 .9 0 .4 0.8 1.0

on X = {x^,X2,x^,x^,x^}

is a V - A transit ive similarity relation. Using theorem Z,

R = 0 .4

VO.9

1 1 1 1 1 "
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1

V O . 8

" 1 1 0 1 1 "
1 1 0 1 1
0 0 1 0 0
1 1 0 1 1
1 1 0 1 1_

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
0 1 0 0

0"
1
0
0
1

V l

" 1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

The ERs in th is decomposition yield the following parti t ions :

U Q 4 = (X^, X2, X3,X4,X5} ,

U0.9 = { X i } u { X 2 , X 5 } u { X 3 } u { X 4 } ,

Ui = { X i } u { X 2 } u { X 3 } u { X 4 } u { X 5 } .

Figure 3.5 i l lus t ra tes t h i s graphical ly wi th a dendrogram. The
vert ical axis cor responds to the va lues of a a t which c lus te rs are
merged bottom up, starting at c = 5 and a = 1.

RELATIONAL CLUSTERING MODELS 155

0.40

t
a cut level

Figure 3.5 ix cut tree for Example 3.7

Zadeh (1971) used matrix multiplication (0(n)) to find the max-
min transitive closure of a symmetric, reflexive fuzzy relation.
Tamura et al. (1971) gave a slightly different method based on
successive approximations that is at worst 0(n log n) and at best
0 (n). Dunn (1974b) showed that the hierarchies generated by
Tamura et al.'s (1971) method were equivalent to single linkage
hierarchies, and that the equivalence classes used by Tamura et al.
could be generated from a family of nested graphs obtained by
deleting edges in a maximal spanning tree defined on O, assuming r^

as the edge weight between Oj and Oj. Dunn gave an algorithm for
constructing the max-min transitive closure of a symmetric,
reflexive fuzzy relation based on maximal spanning trees and
maximal capacity routes that is 0(n). Other authors have studied
construction of the transitive closure (see Kandel and Yelowitz, 1974
or Larsen and Yager, 1990), but none are asymptotically faster than
Dunn's method. A result giving the equivalence between partitions
generated by four relational algorithms is :

Theorem M (Miyamoto, 1990)

O = {Oj,...,o^}, R:OxO->[0, l] is a symmetric, reflexive fuzzy
relation. For arbitrary a e [0,1], the crisp partitions of O obtained by
the following four schemes are identical.

156 FUZZY PATTERN RECOGNITION

(i) Perform hierarchical clustering using the single linkage
algorithm. Cut the resulting dendrogram at level a to generate a
hard partition of O = {o^,..., o^}.

(11) G = (V, E, R) is a complete graph. (R need not be reflexive and

symmetric). Let the maximal spanning tree of G be G. Let G be the

graph that is obtained by deleting all edges in E with weights ry < a

(edges in G^ satisfy ry > a). Let the connected components of G be

denoted by subgraphs (GĴ ; i = l , . . . ,k}. Then the vertices of the

connected components of G are a partition of O.

(ill) G = (V,E,R), and G^=(0,E^,R^) is any a-cut of G. If R is
reflexive and symmetric, the vertices of the connected components
in G„ are a partition of O.

(iv) Let the transitive closure of R be R~. Then the a-cuts of R°°
induce a partition of O.

The method of this section has been studied in information
retrieval, where it has been used, for example, to construct fuzzy
thesauri. Good articles related to this include: Radecki (1976),
Miyamoto et al. (1983), Zenner et al. (1985), Bezdek et al. (1986b) and
Larsen and Yager (1993).

Theorem Z affords a way to decompose a fuzzy similarity relation
into a nested hierarchy of crisp partitions of O with associated
scalars a in [0, 1]. A different decompositional method was suggested
by Bezdek and Harris (1978, 1979). Recall that R^ is the set of all
hard ERs on O,

R„={Re9l"":rye{0, l} .In<R.R = R'^,R = R 2 j . (3.9)

Let conv(R^) be the convex hull of R . R e conv(R) guarantees at
least one convex decomposition

R = i c^R^, R ^ E R ^ V k , (3.10)
k = l

where (c } in [0, 1] are convex weights, / is the length of the convex
/

decomposition, J, c, = 1, and each R, e R is a hard ER and hence,
k=l ^ k n

isomorphic to a hard c-partition of O. Equation (3.10) holds for any

RELATIONAL CLUSTERING MODELS 157

R E conv(R^). Unlike decomposition by resolution of the transitive
closure of R, the set of partitions generated by convex decomposition
is not a hierarchy of nested partitions.

Example 3.8

R =

1.0 0.3 0.6 0.0
0.3 LO 0.7 0.0
0.6 0.7 1.0 0.0
0.0 0.0 0.0 LO

is reflexive and symmetric but not max-

min transitive. Because of the special structure of column 4, R has a
unique convex decomposition :

R = 0.4

1 0 0 0"
0
0

1
1

1
1

0
0 + 0.3

0 0 0 1

1 1 1 0"
1 1 1
1 1 1

0
0 + 0.3

0 0 0 1

1 0 1 0
0 1 0 0
1 0 1 0
0 0 0 1

The ERs in this convex decomposition yield the partitions

Uo.4 ={Xi}u{X2,X3}u {X4} ;

U0.3 ={Xi,X2,X3}u{x4} ; a n d

U0.3 ={Xi,X3}u{X2}u{X4}

(3.11)

There are two partitions for c = 0.3, one with c = 2 clusters, and one
with c = 3 clusters. For comparison we decompose the max-min
transitive closure of R.

R°

LO 0.6 0.6 0.0
0.6 LO 0.7 0.0
0.6 0.7 LO 0.0
0.0 0.0 0.0 LO

0.6

1 1 1 0 '

1
1

1
1

1
1

0
0

vO.7

0 0 0 1

1 0 0 0'

0
0

1
1

1
1

0
0

vl.O

0 0 0 1

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

The ERs in this decomposition by theorem Z yield the partitions

158 FUZZY PATTERN RECOGNITION

Uo.6 = { X i , X 2 , X 3 } u {X4} ;

U0.7 ={xi}u{x2,X3}u{x4} -.and (3.12)

Ui.o = { X i } u { X 2 } u { X 3 } u { X 4 }

Comparing the partitions at (3.11) with those at (3.12), convex
decomposition suggests U^ ^ = {x̂ } u {X2,Xg}u {x^} with c = 3 as the
best description of the structure in the data. The hierarchy based on
transitive closure does not have a preferred value for c based on the
values of a. However, at c = 3, the unique choice suggested by (3.12) is
Ug^ = {Xj}u{x2,X3}u{x^}, which is the partition "most highly
recommended" by convex decomposition in the sense that its convex
weight is maximum. Notice that convex decomposition never
produces a partition for c = n.

Since (3.10) is applicable only to R's in conv(R^), the important open
question of how to recognize when this is true must be solved before
this method is generally useful. Any R admitting decomposition
(3.10) must be symmetric and reflexive. Bezdek and Harris (1978)
showed that R^̂ c conv(R^) c R^^ for n > 3, where R^^.R^^ are the
sets of fuzzy similarity relations defined at (3.4) that are v - A and
V -A transitive, respectively. Thus, every fuzzy similarity relation
in the sense of v - A transitivity on more than three objects also has
at least one convex decomposition. Bezdek and Harris (1979) give
three algorithms for the computation of convex decompositions of
fuzzy c-partitions into crisp c-partitions, and show several ways to
construct relations from them, but do not solve the problem of how
to usefully characterize conv(R). The related question of when a
convex decomposition is unique is, to our knowledge, also unsolved.

3.5 Relational clustering with objective functions

In this section we describe several models and algorithms which
generate a fuzzy partition from relational data based on
minimization of an objective function. These models all assume R
to be a pairwise dissimilarity relation between objects in O. The first
method of this type was given by Ruspini (1970). Here we discuss four
representative models due to Roubens (1978), Windham (1985),
Hathaway et al. (1989) and Hathaway and Bezdek (1994b).

RELATIONAL CLUSTERING MODELS 159

A. The Fuzzy Non Metric (FNM) model

Rouben's (1978) model assumes that R is a dissimilarity relation
satisfying three conditions : V i, J, r > 0, r̂ ^ = 0 and r.. = r .̂ . For

example, every relation matrix produced from XcSt^ using (3.7)
satisfies these three conditions. In order to partition the objects to c
fuzzy clusters, Roubens proposed the objective function model

min KpNM(U)-i i Su^u^rkj . (3.13)
UeMfcn I =̂1̂ =1 J=l J

Rewrite the objective function in (3.13) as

c n 2
KFNMIU)= S X Ujk

l=lk=l

where

l u ^ f k j
vi=i

= i i u f k D i k , (3.14)
l=lk=l

Dik=Iu2rk j . (3.15)
J=i

Using the LaGrange multiplier technique under the assumption that
Djk > 0 V i, k. Roubens obtained the usual first order necessary
conditions for optimality of U,

u.,
ik

l < i < c ; l < k < n . (3.16)

(3.16) is just an instance of (2.7a) when Dĵ . = \\x^ - v j ^ is replaced by

Dik = S u^ry and m = 2. An alternating optimization scheme based
J=i

on (3.15) and (3.16) can be used to iteratively minimize K^„„.
FNM

Initialization is made on U, the (Di^} in (3.15) are computed with it,
U is updated with (3.16), and then return to (3.15) results in a new set
of values for {D^y^. This algorithm is summarized in Table 3. 4.

160 FUZZY PATTERN RECOGNITION

Table 3 .4 The fuzzy non-metric (FNM-AO) algorithm

Store
Relation matr ix R = [rj^j

Vi ,J , Ty > 0 , rji = O a n d ry = rji

Pick
(•• number of clusters : 1 < c < n
i*" m a x i m u m n u m b e r of i terat ions : T
«•• terminat ion threshold : 0 < e

Guess Initial par t i t ion U^ e M .̂̂ ^

Iterate

t ^ l
While (t < T)

For k= 1 to n
For i=l to c

Dik,t-1 - X Uy t-lflq
J=i

Next i
For s= 1 to c

/
u sk,t

c D sk,t-l
j=iD Jk,t-1

Next s
N e x t k

If |Kp„^(U^) - Kpj,^(U^_j)| < e Then Exit While

t ^ t + 1
End while
U < - U t

Using a n argument such as that in Diday (1975), it can be shown tha t
the FNM algori thm converges to a local m i n i m u m of K , . Libert

a n d Roubens (1982) give some extensions a n d addit ional mater ia l
on c luster validity associated with th is model.

B. The Assignment-Prototype (AP) Model

Windham's (1985) AP algorithm a s s u m e s t h a t R satisfies the s ame
condit ions a s the FNM model. Suppose the objects are to be grouped
into c cr isp c lus te r s Xi,...,X^- Windham a s s u m e s t h a t for each

cluster Xj there is an object (oj^.) which is the bes t representat ive or
prototype of t h a t cluster. Then the quality of the clustering can be
measured by

(
c

1=1
I r

OjeX i
Jkl

RELATIONAL CLUSTERING MODELS 161

(3.17)

The smaller the value oft, the more similar the objects in X^ are to
the prototype of the class. Minima of T point to crisp partitions of O
that are well represented by their prototypes. Optimization of t in
(3.17) produces hard partitions. Windham modified x so that it seeks
fuzzy partitions U as part of optimal pairs (U, T) of the AP model

, min .^KAP(U, T) = I I I u^t^rk, , where (3.18)
— ' ~ r ^ i=ik=ij=i "

U e M^̂ ^ and M ,̂„ = { T e ^^^: T(k) e Nf, V k } . (3.19)

In (3.19) T is the k-th row of the c x n matrix T. In component form,
the constraints on elements of T are that each row sum to one,

i t i k = l V i = l ,c ; and that t >0 V i,k.
k=l '

U in (3.18) is a fuzzy partition of O, so û ^̂ gives the degree to which
Oĵ belongs to fuzzy cluster u.. The entry t̂ ĵ represents the degree to
which o, represents (or is typical of) the i-th prototype. Windham
calls U an assignment matrix, and T the prototype weight matrix.
Using the LaGrange multiplier technique twice (holding T fixed and
optimizing on U, and then conversely) results in the usual first order
necessary conditions

t . =1 V?"'u.^w l / I I y i ^ ^ k n , I V U , and (3.20a)
k y/ m V / k

^n.=[^/}^l^^j/^[^/}^l'uj Vi'k . {3.20b)

These equations can also be derived directly from (2.7a) in Chapter 2
by grouping the fixed variables for each problem together and
calling them D as in FCM for the special case m=2. Estimates of
optimal pairs (U, T) are obtained through alternating optimization
between (3.20a) and (3.20b). The AP algorithm is summarized in
Table 3.5. Windham and Roubens both advocate termination when
successive values of the objective function become close, rather than
terminating when successive estimates of the fuzzy partition are
close. However, termination on the closeness of successive estimates

162 FUZZY PATTERN RECOGNITION

of U is better because a proper choice for e when terminating on
successive values of the objective function is very delicate. This is
because the correct choice for e depends strongly on the actual value
of a local minimum in the attracting neighborhood, which is, of
course, unknown.

Table 3.5 The assignment-prototype (AP-AO) algorithm

Store
Relation matrix R = rjĵ ^ ;

Vi , j , ry > 0 , Tu = 0 and ry = rjj

Pick
number of clusters : 1 < c < n
maximum number of iterations : M
termination threshold : 0 < e

Guess Initial partition UQ e Mf̂ .̂

t ^ l
While (t < M)

For i= 1 to c
For ^ 1 to n

'-il.t - I V ^ ^ik,t-l' 'k£ I V IUik,t-irkm
m = l W k=l

Iterate

Next^
Next i
For i= 1 to c

For k= 1 to n

u Ik.t - I V S ^it.t^M I^^yi^t|e,trk£

Next k
Next i

If |K^(U^,T^)-K^(Uj_j,T^_j)|<e Then Exit While

Else t <- t + 1
End while
(U,T)^(Ut ,Tt)

Example 3.9 Windham (1985) considered the (11 x 11) symmetric
relational matrix R listed in Table 3.6. Entries for object 6 are
highlighted because this object plays a special role when
interpreting the output of the AP algorithm.

R was generated from a two dimensional object data set X . The
coordinates shown in Table 3.7 are roughly correct. Windham
rounded off the squared Euclidean distance between each pair of
points in Table 3.7 to the nearest integer to obtain the (relational
data) integers in Table 3.6. For example, the squared distance

RELATIONAL CLUSTERING MODELS 163

between points 1 and 3 in Table 3.7 is 2.77, but in Table 3.6 this value
is rounded up to 3.

Table 3.6 Windham's dissimilarity data R̂ ^

1 2 3 4 5 6 7 8 9 10 11
1 0 6 3 6 11 25 44 72 69 72 100
2 0 3 11 6 14 28 56 47 44 72
3 0 3 3 11 25 47 44 47 69
4 0 6 14 28 44 47 56 72
5 0 3 11 28 25 28 44
6 0 3 14 11 14 25
7 0 6 3 6 11
8 0 3 11 6
9 0 3 3
10 0 6
11 0

Table 3.7 (Approximate) coordinates of X̂ ^

Datum X y
^1 -5.00 0.00

^2
-3.34 1.67

^3 -3.34 0.00

^4
-3.34 -1.67

2̂ 5
-1.67 0.00

^6
0.00 0.00

^7
1.67 0.00

^8 3.34 1.67

^9 3.34 0.00

^10
3.34 -1.67

^ 1
5.00 0.00

2
O

8
O

o
4

O
10

11
X

Figure 3.6 Data set X^̂

164 FUZZY PATTERN RECOGNITION

Figure 3.6 displays the 11 points in Table 3.7. Although the AP
algorithm uses only relational data R interpretation of the results
is facilitated by knowing the (approximate) structure of the object
data from which it was built.

The visual configuration of X suggests that it possesses c=2
clusters, (the left and right 5-point sets), with a bridge or neck
between them provided by object 6. We initialize the AP algorithm
with the 2-partition

Ur K K K K K ' U ' U \) t) ' D ' U
U X) X) ' U X) K K K K K K

, where (3.21)

K=0.75 and v = 0.25. Using other protocols specified in Windham
(1985) leads to the outputs shown in Table 3.8. The rows of U and T
are shown transposed, and as required, columns of U and rows of T
sum to 1.

Table 3.8 [U, T) produced by AP-AO for R̂ ^

Memberships Prototype weights
Datum u,T) U(''2) T ^

X j 0.92 0.08 0.13 0.01

^ 2
0.90 0.10 0.14 0.02

^ 3
0.95 0.05 0.27 0.02

^ 4
0.90 0.10 0.14 0.02

^ 5
0.86 0.14 0.16 0.03

^ 6
0.50 0.50 0.06 0.06

^ 7
0.14 0.86 0.03 0.16

^ 8
0.10 0.90 0.02 0.14

^ 9 0.05 0.95 0.02 0.27

^ 0
0.10 0.90 0.02 0.14

^ 1
0.08 0.92 0.01 0.13

The membership values in Table 3.8 are symmetric with respect to
the y axis in Figure 3.6. Objects 3 and 9 have the highest
memberships in clusters 1 and 2, respectively. The prototype
assignment values suggest that object 3 is the best representative for
cluster 1, and that object 9 is the best prototype for cluster 2. Visual
inspection of X agrees with this.

RELATIONAL CLUSTERING MODELS 165

Diday (1975) proposed a problem that seeks crisp clusters in R based
on minimizing an objective function which is quite similar to the
AP objective function,

K(U,T) = I E I u ^ t r
1 k J ^ ^

(3.22)

subject to Uik.tjk e {0,1} V i,k, lUik
i=l

1 V k and X tj^ = ni V i.
k = l

Relation r^j is a measure of dissimilarity between o and o satisfying
V i, j , ry > 0, Tjj = 0 and ry = rji, where HJ is the number of points in
crisp cluster i.

C. The relational fuzzy c-means (RFCM) model

Recall from Chapter 2 that for object data Xc9 tP , the FCM
clustering model is defined by the optimization problem

min J ^ (U , V) = I XuJ^Djk
(U, V) I i = l k = l

(3.23)

Equation (2.23b) shows the reformulation of J in terms of V alone

when Djĵ = llxii - Vj 11̂ . For relational clustering Hathaway et al.
(1989) applied the opposite-case reformulation to J , using (2.7a) to
eliminate V instead of U from J . The effect of this substitution is to

m

restrict J to a surface in (U,V) space which satisfies two important
properties: (i) J is a function of U alone on this surface; and (ii) by
the reformulation theorem, this surface contains all minimizing
pairs (U*,V*) of J . We represent the reformulation of J in terms of
U as K . After some algebraic manipulation K takes the form

K„(U)=X
i=l VĴ =1 k = l

I I u | f u S x j - x J / 2 I u -
t=i J

(3.24)

Equation (3.24) can be rewritten as

K ^ (U) - S
i=l

i xKuSrjk)/Uiu-
t = l

, where (3.25a)

jk 11 J "^IIA
(3.25b)

166 FUZZY PATTERN RECOGNITION

By the reformulation theorem, minimization of Km at (3.25) is
equivalent to minimization of J in (3.23) or R at (2.23b) provided

R satisfies (3.25b). Condition (3.25b) holds for some X c: 9^P and
positive definite A t̂ I if and only if it holds for some Y c 9tP and A =
I. When there exists a set of n object data in some dimension p such
that the pairwise distances define R, we say that Km is the relational
dual of Jm-

Table 3.9 The relational fuzzy c-means (RFCM-AO) algorithms

Store
Relation matr ix ^^h-^Lxn^^t^'fy^^S Vi , j , k ,

ry > 0 , rii = 0, ry = rj; and r^^ = |xj - Xk||^

'•- number of clusters : 1 < c < n
Pick »•• max imum n u m b e r of i terations : T

••" weighting exponent : 1 < m < °o
• - terminat ion threshold : 0 < e

Guess Initial par t i t ion U^ e M^̂ ^

t ^ l
While (t < T)

For i= 1 to c

vu=K,t-i us,t-i)yi<t-i
Next i
For k= 1 to n

For i= 1 to c

dL t= (RVi , t)k - ((Vu) ' 'RVi , t) / 2
Next i

Iterate If dik,t>OVi

Then u^^^ = 1/
f=i

(0 ; du„ t>0

Else uu,,t = 1 ^ ^ ^ . ^ ^ ^ ^ Q. ^^^^ ^ Q̂̂ jj_ 1 ^ ^ ^ ^ J

N e x t k

If | K ^ (U J - K^(U^)̂ < 8, Then Exit While

t ^ t + 1
End while
U ^ U t

RELATIONAL CLUSTERING MODELS 167

RFCM implicitly assumes that R is obtained from (inner product)
distances between pairs of object data. It is important to note that R
is not necessarily a fuzzy relation. R must satisfy the same
requirements as the AP and FNM models, and (3.25b) as well. First
order necessary conditions for minimization of K lead to the
alternating optimization scheme called the relational fuzzy c-
means (RFCM) algorithms which are summarized in Table 3.9.

Protocols needed in case d = 0 for some (j, k) are the same as for

FCM. Let X c 9̂ P have n points and R = II iP
J*^ II J ' ' H A

be the

associated n x n relation matrix. If started at the same initial
partition, FCM and RFCM yield identical iterate sequences of
partition matrices (Hathaway et al., 1989). The update equation for
U in FCM and RFCM has the same functional form, but the vectors
{v,} in the iteration of Table 3.9 lie in g^", not in ĝ p as they do for
FCM. That is, RFCM does not generate cluster centers of object data
during iteration because RFCM processes relational data. However,

II i|2
if object da ta satisfying rjk= Xj-Xj^ are known, the
reformulation theorem guarantees that non-iterative computation
of the cluster centers with (2.7b) based on the terminal partition
found by RFCM will be the same as the cluster centers found directly
with FCM, provided both algorithms are initialized at the same
partition of X. The reformulation theorem can also be used to design
relational versions of HCM and PCM.

Example 3.10

Table 3.10 shows terminal membership values for fuzzy cluster U
(u (o)=1- u (o) Vk) in partitions generated by the FNM, AP and
RFCM (m=2) relational clustering models.

Since R in Example 3.9 is derived from X with Euclidean
distance, we expect RFCM to produce reasonably good results for this
data. All three algorithms were initialized with the 2- partition U
at (3.21), and all were terminated (in less than 18 iterations) when
the absolute difference between successive values of their objective
function was less than e = 0.0001.

Table 3.10 shows that all three models behave similarly on this data
set. They all produce membership functions that are symmetric
with respect to the y axis, and they all assign the membership value
0.5 to object 6 in both fuzzy clusters. The RFCM result is the crispest
of the three outputs, and FNM is very slightly the fuzziest, even

168 FUZZY PATTERN RECOGNITION

though all three algorithms use squares for membership exponents
in this example.

Table 3.10 Terminal cluster 1 memberships for R̂ ,̂

FNM A P RFCM
Datum U(T) uS) u,T)

^1 0.91 0.92 0.95

\ 0.88 0.90 0.94

^3 0.93 0.95 1.00

^4
0.88 0.90 0.94

^5
0.82 0.86 0.91

^6
0.50 0.50 0.50

X
7

0.18 0.14 0.09

Xg 0.12 0.10 0.06

Xg 0.07 0.05 0.00

^ 0
0.12 0.10 0.06

^ 1
0.09 0.08 0.05

AP and FNM require one less assumption on R than RFCM. Thus,
the AP and FNM models have a wider reach in applications than
RFCM. What happens when RFCM is applied to arbitrary
dissimilarity data that does not satisfy (3.25b)? Hathaway and
Bezdek (1994b) provide a partial solution to this problem through an
extension of RFCM that is discussed next.

D. The non-Euclidean RFCM (NERFCM) model

RFCM can be used to cluster a set of n objects described by pair-wise
dissimilarity values in R if (and only if) there exist n object data
points in some p-space whose squared Euclidean distances match
values in R. More formally, a relation R is Euclidean if there exists a

data set X = {x,,...,x } in 9t"-^ such that R " "̂ ^jk F J - ^ K
otherwise, R is said to be non-Euclidean. Any object data set X
corresponding to a Euclidean relation R is called a realization of R.
If there exists a realization of R in p-space, p < n-1, we can get a
realization in n-1 space by adding n-p-1 components with constant
values to each point in the p dimensional data.

The duality theory of the relational (RFCM) and object (OFCM) data
versions of the fuzzy c-means models says that RFCM applied to R
corresponds to OFCM applied to object data X if and only if there

RELATIONAL CLUSTERING MODELS 169

exists a set of n points in 9 "̂"̂ whose squared Euclidean distances
match the given dissimilarity data R. Given an arbitrary relation
there is no reason to believe that the duality condition will hold.
And if it does not, RFCM may fail. We will see later an example of
this type where the relational data are generated as squared, pair-
wise (object-data) distances in 1-norm.

NERF c-means assumes that dissimilarity relation R is irreflexive,
positive and sjonmietric :

rj, = 0 ,j = l,. . ,n ; {3.26a)

rjk > 0 ,1 < j , k < n ; and (3.26b)

rjk = rkj , l < J , k < n . (3.26c)

Given a non-Euclidean R that satisfies (3.26), the basic idea in NERF
c-means is to convert R into a Euclidean relation Rp using a [3-

spread transformation, and then apply RFCM-AO to Rp. This is very
similar in spirit to clustering in the transitive closure of a relation
after finding it, as we did in Example 3.2. The transformation is:

R p = R + P (l „ , „ - I J , (3.27)

where p is a suitably chosen real scalar, l̂ ^ is the n x n identity

matrix and 1 is the n x n matrix with I's at every address.
nxn -^

Choosing |3 = 0 in (3.27) reduces Rp to the original relation, R = RQ.
The operation in (3.27) is called p-spreading since the addition of p
> 0 to the off-diagonal elements of any Euclidean matrix R has the
effect of spreading out the corresponding realization. We discuss the
case p < 0 after Example 3.11.

Example 3.11 Let R be the Euclidean relation

R = Ro
0 81 100
81 0 1

100 1 0
(3.28)

One realization of R = RQ is given by the three points

xi = (}), X2 = [\ ° j and X3 = (Y] , (3.29)

which are plotted along the horizontal line segment in Figure 3.7
indicated by p = 0.

170 FUZZY PATTERN RECOGNITION

0
0

p = o
16

Figure 3.7 Some 3-point realizations for Rg using R from (3.28)

Figure 3.7 also exhibits realizations for Rj, Rjg, Rgg, and RIQO- This
demonstrates geometric spreading of the realization as p increases.
Realizations are not generally unique. However, the ones shown in
Figure 3.7 are the only ones satisfying these three conditions: the
left point is x ; (2) the second coordinate of the right point = 1; and (3)
the second coordinate of the middle point is at least 1. Visually, the
natural crisp clustering of these three points for small values of P is
c = 2 groups, {Xj} u {X2, Xg}; as p increases, this becomes less and less
obvious.

To illustrate the effect of p on clustering, Rp was clustered with
RFCM-AO for various values of p with m = c = 2. Initialization was
at the (visually unnatural) crisp clusters {XJ^,X2}KJ{X.^}. Results for

every value of p shown in Figure 3.7 and several others as well are
listed in Table 3.11.

The values shown in Table 3.11 are the terminal memberships of the
three points in cluster 1 at each value of P. Cluster 2 memberships
can be obtained by u = 1 - u k = 1, 2, 3. First observe that RFCM-
AO works for P = -0.25 and -0.50, even though R_Q 25 and R_Q Q̂ are
non-Euclidean. This, as well as the failure of RFCM-AO at P = -1 will
be explained below.

RELATIONAL CLUSTERING MODELS 171

Table 3.11 Terminal RFCM -AO membership values in cluster 1

p Iter. Ui(Xi) Ui(X2) UilXg)

-1.00 0 Fails Fails Fails
-0.50 4 1.000 0.002 0.001
-0.25 4 1.000 0.002 0.002

0 4 1.000 0.003 0.003
1 4 1.000 0.006 0.005

10 6 1.000 0.027 0.024
50 11 1.000 0.094 0.078
100 16 0.999 0.134 0.112
500 46 0.995 0.207 0.177

1,000 78 0.994 0.221 0.192
5,000 336 0.992 0.230 0.210
10,000 131 0.818 0.730 0.010

For p > -0.5, terminal partitions become fuzzier and the work
required (iterations to termination) increases as [J increases to
5000. In all cases except (3 = 10,000 the final partition reflects a
strong association of the center point Xo with the right point Xg; the

hardened version of U in these cases is . For p = 10,000 the

spread is finally great enough that RFCM-AO stalls near the initial

0
1

partition {x^,x^}'u\
rowofTable3.11.

as indicated by the memberships in the last

Rp is non-Euclidean for any p < 0. To understand this recall the
well-known result (Mardia et al., 1979) that

R is Euclidean <^ z'̂ Rz < 0 V z e 5t" with I z, = 0. (3.30)
J=i

With 1 and I as in (3.27),
nxn n ^ '

P = L - l - l l (3.31)

is the projector onto the n-1 dimensional subspace orthogonal to the
n-vector 1^^^. A condition equivalent to (3.30) is

R is Euclidean <=> PRP is negative semi-definite. (3.32)

172 FUZZY PATTERN RECOGNITION

In other words, R is non-Euclidean, and RFCM-AO may fail,
whenever the matrix PRP has a positive eigenvalue. It is also well-
known in the literature on multidimensional scaling that for a
Euclidean matrix R the number of strictly negative eigenvalues of
PRP equals the (minimum) dimension s required for a realization of
R. Example 3.12 illustrates this.

Example 3.12 Consider the dissimilarity matrix R of equation (3.28)
in Example 3.11 where n = 3. To determine whether R is Euclidean or
not, we calculate the eigenvalues of

PRP =
2/3 -1/3 -1/3'
-1/3 2/3 -1/3
-1/3 -1/3 2/3

0 81 100"
81 0 1 X
LOO 1 0

2/3 -1/3 -1/3
-1/3 2/3 -1/3
-1/3 -1/3 2/3

which are {0, 0, -364/3}. Since all eigenvalues are non-positive, PRP
is negative semi-definite, and R is Euclidean. Now the minimum
dimension required for a Euclidean realization of R is 1, since only
one of the eigenvalues is negative. It is easy to verify that the real
number s {y , y , y } = {0, 9, 10} c 9? are a one dimensional
realization of R. (Another would be {25, 34, 35}.) We can always find
a higher dimensional realization by adding constant components to
a lower dimensional one. For example, a 3-dlmenslonal Euclidean

realization of this R is {xj, Xg, X3} = Y
9
Y

10
Y y,Xe3i- If the

eigenvalues of PRP had been, for example, (0, -4, 1}, then R would not
have been Euclidean, and no Euclidean realization of it would exist
in any dimension.

A result that gives insight about the construction of a Euclidean
relation using the p-spread transformation follows.

Theorem HB (Hathaway and Bezdek, 1994b)

Let R e St"'"'' satisfy (3.26), and let Rp and P be the matrices In (3.27)
and (3.31) respectively. Then:

(a) PRpP = P(R-pI„)P.

(b) 1^^^ is an eigenvector, with corresponding eigenvalue
0 for both PRP and PRpP.

(c) w is an eigenvector of PRP if and only if it is an
eigenvector of PRpP.

RELATIONAL CLUSTERING MODELS 173

(d) if w is an eigenvector of PRP and PRpP other than a

multiple of l„^j, then the corresponding eigenvalues
X and A,p of PRP and PRpP satisfy X-p = X .

This shows that adding P to the off diagonal elements of a matrix R
satisfying (3.26) effects a shift of - [J to all the eigenvalues of PR„P.

except the zero eigenvalue corresponding to the eigenvector l^^^j,
which is left unchanged. Now, let a given non-Euclidean R satisfy
(3.26) and let X be the largest eigenvalue of PRP. We must have X > 0
by (3.32) since R is non-Euclidean, so it follows by (3.32) and
Theorem HB that Rp will be Euclidean for all choices of [3 > ^.

Figure 3.8 depicts the general case for any relation R that satisfies
(3.26) and the additional constraint that R ^ T(ln>,n - !„) for any x in

9t. Then there is some value p for which R^ is Euclidean and

realizable by a set {x^,...x^} c 9t̂ for some s, 1 < s < n-2. Moreover,

Rp is non-Euclidean for P < P, and Euclidean for p > P, but
realizable only for s > n-1 .

Realization in 3i^ for
some s satisfying

1 < s < n-2

^ No Realization Y Realization in 9t" w

P < P p p > p

Figure 3.8 Minimum realization dimension for Rp

In Example 3.11, the cutoff value is P =0, where R = RQ is realizable
in 9?. For any choice of P > 0, the realization requires n-1 = 2
dimensions, and for any p < 0, no realization exists and Rp is non-
Euclidean. Observe that rows 2 and 3 of Table 3.11 correspond to
cases when RFCM-AO worked even though Rp was non-Euclidean.

174 FUZZY PATTERN RECOGNITION

Table 3 .12 The NERFCM-AO algorithms

Store Relation matrix R = rjî satisfying, Vi.J.

r.. > 0 , r„ = 0 , r , = r . . and R 7̂ 11(1 - I
ij 11 Ij ji ^ nxn n

), t e9^

(•• number of clusters : 1 < c < n
«*' maximum number of Iterations : T

Pick <*- weighting exponent: 1 < m < 0°
«•• termination threshold : 0 < 8

Guess Initial partition Ug e M̂ .̂ ^

|3=0; t < - l
Whl le(t<T)

For 1=1 to c

Next 1
For i= 1 to c

For k= 1 to n

_,r (3.33)

Next k
Next 1
If d, < 0 for any i and k, then

ik

(3.34)

Ap = maxj-2 * d̂ ^ / (||vj ^ - e ^ l ^ (3.35a)

Iterate
l , k *• ' -'

For 1= 1 to c
For k= 1 to n

Nextk
Next 1

(3.35b)

(J = p + Ap
For k = 1 to n

If dik > 0 V 1

(3.35c)

"ik,t - / i (d ^ , / d) i / ' - "
1=1 -̂

(3.36)

Else Ujĵ ̂ = 0 if djk > 0 and u.^ ^ > 0 with

Nextk

If IK (U J - K (U, ,) < e Then Exit While

t < - t + l
End while

1=1

U ^ U t

RELATIONAL CLUSTERING MODELS 175

A straightforward way of using (3.27) with RFCM would be to simply
compute (numerically) the largest non-negative eigenvalue >t (= p in
Figure 3.8) of PRP, and then cluster the Euclidean matrix Rg^ with

RFCM-AO. Instead of doing unnecessarily costly eigenvalue
computations, Hathaway and Bezdek (1994b) suggested an alternate
approach that dynamically estimates in a computationally efficient
way the p-spread needed to continue RFCM-AO. This approach is
efficient because it depends primarily on by-products of the original
RFCM iteration. Table 3.12 lists the NERFCM-AO algorithm

NERFCM-AO and RFCM-AO are identical except for the
modifications in (3.35) that are active whenever some negative value
of

^ik '̂̂ encountered. The duality theory asserts that dj,̂ values
correspond to certain squared Euclidean distances if an object-data
realization of Rp exists. It follows that a negative value of djĵ . signals
the non-existence of a realization of Rp, which indicates that the
current value of p should be incremented by some Ap > 0 so that the
basic (RFCM-AO) iteration can be continued using the new shifted
value P + Ap. Hathaway and Bezdek in (1994b) showed that the
increment Ap in (3.35a) is reasonable in the sense that it provides a
meaningful lower bound of the minimum increment needed to make
the new Rp Euclidean. They also proved that NERFCM-AO was
correct in that the updated d̂ ^ values in (3.35b) are non-negative and
correspond to the djĵ values for the newly updated p in (3.35c).

To summarize, modification of the original RFCM-AO algorithm
using (3.35) calculates a reasonable (under)estimate of the minimum
shift required to transform the current Rp into a Euclidean matrix,
and then implements this shift by updating the current djĵ values
and value of p. The quantities used to determine the shift are the

original d̂ ,, values and the values {||vj - eĵ lj }. Since these are exactly
the quantities needed to perform the updating of the djĵ ,̂ there is no
wasted computation done in determining the new increment to Rp.
Moreover, whenever an increment in the shift is not needed, which
is in the large majority of iterations, the work requirements for that
particular iteration of NERFCM-AO are no greater than that for a
RFCM-AO iteration, except for the additional negativity checks on
djjj., which are negligible in cost.

Example 3.13 Table 3.13 lists the coordinates of the data set X^
produced by truncating the decimal parts of X^̂ in Table 3.7.

176 FUZZY PATTERN RECOGNITION

Table 3.13 Coordinates of X
11

Datum X y
X l -5 0

X 2
-3 2

^ 3
-3 0

X 4 -3 -2

X 5
-2 0

Xe 0 0

X 7 2 0

^ 8
3 2

X g 3 0

^ 1 0
3 -2

X l l 5 0

Figure 3.9 is a scatterplot of X^j, which shows that X^j has the same

basic structure as X^̂ (Figure 3.6). Visually, there are again clusters

to the left and right of the bridge point x = (0,0)^.

O C3—6—O O O X

Figure 3.9 Data set X^

All runs of NERFCM-AO reported here used c = m = 2, a stopping
criterion e= 0.0001, and the initialization shown at (3.21). Three
transformations of X^̂ were made, resulting in three dissimilarity
relation matrices R^t- Specifically, the entries of R|u|| were

computed using: (i) squared Euclidean distances R 2 : fti) squared 1-
Irlb

norm distances R o : â nd (iii) squared 1-norm distances with an
Irlli

off-diagonal shift of 48.0, R„ ,,9 . The third choice is motivated by
^ HI?+48 ^

the eigenvalues of PR|U||P, all three sets of which are displayed in
Table 3.14.

RELATIONAL CLUSTERING MODELS 177

Table 3.14 Eigenvalues of PR||*||P for three cases

^ I W l i ^ I M I ? W?+48
0.00 48.00 0.00
0.00 22.11 0.00
0.00 4.94 -25.89
0.00 0.00 -43.06
0.00 0.00 -48.00
0.00 0.00 -48.00
0.00 0.00 -48.00
0.00 -3.32 -51.32
0.00 -47.12 -95.12

-32.00 -80.00 -128.00
-212.00 -278.79 -326.79

The pair of negative eigenvalues for P R„ ,,9 P shown in column 1 of

Table 3.14 imply that R„ ,,0 has a two-dimensional obiect-data

realization. This is no surprise, since R„ ,,9 was derived using
^ I ' l l

squared Euclidean distances between two-dimensional vectors.
Table 3.14 also suggests that using the 1-norm gives a non-Euclidean
R (also no surprise) as indicated by three positive eigenvalues, the
largest of which is 48. Apparently R 2 can be made Euclidean using
a P-spread with (3 > 48. Using |3 = 48 in (3.27) with R = R 2 renders

Irli
Rp Euclidean, and this transformed matrix has a nine-dimensional
object-data realization. This is seen in the third column of Table
3.14; R„ 9 has 9 negative and no positive eigenvalues.

Ml+48 ^ F &
Terminal membership values in cluster 1 obtained by applying
NERFCM-AO to the three relational data sets generated by
transforming X^̂ are listed in Table 3.15.

Membership values for R 2 ^.nd R n are relatively crisp and
Irll I*l2

similar to each other, the maximum difference being 0.05.
Membership values for clusters in R 2 (corresponding to
Euclidean distances for some object data set in ĝ 9) are much fuzzier,
as expected. The shift needed for the R 0 data was only p = 3.56,

Irll
much less than the P = 48 required to have actual Euclidean
dissimilarities. Note tha t bridge point Xg receives equal

178 FUZZY PATTERN RECOGNITION

membership in both clusters in all three cases; this is expected and
desirable.

Table 3.15 Terminal NERFCM-AO memberships in cluster 1

Data Set ^ll*l|2 l̂l'llf R„ „2

Iter. 11 11 9
Final (3 0 3.56 0

X i 0.93 0.90 0.75

^ 2
0.91 0.89 0.73

^ 3
1.00 1.00 0.77

X 4 0.91 0.89 0.73

^ 5
0.81 0.76 0.62

^ 6
0.50 0.50 0.50

X 7 0.19 0.24 0.38

^ 8
0.09 0.11 0.27

X g 0.00 0.00 0.23

^ 1 0
0.09 0.11 0.27

X l l 0.07 0.10 0.25

NERFCM shares all the good properties of RFCM. If negative dj^
values are not encountered, then NERFCM is RFCM; and when they
are encountered, a simple modification adjusts the "spread" of
(implicit realizations of) the data just enough to keep the iteration
sequence {U } in M^^^.

3.6 Cluster validity for relational models

Methods for validation of clusters found from relational data are
scarce. Validity for partitions based on object data X was discussed
in Section 2.5. When X c 9?P is transformed into relational data R
using the techniques in Section 3.2, subsequent processing with a
relational algorithm leads to a crisp or fuzzy c-partition of X. In this
case many of the indices in Section 2.5 can be used for validation of
U, since X is available.

When the data are relational to begin with, validation methods that
explicitly require numerical data (for example, all direct indices)
are not applicable to the question of cluster validity. When a
relational algorithm produces/uzzy partitions of O, indirect indices
such as the partition coefficient and partition entropy can be used
for validation.

RELATIONAL CLUSTERING MODELS 179

Jain and Dubes (1988) cover several statistical h3qDothesis tests for
validation of entire hierarchies (dendrograms) of clusters that are
obtained from methods such as the linkage algorithms and Zadeh's
decomposition of the transitive closure. Another validation
strategy for linkage type algorithms is associated with the size of

Jumps taken by the set distance 6 that controls merger or splitting

(Hartigan, 1975). For example, when the procedure begins with 6=0

at c = n and terminates at 6 = maximum at c = 1, the usueil strategy is

to look for the largest jump in AS = 6(c -1) - 8(c). This is taken as an
indicator that c is the most natural choice for the best number of
clusters, on the presumption that the SAHN method works hardest
to merge clusters that cause the biggest Jump. In Figure 3.4, for
example, successive Jumps in the single linkage merger distances
are 0.50, 0.50, 0.85 and 0.21. The largest jump, (0.85 from c = 3 to c

=2) identifies the crisp partition X = {l, 2} u {3.4} u {5,6,7,8,9}, c = 3

clusters at 5 . =1.00, as the most natural ones. The configuration of
min ='

the data in Figure 3.2 seems to confirm this visually, although a case
can be made that c = 2 is Just as natural.
The sequence of jumps for the complete linkage solution shown in
Figure 3.4 is 0.50, 0.50, 0.75, 0.45 and 1.9, indicating that the
clusters associated with c = 2 are the best choice, which is of course
different than the solution offered by single linkage. One problem
with this method is that the biggest jump can be severely influenced
by the presence of a few outliers.

Zadeh's algorithm decomposes a fuzzy relation into crisp partitions
with different values of c at values of a corresponding to a-cuts of
R°°. The scalars {a} are sometimes regarded as a rough indication of
the validity of each hard clustering of O. In Example 3.7, we might
assert that each object belongs by itself (c = 5) with confidence a = 1.
But this is always true, and leads to the wrong conclusion - i.e., that
the best clustering is one with all singletons. Continuing this
reasoning, x and x would belong together with confidence a = 0.9,

and so on. Since a is just the edge weight of the strongest adjacency
link between each pair of nodes in R , the word confidence as used
here has no statistical connotation, and this use of the values of a is
pretty misleading, for they do not portray "better and better"
partitions as a gets closer and closer to 1. Indeed, you might argue
that the confidence in a partition by R should be inversely
proportional to a, and we would not object. In view of Theorem M,
we know that single linkage generates the same clusters as Theorem
Z for fuzzy similarity relations. Consequently, the largest jump
method can also be used for validation of clusters such as those
associated with the dendrogram in Figure 3.5. In this figure, the

180 FUZZY PATTERN RECOGNITION

successive jumps in a are : 0.10, 0.10, and 0.40, indicating a strong
preference for c = 3 clusters.

p
When R is clustered with convex decomposition, since X Cĵ = 1, c

k=l ^

indicates the "percentage" of R needed for convex factorization of R.
In terms of cluster validity then, c can be loosely interpreted as an
indicator of the relative merit of the associated c-partition induced
on O by R . In Example 3.8, this leads to interpreting the 3-partition
UQ 4 as the most valid choice, and the two partitions with c = 0.3 at
different values of c are regarded as less but equally valid.

3.7 Comments and bibliography

The SAHN, transitive closure and convex decomposition techniques
produce hard partitions from certain crisp or fuzzy relations. FNM,
AP, RFCM and NERFCM all produce fuzzy partitions from
particular classes of fuzzy relations by minimizing a relational
objective function with alternating optimization. Kaufman and
Rouseeuw (1990) discuss a method called FANNY that is closely
related to RFCM. Sen and Dave (1998) show that using the method of
LaGrange multipliers with the RFCM objective function in (3.25a)
leads to the RFCM algorithm without making the assumption in
(3.25b), but the derivation does not ensure that all of the
memberships will be non-negative, because LaGrange multipliers
only enforce equality constraints. Following Kaufmann and
Rousseeuw's derivation of FANNY, these authors have very recently
obtained an even stronger result using Kuhn-Tucker theory that
proves that the memberships will satisfy the required non-
negativity condition. This result will be published in a forthcoming
paper. The equations obtained in their Kuhn-Tucker approach are
slightly different than the ones given in our description of the RFCM
algorithm.

Fuzzy partitions enable the user to quantitatively distinguish
between objects which are strongly associated with particular
clusters from those that have only a marginal (borderline)
association with several classes. The AP algorithm assumes the
existence of prototypical objects which should be good
representatives of different clusters (but does not give a method for
finding them, although the object with maximum typicality would
be an obvious candidate), and has the least restrictions on relations
that it can process. Runkler and Bezdek (1998b) give a relational
version of the alternating cluster estimation method called RACE
that explicitly finds prototypical object indices (and hence,
prototypical objects too), even though the data are known only in
relational form. RACE finds a fuzzy partition of the objects too, and,
like its object data counterpart (ACE, Runkler and Bezdek, 1998a), is
not objective function driven.

RELATIONAL CLUSTERING MODELS 181

Using NERFCM-AO is in one sense like extracting clusters from a
crisp relation by first computing its v - A transitive closure as in
Example 3.2. Both methods group the n objects underlying the
original relation by clustering in a transformed relational data
matrix. For NERFCM-AO it is difficult to estimate of how closely
clusters in Rjj might resemble those extracted from R by some other
method. Intuitively, if the required spread is not too large, structure
inherent in R should be mirrored by that in Rp. Hathaway and
Bezdek (1994c) discuss a crisp version of this model called,
naturally, non-Euclidean relational hard c-means (NERHCM).

The usefulness of relational clustering methods is limited by several
things. First is the matter of their computational complexity. O(n^)
run times are flne if n = 150, as in the Iris data. But in large relational
databases, n may be on the order of 10^, and CPU time becomes an
important factor. On the other hand, some information retrieval
problems, for example, are cast naturally in the form of relational
clustering, and there may be little choice but to use one of these
schemes. Another limitation with the methods in this chapter is that
they are explicitly limited to square relations, while a real
application may have rectangular relational data.

Delgado et al. (1995) propose the use of hierarchical clustering
algorithms such as single linkage for cluster validity. In their view
the failure of cluster validity functionals such as the ones discussed
in Chapter 2 can be ameliorated by pre-clustering data with a SAHN
algorithm, and using the results to limit the range of c and provide
good initializations for the "real" clustering to follow (presumably by
a non-crisp clustering algorithm). Having said this, they try to
address the topic of Section 3.6 - how to validate relational clusters -
by proposing several validity measures for their SAHN algorithms.
In other words, they end up with the same problem in one domain
they are trying to avoid in another domain! They give several
numerical examples of their methods, including one with the Iris
data.

Sato et al. (1997) propose three relational clustering models they call
additive clustering models. In the language of our book these
correspond to crisp (ordered additive), fuzzy (simple additive) and
posslbilistic (overlapping additive) clustering schemes. All three
methods are regarded as relatives of the crisp relational model of
Shephard and Arable (1979), extended using fuzzy data, fuzzy
dissimilarity and multicriteria clustering. The basic objective
function for Sato et al.'s three additive models is

182 FUZZY PATTERN RECOGNITION

m m •; K,cM(U,a) =

n n / c
I Z kkj - a I UjkU

j=l k;=lV i=l

I I fk j - r
j=i k=i ^ '

, where (3.37a)

n n
X Z TkJ

J=l k=l

n(n -1)
(3.37b)

Sato et al. build three models (one each for U e Mĵ ^ .̂M^^ .̂M ^)̂ based
on variations of (3.37) that are used with ratio, interval and ordinal
relational data. The relational data matrix in their models is not
restricted to inner product norm distance relations or even
symmetric relations. Sato et al. also discuss a "generalized fuzzy
clustering model" for relational data that uses an aggregation
operator in the objective function

m m K„(U)= I S
J=l k=l

r , - I T , u ik U., (3.38)

where T is any T-norm. Three choices are discussed and exemplified
in Sato et al. : the minimum (T), product (T) and Hamacher T-norms
(Klir and Yuan, 1995). Also given are methods for optimizing (3.38) in
each of the three cases. They give several examples of clustering with
each of these models using small relational data sets, but like their
discussion of TFCM (Section 2.6), no numerical comparisons to other
relational clustering models are offered, so we are again at a loss to
make any assessment of the utility of these models. However, the
work presented in this little book considerably extends the body of
fuzzy clustering algorithms available for relational data, so if this is
the type of data you have, by all means consider trying one or more of
these approaches.

4 Classifier Design
4.1 Classifier design for object data

In Section 1.1 we defined a classifier as any function D: St̂ i-̂ N .

The value y = D(z) is the label vector for z in 91^. D is a crisp classifier
if D[91P] = N ; otherwise, the classifier is fuzzy, possibilistic or
probabilistic, which for convenience we lump together as soft
classifiers. This chapter describes some of the most basic (and often
most useful) classifier designs, along with some fuzzy
generalizations and relatives.

Soft classifier functions D: 9tP i-> N are consistent with the
pc

principle of least commitment (Marr, 1982), which states that
algorithms should avoid making crisp decisions as long as possible,
since it is very difficult (if not impossible) to recover from a wrong
crisp classification. This is particularly true in complex systems
such as an automatic target recognition system, or a computer aided
medical diagnostician that uses image data, because there are
several stages where decisions are made, each affecting those that
follow. For example, pixels in a raw image need to be classified as
noise points for preprocessing, objects need to be segmented from
the preprocessed images, features must be extracted and the objects
classified, and the entire "scene" needs to be labeled. While we use
mostly simple data sets to illustrate some of the algorithms in this
chapter, keep in mind complex scenarios such as the ones jus t
described to appreciate the potential benefits of fuzzy recognition
approaches.

Many classifiers assign non-crisp labels to their arguments. When
this happens, we often use the hardening function H:N f-> N,

^^ '̂ pc he

defined at (1.15) to convert non-crisp labels into crisp ones; for c
classes, H o D(y) = H(D(y)) e {ê e^}.

Designing a classifier simply means "finding a good D ". When this is
done with labeled training data, the process is called supervised
learning. We pointed out in Chapter 2 that it is the labels of the data
that supervise; we will meet other forms of supervision later in this
chapter, and they are also appropriately called supervised learning.

D may be specified functionally (e.g., the Bayes classifier), or as a
comiputer program (e.g. computational neural networks or fuzzy
input-output systems). Both types of classifiers have parameters.
When D is a function, it has constants that need to be "learned"
during training. When D is a computer program, the model it
implements has both control parameters and constants that must

184 FUZZY PATTERN RECOGNITION

also be acquired by "learning". In either case the word learning
means finding good parameters for D - and that's all it means.

In supervised classifier design X is usually crisply partitioned into a
training (or design) set X with label matrix U and cardinality

X. = n , ; and a test set X = (X - X) with label matrix U and
I tr| tr te tr te
cardinality X. = n, . Columns of U and U are label vectors in

•̂ I te| te tr te

Np(,. Testing a classifier designed with X means estimating its error
rate (or probability of misclassification). The standard method for
doing this is to submit X to D and count mistakes (U must have

te te
crisp labels to do this). This yields the apparent error rate
E (X |X). Apparent error rates are conveniently tabulated using
the c X c confusion matrix C = [c] = [# labeled class j I but were

i j •* '

really class i]. (Some writers call C^ the confusion matrix.) More
formally, the apparent error rate of D when trained with X and
tested with X is

te

E„(X, IX,)
D •• t e I t r '

wrong

te

/
1-

^# right ̂

te JJ

f
1-

tr(C) ' '

V " t e J
(4.1)

Equation (4.1) gives, as a fraction In [0, 1], the number of errors
committed on test. This number is a function not only of D, but of
two specific data sets, and each time any of the three parameters
changes, E will in all likelihood change too.

Other common terms for the error rate E„(X IX) include test error
D te ' tr

and generalization error. Our notation indicates that D was trained
with X , and tested with X . E is often the performance index by
which D is Judged, because it measures the extent to which D
generalizes to the test data. Some authors call E (X IX) the "true"
* D ' te' tr
error rate of D, but to us, this term refers to a quantity that is not
computable with estimates made using finite sets of data.
E (XIX) is the resubstitution error rate (some authors use this term
synonomously with apparent error rate, but we prefer to have
separate terms for these two estimates). Other common terms for
E {X|X) include training error and recall error rate. Resubstitution
uses the same data for training and testing, so it usually produces a
somewhat optimistic error rate. That is, E (X|X) is not as reliable as
E (X IX) for assessing qeneralization, but this is not an

D te ' tr o •»

impediment to using E (X|X) as a basis for comparison of different
designs. Moreover, unless n is very large compared to p and c (an

CLASSIFIER DESIGN 185

often used rule of thumb is n e [lOpc, lOOpc]), the crediblhty of
either error rate Is questionable. An unfortunate terminology
associated with algorithms that reproduce all the labels (I.e., make
no errors) upon resubstitutlon of the training data is that some
authors call such a method consistent (Dasarathy, 1994). Don't
confuse this with other uses of the term, as for example, a consistent
statistic.

A third error rate that is sometimes used is called the validation
error of D. This idea springs from the increasingly frequent practice
of using X to decide when D is "well trained", by repeatedly
computing E (X | X) while varying the parameters of D and/or X .
Knowing that they want the minimum test error rate, many
Investigators train D with X , test it with X , and then repeat the

" tr te ^
training cycle with X for other choices (such as the number of nodes
in a hidden layer of a neural network), until they achieve a minimal
or acceptable test error. On doing this, however, X unwittingly
becomes part of the training data (this is called "training on the
testing data by Duda and Hart, 1973).

To overcome this complication, some researchers now subdivide X
into three disjoint sets: X = X, u X, u X , where X is called a

J tr te va va

validation set. When this is done, X̂ ^ u X^̂ can be regarded as the

"overall" training data, and X as the "real" (or blind) test data.
Some authors now report all three of these error rates for their
classifiers : resubstitutlon, test and validation errors. Moreover,
some authors interchange the terms test and validation as we have
used them, so when you read about these error rates, just make sure
you know what the authors mean by each term. We won't bother
trying to find a sensible notation for what we call the validation
error rate (it would be something like E„(X IX ; X)). For the few

^ ^ D va' te tr
cases that we discuss in this chapter that have this feature, we will
simply use the phrase "validation error" for this third error rate.
Finally, don't confuse "validation error" with the term "cross-
validation", which is a method for rotating (sometimes called
Jackknifing) through the pair of sets X and X without using a third
set such as X .

va
The small data sets used in some of our examples do not often justify
worrying about the difference between Ejj(X|X) and E (X |X), but in
real systems, at least E(X |X) should always be used, and the
selection and manipulation of the three sets {X , X , X } is a very
Important aspect of system design. At the minimum, it is good
practice to reverse the roles of X and X , redesign D, and compute
(4.1) for the new design. If the two error rates obtained by this "cross

186 FUZZY PATTERN RECOGNITION

validation" procedure are quite different, this indicates that the
data used for design and test are somehow biased and should be
tested and/or replaced before system design proceeds.

Cross validation is sometimes called "1-fold cross validation", in
contrast to k-fold cross validation, where the cross validation cycle
is repeated k > 1 times, using different pairs (X , X) for each pair of
cross validation tests. Terms for these training strategies are far
from standard. Some writers use the term "k-fold cross validation"
for rotation through the data k time without "crossing" - that is, the
total number of training/test cycles is k; "crossing" each tiraie in the
sense used here results in 2k train/test cycles. And some authors use
the term "cross validation" for the scheme based on the
decomposition of X into {X , X , X } just discussed, e.g., (Haykin,
1996). There are a variety of more sophisticated schemes for
constructing design and test procedures; see Toussaint (1974) or
Lachenbruch (1975) for good discussions of the "rotation" and
"leave-one-out" procedures.

There is another aspect to the handling of training and test data in
the design of any real classifier system that is related to the fact that
training is almost always based on some form of random
initialization. This includes most classifiers built from, for
example: clustering algorithms, single and multiple prototype
decision functions, fuzzy integral classifiers, many variants of
sequential classifier designs based on competitive learning models,
decision tree models, fuzzy systems, and recognition systemis based
on neural networks. The problem arises because - in practice -
training data are normally limited. So, given a set X of labeled data,
the question is: how do you get a good error estimate and yet give the
"customer" the best classifier. If the classifier can change due to
random initialization (we will see this happen in this chapter), then
you are faced with the training and testing dilemma:

% If you use all the data to produce (probably) the best classifier
you can for your customer, you can only give the
resubstitution error rate, which is almost always overly
optimistic.

€ If you split the data and rotate through different training sets
to get better test statistics, then which of the classifiers built
during training do you deliver to your customer?

Consider, for example, the leave-one-out estimate of the error rate,
in which n classifiers {D,} are designed with n-1 of the data, and

k °
each design is then tested with the remaining datum, in sequence, n
times. Since the (D } can all behave differently, and certainly will
have different parameters, it is not clear that the leave-one-out
error rate is very realistic as far as estimating the performance of a

CLASSIFIER DESIGN 187

delivered system. Averaging the parameters of the n D 's, for
example, may not give a system that performs anything like any of
the tested classifiers.

This is a real world trade-off that, many times, those of us who earn
our keep by teaching and doing research tend to ignore. Do we know
the answer to this perplexing problem? Nope. The real solution, of
course, is to design the classifier with all the data available, and
then have someone who is not associated with the design collect a
separate test set to generate error statistics. In Section 4.9 we will
discuss classifier fusion, one methodology that at least in principle
can be used to ameliorate the training versus testing dilemma. Our
objective here is to simply point out that constructing a training
approach for classifier design is the first step in delivering a
workable system, and doing it correctly so that error rate statistics
have reliable meanings is far from a trivial consideration.

Crisp labels assigned to data that are collected by domain experts
are usually accepted at face value as being physically correct (aside
from errors that can always occur), but in many instances the
numerical representation of each object is not distinct from a
computational point of view. Anderson's (1935) Iris data is a famous
example of this. He assigned physical labels to Individuals from
populations of three subspecies of Iris flowers (Sestosa, Versicolor
and Virginica). But the four numerical features he chose to measure
for each object (petal width, petal length, sepal width and sepal
length) do not provide many algori thms with enough
discr iminatory power to recognize and represent three
algorithmically well-defined classes.

Don't be surprised if your favorite algorithm wants to use a different
number of classes than the number of physical labels. It may mean
nothing more than the classes are inseparable (to your model,
anyway) in the chosen numerical representation. Clustering is
sometimes performed on labeled data for just this purpose - to detect
whether or not the data do in fact seem to agree with their labels. A
danger in doing this is, of course, that clustering algorithms always
produce clusters, so algorithmic disagreement does not prove that
the data have this disquieting property. On the other hand,
agreement is reassuring, and establishing a class (such as
"unknown" or "in-between") in labeled data with a clustering
algorithm can be used to improve classifier performance by biasing
it away from the objects whose representations fall in the overlap
portions of the feature space. See House et al. (1999) for a nice
application of this technique, where FCM is used with c = 3 to
establish an intermediate class in data with c = 2 labeled classes
(faulty and non-faulty states in an air handling unit).

Another aspect of training is related to the (much overworked) word
adaptive, which in our context refers to the style used to acquire the

188 FUZZY PATTERN RECOGNITION

parameters of D. So many authors have used this word in so many
different ways that we cannot avoid a short discussion of it here.
Indeed, we have already used adaptive in Chapter 2 in several ways,
principally to distinguish between local cluster estimation (as the
GK and adaptive FCV algorithms do) from global approaches such as
the c-means models. In the current context we can distinguish three
cases:

Non-adaptive off-line training. X is used non-iterativelyjust once
to find D, and is not revisited with a view towards improving it
thereafter. This is the case, for example, when designing a Bayes
classifier with labeled data under the assumptions of the normal
mixture case discussed in connection with probabilistic clustering
in Chapter 2. For i = 1 to c, labeled data X^^. are used to estimate the
parameters of the i-th discriminant function by substitution into
analytic necessary conditions, and the design is complete.

Static off-line adaptive training. X is used to improve estimates of
the parameters of D either iteratively or recursively. The most
common example of this case is iterative training of a learning
model such as a fuzzy system or neural network. In either case input
vectors from X are used over and over while parameters are
adjusted to improve some measure of model performance. Once
trained, however, X is put aside during the operational phase of
classification. A familiar example from calculus may help you to
understand this case. Newton's method for estimating a root of the
real equation f(x) = 0 adjusts Iterative estimates of the root at each
step in the algorithm - this is "adaptive learning" in the same sense
as it is often used in the literature of learning models.

Dynamic on-line adaptive training. In this scheme the initial
classifier might be found using either non-adaptive or adaptive off
line training. As time passes, (features of) the observed data may
change, or new data may be available, and the classifier attempts to
keep up with these changes by continuously reevaluating (adapting)
its parameters in response to changes in the incoming data. Some
authors refer to this as a temporally adaptive classifier. We all want
classifiers that are temporally adaptive, but we are aware of only a
very few cases that actually come close to this type of operation.

Classifier performance depends on the quality of X . If X is large
enough and its substructure is well delineated, we expect classifiers
trained with it to yield small error rates. On the other hand, when
the training data are large in dimension p and/or number of
samples n, classifiers such as the k-nearest neighbor rule (cf.
Section 4.4) can require too much storage and CPU time for efficient
deployment. To circumvent time and storage problems caused by
very large data sets, as well as to improve the efficiency of

CLASSIFIER DESIGN 189

supervision by X , many authors have studied ways to edit the
training data (Dasarathy, 1990).

Two common schemes for editing a labeled data set are selection and
replacement. Selection means : find a proper subset X^ c X^ .̂

Replacement means : use a transformation fi:9^P|->9tP to find
Xtj.=Q[Xtr]- Subset selection is a special case of replacement.
Replacements are almost always labeled prototypes (such as V from
one of the c-means clustering models) produced by Q.

^ < ^ * • . . * >

X "^ <f>

*.

A * ^ • * ^ * * ,<>- ^

^ * A ^ • & • ^ —^•' ^ *
•

•

Figure 4.1 Ekliting by selection of labeled data in X

Figure 4.1 depicts data selection. (Be careful to distinguish this from
feature selection. Section 2.6.) The density of labeled data over each
cluster in the left side of the figure is high. A selected subset (or
skeleton) of the original data is shown on the right. This approach
has many variants, and is well summarized in Devijver and Kittler
(1982). The aim is to condense X while approximately preserving
the shape of the decision boundaries set up by training D with it.

. 1 ^ ' x̂ .̂ - V I jj o
[•

o ^
< > ' ^ > * / / ^ - ^ • • • • • - •

Figure 4.2 Replacing X with multiple point prototypes

190 FUZZY PATTERN RECOGNITION

Figure 4.2 illustrates replacement by multiple point prototypes,
where X is replaced by V, a set of labeled prototypes for classes 1
(•) and 2 (O). There is more than one prototype per class in Figure
4.2, but we will use the notation V for both the single and multiple
prototype cases. The self-organizing feature map (SOFM) discussed
later is one very good way to accomplish replacement (Kohonen,
1989). It is also possible to replace the data in Figure 4.2 with non-
point prototypes (called B in Chapter 2) such as rings, lines,
hyperquadric surfaces, etc., leading to more sophisticated
classifiers that can match prototypical shapes to objects having
similar representations.

4.2 Prototype classifiers

Prototype representation is based on the idea illustrated in Figure
4.3. The vector v. is taken as a prototypical representation for the
vectors in the crisp cluster X..

O 9 O ^

o 4̂ 1̂ ^ o
o o °

Figure 4.3 Representation of many vectors by a point prototype
For simplicity, our presentation of prototype classifier design is
confined to the point prototype case, but you should bear in mind that
many of the ideas discussed in this section generalize easily to non-
point prototypes. There are many synonyms for the word prototype:
centroid, vector quantizer (VQ), signature, template, codevector,
paradigm, exemplar, etc. In the context of clustering as in Chapter 2
V. is usually called the cluster center of crisp cluster X, c X.

A. The nearest prototjrpe classifier

Once the point prototypes are found (and possibly relabeled to agree
most usefully with the data if the training data have physical
labels), they can be used to define a crisp nearest prototype (1-np)
classifier D^ ^ g:

CLASSIFIER DESIGN 191

Definition 4.1 (1-np classifier). Let V be a set of c crisply labeled
prototypes, one per class, ordered so that e. is the crisp label for v., 1

< i < c; let 5 be any distance measure on 9?^, and let
(V, E) = {(v., e.): i = 1 c} e Ŝ '̂ P X N^^ . The crisp nearest prototype {1 -

np) classifier D^ E § is defined, for z e ^^P , as

Decideze i o D^gg(z) = e. <=> 5(z,v.) < 5(z, v.) V J?ii . (4.2)

Equation (4.2) says : find the closest prototype to z, and assign its
label to z. Ties are broken randomly. Note that HCM uses (4.2) to
determine the crisp memberships shown at (2.6a). The most
familiar choice of dissimilarity is the inner product induced norm
metric shown in equation (1.6). The crisp 1-np design can be
implemented using prototypes from any algorithm that produces
them. It would be careless to call D^^g a fuzzy classifier, for
example, just because fiizzy c-means produced the prototypes V.

One of the most important classifier structures is the hyperplane H

in 9̂ ^ defined, for any positive definite matrix A, as

HA(w,a) = {xe9?P:(x,w)^ =x'^Aw = a;ae9?} . (4.3)

As usual, when A is the identity, the inner product is Euclidean and
we suppress the subscript A. Without loss of generality, we confine
further discussion to the Euclidean case.

H(w, 0) is a vector subspace of dimension p-1 through the origin of

9?^, and g(x) = (x,w) is a linear function of x. H(w, a) is a p-1
dimensional qffine subspace parallel to H(w, 0), and the function
g(x) = (x, w) + a is an qffine function of x (linear plus a constant).

The parameter a is the offset of the hyperplane H from the origin,
and the vector w is called a (there are infinitely many) normal
vector to H, because w is perpendicular to H in the given inner
product, i.e., whenever a vector, such as (x - x) in Figure 4.4, is
parallel to H (lies in H), ((x - x), w)^ = 0.

These properties are illustrated in Figure 4.4, which shows the
geometric structure of H in terms of its two parameters. Changing w
rotates H, and changing a translates H parallel to itself. The effect of
using a weight matrix A other than the identity in (4.3) can now be
seen. Letting w' = Aw, (x, w)^ = x"̂ Aw = x"̂ (Aw) = (x. Aw) = (x, w'),
so changing the inducing weight matrix rotates the normal vector w,

192 FUZZY PATTERN RECOGNITION

and hence, the hyperplane, keeping it perpendicular to w in the new
inner product.

t
y

X yaZ

/ 7̂ w

X - X >

^ zH H"^(w,a):(w,z)>a

0 = 9^P
^ H(w,a):(w,x) = a

H" (w a):(w y) < a

Figure 4.4 Geometry of hjrperplanes

For fixed w a family of parallel linear varieties (hyperplanes) are
generated by (4.3) as a runs through 9t. Hyperplanes are the "flat"

sets in 5K ,̂ and consequently, g(x) = (x, w) + a is called a linear
decision function even though it is by definition affine.
Consequently, classifier functions defined by g are called linear
classifiers whether g is linear or affine. When w is a unit vector, it is
routine to check that, given any point in H(w, a) such as x in Figure
4.4, the orthogonal distance 5 ,̂ from z to H(w, a) is 8 „ = (z - x, w).

zH 2;ri \ /

As illustrated in Figure 4.4, H divides 9̂ ^ into three disjoint sets,

viz., 91P = H" uHuH"^. The set H"̂ is the positive half-space
associated with H, so called because, as shown in Figure 4.5, every
vector z that lies "above" H (and therefore in H"̂) yields a value for
the dot product that is greater than a, (z, w) > a . Similarly, vectors y
that lie in the negative half space H" yield (y,w) < a; and of course,

for vectors x in H, (x,w) = a . H is called a separating hyperplane
between its two half spaces, and when a labeled data set X with c = 2
classes can be completely separated by H (so that all points from one
class lie on one side of H, while all points from the other class lie on
the opposite side), X is said to be linearly separable.

The geometry of the crisp 1-np inner product norm classifier is
shown in Figure 4.5, using Euclidean distance for 6. This 1-np design
erects a linear boundary between the i-th and j - th prototypes, viz.,
the hyperplane H(w, a) through the midpoint of and perpendicular to

CLASSIFIER DESIGN 193

the line joining v, and v.. Figure 4.5 illustrates the labeling decision
represented in equation (4.2); vector z is assigned to class i because it
is closest to the i-th prototype. Some authors use the terms
prototypes and neighbors interchangeably, but we will consistently
call nearest prototypes new vectors made from the data or points in
the data, while nearest neighbors are labeled points in the data.

H(w, a

Figure 4.5 The 1-np classifier for the Euclidean norm

All 1-np designs that use inner product norms erect (piecewise)
linear decision boundaries. Thus, the geometry of 1-np classifier
boundaries is fixed by the way distances are measured in the feature
space; and not by geometric properties of the model that produces

the cluster prototypes. The location in 9t^ of the prototypes
determines the location and orientation of the c(c-l)/2 hyperplanes
that separate pairs of prototypes. The locations of the prototypes do
depend importantly on both the computational model and data used
to produce them. Hence, 1-np classifiers based on different prototype
generating schemes can certainly be expected to yield different error
rates, even though they all share the same type of decision surface
structure.

Example 4.1 Table 4.1 lists 20 vectors in 9̂ in c = 2 labeled classes,
10 apples in class 1 (crisp label e), and 10 pears in class 2 (crisp label

e^). v^ = v^ = (1.22,0.40)"^ and Vp = V2 = (2.43,1.03)'^are the sample
mean vectors for the apples and pears, respectively. These two
prototypes are listed in the last row of Table 4.1 and appear
graphically along with the 20 labeled data in Figure 4.6.

194 FUZZY PATTERN RECOGNITION

Table 4.1 Apples and pears data

e
i 1

X
i yi e

1
X
1

X
i ^1

e 1 1.00 0.60 s 11 2.00 0.70

e 2 1.75 0.40 s 12 2.00 1.10

e 3 1.30 0.10 & 13 1.90 0.95

e 4 0.80 0.20 6 14 2.00 0.95

e 5 1.10 0.70 & 15 2.30 1.20

e 6 1.30 0.60 S 16 2.50 1.15

c 7 0.90 0.50 S 17 2.70 1.00

e 8 1.60 0.60 S 18 2.90 1.10

e 9 1.40 0.15 S 19 2.80 0.90

e 10 1.00 0.10 S 20 3.00 1.05

V = V —>
A 1

1.22 0.40 ^ 2 - ^ 2.41 1.01

y

"^1.20

10.80

(
0.40

c
<i <:t c

C
V = V

e < e

s £

1.00 1.50 2.00 2.50

Figure 4.6 Data in Table 4.1 and their sample mean prototypes

Once the prototypes - which in this example are the sample means
V- are determined, (their physical labels are known since the set E
is known, and each prototype is built from data with only one class
label), we need only to choose a distance measure to implement the
1-np classifier in (4.2). Choosing Euclidean distance, suppose that
the vector z = (2.0, 0.5)'^ shown in Figure 4.6 is unlabeled, and we
submit it to this 1-np classifier. The distances 6(z,Vp

6(z, v^) = 0.79 then yield 5(z, Vp) < 5(z, v^) =» D^ j . g (z) = e^
0.68 and
="pear".

CLASSIFIER DESIGN 195

The geometry shown in Figures 4.4 and 4.5 is illustrated by
computing three parameters. First we calculate a normal to H,
which is any scalar multiple of the intermean vector

w r p - v ^ =(1.19, 0.61)"^

With 5 as Euclidean distance, we compute

(4.4)

- V ,

2 w
M
llwll = 1.94 (4.5)

Since Vp > v^ , (4.5) 3aelds a = 2.59. To graphically construct the
hyperplane H (w, a) Just found for the apples and pears data, we
find a third parameter, the midpoint m of the line joining Vp to v^ ,

(4.6) m = (v^ + Vp) /2 = (1.82,0.71)T

H.„(w,a) „+ AP' : '^ H ; P = " pears"

W = V p - V ^

Figure 4.7 The 1-np classifier for Example 4.1

The geometric structure of this classifier is shown in Figure 4.7. The
decision that z be labeled a pear can be reached another way by
simply calculating (z,w) = 2.69 > a = 2.59. This tells us that z has

196 FUZZY PATTERN RECOGNITION

landed in the pears decision region H^{w, a) as shown in Figure 4.7;
similarly, the apples decision region is the negative half-space
H" (w,a). Although you cannot see it in Figure 4.7 (because the data
are not shown), H (w, a) is a separating hyperplane between the
apples (A) and pears (P) regions - that is, these data are linearly
separable.

Geometrically, the 1-np classifier grows neighborhoods about the
point z that take their shape from the topology induced by the metric
5. The circles in Figure 4.7 remind you that the norm is Euclidean, so
the shape of the neighborhoods is circular. Changing the metric
changes the shape of the neighborhoods. For example, if the 1- norm
had been used instead, the neighborhoods would be diamond shaped
as shown in Figure 2.11, and the hyperplane structure illustrated
here would be invalid, since the 1-norm is not inner product
induced.

B. Multiple prototype designs

What can we do when a single prototype is not sufficient to describe a
class accurately? This can easily happen when feature vectors that
possess the same physical label for a particular class fall into two or
more clusters, as in the famous "XOR" data that cannot be separated
by a single hyperplane (Zurada, 1992). For example, defective parts
may have oversized holes drilled into them or they may have
surface defects in the material. If those two defects are manifested in
the measured feature vectors, then the defective-part class could
have three clusters, one where the "hole diameter" is big, one where
the "material homogeneity" is low, and one where both problems are
present . Single prototype classifiers will not provide good
classification accuracy in this situation. Another situation that can
require multiple prototypes for a single class is when two physically
labeled classes overlap in the chosen feature space (as in classes 2
and 3 of the Iris data). In this case, and for that matter, in almost all
real data sets, it is advantageous to have several prototypes for each
class.

Definition 4.2 (1- nearest multiple prototype (1-nmp) classifier).
(V ,E-) = {(v.,e.,.J: j = l,...,c;i(i) = l,.. . ,c}e9t'=PxNt. Here X has c

c c J Uj) J ' ' ' ^J' ' ' ' he

classes, c < c, V is a set of c crisply labeled prototypes, with more

than one per class for at least one class if c < c, e.,., labels v as class i,
and 5 is any distance measure on 9^ .̂ The crisp 1 - nearest multiple

prototype (1-nmp) classifier D.̂ E- 5 ̂ ^ defined, for z e St^, as

CLASSIFIER DESIGN 197

Decideze i<^ Dy ^ g(z) = e.(.j o 5(z,v.) < 5(z, v j V s ^ j . (4.7)

When c = c equation (4.7) reduces to (4.2). Two opportunities arise
from this simple extension of the 1-np design. First, we now have
more flexibility to generate prototypes, as will be discussed in the
next section. Perhaps a bigger opportunity, however, afforded by the
increase of exemplars from c to c, is the possibility of assigning
fuzzy labels to the prototypes, and hence, to construct fuzzy decision
rules with them. Instead of discussing this prospect here, we will
postpone it to Section 4.4 on nearest neighbor rules since, in the
"limit" case i.e., when c=n, we can consider each training vector as a
prototype. In other words, the decision rules (crisp, fuzzy and
possibilistic) that are described for the k-nearest-neighbor
classifiers in Section 4.4 can be implemented in the multiple
prototype framework.

Example 4.2 This example demonstrates a novel use of multiple
prototypes in a real world application: detection of landmines. The
landmine problem has become a crisis in the world. It is estimated
that more than 100 million active mines are scattered in 62
countries, with an equal number stockpiled around the world jus t
waiting to be planted. Landmines kill or maim approximately
26,000 innocent civilians every year.

Currently, landmines are detected individually by prodding, metal
detection or dogs. Gently prodding the ground is slow, confusing and
dangerous, especially when the mines are laid in hard-packed or
stony soil. Metal detection works well with metal mines, but
recently, metal has been increasingly replaced by plastic. Dogs are
effective, but like humans, can become easily distracted.

A variety of sensors have been proposed or are under investigation
for landmine detection. In view of the life threatening nature of this
application, it is desirable to have a very high detection rate with a
low false alarm rate. However, many sensors can detect land mines
reliably only at the expense of a high false alarm rate.

Frigui et al. (1998a) and Gader et al. (1998a, b) consider the problem
of detecting landmines with sensor data obtained from a novel,
three-dimensional Ground Penetrating Radar (GPR) system
developed by Geo-Centers, Inc. (Rappaport and Reidy, 1996).
Following Frigui et al. (1998a), multiple prototypes of objects and
background are first generated by fuzzy clustering of features
generated from the GPR imagery. Rather than use the prototypes
generated from the clustering algorithm to form a nearest (multi-)
prototype classifier, the authors used them to provide a more
reliable estimate of the strength of the radar return from a
particular spatial location.

198 FUZZY PATTERN RECOGNITION

The Geo-Centers GPR system is mounted on the front of a moving
truck. Every two inches of forward travel in the y direction, a scan is
formed by sweeping the radar signals across 16 bins in the x
direction perpendicular to travel (cross-track) and 64 bins down
into the ground in the time = t direction, thereby producing a 64 x 16
array of intensity values I(t, x, y). For fixed y, the array is referred to
as a scan. A scan is formed every 2 inches, thereby producing a
volume of data. Figure 4.8 depicts one such scan.

Figure 4.8 A typical 64 x 16 scan from the Geo-Centers GPR

We can look at the data from a different perspective by holding x
constant and letting y and t vary, generating what we refer to as a
vertical plane. A typical vertical plane from the Defense Advanced
Research Projects Agency (DARPA) backgrounds data is shown in
Figure 4.9.

Figure 4.9 Vertical slice (down-track)

A 6-dimensional feature vector f(t, x, y) is computed at each point (t,
X, y) and then used to evaluate membership in fuzzy sets defined by
feature prototypes. f(t, x, y) is a vector of edge magnitudes from
points in a pattern around (t, x, y) that roughly resembles the
signature of a mine in a vertical plane. Let E(t, x, y) denote the edge
strength in the horizontal direction (down-track). Since the shape of

CLASSIFIER DESIGN 199

mine is variable and there is a considerable amoun t of uncer ta inty ,
the edge s t rengths are averaged in the vertical direction:

A(t,x,y) = i (iE (t + k,x,y)
7 Vk=-3

(4.8)

For the experiment d iscussed in Frigui et al. (1998a}, this value w a s
clipped a t 150. The 6-D feature vector is given by

f(t ,x ,y)^

^A(t + 5 , x , y - 5) ^
A(t + 3 , x , y - 3)
A(t + l , x , y - l)
A(t + l , x , y + l)
A(t + 3 ,x ,y + 3)
A(t + 5 ,x ,y + 5)

(4.9)

The goal is to use the features generated from a "calibration lane" to
de te rmine pro to types , a n d t h e n to apply those proto types in a
classifier on tes t mine lanes . Generally, target pixels in GPR da t a
cons t i tu te less t h a n 5% of the da ta . Hence, t radi t ional FCM-type
algor i thms have problems due to the large difference in size of the
t a r g e t a n d b a c k g r o u n d c l u s t e r s . I n s t e a d , t h e compe t i t i ve
agglomerat ive or CA c lus te r ing a lgor i thm (cf. equa t ions (2.75)-
(2.81)) w a s r u n on the calibration lane. This choice may not be the
bes t one for discovering clusters (because of greatly unequa l cluster
popula t ion sizes, t he problem il lustrated in Figure 2.3(a)), b u t t he
a u t h o r s felt it was a good choice for finding multiple prototypes.

One prototype w a s sufficient for the background, whereas several
were needed to describe the variat ion in the mine responses . The
algorithm was r u n us ing Euclidean distance for FCM with c = 6, m =
2, and e = 0 .1 . The prototypes were initialized heuristically based on
"expected" g rad ien t p a t t e r n s for b a c k g r o u n d a n d objects . The
ini t ial izat ion w a s

V=:

^50 150 150
50 150 150
50 150 150
50 150 50
50 150 50
50 150 50 V

50 50 150^
50 150 150
50 150 50

150 150 50
150 150 150
150 50 150

FCM w a s r u n for two i tera t ions to "prime" the par t i t ion matr ix .
Then the CA algorithm was r u n to terminat ion (with a max imum of
30 iterations). Instead of us ing the prototypes directly in a classifier
with c = 2 a s in (4.7), Frigui et al. (1998a) used the non-background
prototypes to supply partial evidence for the confidence t h a t a mine
like object is present a t a point (t,x,y). This is due to the high degree
of u n c e r t a i n t y p r e s e n t in t h e l a n d m i n e de tec t ion p rob l em.

200 FUZZY PATTEFfN RECOGNITION

Specifically, the strength of the gradient values represented by the
prototypes directly relate to the presence of an object reflecting the
radar wave. Hence, in the test lanes, the inverse distance from each
non-background prototype to a feature vector was calculated, and
the mine confidence membership c(t, x, y) was generated as the
weighted sum of the inverse distances, where the weights were
proportional to the magnitudes of the prototypes. The confidence
that a mine is present at a point on the surface was then computed as

conf (x, y) = max(c(t, x, y)) . (4.10)

The confidence map on the surface of a mine lane was then
smoothed and a size-contrast filter applied to eliminate large
"bright regions". Figure 4.10 shows the confidence and size-contrast
filter outputs on part of Dirt Lane 17 containing the following
mines: CULVERT (this is not a mine), M19, VS2.2, M15, TM46, VS2.2
at the positions indicated in the size-contrast output.

(a) Raw confidence map for a dirt test lane

(b) Output of the size-contrast filter with the object locations marked

Figure 4.10 Confidence and size -contrast filter outputs

A threshold was generated on the training data (which gave 100%
detection), and then it was fixed for all of the tests. The hits were
then examined to produce final detection marks in the tests. This
initial approach at using multiple crisp point prototypes generated
by a fuzzy model was tested on data collected by Geo-Centers at Fort
A.P. Hill in October 1996. The data was collected from four passes
over two mine lanes by Geo-Centers (two passes over each lane). The
standard approach for GPR-based mine detection was to threshold
the energy signature produced by the GPR at each point (x,y) formed
by summing the values over t. Table 4.2 shows the results of the
standard approach, while Table 4.3 lists the multi-prototype
confidence results.

CLASSIFIER DESIGN 201

Table 4.2 Results from standard approach on mine lanes

No. of mines No. of No. of false
Lane detected m i n e s a l a r m s

1 13 19 49
2 15 19 43
3 16 20 49
4 19 21 39

The number of mines detected is not increased by using multiple
prototypes, but the number of false alarms is significantly reduced.
This is a good result, because false alarms caused by sensor noise,
clutter, algorithmic processing, etc. are the major problem in mine
remediation activities.

Table 4.3 Results of Multi-prototype approach on the same data

No. of mines No. of No. of false
Lane detected m i n e s a l a r m s

1 15 19 13
2 13 19 9
3 19 20 10
4 18 21 12

Much work continues to be done towards improving the sensing
modalities and detection algorithms in this area. This example
demonstrates the advantage that can be gained by a fairly simple
application of multiple prototypes acquired by a fuzzy model over
the simpler nearest prototype classifier.

4.3 Methods of prototype generation

Nearest prototype classifiers are simple, effective and cool. However,
you got to pay your dues if you want to use (them). That is, you have to
generate the prototypes, and you know that don't come easy! That's
what this section is about. Roughly speaking, there are three
approaches to prototype generation : (i) models such as the leader
algorithm and sequential HCM (Hartigan, 1975), and batch models
such as the c-means models (Chapter 2); (ii) network models such as
learning vector quantization and its generalizations (Kohonen, 1989)
and the generalized Lloyd algorithm (Gersho and Gray, 1992); and (iii)
statistical models such as mixture decomposition (subsection 2.2.C).

The common denominator in all prototype generation schemes is a
mathematical definition of how well prototype v. represents X. Any

measure of similarity on 9?̂ can be used. The usual choice is
distance (dissimilarity), the most convenient is squared distance,
and the most popular is squared Euclidean distance. Lx)cal methods

202 FUZZY PATTERN RECOGNITION

attempt to optimize some function of the c squared distances
l|2 1

X, - V. : 1 < i < c ^ at each x, in X. Global methods usually seek
k I|IA J k i -̂

extrema of some function of < jx^ ~ ''''i : 1 ^ i ^ c; 1 < k < n L i.e., all en

squared distances. Don't confuse our use of the terms local and
global methods with the local and global extrem.a found by a
particular method.

One of the simplest approaches to multiple prototype generation
when crisply labeled data are available is to run any clustering
algorithm (e.g., from Chapter 2) that generates prototypes on the
training data X one class at a time. This generates one or more

'^ tr,i '^

prototypes for class i - already labeled by e, - which can then be used
for classifier design. All of the issues raised in Chapter 2 about
clustering such as choice of distance and validation are relevant
when clustering in X̂ .

^ tr,i

Another way to find prototypes with a clustering algorithm is to run
e on the entire labeled training set X in an unsupervised mode (that
is, simply ignoring the labels during training). When this is done
using the knowledge that there are c labeled subsets in the training
data, the result is (presumably) one prototype per class. Why do this
if you have labeled data? We pointed out that the Iris data has 3
physically labeled classes, but that most researchers regard it as
having 2 geometrically well separated clusters in the 4 dimensional
feature space that was chosen by Anderson (1935). From the
botanical point of view then, c = 3 is certainly the most useful
interpretation of Iris, but from the computational viewpoint,
forcing three clusters on this data strains algorithms that want it to
have but two. Ignoring the labels during clustering may enable C to
discover geometrically better prototypes than the labeled sample
means for the classes because this allows geometric properties of the
data (which are not necessarily captured by their labeled
representatives) to drive the model towards a more useful solution.

A third possibility is to run any clustering algorithm (unsupervised,
by definition) on all of X , again ignoring the given physical labels,
but with values for c that are greater than the given number of class
labels (c in Definition 4.2). This introduces the necessity for cluster
validation, bu t with labeled test data and a well defined
performance objective (viz., minimum apparent error rate), this is
less of a problem than with truly unlabeled data. This leads to
multiple prototypes for classifier design.

The result of clustering X in the unsupervised mode at any value of
c is a set of prototypes with algorithmic labels. Now the given labels

CLASSIFIER DESIGN 203

m N . for X must be put into play, usually by a relabeling
algorithm that assigns physical labels to the algorithmic
prototypes. So, the labels are used in any case, and the data itself
will determine which method (clustering in X or in X) is more

° tr.i tr

productive. Since X is available to test classifiers designed using
both strategies, that is what we recommend - try both.
There also are many, many prototype generation algorithms based
on crisp and fuzzy models that are not, per se, clustering algorithms.
Indeed, it would take an entire monograph to adequately discuss
prototype generation methods. The best we can do here is review and
illustrate a few methods not discussed in Chapter 2 that are fuzzy,
have been generalized to a fuzzy case, or have appeared in
connection with a fuzzy model in the literature. Many models of this
kind are competitive learning models, the topic we now turn to.

A. Competitive learning networks

The primary goal for competitive learning (CL) models is to portray
the input data by a much smaller number of prototypes that are good
representatives of structure in the data for classifier design.
Prototypes that are good for classifier design are not necessarily the
same (even in form) as those that are used for other purposes. For
example, prototypes good for compression, transmission and
reconstitution of images may be quite poor as representatives of
classes for pixel labeling in the same image. Identification of
clusters is implicit, but not active, in the pursuit of this goal.

Input Layer

xe5RP

Figure 4.11A general competitive learning network

204 FUZZY PATTERN RECOGNITION

The salient features of one general CL model are shown In Figure
4.11. The input or fanout layer is connected directly to the output
layer. The circles in Figure 4.11 are sometimes called nodes, and the
prototypes are then called node weights. In this context the p
components {v..} of v. are often regarded as weights or connection

strengths of the edges that connect the p inputs to node i. The
prototypes V= (v ,..., v), v. e 9?P for 1 < i < c, are the (unknown)
vector quantizers we seek. The norm used in competitive layer nodes
is most typically Euclidean, but there is no overpowering reason to
restrict the measure of distance this way.

Sequential CL models update estimates of one or more of the {v.} at
each of n input events during pass t (one iteration is one pass
through X). Upon presentation of an x from X, the general form of
the update equation is:

V = v + a , (x, -V) , i = l c;t=l,...,T . (4.11)
i,t i,t-l lk,t k i,t-l '

See Figure 4.81 for an illustration of the geometric meaning of
(4.11), which is Just vector addition, Avith the length of the side
parallel to the difference vector between the input and the prototype
controlled by learning rate ttik.f In (4.11) {« } is the learning rate
distribution over the c prototypes for input x during iterate t. When
X is submitted to this network, distances are computed between it
and each v.. The output nodes "compete", a (minimum distance)
winner node, say v , is found ; and finally, it and possibly other
prototypes are then updated using one of many update rules that are
most often of the form (4.11). There are at least four cases :

(i) Only V, is updated (winner take all, LVQ, SHCM e.g.)
(ii) Only one v. is updated (some vector takes all, ARTl, e.g.)
(iii) Some v.'s are updated (elite updates, SOFMs, e.g.)
(iv) Every v. is updated (all share updates, GLVQ -F, e.g.)

The acronyms we Just used are : learning vector quantization (LVQ),
sequential hard c-means (SHCM), adaptive resonance theory (ART),
self-organizing feature maps (SOFMs) and generalized learning
vector quantization - fuzzy (GLVQ-F). The prototypes that get
updated (the update neighborhood} depend on the model chosen, and
the update neighborhood can be imbedded in the definition of the
learning rates for a particular model. A template that can be used for
many CL models is given in Table 4.4.

CLASSIFIER DESIGN 205

Table 4.4 A general CL algorithm for unlabeled data

A. Training phase : find V without U

Store (Un)labeled Object Data X̂ ^ = {x ,̂ X2,..., x^} c 9^P

U, e M, = Labels of vectors in X
tr hen tr

© number of nodes : 1 < c < n
© max. # of iterations : T

© distance measure : x, - v . , J
II k i.t-l | |A

Pick © termination measure : E = V - V

© termination criterion : e
t> special choices for a particular model

Get © initial prototypes: V e 3^^^

t <— 1; Eg = high value
DO UNTIL (t >T or Ê _ ^ < e)

For k = 1 to n
x e X . Xj^^x, X^X-{x^]

Do Get distances llx.^ - v̂ j _ J ; 1 < i < c | (4.12a)

Get learning rates {a^ j . ; 1 < i < c} (4.12b)

Vi,t = Vi.t-i +aik, t (Xk - V j t . i) (4.12c)
Nextk

t < - t + l
END UNTIL
V ^ Vt_i

B. Pre)totype relabeling of V with Û .̂ using, e.g., equation (4.13)

C. Optional (crisp) clusters if Ujj.is unknown.with, e.g., (2.6a) :

" i k =
1; • V j I K , l < j < C . j ; ^ i
0; otherwise. Resolve ties arbitrarily

X, - V . •Vi,k

Several points need to made about Table 4.4. Notice that the data are
considered to be unlabeled in step A, even if they are not. The labels
for X are used in step B after the training phase is completed to
assign a physical label to each prototype. Different ways to use the
labels in the context of CL models such as LVQ1-LVQ3 are discussed
by Kohonen (1989). In either case, notice especially that no partition
is needed or generated in training step A.

In the general CL model of Table 4.4, any norm can be used in (4.12a)
and in Step C. Computation of the learning rates in (4.12b) is not
specific in Table 4.4. Different models require choosing various
parameters (> special choices in the "pick" block of the table), and

206 FUZZY PATTERN RECOGNITION

all of them compute quantities which are functions of the distances
in (4.12a). Thus, a good specific implementation might be laid out a
little differently than the one shown in Table 4.4. We will identify
the items needed for each model discussed in Chapter 4, and trust to
your good Judgment as to how best arrange the code for an actual
implementation.

One of the main differences between various CL schem.es is the form
for the learning rate distr ibution (including the update
neighborhood) in (4.12b). Prototype updating in (4.12c) cannot be
done until the learning rates are well defined. Generally - but not
very often - a is a function of i, k and t, but in some models it is fixed
for all k's during each pass through X, and then we write a. . Most

frequently, a is fixed for both i and k, depending only on t; in this
case we write a . Infrequently, only one pass is made through X, in
which case we write a, . The sign of a determines whether the update

in (4.11) moves v̂ ̂ ^ towards x (attraction) or away from x
(repulsion). Most competitive learning models use only positive
learning rates, but there are algorithms that use negative learning
rates for vectors that are far from the update neighborhood (e.g., the
so called "Mexican hat function" discussed in Kohonen, 1989). We
will discuss this more in connection with Figure 4.81.

The standard method of achieving stability for prototypes (we will
make this notion specific in Section 4.8.A) is to begin with values
for the {oCjk t) close to, but less than, 1; and then to decrease the {ttik t)
towards zero as time (iteration number t) increases. If ajĵ ̂ -^ 0,
updates will become very small, and so will successive estimates of
the prototypes. This is how termination of many (but not all)
competitive learning algorithms is effectively achieved. But.-- this
strategy causes a problem that Grossberg (1976a, b) recognized and
called the plasticity problem. We will return to this idea in Section
4.8.A.

The optional clustering phase, Step C in Table 4.4, produces n crisp
label vectors for the points in X . They are usually (usually, because
there is no guarantee that each of the c classes defined by the nearest
prototypes has at least one point in it) a crisp c-partition of X. This
optional step, or one like it using some other strategy, often leads to
semantic confusion. For example, Yager and Filev's (1994a)
mountain clustering method, which does not produce clusters
without using an equation such as (2.6a) after termination of the
training phase, is incorrectly called a clustering algorithm. More
precisely, it is a prototype generation algorithm whose terminal
prototypes can be used to find clusters.

http://schem.es

CLASSIFIER DESIGN 207

This terminology is fairly pervasive however. Any c point
prototypes V = {Vj v^} c 9̂ ^ can be substituted into (2.6a), and the
result is a crisp partition, say U(V)eMhcn. which is sometimes
called the nearest prototype (np) partition of X. When we want to
emphasize this construction of U from V with (2.6a), we write U(V) =
Uup(V). Moreover, subsequently applying (2.6b) to the rows of

Unp(V) results in the sample means, V = V. Under these

circumstances it is not incorrect to regard the prototypes V = V as a
representation of the crisp partition U^pCV), and this is why many
point prototype generator algorithms are called clustering
algorithms. Recognizing this, we nevertheless reserve the term
"clustering algorithm" for those models that actively involve a
partition of X during training, and in this sense the CL models
embodied as special cases of the general scheme in Table 4.4 are not
clustering algorithms.

A final comment: most CL models are not explicitly designed to find
good clusters in the sense that partitions of the data are never
examined during the training phase. Consequently clusters built
"after the fact" by approaches such as step C of Table 4.4 may or may
not be satisfactory in the sense of partitioning X for substructure.
Forewarned, don't be surprised if a CL model produces
unsatisfactory clusters in unlabeled data - that's not its job.

B. Prototjrpe relabeling

What should we do when the labels of points in X are not used
during training to guide iterates towards a good V? In this case, at
the end of the learning phase the c prototypes have algorithmic
labels that may or may not correspond to the physical labels of X .
The relabeling algorithm discussed next uses the labels in U to
attach the most likely (as measured by a simple percentage of the
labeled neighbors) physical label to each v..

Recall that c is the number of classes in X , labeled by the crisp

vectors {e,,e„ e.} = N^- Now define p , i=l,2,..., c, 1=1,2,..., c, to be
' 1 2 c he '^IJ . • . J . > . •

the percentage (as a decimal) of training data from class i closest to
V. via the 1-np rule. Matrix P = [p.] has c rows in N .̂̂ , and c columns
p in N .. We assign label e to v when H(p) = e , vidth ties broken
arbitrarily,

l a b e l i ^ v « H (p) = e ; i = l,2,...,c ; j = L2,.. . ,c. (4.13)
J J i

208 FUZZY PATTERN RECOGNITION

We Illustrate the labeling algorithm at (4.13). Suppose X has c = 3

classes, labeled with the crisp vectors {e^,e^,e^} = N^^. Let V = (v ,
V , V V) be four prototypes found by some algorithm. Let P be the 3
X 4 percentage matrix shown in Table 4.5. Labeling algorithm (4.13)
assigns v to class 1, v and v to class 3, emd v to class 2.

Table 4.5 Example of a multiple prototsrpe labeling algorithm

e^ 0.57 0.10 0.13 0.20

^2 0.15 0.10 0.15 0.60

Cg 0.05 0.40 0.40 0.15

i
H(p^)=e^ m,}=e. H(P3^=«3

i
H(p^)^e^

C. Sequential hard c-means (SHCM)

The oldest model that can properly be identified as a CL model is
probably sequential hard c-means (SHCM). As we shall see, the
update rule of MacQueen's (1967) SHCM algorithm is very similar to
the more recent and popular LVQ designs. MacQueen attempted to

partition feature space 9?^ into c subregions, say (S^,...,S), in such a
way as to minimize the functional

J M (V) = I 1-1 x - v . df(x]
1=11

(4.14)

where f is an (unknown) probability density function (pdf),
V = (v^ v^)e9?P, V. is the (conditional) mean of x estimated by
the pdf f obtained by restricting f to S., normalized by the prior
probability n, of class i, i.e., f (x) = f(x) | /n..

In MacQueen's SHCM algorithm to approximately minimize Ĵ ,̂ the
weight vectors are initialized with the first c samples in the data set
X. In other words, v „ = x , r=l,. . ,c. Let q „=1 for r=l,..,c (q ^

r.O r ^ r ,0 r , t
represents the number of samples that have so far been used to
update V). MacQueen's process terminates when all the samples
have been used once (i.e., take V = Vafter one pass through X). For
this implementation, we need only indices k and i in Table 4.4.
Suppose X, is the current input and that v , is closest to it, as in

^ ^ k i,k-l

CLASSIFIER DESIGN 209

Figure 4.11, i = arg minj Xĵ - v^ ^-i (• MacQueen's algorithm updates

the V 's as follows :
r

(4.15a)
(4.15b)

(4.15c)

(4.15d)

Other versions of SHCM pass through the data set many times
(Forgy, 1965). Rearranging (4.15a), we can rewrite Macqueen's update
equation for the winning prototype as

\ k = V i + ^ W i ^ / V (4.16)

Equation (4.16) takes the general form shown in equations (4.12b)
and (4.12c) by setting af^^^ = 1 / q. j^ in (4.16).

If crisp clusters are desired, the sample points can then be labeled
using HCM necessary condition (the 1-np rule) in equation (2.6a).
This usually produces a hard c-partition Ugj^^j .̂ Since the {Vj = Vj}
are conditional means, the partition obtained this way may not be
desirable from the point of view of clustering. Moreover, this
method does not eliminate the possibility of slow but indefinite
oscillation of the centroids (limit cycles). Nonetheless, this is a
historically important and still popular method of prototype
generation, and the terminal prototypes can be used for nearest
prototype classifier design.

D. Learning vector quantization (LV9)

The learning rate distribution for LVQ that is used in equation
(4.12b) of our CL template is well known:

<9 = ̂
jk.t 0 , j = l,2,...c ; J ^ i

(4.17)

Equation (4.17) shows that, like SHCM, this form of LVQ is a winner
take all strategy - that is, the update neighborhood is Just a single
point. In (4.17) learning rate a is usually: (i) independent of i and k;
(ii), initialized to some value in (0, 1); and (iii), decreased
nonlinearly with t, usually a^ oc (1 /1) . There are some differences
between our version of unsupervised LVQ and MacQueen's

210 FUZZY PATTERN RECOGNITION

algorithm: (i) in LVQ sample points are used repeatedly until
termination is achieved, while in MacQueen's method, sample
points are used only once; (ii) in MacQueen's algorithm aĵ "̂̂ *̂ is
inversely proportional to the number of points found closest to v.

so it is possible to have â "*̂ "̂ < â "*-̂ ^ when t > t„.
^ i , t , i . t j 1 2

So much has been written about supervised and unsupervised
versions of LVQ (there are many variations to the form embodied by
using (4.17) in (4.12c)) that our discussion of it here will be limited to
several examples that compare it to several soft generalizations of
it. But before we leave this subsection, we point out that LVQ is a
special case of a more general model due to Kohonen (1989) called
the self-organizing feature map (SOFM), which will put in an
appearance in Example 4.26.

We give a very brief description of the SOFM scheme, again using t to
stand for iterate number (or time). In SOFM each prototype
Vjj e 9tPis associated with a display node.say dj^ e3{^. Usually q =
1 or 2, but the display "space" could have more dimensions, and it is
not really a space, but a set or lattice D of integers (addresses) in 91'̂ .
The purpose of the display set is to establish a topological
neighborhood for the address or index associated with each
prototype vector, so there are exactly as many cells in the display
space as there are prototypes. For example, if you have 100

prototypes for the Iris data, then V = {Vj,... VJOQ} C'-K^, SO a natural
display set for these prototypes would be a linear array, the integers
D = {1 100}. On the other hand, if the prototypes had spatial
identities in two dimensions, they might be doubly indexed, as, for
example V = {Vij,...Vio,io} c: ̂ f*, and then a natural display set
would be the 100 pairs of integers D = {(1,1),..., (10,10)} arranged in a
square lattice. Topological neighbors in D are neighboring
addresses - the cells in D are only indices, and do not possess
numerical features (like pixels in images in Chapters 4 and 5, for
example, which contain at least intensities at their addresses). In
the SOFM scheme, each address is associated with a unique

prototype in 3i^.

In SOFM the winning vector Vj j that best matches (usually, but not
necessarily, in the sense of minimum Euclidean distance) an input
vector X]ĵ is found. Next, a topological (spatial) update neighborhood
7\/(dj j) c D centered at dj ̂ e D is defined in D, and the winner node
neighbors are located in D. This means that you must define what a
neighborhood is in D, and this requires two concepts - shape and
size. For linear arrays, the shape of A/(djj.) is usually adjacent

CLASSIFIER DESIGN 211

indices to the left and right of D out to a specified rad ius ; for 2D
disp lay se t s , it could m e a n the 4-connec ted ne ighbors of dj t
diagonally or parallel to the axes of D, or the 8-connected neighbors
of dj t t ha t su r round it in D, etc. Along with the shape of A'(dj ^) there

m u s t be a concept of order or size, usually defined through its radius,
which will decrease with time (iteration).

Final ly, Vjt a n d o ther prototype vectors in t he inverse image

[A/(dj j r ^ o f t he spa t ia l ne ighborhood A'(djf) are u p d a t e d us ing
equation (4.12c). We mentioned tha t the update neighborhood could
be i m b e d d e d in to the l ea rn ing ra te s chedu le (the {ajĵ t̂}) in

connect ion viath equat ion (4.11), and SOFM is an example of the
need to do th is . For t he cu r ren t s i tuat ion, we accomplish th i s by

sett ing ttjij^t = 0 for all Vj^ i[N{dn)]~^, a n d u s e whatever learning
ra tes are defined a t this set of subscr ipts to update the prototypes in
t he u p d a t e neighborhood. The u s u a l way to operate SOFM is to
decrease both the values of the learning ra tes and size of the upda te
neighborhood over time. When the upda te neighborhood is reduced

to the w i n n e r a lone (Vj^ = (Mdj t)!"^). SOFM becomes the LVQ
algori thm. The re la t ionship between a n d manipula t ion of V and
y\/(d. J.) can a pret ty difficult concept to grasp for first time reade r s
abou t SOFM; please refer to Kohonen (1989) for amplification.

E. Some soft versions of LVQ

SHCM and LVQ a t tempt to minimize objective functions tha t place
all of the i r emphas i s on the winning prototype for each da ta point.
However, s t ruc tura l information due to da ta point x is carried by all

c of t h e d i s t a n c e s < x - v . h ' . Many a u t h o r s have sugges t ed

modifications to winner take all models tha t upda te all c prototypes
dur ing each upda t ing epoch, thereby eliminating the need to define
a n u p d a t e neighborhood. We will d i scuss three CL models of th i s
type, GLVQ-F (this subsection), SCS (subsection 4.3.G) and FLVQ
(subsection 4.3.H). The model underlying GLVQ-F contains LVQ a s a
subcase a n d is d i scussed extensively in Karayiannis et al. (1996).
GLVQ-F is based on minimizing the functional

'GLV9-. „ ^^^ JGLV9-F(^k :V)=Iu^K-Vj |

|,2/(m-l)
c I

r=l

c
1
J=l

V

X, - V
k r

k J

2/(in-l) | |X^-V^ | , m > l . (4.18)

212 FUZZY PATTERN RECOGNITION

In (4.18) the vector u = (ui,U2,...,U(.) G N^ is a fuzzy label vector
whose entries take the form of FCM necessary condition (2.7a). The
real number m > 1 in (4.18) is the same fuzziness parameter that
appears in FCM and PCM. The value of m affects the quality of
representation by the terminal prototypes it finds. And m also
controls the speed of termination of the GLVQ-F algorithm, which is
just steepest descent applied to JGLVQ-F • '^^^ GLVQ-F update rule for
the prototypes V at iterate t in the special (and simple) case m=2
gives the following learning rate distribution for use in equation
(4.12b):

f (II l|2 A V ^

„GLV9-F(m=2) ^ 2ca ,
ik.t t

r = l

k i.t-1

k r,t-l||

l<i<c . (4.19)

))
,2
-'ik.t-1

Equation (4.19) has the same singularity condition as FCM in its

denominator. When no Xj^-v^.^ J = 0 , (4,19) produces a learning
rate for each value of i, so all c prototypes are updated at each input.
As in (4.17), a in (4.19) - now one factor of the learning rates {a } -
is usually proportional to 1 /t , and the constant (2c) is absorbed in it
without loss. Limiting properties of GLVQ-F are : (i) as m approaches
infinity, all c prototypes receive equal updates and the v.'s all
converge to the grand mean v of the data; whereas (ii) as m
approaches 1 from above, only the winner is updated, and GLVQ-F
reverts to LVQ. Finally, we mention that the winning prototype in
GLVQ-F for m=2 receives the largest (fraction) of a at iterate t; and
that other prototypes receive a share that is inversely proportional
to their distance from the input. The GLVQ-F learning rates satisfy

c

the additional constraint X ocŷ t - 1 •
i=l

F. Case Study : LVQ and GLVQ-F 1-ninp designs

This subsection abstracts part of an example discussed in Bezdek et
al. (1998b). Here Anderson's (1935) Iris data is used to illustrate 1-
nmp classifier design with prototypes found by LVQ and GLVQ-F.
Figure 4.12 scatterplots the third and fourth features of Iris
(hereaifter called Iris) and the subsample means (listed in Table 4.6)
for each of the three classes. Class 1 is well separated from classes 2
and 3 in these two dimensions; classes 2 and 3 show some overlap in
the central area of the figure, and this region contains the vectors
that are usually mislabeled by nearest prototype designs. The
dashed boundaries indicate the physically labeled 2D cluster
boundaries. Thus, c = 3 in the terminology of Definition 4.2.

CLASSIFIER DESIGN 213

Petal Width

-2.5

-1.5

\J^ = Mean of class 1

"W' = Mean of class 2

2 db = Mean of class 3

3 = Virglnica

-0.5

1 = Sestosa

• •JL i

.... +
• 1 1 I

. . . . •
I •

>. • I I I

JS**'

2 = Versicolor

Xg = Petal Length

t >

Figure 4.12 The Ms data : {(feature 3, feature 4)} = MSg^

The resubstitution error rate for the supervised 1 -np design that uses
the class means (listed in Table 4.6 and shown on Figure 4.12) as
single prototypes is 11 errors in 150 submissions using the
Euclidean norm, i.e., E {Iris|Iris) = 7.33% (see the confusion

"V,E,82

matrix for this case in Table 4.14).

Table 4.6 Labeled sample (mean) prototyi}es V in 9t̂ for Iris

Symbol Name X , X n X ,

+

5.01 3.43 1.46 0.25

5.94 2.77 4.26 1.33

6.59 2.97 5.55 2.03

214 FUZZY PATTERN RECOGNITION

The "hyberbox diagonal" method is used to generate an initial set of
c prototypes V for this example. To build the hjqserbox compute

Minimum of feature j : m - min{ x , }: 1 = 1,2 p ; (4.20a)
J J ^ ^ jk J

Maximum of feature i : M = max{ x , } : j = 1,2 p . (4.20b)
•> I - — ^ — ' ik -̂ '•

k

The se t hb(m,M) = [mj,Mj]x...x[m ,M] is a hyperbox in 3<^. The

main diagonal of hb(in, M) connects m and M with the line segment
{m + a(M - m); 0 < a < 1}. Initial prototypes for LVQ and GLVQ-F in
this example were:

Vio = m + [^ — ^ W - m) ; i = l , 2 , ...,c (4.21)

Thus , V j Q = m = (mj,m2 m^)"^ ; v^^ = M = (Mj,M2,...,Mp)'^; and

the r ema in ing (c-2) initial prototypes a re uniformly d is t r ibu ted
a long t h e d iagona l of hb(m,M). A usefu l va r i a t ion of t h i s
ini t ial izat ion s t ra tegy is to choose c po in t s randomly from the

diagonal {m + a (M - m) ; 0 < a < 1}. For the p resen t case , Table 4 .7
shows the initial prototypes produced by uniform draws as in (4.21)
with the Iris data at c = 6.

Table 4.7 Initial prototypes for Iiis at c = 6 computed with (4.21)

v^ Q = (4.30 2.00 1.00 0.10) = m

V2'Q = (5 . 0 2 2 . 4 8 2 . 1 8 0 . 5 8)

V3Q = (5 .742 .96 3.36 1.06)

v^ Q = (6.46 3.44 4.54 1.54)

V5Q = (7.18 3.92 5.72 2.02)

Vg Q = (7.90 4.40 6.90 2.50) = M

The Euc l idean n o r m was u s e d in (4.12a), a n d the n u m b e r of
prototypes generated ranged from c = c = 3 t o c = 30. The termination
threshold e had one of the three values e= 0 .1 , 0.01 and 0 .001 . The
pr imary te rmina t ion criterion t h a t was compared to e was the 1-
n o r m be tween success ive e s t ima te s of t h e c p ro to types , i.e.,

c P
E = V - V = y y V. ^ - v . , , jr.t j r , t - l if t h i s failed to s t o p a n

algorithm, secondary terminat ion occurred a t the i terate limit T =
1000. The initial learning rate was a = 0 . 4 and a w a s decreased

° 0

CLASSIFIER DESIGN 215

linearly, viz., a^ =aQ((T-t)/T) for both algorithms. For the results
displayed, (4.19) was used for GLVQ-F.

Samples were drawn randomly from X = Iris without replacement.
One iteration corresponds to one pass through Iris. Each algorithm
was run 5 times for each case discussed to see how different input
sequences affected the terminal prototypes. For the less stringent
termination criteria (e= 0.1 and 0.01), different terminal
prototypes were sometimes obtained on different runs. For e = 0.001,
this effect was nearly (but not always) eliminated. Most of the runs
using e = 0.001 were completed in less than 300 iterations through
Iris.

Unsupervised nearest prototype designs for Iris that seek c= 3
prototypes report resubstitution errors ranging from 5 to 20. Table
4.8 exhibits the terminal prototypes found by each algorithm for c =
6, as well as the resultant 1-nmp error rates they produce when used
in (4.7) on all of Iris. Each of the three physical clusters is
represented by two prototypes for both LVQ and GLVQ-F, and the
overall error rate produced by these two classifiers is 9.33% - 14
mistakes, not really much better than any unsupervised design at
c= 3, and not as good as the supervised sample means design.

Table 4.8 Typical prototypes, confusion matrices and l-nmp
resubstitution error rates for c = 6 prototypes (Iris data)

LVQ
labe ls

LVQ
prototypes

GLVQ-F
labels

GLVQ-F (m=2)
prototypes

1
1
2
2
3
3

4.69 3.12 1.39 0.20
5.23 3.65 1.50 0.28
5.52 2.61 3.90 1.20
6.212.84 4.75 1.57
6.53 3.06 5.49 2.18
7.47 3.12 6.312.02

1
1
2
2
3
3

4.75 3.15 1.43 0.20
5.24 3.69 1.50 0.27
5.60 2.65 4.04 1.24
6.18 2.87 4.73 1.56
6.54 3.05 5.47 2.11
7.44 3.07 6.27 2.05

C =

Erro

^50 0 0 ^
0 50 0

^ 0 14 36^

r rate = 9.33 "/ 6

C =

Erro

["50 0 0 '̂
0 50 0

^ 0 14 36^

r rate = 9.33°/ h

The third and fourth features of the prototypes in Table 4.8 are
plotted in Figure 4.13 against a background created by roughly
estimating the convex hull of each physical class in these two
dimensions by eye. Some of the prototypes are hard to see because
their coordinates are very close in these two dimensions. The LVQ
and GLVQ-F prototypes that seem to lie on the boundary between
classes 2 and 3 are highlighted by enclosing these points with the
Jagged star sQ. These prototypes are the ones that incur most of the

216 FUZZY PATTERN RECOGNITION

misclassifications that are committed by the LVQ and GLVQ-F 1-
nmp classifiers.

X ,

'2.5

-- 2

1.5

-- 1

-- 0.5

© 6 : LVQ

H 6 : GLVQ-F

Figure 4.13 Tenninal prototypes in Ms at c = 6

Table 4.9 lists the same information as Table 4.8 for typical runs
made at c = 7. There is a sharp drop in the error rate for both the LVQ
and GLVQ-F 1-nmp designs. Be careful to note that the seventh
prototype is not "added" to the previous six; rather, seven new
prototypes are found by each algorithm. The error rates in Table 4.9
are very low for designs that do not use the labels during training.
Note that LVQ and GLVQ-F continue to use 2 prototypes for each of
classes 1 and 2, and add a third representative for class 3 at c = 7.
Thus, neither LVQ nor GLVQ-F provides an efficient representation
of the data because only one prototype is needed to represent the 50
class 1 points with no resubstitution errors. This point is brought
out in Bezdek et al. (1998b), where the so-called "dog-rabbit"
prototype generation algorithm is used to achieve this somewhat
more desirable result.

CLASSIFIER DESIGN 217

Table 4.9 Typical prototypes, confusion matrices and 1-nmp
restibstitution error rates for c = 7 prototjrpes (Ms data)

LVQ LVQ GLVQ-F GLVQ-F (m=2)
Labels prototypes Labels prototypes

1 4.68 3.11 1.39 0.20 1 4.74 3.15 1.43 0.20
1 5.23 3.65 1.50 0.28 1 5.24 3.69 1.50 0.27
2 5.53 2.62 3.93 1.21 2 5.57 2.613.96 1.21
2 6.42 2.89 4.59 1.43 2 6.26 2.92 4.54 1.43
3 6.57 3.09 5.52 2.18 3 6.62 3.09 5.56 2.16
3 7.47 3.12 6.312.02 3 7.50 3.05 6.35 2.06
3 5.99 2.75 5.02 1.79 3 6.04 2.79 4.95 1.76

f 50 0 0 ^ f50 0 0 ^
C = 0 47 3 C = 0 46 4

^ 0 1 4 9 j 1̂ 0 1 4 9 j

Erro r rate = 2.66 «/ D Error rate = 3.33 %

«!'2.5

O 7: LVQ
7 : GLVQ-F

-- 1.5

1

-- 0.5

Figure 4.14 Terminal prototjrpes in Ms at c = 7

218 FUZZY PATTERN RECOGNITION

Figure 4.14 shows that the crucial "boundary" prototypes from LVQ
and GLVQ-F in the c = 6 case have roughly "divided" into two sets of
new prototypes, enclosed again by the jagged star. These two pairs of
prototypes have moved away from the apparent boundary of the
lower left part of the convex hull of class 3. Both new pairs move
further into the convex hulls of their respective classes.

When these two CL algorithms are instructed to seek c = 8 prototypes,
the resubstitution error rate for both designs typically remains at
2.66%, and at c = 9 the results are quite similar. TTiese results suggest
that the replacement of Iris with 8 or 9 prototypes found by either
LVQ or GLVQ-F results in a 1-nmp design that is quite superior (as
measured by the resubstitution error rate) to the labeled 1-np design
based on the c = 3 subsample means V. It is reasonable to assume
that this trend would also hold for apparent error rates computed
with test data reserved from Iris - i.e., that the 1-nmp designs would
generalize better than classifiers based on 1-np designs - reasonable,
but certainly not guaranteed.

How few prototypes are needed by the 1-nmp rule to achieve good
resu l t s? And conversely, at what point does prototype
representation become counter-productive? Table 4.10 shows the
best case results (as number of resubstitution errors) reported in
Bezdek et al. (1998b) using each algorithm at various values of c.

Table 4.10 Best case resubstitution errors

c-> 3 4 5 6 7 8 9 15 30
LVQ

GLVQ-F
17
16

24
20

14
19

14
14

3
5

4
3

4
4

4
4

4
4

Observe that on passing from c = 3 to c = 4, even the best case error
rate increased, followed by a decrease on passing from c = 4 to c = 5.
Table 4.10 shows that the Iris data can be fairly well represented in
the sense of minimal resubstitution error by 7 or 8 labeled
prototypes (see Kuncheva and Bezdek (1998) for a non fuzzy design
that yields zero resubstitution errors using 12 prototypes). At the
other extreme, increasing c past c = 7 has little effect on the best case
results. Taken together, these observations suggest that Iris (and
more generally, any labeled data set) has upper and lower bounds in
terms of high quality representation by multiple prototypes for
classifier design. There seems to be little hope, however, of
discovering this on a better than case-by-case basis.

Finally, some comments on the sensitivity of each CL model to
changes in its control parameters. Bezdek et al. (1998b) did not
experiment with changes in m for GLVQ-F. Certainly this parameter
affects terminal prototypes. However, we doubt that small changes
in m will cause radical changes in the results given above. The

CLASSIFIER DESIGN 219

initial learning rate a was varied from 0.4 to 0.6 in both LVQ and
GLVQ-F without noticeable changes in tj^ical results.

G. The soft competition scheme (SCS)

Yair et al. (1992) proposed two vector quantization models, a
stochastic relaxation scheme (SRS) and a soft competition scheme
(SCS). Like GLVQ-F, algorithms for these two models eliminate the
need to define an update neighborhood by extending the update to all
c nodes; and they use learning rates that are functions of the c

distances | z - v. [. Our discussion here is limited to the SCS model
and algorithm.

SCS is a deterministic algorithm (the algorithm is deterministic
because its steps are not stochastically controlled, but it does use
probabilities as part of the learning rates). In SCS all c prototypes
are simultaneously updated by a scheme which directs them - like
LVQ - towards the current training vector. The step size of each
update is scaled by the probability of that prototype being the
winner. At time (iterate) t, the probability of the i-th prototype
winning is defined as

-Ptl|rk-Vit_il|2
p..=~ ^ , (4.22)

j=l

where lim|P|.| = oo. The probability p^^ ^ is one factor in the SCS

update equation. The choice for p specified by Yair et al. is

p^_yt/c^rp^ J jg regarded as an initial "temperature", and y is a

constant which Yair et al. stipulate should be greater than 1. The

quantity (1/Pj) is regarded as the temperature T at time t, so as

t -^ o°, Pj-> o°, and T - ^ 0 . Hence, this procedure is analogous to
simulated annealing.

Next, let n. ^ = n. ^_-^ + p^ ^ [approximately the total number of times
that V. has been updated). This parameter is reset to 1 whenever
iteration counter t is a perfect square. Yair et al. use this to define
the other factor of their learning rates as

^ik,t =

r ^
1

n. . n . ^ , + p „ 4
(4.23)

220 FUZZY PATTERN RECOGNITION

The overall learning rate for SCS that Is substituted into (4.12c) is
the product of these two factors,

a
SCS
ik.t - "Hik,! • Pik.t (4.24)

Table 4.11 gives the implementation of SCS that was used by Bezdek
and Pal (1995) for the results presented in Example 4.3.

Table 4.11 The SCS algorithm (Yair et al., 1992)

Store (Un)labeled Object Data X^̂ = {x^, X2 x^} c 9tP

U^ eM^^^ = Labels of vectors in X (if available)

© number of nodes : 1 < c < n
© max. # of i terations : T

© distance measure : x. - v , . ,
11 k i . t - l | |

Pick © termination measu re : E = V - V

© terminat ion criterion : e
© y > 1
© T = initial t empera ture

Get © Initial prototypes: V e 9t'̂ P

t ^ 1; EQ = high value
DO UNTIL (t >T or E^ J < e)

For k = 1 to n
X e X, X, <r-x, X <- X - {x, }

k k For i = 1 to c

Do / J=i
If (t = a perfect square) n. = 1

E l sen . ^=n .^_ j+p^^^

ilik,t = ^ l / n u)
V., = V., , + ri,, . p . , , (x, - V,, ,)

i,t i,t-l 'ik.t ^ik.t^ k i . t -1 '
Next i

Next k
t < - t + l
END UNTIL
V ^ Vt_i

CLASSIFIER DESIGN 221

We call attention to the handling of n in Table 4.11, which
i.t

necessitates further modifications to the standard CL model set out
in Table 4.4, but reports what Yair et al. used in their original paper.
Since SCS is an unsupervised method, optional blocks B and C of
Table 4.4 are applicable to this scheme too. SCS starts with a low
value of P (i.e., wath approximately uniform {Pjĵ j}), and then (5
slowly increases with time. As a result, at the beginning of the
procedure no prototype is strongly attracted to a particular class.
With time (i.e., as the number of iterations increases) prototypes
become more strongly separated from each other as p̂ ĵ ̂ begins to
peak around the Euclidean winner, but at the same time r\^ + "^ ^ •
Thus in the limit (as iterate t goes to infinity) SCS behaves like a
winner-take all (LVQ type) competition.

The c numbers (Piĵ ^} are probabilities, so they satisfy 0 < p,j^j < 1

and IP j j^ j= l . Consequently, PtC î̂) = (Pikt'P2kt Pckt^^ ^̂ ^
1=1

probabilistic label vector for x , Pj(Xĵ) eN .̂̂ . Since TÎ Ĵ .̂ :
1

n, ,
< 1 .

the sum of the learning rates for a fixed input vector x at any iterate

t satisfies the constraint 0<ya^ '^f < l . Bezdek and Pal (1995)

showed that there is a strong relationship between SCS and
mixtures of normal distributions as discussed in Section 2.2.C.
Bezdek and Pal made two simplifying assumptions about the
mixture of normals obtained by substituting (2.18a) into (2.17). For
each class i, 1 < i < c, they assumed that

71. = 1/c ; and (4.25a)

X. = a^l . (4.25b)

In other words, all classes are equally likely and all classes have a
population covariance matrix which is a scalar multiple of the

identity. Then Xj"^=—jl and Jdet(i;.) =a for every class, so the

Mahalanobis norm becomes a multiple of the Euclidean norm,
II l | 2 1 II | | 2

x - j i . _i =—2" x - j i . . For this special case Bayes rule at (2.19)

takes the form

222 FUZZY PATTERN RECOGNITION

71 1 X =

2(j 211^-^'i
/ ((27 i)P /2a)

j = i U

2a
2ir-H

I e ^2c
J=i

-i^^lr^^jl

/ ((27c)P/2o)

(4.26)

For a given x this becomes

7t(i|Xj^)= e 2a^ (4.27)

If we define Pj.=l/2a^ and v^^.^ =)ij for i = 1 to c, then p.j^^ and

7c(i|Xĵ) are identical. Thus the component p^^ of the SCS learning
rate used by Yair et al. can be interpreted as an estimate of the
posterior probability of x being from class i under the assumptions

in Section 2.2.C and (4.25). However, Pj=l/2a^ does not ensure

limjp } = °°. To achieve this Yair et al. use t in the definition for (i ,

i.e., Pj =(7*̂ '̂ / TQ). Thus, at time t we take o^ = (T^ j'*-/'' / 2) . Then

Pjj^^and 7i(i|x^) are still identical, and p̂^ = V^^t ^ l ini |pJ = oo.

In summary, p^^^ can be interpreted as the posterior probability
that X is from class i when all classes are equally likely, and class i
is modeled as a p-variate normal distribution with parameters

FLVQ, the next CL model we discuss.
Xjj. =(Toy- ' /V2)l) . Example 4.3 will compare SCS to

H. Fuzzy learning vector quantization (FLVQ)

A possible connection between batch FCM and sequential LVQ was
first discussed by Huntsberger and AJjimarangsee (1990), who
suggested fuzzification of LVQ by replacing the learning rates {ttjî ^}
in (4.12c) with the fuzzy membership values {u } computed with
FCM formula (2.7a). While this approach was innovative, it was to

CLASSIFIER DESIGN 223

some extent unmotivated. Moreover, their method still required
choosing m, and it seemed to improperly mix the objectives of LVQ
(vector quantization) and FCM (clustering).

Tsao et al. (1993) proposed a batch prototype generator model that
required the use of fuzzy partitions that was initially called a fuzzy
Kohonen clustering network (FKCN). Like fuzzy ISODATA, this
initial name seemed inappropriate, so the model and algorithms for
it have subsequently become known as FLVQ (Bezdek and Pal, 1995).
FLVQ has three objectives: (i) to overcome the two problems we
identified for LVQ (which nodes to update and how to use the non-
winner prototypes in the determination of learning rates); (ii) to
circumvent (to some extent) the problem of how to choose m for
FCM-AO; and (iii) to provide a substantial link between the batch c-
means and sequential LVQ families of prototype generators.

As noted in Section 2.3, the choice of m for the FCM model is very
important. When m is small (close to 1), (2.7a) tends to produce
almost crisp label vectors. If prototype updates in equation (4.12c)
use learning rates based on (2.7a), and u is close to 1, the update for
node i may be very large compared to the other updates because of

c

the column constraint X u . = 1 . If, additionally, the current
1=1 "^

prototypes have an unfavorable geometry compared to the central
tendencies of clusters in the data, some prototypes may move
rapidly towards a cluster, while others may move but little. This
effect is illustrated in Figure 4.15 for the data set X = X u X

o o

Figure 4.15 A low value of m may produce bad prototypes

224 FUZZY PATTERN RECOGNITION

In Figure 4.15 prototype v is closer to every point in X than v is.
The result of this is that for any m at c = 2, the class 1 memberships
{u } of every point in X computed with (2.7a) will be higher than the
class 2 memberships {u }. Since u + u = 1 for all k, the two rows
of membership matrices produced with (2.7a) for any m will look
like this:

U(m)^
<-••• (> 0 . 5) - - 4 "

< - • • • (< 0 . 5) • • • - ^
->i

•^U(l) =

So, when m is close to 1, memberships of points in both X and X in
class 1 will be close to 1. The effect of this is that the sequential
updating strategy (4.12a) with learning rates based on (2.7a) will
force prototype v in Figure 4.15 to migrate towards the grand mean
V of X, and v will not change much.

On the other hand, if m is large (say > 7) all of the û ĵ 's will be nearly
1/c. In this case both prototypes in Figure 4.15 will be pulled towards
the data very slowly because (û ĵ ^)™ = 1 / c™. So when m is large, for
any competitive learning scheme whose update rate is a monotonic
function of the (u }, every prototype will be updated to almost the
same very small extent (e.g., with c = 3 and m = 7, every
u ^ ^ - 0 . 0 0 0 4) .

Thus, if the memberships at (2.7a) are to be used in (4.12c), neither
low nor high values of m seem desirable. However, if we start with a
high value of m, and then slowly reduce it during iteration, this
undesirable situation is avoided. Motivated by this, Tsao et al.
(1993) defined the batch fuzzy learning vector quantization (FLVQ)
algorithm via the heuristic learning rates

ik,t lk,t

c

I

N - m j

l.tllA •^j.tlL
V i, k; (4.28a)

^i,t = '^i.t-i + ^ "Sl^^^k - '^i.t-i^ / S<J:^® ^ i • ^l^ere (4.28b)
k = l

m^ =mQ + t [(mf-mQ)/T] = mQ + tAm ; m^.m^ > l ; t= l T. (4.28c)

FLVQ Equation (4.28b) can be rewritten as Vj^= X "uTt ^k' ' ^"ist •
k=l ' s=l

Comparing this to (2.7b), equation (4.28c) asserts that when m = m
= m is fixed, FLVQ is FCM-AO. Since m in (4.25c) is variable, we can

CLASSIFIER DESIGN 225

have three families of FLVQ algorithms, depending on the choice of
the Initial (m^) and final (m^.) values of m. For t e {1,2,..., T},

m^ > m^ => {m J i mj.: Descending FLVQ = i FLVQ (4.29a)

m^ < m^ =* {m^} t m .̂ : Ascending FLVQ = t FLVQ (4.29b)

mo=m^ m^ = m^ = m: FLVQ = FCM (4.29c)

We have included a discussion of T F L V Q here for completeness, but
its properties as functions of m seem opposite to the intuitively

desirable properties shared by SCS and O F̂LVQ. Here we concentrate

on and describe in Table 4.12 the implementation of J'FLVQ based
on equations (4.28) and (4.29a), which is used in Example 4.3, and
with modifications as set out in Baraldi et al. (1998), Example 4.26.

Table 4.12 Descending F1.VQ (iFLVQ), Tsao et al. 1993

Store (Un)labeled Object Data X^̂ = ^ . ^ 2 ^ n } < = ^ '

Uj^ e Mj^^^ = Labels of vectors in X (if available)

© number of nodes : 1 < c < n
© max. # of i terations : T

Pick

© distance measure : x, - v . , ,
II K i . t - lJ lA

Pick
© terminat ion measure : E = V - V

© terminat ion criterion : e
© 7 > m^ > m .̂ > LI

Get © initial prototypes: V e St'̂ P

t <- 1; EQ = high value
DO UNTIL (t >T or E^ ^ < e)

Do

m^ = m^ 4
For k = 1 t

N e x t k
For i = 1 tc

- t [(m j - m o) / T]

o n

V

) C

2 ^

J

-™t

Next i
t ^ t + 1
END UNT

^ i , t - l ^ , ^ , "ik,t ^'
k=l

IL
U ^ Ut_i

k i , t - l ' •^, is.t s=l

226 FUZZY PATTERN RECOGNITION

As with LVQ and SCS, -l FLVQ prototypes can be used with equat ion
(2.6a) to p roduce a cr isp part i t ion of X. Notice, however, t h a t a t
te rminat ion a fuzzy part i t ion is also available, and it will be pa r t of
a n opt imal pair (U^.VJ for t he FCM objective function J ^ at the

terminal value ofm. In either case, the final prototypes can be used

to define a 1-np or 1-nmp classifier. Our implementat ion of 4-FLVQ
is necessari ly ba tch , and this preserves its relationship to FCM-AO.

Another difference wor th not ing is t h a t unl ike FCM-AO, ^FLVQ

does not optimize a fixed objective function. All we can say about

this is t ha t since si FLVQ uses equations (4.28) at each iteration with

m = m , every full s tep of 4-FLVQ finds a pa i r (U , V) t h a t are
necessary for a local extrema of J .

Observe the cons t r a in t s 7 > m^ > nij. > 1.1 in our specification of

iFLVQ. These empirically chosen limits may prevent numer ica l
instabi l i ty - in o ther words , s tay away from 1 and infinity (see

Baraldi et al., 1998 for more discussion on this aspect of VIFLVQ).

The vector u^(Xj^) = (u^j^ j,U2,^^j '-'ckt^^ ^̂ ^ fuzzy label vector for

X, , U J X ^) G N J . ^ . This m e a n s tha t the s u m of the 4-FLVQ learning

ra tes for input vector x a t any iterate t satisfies the same constraint

a s the SCS learning rates: 0 < Zaf^^^Q < 1.
i=l

To u n d e r s t a n d how m acts to control the distr ibution and values of

t he l ea rn ing r a t e s {ot̂ ŷ̂ ®} in FLVQ, we d i scuss si FLVQ in more
detail. The general s i tuat ion can be unders tood by examining the
learning ra tes a t (4.28a) for fixed c, {v̂ J and m^. In this case,

ik.t l̂ il k i.tll^ J

c / „ ^2/(nn-l)
where K = Z 1 /

j=iv
(4.30) shows tha t the contribution of Xĵ to the next update of the node
weights is inversely proportional to their d i s tances from it, so the
winner for th is k is the v. . , closest to x , . Larger values of m lead to

i , t-l k => t

fuzz ie r v a l u e s of u , (v a l u e s c l o s e r to 1/c) , a n d
i k . t

X. - V.. is a positive cons tant . Equat ion

CLASSIFIER DESIGN 227

l u . ^ ^ =l=>Iaf^^y9 <1 . So, in the initial stages of i FLVQ large
values of m^ (near ITIQ) yield updates with lower individual learning
rates.

In the initial stages of SCS (for low values of t) p.̂ ^ ^ = 1 / c, and since
the counters {n. } all start at 1, at the beginning of the SCS learning
process each prototype is (more or less) updated to the same extent.
In other words â ^̂ f = [r\^^ Pik.t)==('nj,t Pjk.t) = «fk!? for all i and j at

low values of t. What happens for 4̂ FLVQ? In this case we start with
a high value of m = m . For high values of m, û ĵ j. = 1 / c V i, and as a

result a^l^ = {u.^^^^ = a J'^S = (Uji, j)™* for all i and j at low values

of t. Thus, in •l FLVQ all c prototypes will have about the same
importance at the beginning of iteration, with learning rates at each
X. that are roughly unifonnly distributed across the c nodes during

updates. Thus, -J'FLVQ and SCS start with similar learning rates.

As iteration continues p.j^ ̂ for SCS and u.j^ ^ for 4- FLVQ both tend

to peak at the winner. For SCS, p.ĵ t "~̂ ^ when node i is the winner,

but ri .ĵ t ~̂ ̂ ' ^o if the iteration is allowed to continue indefinitely

the overall SCS learning rate riŷ ^ • pjĵ ^ -^ 0 almost everywhere -

that is, except on a set of measure zero in 3i (recall that ri^^^ = 1 is

reset at all the perfect squares in 5R). On the other hand, u^^ ̂ -> 1 for

•I FLVQ when node i is the winner but since m̂^ —> 1, the overall

learning rate for this method also goes to 1, af^^^ -> 1. As m^ k̂ m .̂
(m̂ ^ gets closer to 1), more and more of the update is given to the
winner node. That is, the lateral distribution of learning rates is a

function of t, which in -I- FLVQ sharpens at the winner node as m̂ . v

m ,̂. Indeed, the learning rate characteristics of J^FLVQ are roughly
opposite to the usual behavior imposed on them by other
competitive learning schemes. In LVQ and SCS all c learning rates at
Xĵ decrease towards 0 (everywhere for LVQ, and almost everywhere
for SCS) as t increases (this imbues them with stability and
improves the chance they will satisfy the termination condition),

but in iFLVQ, the winner learning rate tends to increase towards 1
during learning, while the other c-1 rates tend towards zero. So, SCS

behaves more like LVQ as iteration proceeds than -i FLVQ does.

Nonetheless, l- FLVQ seems to terminate rapidly in the literature
that illustrates its use.

228 FUZZY PATTERN RECOGNITION

Example 4.3 We abbreviate some results given by Bezdek and Pal
(1995) to illustrate and compare LVQ, SCS and FLVQ by again using
Anderson's (1935) Iris data. Two initializations, shown in Table
4.13, are used: 1 is the set V of subsample means; and 1 is computed
with (4.21).

Table 4.13 Two initializations for the numerical experiments

Init. Ij = (Means)

5.01 3.43 1.46 0.25
5.94 2.77 4.26 1.33
6.59 2.97 5.55 2.03

^ ^1,0 - ^

^ ^3,0 - ^

Init. 1̂ via (4.21)

4.30 2.00 1.00 0.10
6.10 3.20 3.95 1.30
7.90 4.40 6.90 2.50

None of the algorithms used class information (that is, are
supervised) during learning. Table 4.14 shows the results of 1-np
classification (with 8 the Euclidean metric) of Iris using the
(relabeled) terminal centroids recommended by LVQ, SCS and FLVQ.

Table 4.14 Sample Mean, LVQ, SCS and FLVQ 1-np classifiers
on the Iris data when initialized with I,

Initial Prototypes 1 Confusion Matrix

5.01 3.43 1.46 0.25 50 0 0
5.94 2.77 4.26 1.33 0 46 4
6.59 2.97 5.55 2.03 0 7 43

Final Prototypes : LVQ
T=50, aQ=0.6 Confusion Matrix

5.00 3.42 1.46 0.25 50 0 0
5.87 2.74 4.37 1.41 0 47 3
6.81 3.08 5.68 2.08 0 13 37

Final Prototypes : SCS
T=50, Y=L3,T^=40 Confusion Matrix

5.01 3.42 1.46 0.25 50 0 0
5.88 2.74 4.370 1.41 0 47 3
6.78 3.05 5.63 2.03 0 13 37

Final Prototypes : I FLVQ
T=50, mQ=5, m^= 1.5 Confusion Matrix

5.01 3.42 1.47 0.25 50 0 0
5.88 2.75 4.37 1.41 0 47 3
6.82 3.06 5.70 2.06 0 14 36

CLASSIFIER DESIGN 229

The confusion matrix associated with D„ „ ,, when V, = V =1 shows
V,l£,o I 0 1

that the sample means yield a 1 -np classifier that commits 11
errors; 4 class 2 points are labeled class 3; and 7 class three points
are labeled class 2. All three algorithms produce very similar
prototypes. The confusion matrices for the LVQ and SCS based 1-np
designs are identical, showing 16 resubstitution errors. FLVQ is very
nearly the same, committing one more error than LVQ and SCS on a
class 3 data point.

SCS seems very sensitive to the choice of and interaction between y
and T^. Table 4.15

parameters y andT .

and T . Table 4.15 studies the effect on SCS outputs to the

Table 4.15 Some outputs of the SCS 1-np Classifier on Iris

Init. Y=l 30 T =40 Confusion Matrix
' • ' 0

5.006 3.425 1.465 0.247 50 0 0

^ 1̂ 5.884 2.743 4.370 1.414 0 47 3
6.776 3.047 5.634

Y=1.15,T^=40

2.031 0 13 37
Confusion Matrix

5.843 3.057 3.758 1.199 50 0 0
B \ 5.843 3.057 3.758 1.199 50 0 0

5.843 3.057 3.758

Y=1.30,T^=40

1.199 50 0 0

Confusion Matrix

5.006 3.425 1.465 0.247 50 0 0
C 2̂ 5.884 2.743 4.370 1.414 0 47 3

6.776 3.047 5.634

Y = 1 . 1 5 , T Q = 4 0

2.031 0 13 37

Confusion Matrix

5.843 3.057 3.758 1.199 50 0 0
D I2 5.843 3.057 3.758 1.199 50 0 0

5.843 3.057 3.758

Y=1.30,T^=60

1.199 50 0 0

Confusion Matrix

5.008 3.378 1.548 0.284 50 0 0
E h 6.272 2.884 4.945 1.690 3 0 47

6.292 2.884 4.945

Y = 1 . 3 0 , T Q = 7 0

1.690 0 0 50

Confusion Matrix

5.843 3.057 3.758 1.199 50 0 0
Î 5.843 3.057 3.758 1.199 50 0 0

5.843 3.057 3.758 1.199 50 0 0

230 FUZZY PATTERN RECOGNITION

All runs used T=50; rows A are repeated from Table 4.14. First
compare A, B, C and D, all of which have T =40. Changing y from
1.30 to 1.15 using either 1 or I has the dramatic result of forcing all

three SCS centroids to terminate at v = (5.843,3.057,3.758,1.199^
- the grand mean of Iris. This has the very predictable bad effect on
the 1-np design based on these prototypes of it committing 100
mistakes in both cases.

Next, compare sets C and F in Table 4.15 to see that it is not Just a
change of y that has this effect on SCS, for in this case you will see
that the same result occurs with y fixed at 1.30 but T increased from
40 to 70. Finally, look at sets C, E and F for Î and y=1.30 fixed.
Intermediate between the good result at T =40 and the worst result at
T =70 is the case T = 60, for which SCS terminates with a good
estimate of the first centroid, but identical vectors for the second
and third prototypes, resulting in a 1-np error rate of 50 mistakes.
Table 4 . 1 5 - and many other experiments with other values for y
and T not reported here - suggest that SCS is very sensitive to
choices for these two parameters.

Another set of runs (not shown here) for all three algorithms that
used the same parameters but which were started at initialization !„
yielded prototypes that were identical (to three decimal places) to
those shown in Table 4.14. This does not establish that these three
algorithms are insensitive to initialization, but it gives us some
confidence that the Iris data are (in the eyes of these algorithms)
rather well structured. The important point is that there are
combinations of initializations and algorithmic parameters for all
three algorithms that produce very similar and predictable results.
This is usually the case for competing algorithms - given enough
time, most models for a particular class of problems can be made to
yield pretty similar results.

I. The relationship between c-Means and CL schemes

In (2.7a) and (2.7b) the weighting exponent m for J is fixed, but in
(4.28a) it is a variable. Since m is replaced by a parameter whose
value depends on the number of iterations that have elapsed, m

plays a role that is somewhat analogous to a^^^ in LVQ. To see this,
c

remember that X u.j^ ^ = 1 for each x in X. Consequently, the

learning rates in (4.28a) that are applied to all c nodes via (4.28b) for

CLASSIFIER DESIGN 231

each x^ are dependent on each other, and themselves must satisfy

the condition Xa^y^9<l. The effect of controUing the learning
i=l

rates this way is best understood by considering a simple example.
Suppose c=5 and m =4 at some iterate. Two label vectors for x for
the five nodes, and the resultant learning rate distribution vectors
they induce via (4.28a) are shown below:

u { X k) ••

^0^
1
0
0

a
FLVQ

^0^
1
0

0

for any m. ; and (4.31a)

u(Xk)

^0.1^
0.6
0.0
0.2
0.1

«.
FLVQ _

r 0.0001^
0.1296
0.0000
0.0016
0.0001

, (m = 2 is illustrated). (4.31b)

In (4.31a) node 2 is the crisp winner since it receives all of the
membership of this data point in the five clusters. From (4.25a) it
follows that for any value of m the learning rates applied to this
data point will also be crisp, and will be the same as the labels used
to compute them, as shown in (4.31a). Thus, when a single node can
win all of the membership, none of the non-winner nodes are
allowed to influence the update in (4.28b) for that data point. In this
special case, FLVQ reverts to an LVQ - like strategy - but only for data
points that have crisp memberships.

On the other hand, if the distribution of memberships for x is truly
fuzzy, as in (4.31b), exponentiation of the membership values by m
has a noticeable effect on the role played by each node in the update
scheme. The winner node in (4.31b) in the sense of maximum
membership (which is, as previously noted, also the minimum
distance prototype) is still node 2. But in this second case, non-
winner nodes with non-zero memberships will also participate in
the determination of how much to change their corresponding
weight vectors for that data point. Finally, if m =m then clearly
FCM=FLVQ.

If all n membership columns in U from the FCM formula (2.7a) were
crisp, (4.28b) would become a batch version, LVQ-style update, with

232 FUZZY PATTERN RECOGNITION

V. ^ = V. ^ J + X (^k ~ ''̂ i t - J / "i t' where n. ^ is the number of points in

the i-th crisp cluster of X at iterate t. The previous estimate for v.
can be eliminated from this last equation by distributing the sum
over the minus sign, leaving the HCM update formula (2.6b). Suppose
we replace equation (4.12c) with this batch update formula and
require the calculation of U with the nearest prototype rule (2.6a)
or (4.2) at each pass through X (remember that LVQ does not do so).
Call this extended batch LVQ (EBLVQ). Then FLVQ reduces to EBLVQ
whenever U is crisp, and further, EBLVQ is precisely HCM. In this
sense FLVQ is a true generalization of both LVQ and HCM that
integrates their models in perhaps the strongest possible way.

A somewhat more formal analysis of the relationship between FLVQ
and FCM is elaborated in Karayiannis and Bezdek (1997).
Karayiannis (1997a) provides a fairly comprehensive survey of
learning vector quantization that includes not only FLVQ, but a
number of more general formulations that have interesting
connections to generalizations of all three c-means families.

J. The mountain "clustering" method (MCM)

Yager and Filev (1994a) developed a prototj^e generation algorithm
for unlabeled data that is very different in spirit than all of the
previous methods discussed in this section. In their scheme a very
large finite set of candidate prototypes are specified and fixed, and
the MCM objective function is then used to select c good prototj^es
from the fixed set of candidates. In short, prototypes are not
initialized and then iteratively updated, but simply chosen
iteratively from a (very large and fixed) discrete set.

MCM begins by specifying a lattice of coordinates that capture the
unlabeled data X = (Xj, X2 x^} c SRP . Without loss of generality we
describe a simplified version of MCM that uses an integer lattice. We
construct the lattice by first enlarging the hyperbox hb(m, M) using
the floors and ceilings of the features instead of the given values in

equations (4.20). Thus, with x,, and X . , denoting the integer

floor and ceiling of x.j^, respectively, we compute hb(LmJ,[M]),
which is the smallest hyperbox with corners having integer
coordinates that contains X as a proper subset.

For 1 < J < p, the J-th edge of hb([mJ,[M]) is composed of, say, r

integers that run from the floor of the minimum.
.™J.

J

, to the

ceiling of the maximum, M . The lattice Lhb(|_mJ, [M]) = Lhb of

CLASSIFIER DESIGN 233

integer grid points (or nodes) In hb(LinJ, [M]) comprises the set of
candidate prototypes for the MCM model. We will use our usual
notation for the point prototypes in this set, i. e., v^ e Lhb, and ask
you to remember that their coordinates are Integers in this
subsection only.

Next, calculate the n r ^ r a rp distances |8{Vj,Xj^}. Yager and
Filev (1994a) discuss using only Minkowski metrics (1.11) for this,
but it is clear that inner product metrics in the family at (1.6) are
equally applicable. Unlike, say, any of the c-means models, the
MCM objective function is not fixed. Instead, the model begins with
an initial objective function J ^ C M I ' ^^^ then uses the current set of
values in subsequent iterations to define a new objective function
"̂MCM t ^* each t > 1, very much like the objective function Ĵ ^̂ used
by FLVQ. The initializing objective function is

JMCM,I(VJ:X) = I e - " ' " J ' ^ ' ' ' , Vj e Lhb , (4.32)

where a is a positive constant. If we regard e J' '' as the
"potential" at v due to x , then JMCMIVP^) measures the total

J k J

potential at v due to the data. Thus, the total potential J^Q^[V^;X)

will be high when many data points are concentrated near v . Yager
and Filev thus argue that maxima of (4.32) identify good prototypes.

Put another way, for a fixed v eLhb, the maximum (minimum)

value of J^„„ occurs at the minimum (maximum) value of 5(vj, Xy.)

over 1 < k < n. Since J„„., sums up the n values |e " ''i-^^ I at node v ,
MCM ^ L J J

J will be proportional to the density of points in X in the
neighborhood of v . A plot of the values {JMCM^^J!-^)} O^^J" ^J ^ Lhb
should, for compact well separated clusters at least, be a digital
surface with (mountain) peaks at nodes where the density of the data
is highest - i.e., where there are clusters. Hence the term "mountain
function" for (4.32).

Maximization of J^^^^ ĵ over v. eLhb is accomplished by simply
enumerating its values and finding the largest one, ties being
resolved arbitrarily. We let the set of initial mountain function
values (MFVs) be

234 FUZZY PATTERN RECOGNITION

MFV, = 1 = IJMCM,I(^J:X^^ '̂ j ^ Lhb, 1 < J < n r j j . (4.33)

If Vj = argmaxj Jj^^j^j(v.;X)>, lattice point v^ is taken as the first

j

prototype. The next step in MCM is to "destroy" the peak at v^,
redefining the mountain function by subtracting from each
J»j^m(v,;X) a fractional amount of J , „ . , ,(v -X) that is also

MCM.P J MCM.l 1 '

inversely proportional to the distance 8(Vj, v.). This results in a new
set of values MFV^ ĵ of the modified objective function J^^QM >
which after t >1 steps, take the form

JMCM,t.i(Vj;X) = J^CM,t^:X)-fe-P'"'"^')(jMCM,t(^t;X)). (4.34)

p
for V. e Lhb,l < J < U.r , where p is a second user-defined positive

J J=i ^

constant and v̂ . is the t-th prototype. Maximization over MFV
produces a second winning node, say V2, and v^ is a candidate to
also become v^, an occurrence which is called "node reuse" by
Barone et al. (1995). In any case, v^ is the second MCM prototype,
etc. Equation (4.34) thus defines an iterative procedure that
continues to select nodes from the lattice as prototypes for the data
until a user-defined termination criterion is met. Yager and Filev
(1994a) recommend termination when the ratio of successive
maximum values of the mountain function is small, i.e., at the first
i for which

J , „ . . .(v. -X)
MCM.t̂ ' • * ' . < £ , (4.35)

MCM.t-l ^ ^ l - l , t - l ' '

for some termination threshold e > 0. At this point MCM has

produced the set V^^ ĵ̂ = | v j , . . . , v j c Lhb, which are taken as

prototypes for t (as yet undefined) clusters in X.

This method is simple, and like all algorithms, has some
parameters to pick. As mentioned above, it may happen that MCM
uses the same node more than once, since the amount subtracted
from each mountain value in (4.34) depends on p, and for the wrong
choice, may not be enough to flatten a particularly strong peak.
Barone et al. (1995) provide an in depth analysis and empirical

CLASSIFIER DESIGN 235

recommendations for choosing a, p and e, and also discuss the issue
of peak reusability. Our simplified description of MCM uses an
integral grid size, but the lattice of prototypes could be either finer or
courser than this. Barone et al. (1995) consider the issue of grid size,
and also discuss the choice of a metric for the distance calculations.
Table 4.16 summarizes the MCM method of prototype generation.

Table 4.16 MCM prototype generation (Yager and Filev, 1994a)

Store Unlabeled Object Data X = {x^,x^,. . . , x }ci9^P
n '

» positive constants a and [3
J- 11 tl
• distance measure : Xĵ - v. ^_A\

Pick » termination measure :

^ t "= ^MCM.t (^l . t ' ^ ^ / ^MCM.t-

» termination criterion : 8
- i (V i : X)

Get i Lattice Lhb(LmJ, [M]) = Lhb
E = high value

Vj=argmax{j^c^j(v.;X)}
Vj eLhb

Do

t f - 1
DOUNTlL{E^<8):

v^^j =argmax{j^c^^^j(v.;X)}
ViSLhb

t < - t + l
END UNTIL
V,,^,, = |v , "vA c: Lhb

MCM I 1 t j

If no peak is reused before MCM terminates, then c = t, that is, the
number of distinct prototypes corresponds to the last value of t in
Table 4.16. On the other hand, when one or more peaks is reused, the
number of distinct prototypes determined by MCM is, say, c < t. In
either case, MCM starts with c = 1 prototype, much like a divisive
hierarchical clustering method, and continues to add (possibly non-
distinct) prototypes until its termination criterion is met. At first
glance, this seems to bypass the cluster validity problem. However,
the number of prototypes determined by MCM depends on a, (3 and e,
so validation is still a problem - Just not an explicit one. Barone et
al. do discuss cluster validity, and suggest validating the number of
prototypes selected by a novel application of singular value
decomposition applied to the t x p matrix V . They recommend
looking for one or more "breaks" in the list of singular values (very
similar in spirit to Hubert's knees in Chapter 2), and basing the final
estimate of c on this procedure.

236 FUZZY PATTERN RECOGNITION

The clustering part of MCM amounts to using V to compute, for
example, the crisp neares t prototype labels of X. Some
computational experiments report finding good clusters this way,
but it is easy to construct data for which this method fools the user
badly. This disclaimer aside, MCM has been used some for one
important application, and that is as a simple and often successful
way to initialize other clustering and /or prototype generator
algorithms. Indeed, Barone et al. (1995) advocate this themselves,
and offer several examples to support their claim that terminal
MCM prototypes are often very similar to those found by other
methods.

Example 4.4 (Barone et al., 1995). Table 4.17 juxtaposes the terminal
prototypes found by MCM and FCM on the data set Iris shown in
Figure 4.12. The first column in Table 4.17 also shows the symbols
used for the 2D means shown in Figure 4.12

Table 4.17 Terminal MCM and FCM prototypes for Iris,
34

Means v V, XM V
MCM

"34,1 1.46 0.25 1.46 0.25 1.66 0.37

- ^ ^34,2 4.26 1.33 4.28 1.35 4.28 1.43

4 ^ ^34,3 5.55 2.03 5.62 2.05 5.59 2.23

Barone et al. used the Euclidean norm for both algorithms, and set c
= 3 for FCM. They state that a was set at 4 for MCM, but do not
speciiy P and e, or any of the other processing parameters for FCM
that give the results in Table 4.17. Since the MCM values in Table
4.17 are non integral, we know that the lattice used by MCM for
these calculations was considerably finer (at least fine enough to
have grid points with coordinates to two decimal places) than the

unit lattice Lhb(LmJ,[M]) used in our specification of MCM.

The conclusion we draw from Table 4.17 is that, given the right
choices for MCM, it can produce prototypes that are reasonable
initializers for FCM. Notice that the MCM estimate of v^^ ^ seems to
be the worst of the three, but the 50 points which it represents are
very compact and well separated from the remaining 100 points in
Iris (cf. Figure 4.12).

CLASSIFIER DESIGN 237

because |Lhb(LmJ, fM])!:

Perhaps the biggest and certainly most evident problem with MCM
is computational complexity. If p is more than two or three, and/or
the range of the data set X in any of its p dimensions is large, the
lattice Lhb used in our description of MCM will be very large indeed,

• rg rp. For the two dimensional data
set IriSg^, this amounts to (700)(300)=210,000 initial prototypes to

cover the lattice Lhb((0,0)^, (7,3)^). In a non-specific setting, suppose
X contains data points in 10 dimensions - a not uncommonly large
number of features. If each of the 10 axes is subdivided by 10, the
unit lattice Lhb([mJ, [M]) will have 10^° candidate prototypes - too
many to make MCM computationally tractable.

Chiu (1994, 1995, 1997) proposed a modification of MCM wherein
the lattice of candidate grid points is abandoned, and replaced with
X, the unlabeled input data. Chiu called his modification of MCM
the subtractive clustering method (SCM), and it is not sufficiently
novel or different from MCM to warrant a separate discussion here.
(We will, however, discuss SCM again in Example 4.18.)

Since the candidate prototypes in SCM now coincide with the data,
there are only n of them, and the complexity issue would seem to
resolved. However, Dave and Krishnapuram (1997) have shown that
the complexity of SCM is still O(n^), while the complexity of FCM is
0(n). They further discuss the relationship between SCM, PCM and
other clustering algorithms, including the potential function
approach (Tou and Gonzalez, 1974).

Velthuizen et al. (1997) discussed a different set of modifications to
MCM, and called the resultant algorithm the modified m.ountain
method (M3). Noting that MCM is useful only if "good" values are
chosen for the MCM parameters a and |3, they suggest computing a

based on a sample statistic of X. Letting S = X (x. - v)^(x. - v) / n
k=l

_ n

be the sample covariance matrix with v = J^ K / n the grand mean
k=l

of n input points X in 9t^, Velthuizen et al. suggest computing a as

a :
pc

mVtrace(S)
where (4.36)

J. ^ n - l / (p + 4)
2P+2p

p + 2

(p + 2)'P''2'+i

p + 4

(4.37)

238 FUZZY PATTERN RECOGNITION

Unlike MCM, the M3 model fixes c, the number of prototypes to seek,
in (4.36). Velthuizen et al. also present a method for eliminating the
sensitivity of MCM to p. The essence of this part of M3 is to pick a
"reasonable" (3 - presumably by trial and error (|3 = 0.06 in
Velthuizen et al.), isolate a neighborhood of the current winner
prototype v^ by finding the 5 nearest prototypes to it, and then
introducing a finer local subgrid Just in some enlargement of this
neighborhood, over which the distribution of the data in the
neighborhood is then fit with a multivariate normal distribution
(you have to wonder a little about a fit to 5 points). Finally,
Jĵ ĵ ĵ Jv^;X) in (4.34) is replaced by the value of the Gaussian

density jus t found in the neighborhood of v^. The authors assert
tha t this modification overcomes the sensitivity of MCM to
parameter p.

The application domain of interest to Velthuizen et al. is magnetic
resonance (MR) image segmentation. Let Tl , T2 and p denote,

ij ij ij
respectively, the spin lattice relaxation, transverse relaxation, and
proton density of pixel (i,j) in an MR slice (three images at the same
location in time and space) of size m x n. If we aggregate these 3
numbers into a pixel vector x = (Tl , T2 , p), the data set X = (x,,,

ij ij ij f^ij 11
Q

X,_,..., X,, ..., X } is in 5R ; we will meet this 3D pixel vector data in
12 ij, mn '^

several other examples in Chapters 4 and 5. The basic algorithm
used by Velthuizen et al. proceeds as follows. Let X stand for a set of
pixel feature vectors derived from any MR image, and denote the
prototypes found by M3 as V,,^ to distinguish them from V . Then
^ -̂ ^ •' M3 '^ MCM [M3.1] run M3 on (unlabeled) X to find V ;

[M3.2] construct U, a crisp 1-np labeling of X with D^ ^g with

equation (4.2): the label assigned to pixel vector x,. is the
algorithmic label (index) of the closest prototype;

[M3.3] physically relabel each cluster in U as a tissue class by
matching the pixels in each algorithmic cluster to one of the
ground truth tissue clusters. Assign the algorithmic cluster
to the tissue class that enjoys maximum pixel matching (this
is a different relabeling method than the one given in
Section 4.3.B);

[M3.41 artificially color the labeled image.

CLASSIFIER DESIGN 239

Example 4 .5 (Velthuizen e t al., 1997) Vel thuizen et al. (1997)
evaluated segmentat ions of 13 MR Images us ing two types of ground
t ru th . Three of the test images had manua l ground t ru th (GTl) for c =
10 t i s sue classes derived by visual inspection and marking of each
image by a t rained radiologist. Segmentat ions were produced by four
me thods : a supervised 7-nearest neighbor (k-nn, see Section 4.4)
rule, which was used to construct type GT2 ground t ru th for the other
10 images ; a n d u n s u p e r v i s e d M3, u n s u p e r v i s e d FCM(V^) a n d

u n s u p e r v i s e d

quan t i t a t ive ly .

FCM(V). Compar i sons were m a d e visually a n d

S e g m e n t a t i o n of a n MR image by FCM w a s done wi th two
initializations: a "standard" initialization V (cf. (9) in Velthuizen et

1997); and wiih V^^. We write FCM(V) to indicate FCM initialized
of X which

al.
with V. FCM generates a terminal fuzzy c-partition U
is h a r d e n e d us ing equa t ion (1.15), and finally, s teps [M3.3] a n d
[M3.4] are performed on the resul tant crisp partition.

Figure 4.16 shows the T l (weighted) input da ta for a patient tha t h a s
a b ra in tumor . Figure 4.16(b) is the color key for the images: csf =
cerebro spinal Jluid; w m = white matter, gm = gray matter, gm-2 =
(falsely labeled) gray matter. Edema is an abnormal accumula t ion
of t i s sue fluid resul t ing in swelling.

m

^̂ m̂.

• c s f

wm

gm

gm-2

tumor

edema

(a) T l Weighted MR Image (b) Color Legend

Figure 4.16 MR segmentations CVelthuizen et al., 1997)

A supervised k - n n segmenta t ion is shown in Figure 4.16(c). This
image resu l t s from a n operator choosing labeled subse t s of pixels

240 FUZZY PATTERN RECOGNITION

from each tissue class, and then using the standard k-nn rule to
label the remaining pixels. This is repeated until a panel of
radiologists agree that the k-nn segmentation is good enough to be
used as type GT2 ground truth. Ten of the thirteen images discussed
in this study used this method (GT2) as a basis for comparing the
results of the three algorithms (unsupervised M3, unsupervised
FCMCV) and unsupervised FCM(V.,J.

o M3

(c) 7-im (type GT2, c = 5) (d) FCM(VJ

(e)WB (f)FCM(VJ

Figure 4.16 (con't.) MR segmentations (Velthuizen et al., 1997)

CLASSIFIER DESIGN 241

Figure 4.16(d) shows a segmentation achieved by FCM(V). The
tumor is not detected. Instead, FCM(V) finds two false gray matter
regions that do not correspond to anatomical tissues. The M3
segmentation in Figure 4.16(e) is much better - it finds many of the
tumor pixels and does not have false gray matter tissue regions.
Panel (4.16f) shows a segmentation resulting from the initialization
of FCM with the output of M3. This view should be compared to
Figure 4.16(c). It's hard to see on a printed copy, but there is excellent
correspondence between the tumor regions in these two views.
Table 4.18, adapted from Velthuizen et al. (1997), shows the average
performance on pathological t issues for segmentations of the
thirteen images made by unsupervised M3, unsupervised FCM(V)

and unsupervised FCM(V).

Table 4.18 Average true and false positive pixel counts (in %)
for pathological tissues (Velthuizen et al., 1997, Table 1)

Fal 3e Positives True Positives
FCM(V)

0
M3 FCM(Vj^g) FCM(V) M3 FCM(V)

T u m o r
Edema

10.3
5.9

5.6 5.2
5.9 8.7

59.4 66.1 75.5
75.9 77.9 81.2

When FCM is initialized with V , segmentation is not as good as M3
o

it has nearly 5% more false positives and about 7% less true
positives in tumor. In edema, the recognition rates are about the
same. When FCM is initialized with V M3' there is substantial
improvement in the true positive rate for both tissue classes and a
slight decrease in edema false positives.

MCM, SCM and M3 are not really clustering methods - they generate
prototypes in the feature space. Sometimes they find good clusters,
but like LVQ and SCS, partitions of the data are not involved in the
iterative procedure that produces the prototypes. Nonetheless, the
examples of this subsection suggest that MCM, SCM and M3 are
useful for initializing clustering algorithms such as the c-means
families.

4.4 Nearest nei^bor classifiers

Another widely used classifier design is the k-nearest neighbor (k-
nn) rule, which requires labeled samples from each class. Figure
4.17 displays the geometry of this scheme. All that is needed is to
choose k, the number of nearest neighbors to find in the

neighborhood of any unlabeled vector z in 9^^; and some measure of

distance between pairs of vectors in 3i^, usually Euclidean distance.
The metric 6 defines the shape of the capture neighborhood for the k

242 FUZZY PATTERN RECOGNITION

nearest neighbors to z. The easiest voting scheme to justify and
implement is to accept a simple majority of the votes for any class
represented by points in the k-nn neighborhood. In this case, k is
usually taken as an odd integer, precluding ties in the c = 2 class
case.

The labeled data shown in Figure 4.17 consist of 11 objects, each of
which has one of the c = 3 crisp labels shown in the upper portion of
the figure. With the Euclidean norm and k = 6 nearest neighbors
having c = 3 class labels, the point z will be labeled (and
subsequently colored) as a class 2 point, because 3 of its nearest 6
Euclidean neighbors (the ones inside the circular disk centered at z)
have this crisp label.

Class 1

© 0
10,

CI ass 5 2 (0)
1

loJ

Class 3 rQ\
0

Figure 4.17 Geometric idea of the crisp k-nn rule classifier

Let (x.̂ i x„ .} be the nearest neighbors of z, arranged in order of

ascending distance, i.e., 5(z,x,j,) <,...,< 5(z,x„ ,); and let n...(z) be the
number of neighbors of z with label e , i = 1 c. Then the crisp k-nn

rule classifier D
hnn;k,S

can be written formally as

Decide z e (i) o Dj^^.j^ g(z) = e,j, o n,.)(z) = rnax{n(j^,(z)}. (4.38)
(k)

In (4.38) ties are broken arbitrarily. Generalization of the crisp k-nn
rule vote begins with an alternative way to compute (4.38). First we
consider the weighted sum

CLASSIFIER DESIGN 243

D nn;k,5 iz)-
Inm(z)e
1=1

(1)

In(j,(z)
(4.39)

c

Since Xn(j)(z) = k, D^^.j^g(z) is a convex combination of crisp label

vectors, so it is a point in N . In our view formula (4.39) always
produces fuzzy label vectors, but statistics aficionados will disagree,
interpreting (4.39) as a probabilistic label vector because Cover and
Hart (1967) proved that these labels converge to Bayesian labels.
Regardless of your bias, D^ .̂ĵ g is, formally anyw^ay, either a
probabilistic or fuzzy classifier function, even though the labels and
reasoning leading to it are crisp. For example, equation (4.39) for the
situation in Figure 4.17 yields

D ^Az) = -

0 + 3
^0>

1 + 1 0
vly ^0.33^

0.50
0.17

(4.40)

Notice that n,̂){z) max{n„ j(z)}= 3 is jus t the coefficient that

multiplies the crisp class 2 label vector, the majority class in the
neighborhood of z shown in Figure 4.17. The decision rendered by
the crisp k-nn rule can be realized by applying H at (1.15) to the
result in (4.40). Thus,

hnn;k,5^ ' H(D ^Jz)) (4.38']

is equivalent to (4.38). Formula (4.40) is not needed to crisply label z;
it is simply convenient for computer implementation of the crisp k-
nn rule (convenient, but at the cost of more computation, so if you
are only interested in the crisp k-nn rule, this is not the most
efficient way to implement it). However, the construction at (4.40)
shows how to arrive at a truly fuzzy k-nn design. Suppose the six
neighbors of z shown in Figure 4.17 had fuzzy label vectors as
follows:

class 1 class 2 class 3

^1
ro.9^
0.0

lo.ij

^2
fO.9^

0.1

^ 3
^0.3^
0.6

f0.03^
0.95

^0.02 J

^5
ro.2^
0.8

to.oj

^6
ro.3^
0.0 (4.41)

244 FUZZY PATTERN RECOGNITION

The generalization of simple majority voting in the crisp case is to
assign z to the class in which it has the highest membership. Using
formula (4.40) with these labels results in

Dft.n:k,5(^) = -

ro.9^
0.0
O.lJ

^0.9^
0.1
0.0

ro.3'
0.6
0.1

0.03
0.95
0.02

+
0.2
0.8
0.0

0.3
0.0
0.7

^0.44^
0.41
0.15

(4.42)

and D, g is a fuzzy label vector produced by fuzzy labels.

Consequently, Dj, g is a fuzzy k-nn rule classifier. There are
many other ways to generalize (4.38), so this cannot be interpreted
as the fuzzy k-nn rule - rather, it is one of many possible designs.
Applying H at (1.15) to the label vector in (4.42) results in this fuzzy
6-nn rule assigning z the crisp label for class 1 instead of class 2, the
label produced by the crisp 6-nn rule for the data in Figure 4.17.

If any label vector in (4.41) were possibilistic, the calculation at
(4.42) would result in a possibilistic label vector for z. Consequently,
we have described fuzzy (Dj.^.j^ g) and possibilistic (D .̂ g) versions

of Dj^^.j^g. Since there are many other implementations that can
also be called fuzzy and possibilistic k-nn designs, we call the
algorithms summarized in Table 4.19 a set of "basic" k=nn rules.

Table 4.19 Basic crisp, fuzzy and possibilistic k-nn rules

Store
Labeled data X = X c 9^ ,̂ IXl = n

tr ' 1

Label matrix U. of X, , U. . e N , i = 1,
tr tr tr,j pc J

...,n

Pick
w k = # of nn's to find
*• 6:5RP X 9̂ P h^ 91+ = metric on Si^

Given To label: z In 91^

Compute The distances {8. s 8(z, x.): j = 1 n}

Rank
S,i,^S,3,<...<5,,,<5,,^,,<...<5,„,

k-nn indices

Compute Dpnn:k.6(z) = ^ f IUt,,,i,J e Np, (4.43)

Optional
(Harden) H(pnn);k,S \ pnn;k,S j he

CLASSIFIER DESIGN 245

Example 4.6 We illustrate the basic k-nn rules with the apples and
pears data listed in Table 4.1 and plotted in Figure 4.6. Figure 4.18

shows a shaded disk with radius x, „ - z = 0.46 centered at z using
II l̂ i Il2 °

Euclidean distance for 5. The disk captures three neighbors - x , x
^ ° 11 13

and X - labeled pears and two neighbors - x and x - labeled apples
in Table 4.1. The crisp 5-nn rule labels z a pear,

nn;5,62 (Z) :

2 ri^ + 3
fo.4^

5
fo.4^

D hnn;5,S2 {z) = H
70.4^
_to.6. =

1.00 1.50 2.00 2.50
Figure 4.18 A crisp k-nn nde on the apples and pears data

To see that k and 5 affect the crisp decision, Table 4.20 shows the
distances from the point z = (2.0, 0.5)^ in Figure 4.6 to each of the 20
data points listed in Table 4.1 (whose coordinates and labels are
repeated here for convenience).

Distances from z to each of its five nearest neighbors in the three
norms are shown in Table 4.21, where x,., is the i-th ranked nearest

(j) •'

neighbor to z and U(x,.,) is the crisp label for x, ,. Whenever there is (J) (J)"
a tie, the label assigned to z is arbitrary. There are two possible
kinds of ties: label ties (U-ties), and distance ties (6-Ties).

246 FUZZY PATTERN RECOGNITION

Table 4.20 Distances from z to the 20 points in Table 4.1

e, t̂ X ŷ 5^(z.x) 5̂ (z, x) 5Jz , x)
(i 1 1.00 0.60 1.10 1.00 1.00
^ 2 1.75 0.40 0.35 0.27 0.25
l i 3 1.30 0.10 1.10 0.81 0.70
ct 4 0.80 0.20 1.50 1.24 1.20
^ 5 1.10 0.70 1.10 0.92 0.90
C 6 1.30 0.60 0.80 0.71 0.70
(i 7 0.90 0.50 1.10 1.10 1.10
ct 8 1.60 0.60 0.50 0.41 0.40
<i 9 1.40 0.15 0.95 0.69 0.60
<i 10 1.00 0.10 1.40 1.08 1.00
£ 11 2.00 0.70 0.20 0.20 0.20
g 12 2.00 1.10 0.60 0.60 0.60
^ 13 1.90 0.95 0.55 0.46 0.45
5 14 2.00 0.95 0.45 0.45 0.45
5 15 2.30 1.20 1.00 0.76 0.70
S 16 2.50 1.15 1.15 0.82 0.65
5 17 2.70 1.00 1.20 0.86 0.70
S 18 2.90 1.10 1.50 1.08 0.90
5 19 2.80 0.90 1.20 0.89 0.80
S 20 3.00 1.05 1.55 1.14 1.00

Table 4.21 Crisp labels with Dĵ .̂ĵ ^ (z) as a function of k and 5

1 Xj^ S 0.20 S
2 x^ Ct 0.35 U-Tie
3 ^,, S 0.45 S
4 Xg e 0.50 U-Tie
5 ^13 S 0.55 g

1 \ , 6 0.20 S
2 x^ C 0.27 U-Tie
3 x^ <i 0.41 C
4 Xĵ 5 0.45 U-Tie
5 x^3 g 046 S

^ ^(k) U(^(k)) SJz. x,^,) L(z)

1 Xji £ 0.20 5
2 x^ e 0.25 U-Tie
3 Xg e 0.40 5
4 x^^ 5 0.45 5-Tie
5 x^3 5 0.45 ^

CLASSIFIER D E S I G N 2 4 7

The nearest neighbor, x.j.= x is closest to z in all three distances,
and labels it a pear. All three rules yield a label tie using k = 2, so
either label may be assigned to z by these three classifiers,
depending on the outcome of the tie-breaking rule employed. For k =
3 the 1 and sup norm distances label z a pear, but the 2 norm labels it
an apple. At k = 4 the sup norm has a distance tie between x,^, and

x,g., but both points are labeled pear so the decision is pear
regardless of how the tie is resolved. This illustrates that the label
assigned by Dj^^.j^g depends on both k and 5; the five nearest
neighbors are not ranked in the same order by all three distances.

If we apply FCM and PCM to these data (c = m = 2, both norms
Euclidean, e = 0.01, initialization random for HCM and FCM, PCM
initialized with the terminal prototypes from FCM, PCM weights w
= 0.15, w = 0.16), we get terminal label vectors for each of the 20
points that are fuzzy or possibilistic, respectively. Using the FCM
labels for the five nearest neighbors to z yields

&m;5,82

0.33
0.67

0.77 V
O.23J +

0.41
0.59

0.10
0.90

0.84
0.16 0.49

0.51 so

H
0.49
0.51 62 ^ z = pear.

PCM labels for these five points would result in the same decision
here but this is not always the case. The 20-nn rules based on all 20
crisp (given or HCM, which produces the given labels), FCM and PCM
labels yield

H nHCM f-̂ ^ J _
hnn;20,82 ^ ' 2 0

20

HCM(j)

H nFCM f) _ J _
"fnn;20.82 ^'> 2 0

20
l U

FCM(J)

= H

= H|

H D^CM (z) = —
pnn;20.52 2 0

20

J=l
PCM(J) = H

0.50
0.50

0.52
0.48

0.33
0.31

tie (4.44a)

z = apple (4.44b)

z = apple (4.44c)

Equations (4.44) show that using all 20 nn's to z results, for all three
classifiers, in the label switching from pear for k = 5 to apple for k =
20 (up to resolution of the tie in (4.44a)). An important point is that

248 FUZZY PATTERN RECOGNITION

if all 20 labels are used, the rule-based on crisp labels is ambiguous,
while the fuzzy and possibilistic based rules both label z an apple.

Terminology Even though the final outputs in {4.44b) and (4.44c) are
crisp, some writers refer to the overall crisp decision as the result of
a fuzzy or possibilistic k-nn rule. More properly, perhaps, a fuzzy k-
nn rule is an algorithm that produces the fuzzy labels which are
subsequently hardened. Similarly, we regard the input or argument
of H in {4.44c) as the output of a possibilistic k-nn rule.

Example 4.7 As an example of the utility of the k-nn rule on a real
problem, we revisit the segmentation of MR imagery to demonstrate
that excellent classification results can be obtained from a very
simple algorithm such as the crisp k-nn rule.

Views {a)-(c) of Figure 4.19 show three MRIs of the Tl, T2 and p slices,
respectively, of a patient who has a tumor in the upper right-central
portion of the brain. The circular dot in the lower right side of these
views is for color registration.

Figure 4.19{d) is a segmentation of the images made by having a
human operator select training sets {X .) of pixels in each of i=l,...,7
tissue regions, and then assigning each vector in the training
subsets a crisp tissue label. An operator usually labels a very few
pixels from each tissue class {on the order of 100 pixels per class).

... . - • * *

^

S " ^

3
1 \

v:' J'
^

)
x ' " ^ v j ™ ' W ' ' * -

A

(a) MR Data-Tl Image (b) MR Data - T2 Image

Figure 4.19 Segmentation of an MR Image with the crisp 5-nn rule

CLASSIFIER DESIGN 249

(c) MR Data - p bnage (d) Segmentation via 5-nn rule

Figure 4.19 (con't.) Segmentation of an MR Image
with the crisp 5-nn rule

The remainder of the pixels were then labeled us ing the crisp 5-nn
rule (4.38). The tumor , comprising the regions of lightest gray and
white in Figure 4.19(d), is visually well defined in th is segmentat ion
of the three dimensional data . It may seem surpris ing tha t the k -nn
rule yields good segmenta t ions with a relatively smal l s u b s e t of
labeled da ta , b u t th is method is often rated as the bes t of m a n y
supervised techniques for image segmentation (Bezdek et al., 1997a).

There are many generalizations of the k-nn rules (Dasarathy, 1990).
One impor tan t c lass of extensions is the inverse distance weighted
(IDW) k - n n algori thms which modify D ^^,^ g by replacing the fixed

weights of 1/k in Table 4.19, equation (4.43), which simply average
t h e k - n n labels , wi th (normalized) weights t h a t a re inversely
proportional to the dis tances of the k neighbors to z. The idea is tha t
ne ighbors t h a t a re closer in feature space (as m e a s u r e d by the
dis tance metric) should exert more influence in the generation of the
m e m b e r s h i p vector for t he point being labeled. The IDW k-nn
algorithm (Keller et al., 1985) is typical of th is type of extension and
u se s the following equation instead of the one given in (4.43),

D IDW.m
pnn;k.8 (Z) =

k
I
J=l
l(5(z,X,j,))r- -v.tr.,j)

-2
)m-iu ,

k

z
s=l

-2 6 N
l(5(Z,X(„))m-l

pc
(4.45)

250 FUZZY PATTERN RECOGNITION

Equation (4.45) contains a fuzzifier value, m > 1, a s in the FCM, PCM
a n d GLVQ-F models , a n d is the b a s i s of t he cr isp, fuzzy and
possibilistic IDW k-nn rules. Like (4.43), equation (4.45) will produce
a fuzzy label vector even when the t raining da ta have crisp labels.
The choice m = 3 simplifies (4.45) considerably. For example ,

suppose the 6 nea res t neighbors to z = (0,0)^ in Figure 4 .17 are
= (-1.5,1)"^, X =(1,2)'' X 4 = (l , - 2) ' X j - (2 , 0) , - 2 ~ ^ - " . - > . ^ g - V ^ , - , , - 4 - I - , - , , «>g

and Xg =(-0.5,3)"^. Using (4.41) and B^^^,^\ ins tead of D

(4.42) with m = 3, we calculate

(-l,-!)"^

fnn;6,8o

0.5

0 .9

0 .0

0.1

+ 0 .56

^0.9^

0.1

O.Oj

+ 0.42

^0.3^

0.6

0.1

ro.03^
0.95
0.02y

+ 0.71
ro.2^
0.8

0.0

+0.33

^0.3^

0.0

0.7

0.5 + 0 .56 + 0 .42 + 0 .42 + 0.71 + 0 .33

s o D ^ ° w ^ J z)
fnn;k,5

^0.45^
0 .44
0.11

(4.46)

As in (4.42), the inverse weighted distance fuzzy 6-nn rule will assign
z to class 1 upon hardening of (4.46). The class memberships in (4.46)
for c lasses 1 and 2 are a little closer t h a n they are in (4.42), so the
IDW rule indica tes t h a t z is in a region of uncer ta in ty between
classes 1 and 2 a little more strongly t h a n simple averaging does.

Example 4 .8 To il lustrate the difference between the basic and IDW
vers ions of t he k - n n rules , we repeat some of the calculat ions of
Example 4.6 using (4.45) instead of (4.43) for various m's and 5's.

Table 4.22 D IDW,3
hnn;k,8

on the apples-pears data using crisp labels

H(Dip^;^ ̂) with m = 3 and 5 = 1-norm
hnn:k,6

(M U(x) §r'(z.X(^)) u(5,z) u (e , z) U(Z)
1

2

3

4

5

X,
11

14

13

s 5.00 1.00 0.00 s
e 2.86 0.64 0.36 s
s 2.22 0.72 0.28 s
e 2.00 0.60 0.40 £
s 1.82 0.65 0.35 S

CLASSIFIER DESIGN 251

Table 4.22 (con't.) D!°^f, on the
' hnn;k,5

apples-pears data using crisp labels

H(D?°^'^ -) with m = 3 and 6 = 2-nonn
nnn;k,62

U(z)
1

^ 1 s 5.00 1.00 0.00 &

2
^ 2 e 3.70 0.57 0.43 s

3
^ c 2.44 0.45 0.55 e

4
^ 1 4 ^ 2.22 0.54 0.46 S

5
^ 1 3 s 2.17 0.60 0.40 S
H(Dj™f̂ 3̂) with m = 3 and 5 = sup-norm

'(k) ^K) ^^'^'-'(k)) u(g,z) u(e.z) U(z)
1

^ 1 s 5.00 1.00 0.00 s
2

^ 2 e 4.00 0.55 0.45 s
3

^ 8 c 2.50 0.43 0.57 <^

4 ^ 1 4 ^ 2.22 0.53 0.47 s
5

^ 3 ^ 2.22 0.59 0.41 s
Table 4.22 shows the results of applying the IDW k-nn rules to the
apples and pears data with the Euclidean norm for m = 3. Hardening
in the last column of the tables in this example is done via (1.15),
although the memberships themselves could be used in later
processing. Notice that the ties that were recorded in Table 4.21 for
the crisp k-nn rule using the same three norms disappear because
the memberships induced by inverse distance weighting are distinct,
even in the situation where the training data has crisp labels. With
the 2-norm, the resultant class memberships are closer, even though
the final crisp label for z is the same as in the crisp k-nn.

The results of using IDW k-nn classification with the 2-norm fixed
for two values of m other than m = 3 are displayed in Table 4.23 to
give an idea of the effect of this parameter in the membership
calculations. Compare the two blocks in Table 4.23 with the center
block in Table 4.22 to see changes as m goes from 2 to 3 to 5. For a
relatively small value of m, i.e., m = 2, all hardened class
assignments are to class S, even in the 3-nn case where two of the
closest neighbors (a majority!) are from the C class. Table 4.23
shows what is expected - that smaller values of m tend to magnify
the effect of the closer points, whereas larger values of m produce the
opposite result.

252 FUZZY PATTERN RECOGNITION

Table 4 .23 Dj°̂ ĵ ™ on the apples-pears data using crisp labels

H{ D ! ° ^ ' 2) with m = 2 and 5 = 2-norm
^ inn;k,52

k ^od ^^^(ki^ ^ f^ ' ' ^ (k)) u (^ , z) u (e , z) U(z)
1 ^11 S 25.00 1.00 0.00 s
2 ^2 •i 13.69 0.65 0.35 s
3 ^8 e 5.95 0.56 0.44 s
4 ^ 1 4 S 4.93 0.60 0.40 s
5 ^ 1 3 S 4.71 0.80 0.20 s

H(D?"*;^^) with m = 5 and 6 = 2-norm
^ fhn;k,62

(̂W ^K) ^2-^^ '^(k)^ u (^ , z) u{e.z) U(z)
1 ^ 1 1 s 2.24 1.00 0.00 s
2

^2 c 1.92 0.54 0.46 s
3 ^8 c 1.56 0.39 0.61 c
4 ^ 1 4 ^ 1.49 0.52 0.48 S
5 ^ 1 3 s 1.47 0.60 0.40 s

Finally, there is no reason tha t the t ra ining da ta m u s t have crisp
labels. In fact, the use of fuzzy or possibilistic labels for the t raining
da ta is pe rhaps the real advantage of the soft k -nn rules. Table 4.24
gives a s imple example of th i s where the ne ighbors have been
assigned (subjectively, by us) the fuzzy labels in columns 3 and 4.

Table 4 .24 Using fuzzy labels : O^^,^^ with m = 3 and 5 = 2-nonn

k (̂ki ^^ -̂̂ (k)) ^^ '̂̂ (kî ^2'('-^(k)) u(g ,z) u(C,z) U(z)

1 Xjj 0.70 0.30 5.00 1.00 0.00 ^

2 x^ 0.20 0.80 3.70 0.49 0.51 C

3 x„ 0.25 0.75 2.44 0.44 0.56 C
8

4 X 0.75 0.25 2.22 0.49 0.51 <£
14

5 X 0.70 0.30 2.17 0.52 0.48 K
13 ^

CLASSIFIER DESIGN 253

For the 2-nn and 4-nn cases in Table 4.24, the final crisp label for z
switches from 6 to (^. This is due to the stronger memberships for x
and X in the C class and the "weakening" of the effect of the closest

8 °
neighbor, x , in the S class. While this example is contrived, it
points out that if meaningful fuzzy labels can be assigned to the
training data of a nearest neighbor classifier, the resultant fuzzy
labels for unknown points will reflect that partial commitment.

Section 4.7.1 will describe one way that soft labels can be generated
for training data. Of course, you can run any clustering algorithm
such as FCM or PCM on the data and simply ignore the given crisp
labels. This yields fuzzy or possibilistic labels for the points in X,
but it is arguable whether this is a plausible strategy. Some feel that
rejecting given crisp labels constitutes a loss of known information,
while others support the idea that the structure of the data itself (as
discovered by a "reliable" clustering algorithm) is more important
in determining useful labels for k-nn designs. Both camps have good
points.

4.5 The Fuzzy Integral

The fuzzy integral is a numeric-based approach which has been used
for both pattern classification and image segmentation (Keller et al.,
1986, Tahani and Keller, 1990, Keller and Krishnapuram, 1994,
Keller et al., 1994a, Grabisch and Nicolas, 1994). It uses a
hierarchical network of evidence sources to arrive at a confidence
value for a particular hypothesis or decision. A distinguishing
characteristic of the fuzzy integral is that it utilizes information
concerning the worth or importance of the sources in the decision
making process.

The fuzzy integral is a nonlinear approach to combining multiple
sources of uncertain information as often happens in automated
pattern recognition. In these applications the integral is evaluated
over a set of information sources (sensors, algorithms, features, etc.)
and the function being Integrated supplies a confidence value for the
object under consideration in a particular hypothesis or class from
the standpoint of each individual source of information.

The fuzzy integral relies on the concept of a fuzzy measure (Sugeno
(1977), Dubois and Prade (1982), Wang and Klir (1992)) which
generalizes the concept of a probability measure. K fuzzy measure
(FM) over a set X with power set /̂ (X) is a function g: P{X] i-> [0,1] such
that VA.B.A. ePOQ,

g(0) = O;g(X) = l . (FMl)
g(B)>g(A)ifB3A ; (FM2)

254 FUZZY PATTERN RECOGNITION

If {Aj}~ J is monotonic, then lnn{g(Aj)} = g(U Aj) . (FM3)

When X is finite, (FM3) holds trivially. A particularly useful class of
fuzzy measures is due to Sugeno (1977). A fuzzy measure ĝ^̂ is called
a Sugeno or X-Juzzy measure if it satisfies (FM1-FM3) and the
following additional property for some X > - 1 :

If A n B = 0 , then g^ (AuB) = ĝ (A) + gy[B} + Xg (̂A)g (̂B). (4.47)

If X = 0 in (4.47) then gy is a probability measure. Suppose X is a

finite set of information sources, X = {x ,..., x }, and let g' = g,({x}).
I n A, 1

The values g \ g^,..., g", are called the fuzzy densities associated with
X

These densities are interpreted as the importance of the individual
information sources. The measure of a set A of information sources
is interpreted as the importance of that subset of sources toward
Emswering a particular question (such as class membership).

Using these definitions we can show that g,(A) can be constructed
from the fuzzy densities of the elements of A for any subset A of X.
Given the set of densities, the value of X can be easily found as the
unique root greater than -1 of the simple polynomial in (4.48)
obtained from (4.47) and the fact that g(X) = 1 (Sugeno, 1977),

X + l=Ua + Xg') . (4.48)
1=1

Thus, estimating the densities is a core problem when using Sugeno
(and some other classes of) fuzzy measures.

Sugeno measures are a large subset of all fuzzy measures. All belief
and plausibility measures (Shafer, 1976) are Sugeno measures.
Sugeno measures are useful because (4.47) provides a way to
calculate the measure of a union of two sets from a pair of
component measures. Other classes of fuzzy measures exhibit a
similar computational advantage. For example, the traditional
possibi l i ty measu re h a s the defining proper ty t h a t
gposs(AuB) = gpos3(A)vgpog3(B). A similar fuzzy measure can be
defined with any T co-norm.

Still, there are many fuzzy measures which do not fit into nice
classes, but which are useful in pattern recognition. The trick is to
find a way to choose a measure that is "optimal" for a given problem.

CLASSIFIER DESIGN 255

Grabisch and Nicolas (1994) give some methods for learning useful
general fuzzy measures from training data.

Let Z = {zj,..., Zjj} denote the objects to be classified. For each class
hypothesis c , let hj,,: Z x X h^ [0,1]. The value h^[zp Xj) is called the

partial evaluation or support for object Zj in class k from the
perspective of information source x . When the context is clear, we
suppress the object name and class label from the partial support
function.

The information sources X = {x̂ x̂ }̂ could be a set of individual
feature types or simple classifiers. The fuzzy measure, g, supplies the
expected worth of each subset of sources for a classification
hypothesis. The Sugeno fuzzy integral Sg(h) of a function h over X

with respect to g is defined using a-cuts of h, h = {x: h(x) > a} as
(Sugeno, 1977),

S fh)= jh(x)og= sup{aAg(h)} . (4.49)
^ 0<a<l

In applications to pattern recognition, the computational cost of
computing the confidence value Sg(h) can be reduced significantly
since the set of information sources is finite. If X = (Xj,..., x̂ }̂ is
arranged so that h(x^) > h(x2) >... > h(x^), then Sugeno (1977) showed
that

Sg(h) = v[h(x,)Ag(X.)] , (4.50)

where Xj = {Xj Xj} for i = 1 n. This reduces the number of subsets
needed to evaluate the fuzzy integral for each function h from 2" to
jus t n. Also, for a Sugeno measure g , the values {g,{Xj)} can be
determined recursively from the densities as

gx(Xi) = gx({xi}) = gi ; {4.51a)

g,(X,) = g,{Xi_i u {x,}) = g;,(Xi_i) + g' + Xg;,(X,_i) • g'. (4.51b)

Sorting the function h adds some complexity to the evaluation. For
a general fuzzy measure, it is still possible to use look-up table
methods to extract the appropriate n subsets to compute the integral.
The reader is referred to Dubois and Prade (1982), Sugeno (1977),
Grabisch et al. (1992), Wang and Klir (1992), and Grabisch et al.
(1995, 1998) for more extensive theoretical background on fuzzy
measures and the fuzzy integral.

256 FUZZY PATTERN RECOGNITION

The definition given by Sugeno (1977) for the fuzzy integral is not a
proper extension of Lebesgue integration, in the sense that the
Lebesgue integral is not recovered when the measure is additive. To
avoid this drawback, Murofushi and Sugeno (1991) proposed the
Choquet integral as an alternative, referring to a functional defined
by Choquet in a different context. Let h be a function on X with
values in [0,1] and g be a fuzzy measure. The Choquet integral C (h) is

Cg(h)= Jh(x)og = }g(hJda . (4.52)
X 0

where again h^ ={x:h(x)>a}. If X is discrete, X = {Xj,..., Xĵ } and
arranged so that h(Xj) > h(x2) >... > h{x^), then C (h) can be computed
as

Cg(h)=ig(X.)[h(Xj)-h(x.^j)] , (4.53)

where h(x^^J is defined to be 0, and Xi= {Xj,..., Xj} for i = 1,..., n. It is
also informative to write the discrete Choquet integral as a
(nonlinear) weighted sum of these values in which the weights
depend on their order. For i = 1, 2,..., n, assume g(X) = 0 and define

«i(g) = g(Xi)-g(Xi_i) . (4.54)

Combining (4.53) and (4.54),

Cg(h)=|:h(xi)cOi(g) . (4.55)
1=1

In the general case, the sum in (4.55) is a nonlinear function of h
because the ordering of the arguments depends upon the relative
sizes of the values of the function h. This ordering can determine the
values of the weights (cojg)}, and which products, h(Xi)cOi(g), will
be formed. As for the Sugeno integral, calculating the Choquet
integral for a ^̂ -̂fuzzy measure requires only the fuzzy densities.
Assigning densities (on the entire fuzzy measure) appropriately is
crucial for successful application of the fuzzy integral to pattern
recognition.

Example 4.9 To display the mechanics of S and C , we compute the
integrals for an object, z, whose class confidence (the h function)
from the standpoint of 4 sources of information (perhaps features or
other classifiers) is given in Table 4.25. Also listed are the densities
assigned to each source for a Î -fuzzy measure.

CLASSIFIER DESIGN 257

Table 4.25 Class confidences and densities for fuzzy integrals

Source Xj Confidence h(xi) Density ĝ

1 0.9 0.2

2 0.7 0.2

3 0.4 0.2

4 0.3 0.2

Notice t h a t X = {x^,x^,x^,x^] is a lready sor ted by decreas ing h

va lues . Even though all densi t ies are equal, the fuzzy measu re g is
not a probability measu re since the s u m of the densities is less t h a n
1. Solving equat ion (4.48) (by, for example, Newton's method) for X
gives X = 0.746, and so, the 4 values of the measure that are needed to
compute either fuzzy integral are generated by (4.51) a n d given in
Table 4.26.

Table 4.26 Measure values to compute S and C
for the data given in Table 4.25

Source Set Xj Measure g(Xj)

Xi 0.200

X2 0.430

X3 0.695

X4 1.000

For these values the two fuzzy integrals are

Sg(h)= V(0.9 A 0.2, 0.7 A 0.43, 0.4 A 0.695, 0.3 A l.o) = 0.43; and

Cg(h)=(0.9-0.7)(0.2)+(0.7-0.4)(0.43)+(0.4-0.3)(0.695)+(0.3-0.0)(1.0)

= 0.54.

In c o m p a r i s o n wi th p robab i l i t y theory , t h e fuzzy i n t eg ra l
co r responds to the concept of expectation. Fuzzy integral va lues
provide a different m e a s u r e of cer ta inty in a classification t h a n
posterior probabilit ies. Since the integral evaluation need not s u m
to one, lack of evidence a n d negative evidence can be dist inguished.
Dempster-Shafer belief theory (Shafer, 1976), can also d is t inguish
be tween lack of evidence a n d negative evidence. A concep tua l
difference be tween t h e fuzzy in tegra l a n d a Demps te r -Sha fe r
classifier is in the frame of discernment . For the fuzzy integral, the
frame of d iscernment conta ins the knowledge sources related to the

258 FUZZY PATTERN RECOGNITION

hypothesis under consideration, whereas with belief theory, the
frame of discernment contains all of the possible hypotheses. The
fuzzy integral can assess the importance of all groups of knowledge
sources towards answering the questions as well as the degree to
which each knowledge source supports the hypothesis.

We can view the action of a single fuzzy integral as a local filter on a
set of values. For example, if the h function is just the scaled gray
level in an image window, then applying the fuzzy integral to the
window and replacing the gray level of the center pixel with the
integral value induces a filter on the image. (Note that while we
discuss filters on image windows - we can't help it because we like
image processing - this discussion holds for any sequence of data
values, for example, in signal processing). Selection of different
fuzzy measures yields different types of filters. Several examples of
fuzzy integral filters are given in the literature (Grabisch, 1994,
Grabisch and Schmitt, 1995, Hocaoglu et al., 1997, Keller et al., 1998,
Hocaoglu and Gader, 1998). We note a few for the Choquet integral.

Assume that all neighborhoods are of size n (neighborhoods are
usually square regions of odd length centered at a point ^). Here, n
represents the total number of points in the neighborhood). If the
measure g is an additive measure with all densities equal to 1/n,
then the filter is the simple local average. Suppose n = 2k+l. If the
measure, g, is defined for any subset A of the window to be

g^(^^ = {o' ' ' ' ' 'e1s'e • ^^-'^^

then the Choquet integral is the median filter. This is easy to see
using equation (4.55) because co. will be nonzero for only one value of
the index, which is the index required to "pick off the median of the
input values. In fact, replacing k with any i between 1 and 2k+l in
the above definition yields the i-th order statistic (including the
maximum for i = 1 and the minimum for i = 2k+l). More generally,
all stack filters (a class which includes the median filter and all
other order statistic filters) can be represented by Choquet integral
filters (Shietal. , 1998).

Choquet integral filters can also represent combinations of linear
order statistic (LOS) filters defined by the convex sum

LOS„(h)=icOih(Xi) , (4.57)

n
where the weights satisfy X K>I = 1 and the function values are sorted

1=1
in descending order. This operator can be seen as a Choquet fuzzy
integral filter by defining the measure g according to

CLASSIFIER DESIGN 259

If |A| = i, then g(A) = Ico, . (4.58)
J=i ^

These filters can also be referred to as ordered weight average (OWAj
filters since they implement the operator given that name by Yager
(Yager, 1988). They have also been referred to as generalized order
filters by Grabisch. They are useful for implementing robust
estimators (Huber, 1981, Rousseeuw and Leroy, 1987), such as the
alpha-trimmed mean (Shi et al., 1998).

Example 4.10 This example shows the use of a Choquet integral
noise filter in an automatic target recognition application
(Hocaoglu et al. 1997, Keller et al., 1998). (OK, this really belongs in
Chapter 5, but hey, it seems like a good place to demonstrate the use
of the fuzzy integral as a data filter.) Figure 4.20 shows a portion of a
LADAR range image where the scaling has been performed
artificially to give a clear picture of the convoy located in the
middle. The figure shows 6 of the 9 targets in the image. The white
rectangles enclosing the vehicles in the convoy in the image were
inserted manually.

^^jTT~~r~'r^'- -.^ ,.^ • ^ ; ; ! ' • \ , ; yy^jirfT]

Figure 4.20 A (nonlinearly scaled) LADAR range image

Notice the noisy background caused by sensor dropout as well as
other phenomena (although it may be somewhat hard to see the full
extent of the noise in these small images). The original image was
processed by three filters: (a) a standard 5 x 5 median filter, (b) a 3 x
3 OWA filter with weights 0, 0, 0, 0.25, 0.5, 0.25, 0, 0, 0, and (c) a 5 x 5
Choquet integral filter based on a A,-fuzzy measure with the densities
described in Hocaoglu et al. (1997). Basically, the density for a given
pixel, i.e., for the singleton set containing the pixel, in a window
measures how similar this pixel's range value is with its neighbors.
In all cases, the center ptxel's range value is replaced by the value
obtained from the filter. The Choquet integral filter preserved edge
s t ructure better than the other filters while smoothing the
background more. (Note: a 3 x 3 OWA was used because the 5 x 5 OWA

260 FUZZY PATTERN RECOGNITION

filter "looked" the same as the 5 x 5 median). Detailed discussion is
provided in Hocaoglu et al. (1997).

Figure 4.21 shows the output of the three filters on the LADAR range
image (nonlinearly scaled for display purposes to show the convoy).
It's hard to see, but there is texture in the background for the OWA
and median filters. The background in Choquet-filtered image is
flat. The Choquet filter managed to remove some of the noise pixels
that otherwise caused 3 false alarms. In any case, these examples
illustrate the wide range of behaviors that can be obtained with
Choquet integral filters by choosing different measures and classes
of measures.

(a)3x3 0WAfilter

(b) 5 X 5 median filter

(c) 5 X 5 Choquet filter

Figure 4.21 .^plication of filters to LADAR range image

The fuzzy integral can be used in pattern recognition problems as
follows. Information sources are identified. These sources could be
individual features, pattern classifiers, context information, etc. A
fuzzy measure is generated subjectively or estimated from training
data for each pattern class. Generation of the measures is the
training phase for the fuzzy integral approach. Given a pattern to be

CLASSIFIER DESIGN 261

class i f ied, a n ev idence func t ion h (x) is eva lua ted for e a c h
i J

information source x, and each class i. The functions {h } are then
integrated with respect to their corresponding class fuzzy m e a s u r e s
resu l t ing in one confidence value for each class . These confidence
va lues are used to make a final classification decision, e.g., ass ign
the p a t t e r n to t he c lass wi th the h ighest confidence. The fuzzy
integral approach is summarized in Table 4. 27.

Given

Table 4 .27 A fuzzy integral-based classifier

*• A set X = {x,,..., X } of information sources
1 n

••• To label : object z
«•" For 1< i < c, a function h ;X -^ [0,1] which evaluates

the strength of object z in class i with respect to x.

Get Densit ies {gj : 1< i < c; l< j < n} for measures {g.}, or the
entire measu re s {g.}.

Find h.(x) for each source j and each class i for object z

Sort X: {h (xp > h.(xj >... > h.(xj : l<i<c}

Compute
S fh.)= v[h , (x ,)Ag,(X.)] Vi ; or (4.59)

Si 1 j=l 1 J I J

h . (x .) -h . (Xj^ j)]g (Xj) Vi (4.60)
8i j=i

Array Dfg (z) = (fgj (hi(z))...., f ĝ (h,(z)))T e Np,

where f = S or C and g = (gj, • • • > g^)

(4.61)

Optional
(Harden)

H(D^ (z)) = e, ofg^(h.(z))>fg^(hj(z)) V j ^ i (4.62)

Notice t h a t the calculat ion in (4.61) resu l t s in a possibilistic label
vector for z us ing either the Sugeno or Choquet fuzzy integral, so D^

is, in ou r terminology, a possibilistic classifier t h a t d e p e n d s on
either the Sugeno or Choquet fuzzy integral. And when the option to
h a r d e n is used, the resu l tan t classifier at (4.62) is crisp. As with the
k -nn rules , other au thors sometimes call (4.61) a fuzzy classifier, b u t
we feel tha t our terminology is technically correct.

Example 4 .11 Tahan i a n d Keller (1990) describe a fuzzy integral-
based classifier t h a t they developed for automatic target recognition
(ATR). The classifier was developed and tested us ing /o ru ia rd looking
infrared (FLIR) images conta in ing two t a n k s a n d a n armored
personnel carrier (APC), Three sequences of 100 frames each were
u s e d for t ra ining. In each sequence the vehicles appea red a t a

262 FUZZY PATTERN RECOGNITION

different aspect angle to the sensor (0°, 45°, 90°). In the fourth
sequence the APC "circled" one of the tanks, moving in and out of a
ravine and finally coming toward the sensor. This sequence was
used to perform the comparison tests. The images were preprocessed
to extract "object of interest" windows.

Classification level integration using S with A,-fuzzy measures

was performed on four statistical features calculated from the
windows, that is, the sources {x , x X , X } represent the {"mean"

variance
the partial evaluation, h ix

"skewness", "kurtosis"} of image neighborhoods. To get
(for k= tanks, armored personnel

carriers = APCs), for each feature, the FCM algorithm with c = 2 was
used on the training data. Normalized inverse distances to the
terminal cluster centers produced memberships for the test objects.

The fuzzy densities - the degree of importance of each feature - were
assigned by how well each feature separated the two classes (tank
and APC) on the training data. These are shown, along with X
values, in Table 4.28.

Table 4.28 Computed Densities and lvalues

^' i i ^' ^
Tank
APC

0.16
0.15

0.23
0.24

0.19
0.18

0.22
0.23

0.760
0.764

Table 4.29 compares the output results for three classifiers; the
Sugeno fuzzy integral design Dg ; the standard Bayes classifier D ;

and Dj^g, a classifier that uses Dempster-Shafer theory for
integration of information (Wootton et al., 1988).

Table 4.29 Classification results for three classifiers

Fuzzy
Integral Dg

Bayes
Classifier D,

Dempster
Shafer D DS

Tank APC Tank APC Tank APC
Tank
APC

175
17

1
49

176
22

0
44

176
22

0
44

92.6% right 90.9% right 86.4% right

Each 2 x 2 block of cells in Table 4.29 is the confusion matrix
obtained by the classifier when applied to the test data (the fourth
image sequence), hardened in the usual way. In this test at least, the
classifier designed with fuzzy integrals did slightly better than the
two probabilistic designs. In Tahani and Keller (1990) and Keller et
al. (1994a) it was demonstrated, on the above data, that the fuzzy

CLASSIFIER DESIGN 263

integral had the ability to fuse the outputs of three classifiers: a
Bayes recognizer, a nearest prototype design based on exemplars
from fuzzy c-means clustering, and a feature-level fuzzy integral.
The densities were chosen heuristically based on individual
classifier performance on a training set. The integration process
was able to "correct" mistakes made by one of the classifiers, while
maintaining the correct classifications for those objects where
there was no confusion in the algorithmic outputs. In Keller et al.
(1994a), the value of the fuzzy integral to fuse outputs of several
neural network classifiers was nicely demonstrated on a very
difficult handwritten character recognition problem. We will return
to the issue of classifier fusion, or multistage classifiers, in Section
4.9.

The behavior of the fuzzy integral in a real problem is heavily
dependent on the densities, or more generally, on the individual
fuzzy measures. Therefore, estimation of the densities or the
measures is very important. In some applications of the fuzzy
integral the densities can be supplied subjectively by an expert. This
subjective assignment approach may be the only method to assess
the worth of non-numeric sources of information, such as context or
"intelligence" reports. In most pattern recognition problems, it is
preferable to estimate the densities directly from training data.

Given a set of n information sources, we either need to specify 2"
values directly (one for each subset), or for "nice" classes of
measures, such as Sugeno ?i-measures or possibility measures, we
need only to generate n fuzzy densities. In some instances the
measure can represent subjective information only. Hence,
heuristic methods have been used to specify either the full measure
or the densities. They can be directly produced by human experts, or
can be inferred from training data in numerous ways. No general
theory applies here. For example, Keller et al. (1986) and Qiu and
Keller (1987) used the relative amount of overlap between the
histograms of a feature for the various classes (on training data) to
generate densities. Chiang and Gader (1997) used the percentage of
cases for which input feature values contributed towards correct
decisions on training data for each hypothesis.

In many applications, the number of knowledge sources is
considerably less than the number of hypotheses, or classes. For
example, in handwritten word recognition (Gader et al., 1995c,
Gader et al., 1996a) the number of classes (i.e., words) is "essentially
Infinite", and so, for any test image, the potential classes must be
dynamically assigned.

Example 4.12 This example, taken from Gader et al. (1996a) and

264 FUZZY PATTERN RECOGNITION

Gader and Mohamed (1996) shows the use of the fuzzy integral as a
match function in a dynamic programming-based word recognition
application. The details can be found in Gader et al. (1996a) and its
references. Here, we only wish to demonstrate how the fuzzy integral
can improve word recognition, a domain where the class labels
change dynamically with each object (image). Let I be a word image
and let L = {W , W ,..., W } be a set of possible words or strings for the
particular image. The top of Figure 4.22 shows an image of the actual
word "Richmond". The set L represents the dictionary or lexicon of
all possible words. One version of the word recognition problem is to
find the word in L that matches I better than all other words in L. In
the baseline dynamic programming algorithm (see Gader et al.,
1996a), a match between a string W e L and I is computed by
maximizing the average match between segmentations of I and the
individual characters of the word W. In the fuzzy integral algorithm,
it is used to compute the match score.

Let W = CiC2-- Cn where c, is the ith character in W. The basic idea
is as follows: We assign a density to each character class represented
in the string W, C; -> g^ using some method. Given these densities, we
can generate a ^-fuzzy measure g. Thus, each string has a measure
associated with it. Assume we have a segmentation of the word
image I into n segments. Basic character recognition algorithms
(neural networks, usually) provide confidence values that the ith
segment represents the ith character in the string. Denote these
confidence values by h(xi), h(x2), •••h(Xn). The baseline system
computed the match between the segmentation and the string by
averaging these confidence values. Alternatively, they integrated
these confidence values with respect to the measure g to arrive at a
different match score.

Figure 4.22 illustrates the basic process. The word image is broken
into small pieces (no bigger than one character) called primitives.
Then the primitives are Joined together to get the "best" match to
each word in the lexicon using djmamic programming. The match of
the image of the actual word "P^chmond" to the strings "Richmond"
and "Edmund" are shown near the bottom of the figure. For the two
segmentations, the character confidence values are shown below
each segment. The average of the character confidence scores (on a
scale from 0 to 1, but note that the displayed values in the figure are
multiplied by 100) in the correct match is 0.57, whereas for the
incorrect match it is 0.58. For each segmentation, a Choquet
integral was computed using all densities equal to 1/(1.4n) where n is
the string length. The parameter 1.4 was found through analysis of a
set of training data. In this case, the Choquet integral assigned a
score of 0.54 to the correct match and a score of 0.52 to the incorrect
match.

CLASSIFIER DESIGN 265

/vU cJ^./Mc(!W.
Image Segmentation

i i B " 12M 13M 14E 15W 16H 17U isfJ i g P a o n

7-1 U 22 W 23^ 24 W 25»S

R=53 i=27 c=52 h=61 m=70 o=43 n=61 d=88

E=12 d=79 m-85 u=25 n=61 d=88

Input
Image

Primitive
Segments

Best
Match

to
"Richmond"

Best
Match

to
"Edmund"

Figure 4.22 Dynamic programming approach to word recognition :
(numbers below each letter are scaled by 100 for display]

All testing was performed on Images of handwritten words taken
from the standard SUNY CDROM data set described in Hull(1994)
Specifically, they used the 317 word "bd city name" test data set, and
presented results for the lexicon set with average length 100.

The segmentation algorithm (Gader et al. 1995) was initially
developed on National Institute of Standards and Technology (NIST)
character data. Later, the algorithm was adapted to images of
handwritten words obtained from the United States Postal Service
through the Environmental Research Institute of Michigan (ERIM)

266 FUZZY PATTERN RECOGNITION

using a data set referred to as the bha data (Gader et al., 1995, Gillies
et al., 1993). The character recognition and compatibility neural
networks were trained on characters and pairs of characters
extracted from the bha data.

Table 4.30 shows the increase in recognition rates obtained by

setting all densities equal to the same value, g' = , where s is a
s n

parameter and n is the length of the string W. This method reduces to
the baseline system (averaging) for s = 1 but produced better results
than the existing system for larger values of s.

Table 4.30 Recognition Rates obtain from initial experimentation

Baseline System Equal densities (s=1.4)
83.9% 86.1%

One interesting property of the fuzzy integral is that it seems to be
less susceptible to single outliers in the partial evaluation functions
than many other methods. To illustrate, consider the match of the
image of the word "plain" to the strings "Erin" and "Plain" as
summarized below. In the match of plain to "Erin", the match of a
wrong group of primitives within the image to "i" is very high (bigger
than any other character match). This big value dominates the
averaging method, causing the wrong classification, bu t is
compensated for by the Choquet integral.

MATCH OF Plain TO STRING Erin
Character confidence function h: 0.06 0.35 0.84 0.23
Old Match Score 0.554
New Integral Match Score 0.309

MATCH OF Plain TO STRING Plain
Character confidence function h: 0.29 0.30 0.21 0.67 0.36
Old Match Score 0.542
New Integral Match Score 0.337

When desired outputs of the integrals are available for each class for
a large enough training set, Grabisch has shown that the entire
measure for each class can be learned via an optimization problem
(Grabisch et al., 1995, Grabisch and Nicolas, 1994) using quadratic
programming. This methodology is quite useful but requires a least
squares objective function in order to derive a quadratic program. If
the number of information sources is large, this optimization may
be computationally prohibitive, and in noisy applications, least
squares is known to be non-robust. However, Chen et al. (1997) used
the quadrat ic programming methodology to define optimal

CLASSIFIER DESIGN 267

measures for computing word recognition confidence from
character confidence values in handwritten word recognition with
excellent results.

The process of determining the densities for fuzzy integrals can also
be thought of as a random search activity when training data is
available. Theoretically, an exhaustive search will always find the
best density set. But when the number of classifiers is large, this
approach is impractical. Yan and Keller(I996) suggested a modified
random search and a form of simulated annealing, both motivated
by heuristics, to find densities for possibility integrals used in
image segmentation.

Genetic algorithms provide an efficient alternative to exhaustive
search. They have been utilized by some researchers to obtain
various parameters of neural-fuzzy pattern recognition systems,
including density values for fuzzy measures (Wang et al., 1997, 1998,
Pham and Yan, 1997). Densities corresponding to multiple
classifiers are coded as chromosomes in the genetic algorithm, and
the classification rate is used as the objective function to be
maximized. They combine "survival of the fittest" of strings and
special ways of information exchange between generations of
strings to form a search algorithm that is neither gradient search
nor a simple random walk. In a genetic algorithm, each possible
solution is coded as a binary string and a set of candidate solutions
called a population is maintained. A genetic algorithm uses the
three operators: reproduction, crossover, and mutation, operating
in cycles (generations), returning the string with best fitness. One
advantage of this type of search algorithm is that the densities for
all classes are updated at each step, allowing for better comparison
of fuzzy integrals values. See Geyer-Schulz (1998) for a complete
treatment of crisp and fuzzy genetic algorithms.

Keller and Osborn (1996) described a novel fuzzy density training
algorithm (for Sugeno fuzzy measures) which was similar to
training algorithms employed in neural network research. It was
based on a "reward/punishment" scheme to adjust the fuzzy
densities for each class. Initially the densities for each class start
out at the same value, for example, 1/n. For a given labeled object
instance, the integrals are calculated for each classification
hypothesis. If the largest integral value does not correspond to the
correct classification, training must be done. The offending fuzzy
integrals are punished by decreasing the densities that directly
contributed to their integral values while the correct class has its
contributing densities increased. This tended to raise the integral
value of the correct class integral and lower the value of those that
were misclassifying the input. This process is continued until all
objects in a training set were correctly classified. This approach was
used to train fuzzy integral classifiers in a target recognition
application (Keller and Osborn, 1991).

268 FUZZY PATTERN RECOGNITION

In the methods discussed above, you need to compute membership
values (confidences) in different classes from observed feature data.
Several methods can be used for this purpose (Section 4.7.1). You are
probably getting tired of hearing this, but for any fuzzy classifier to
work, fuzzy sets must be generated. This is equivalent to estimating
conditional probability density functions and prior probabilities in
statistical classifier design.

There are several extensions of the given fuzzy integral pattern
recognition algorithm both in terms of the class of fuzzy measures
utilized and in the formulation of the equation to generate the
values (i.e., generalizing equation (4.49). The reader is referred to
Keller et al. (1994a) for a discussion and real examples of these
extensions (as well as a good bibliography of fuzzy integral
approaches to pattern recognition).

4,6 Fuzzy Rule-Based Classifiers

Fuzzy rule-based systems have gained a wide degree of acceptance in
control, where output signals are almost always continuous. In
pattern recognition, rule-based systems are less evident, since crisp
classifiers are discretely valued. One advantage of using a fuzzy rule-
based classifier, however, is that the labels can be soft during the
operation of the rule-base, and hardened as the last step of
classification.

There are many, many ways that rules can be extracted from data
(Weiss and Kulikowski, 1991, Lin and Lee, 1996, Jang et al., 1997,
Nguyen and Sugeno, 1998). We will discuss rule extraction methods
based on decision trees, clustering and heuristics in this section,
and on neural networks in Section 4.7. Our intention is to begin in a
gentle, non-traditional way, with some simple examples based on
crisp decision trees. We hope this will pave your way towards
understanding some useful connections between three apparently
disparate fields of classifier design : neural network classifiers,
machine learning (classification trees), and (fuzzy) rule-based
systems.

Like neural networks and fuzzy systems, decision trees can be used
for approximation and classification. Since this is a book on
pattern recognition, our interest is in the use of trees as classifiers,
which in our context are sometimes called classification trees.
Many writers and readers are used to the more general term decision
tree, but we will use these two terms interchangeably unless there is
a need to be more specific.

CLASSIFIER DESIGN 269

A. Crisp decision trees

Decision trees (DTs) are a simple and intuitively natural way to
introduce the idea of rule-based network approaches to classifier
design. Let D^^ be a decision tree classifier, z be a point to be
labeled, and let D(z) represent any of the classifiers we have studied
so far ("single stage" classifiers). Advocates of decision trees list the
following as advantages of the decision tree approach:

^ . Dp^ approximates global, complex decision regions by
constructing the union of simpler local ones.

ft. Calculation of D(z) involves all c classes, whereas Dp^(z) is
often obtained using a subset of the c classes, so D^̂ ^ may be
faster than D.

5 . Calculation of D(z) uses all p input features for all decisions
regardless of their actual values, whereas the features used in
computing Djj.j,(z) may be used in various combinations -
different nodes in decision trees may use different feature
subsets to get good discrimination between the classes that
arrive at particular nodes.

Proponents of decision trees also concede some disadvantages:

ft. Overlapping data classes (for example, from mixture
distributions) can cause the tree to have many leaves (and, as
we shall see, this means many rules), thus increasing
memory requirements. And when the decision tree is soft
(fuzzy, probabilistic or possibilistic), this can lead to large
evaluation time during operation.

ft. Decision trees typically overfit the training data, so a good
pruning algorithm is needed to make the tree generalize well.

ft. Classic decision trees have a parallel axis bias (this can be
overcome by "oblique code 1", Murthy et al, 1994).

5 . Decision trees grow larger with more training data, but their
accuracy on test data rarely shows a concomitant increase.

f5- Decision trees generally don't afford incremental learning
(but IDS is incremental, Utgoff, 1989).

We can summarize these two lists succinctly: as with all other
classifier designs, you take the good with the bad. As usual, the real
question is how to find a good classification tree? Unlike previous

270 FUZZY PATTERN RECOGNITION

classifiers we have studied, D^̂ ^ involves more than just choosing a
family of classifier functions and training D by some method for
parametric estimation. Finding an (error rate) optimal Dĵ ^ is not
so easy. The design process, on the other hand, is fairly
standardized: build it, prune it, and test it. First we develop some
terminology, then we discuss strategies for building a crisp decision
tree, and finally, we review most of the work that has been done
towards fuzzifying crisp structures.

A tree T = (V, E) is a directed graph (or digraph) which has a root node
v^ e V with the property that there is a unique path p(Vj, v) from v
to every other node v e V, and no path from v to itself. In this
section we denote nodes of T as V={v}, v standing for vertex, v is the

J ° 1
only node without a parent. Terminal vertices, the only nodes
without children, are called leaves. Non-terminal nodes are also
called internal nodes, denoted as V • and we denote the leaves by V .
Thus, V = VL u V|, and VL n VJ = 0 . T is binary when each non
terminal node V e Vj has two exit edges (or equivalently, two
children, usually called the left and right children of v). Thus,
internal nodes can have one or more children but only one parent -
figure that out!.

Learning the structure of a decision tree, or equivalently, the rules it
represents, is called rule induction (from our viewpoint, this means
training D). A classification tree D^^covers the given cases
(inputs) in crisply labeled input-output (lO) data set X if and only if
the rules it corresponds to are consistent in the pattern recognition
sense, i.e., the resubstitution error rate E„ (X|X) = 0. Any finite

"DT
data set can be covered by at most n consistent crisp rules (i.e., by a
classification tree with n pure leaves). In general, the number of
leaves required to consistently cover c classes is V >c.The
smallest tree that covers the training data is desirable, but often
does not provide good generalization.

Figure 4.23 shows a crisp decision tree classifier D^^ whose job is to
decide which of three crisp labels, chicken (e^), crab (e^) or fish (Cg),
a particular object should be given.

CLASSIFIER DESIGN 271

Figure 4.23 A decision tree that covers three classes

We can't just drop a fish into the computer and ask for an answer
(OK, some computers are pretty fishy, as are many of our comments).
As usual , we have two choices for representation of objects:
numerical features (either continuously valued features such as
weight, length; or discretely valued features such as number of fins,
etc.); or categorical attributes (color, skin texture, etc.). In Figure
4.23 the only numerical feature needed to make correct
classifications is the integer n,, the number of legs: n ,̂ , = 2, n

" L '^ chicken c

= 8 (we don't count the claws of the crab as legs - they are hands), n
= 0. When the computer considers a question such as " # legs?", it
must make a computation or comparison to answer the question.
This happens at all the internal nodes, and at none of the leaves.
The set of leaves Tĵ = (Vn. VJ^2''^L3^ ^^ Figure 4.23 provide a crisp 3-
partition of the data, with label vectors as shown to the left of each
leaf.

crab

Classification is accomplished just as you see it: each internal node
in the tree poses one question (here the root is the only internal
node), and, based on the response, the object traverses T from root to
some leaf. When a leaf consists of objects from just one crisp class,
we say it is pure; and when all the leaves are pure, we say T is a pure
classification tree. Following tradition, the leaf nodes are indicated
by rectangles (well, ours are almost rectangles - apropos don't you
think?), while the internal nodes are shown as ellipses. Also notice
that the root node v^ processes examples of all three classes - this is
why they are shown "in" the node in Figure 4.23, but they don't reside
there - they are just passing through. In this example, there are 3

272 FUZZY PATTERN RECOGNITION

classes and 3 terminal nodes, but usually, each class will have
several leaves that bear the same crisp label.

Up to this point object and relational data have been continuously
or discretely real valued, and in all cases the measurements
(numerical features) can be ordered (this property results in the
alternate name ordinal data for these two kinds of data). Decision
trees can also deal with categorical (nominal) data - i.e., data whose
features or attributes take values that have no ordering. Many sets
of objects can be described nicely by categorical data.

Categorical attributes (nominal variables) are in some sense similar
to the semantics of fuzzy descriptions in rule-based systems, where
linguistic variables can take linguistic values. Categorical variables
are not associated with membership functions, while linguistic
variables take values that are in turn represented by fuzzy sets, that
is, by (tj^ically continuous) membership functions. In the domain
of fuzzy systems models, we call words such as scaly, feathery, hard
linguistic values, say {(], of a linguistic variable J = skin texture.
Linguistic variables in the fuzzy sets context are somewhat more
general than categorical variables. First, the membership function
that represents a linguistic value serves to modify the extent to
which a particular observation should be considered to exhibit the
linguistic attribute. Second, most linguistic values (e.g., low,
medium, high) of linguistic variables (e.g. speed) have an unspecified
but semantically clear ordering, as, for example, low is less than
medium which is less than high. We will write vectors that have q

linguistic variables for entries as J = (,jf^ J!)'^ eufl. The number
of possible values that can be taken by a categorical or linguistic
variable is called the granularity of the variable. For example, when
texture is smooth, scaly, feathery, hard or leathery, its granularity
is 5, whether each of these words is represented by a crisp or soft
membership function.

The three objects in Figure 4.23 could be equally well described with
a nominal variable such as skin texture as they are by counting the
number of legs: the skin of chickens is feathery, of crabs is hard, and
of fish is scaly, smooth or leathery. The tree built using the
numerical feature "number of legs" and one built using the
unordered categorical attribute "skin texture" will be identical in
this simple example. The question shown at the root in Figure 4.23
becomes "is skin scaly, hard or feathery? The three crisp labels,
chicken = feathery = (e^), crab = hard = (e^) or fish = scaly = (e^) still

apply, and the tree covers the three given cases, now described by
values of a categorical variable.

CLASSIFIER DESIGN 273

B. Rules from crisp decision trees

The simple example in Figure 4.23 introduces the idea of using a DT
for classification. What is ostensibly different with this approach
from those previously discussed is the representation of the
classifier function. If we designate the set of objects as X, the crisp
decision tree classifier Dj^.j,:X-> Nĵ ^ in Figure 4.23 can be
represented by three crisp rules :

If (nL=2) Then DDT{nL) = ei ; (4.63a)
If (nL=8) Then DOT(nL) = e2 ; (4.63b)
If (nL=0) Then DOT(nL) = e3 . (4.63c)

Unlike our previous classifiers, there is no functionally compact
way to represent "O^y^.. Moreover, rule-based systems like (4.63) will
almost always be embodied as computer programs. This is our first
example of a "learning" model that leads to a computational
representation of D. To emphasize the structure of classification
trees as rule-based functions, we will denote the set of rules in a rule-
base as /€ = {Rj ^M^' and the output of/€ for input x e St^as the

vector R[x]. This emphasizes that the rules are Just a computational
representation of a transformation, f?:5KP i-> 9^i.

Why use rules at all? The classifiers discussed so far make decisions
based on mathematical models that have little or no "physical"
meaning to most users. Generally, decisions rendered by a computer
are based on reasoning that is not readily apparent (even to the
designer of the system!). This can lead to a lack of confidence by
humans in decisions made by the computer. Arguably, one of the
primary advantages of rule-based classifiers is their ability to
provide humans with understandable explanations of label
assignments. Certainly system (4.63) satisfies this criterion : each
rule is easily understood by us.

DDT(ni

ft

0
HL legs

Figure 4.24 Geometric representation of (4.63)

274 FUZZY PATTERN RECOGNITION

Another nice aspect of rule-based classifiers is that they have a
simple geometric interpretation. System (4.63) is illustrated in
Figure 4.24, which depicts the functional action of each rule in
terms of its numerical input (n) and output e., represented here
simply as integer i. The 3 discrete points in the plane represent these
three rules completely.

The system in Figure 4.23 based on the numerical input "number of
legs" has no rule for inputs that are not 0, 2 or 8. That is, it has no
generalization capability at all. For example, some crabs come out
of the water with only 7 legs, and the tree in Figure 4.23 will fail to
classify crabs with this misfortune. Moreover, if a human was
submitted to the tree in Figure 4.23, she or he would be classified as a
chicken. The alternative tree based on skin texture would perform
equally badly: turtles (hard skin) would be classified as crabs, and
humans, perhaps, as fish. This is a problem that is particularly
acute for crisp decision tree classifiers - it is not hard to train them
to have zero resubstitution error rates, but they often generalize
badly.

We can ameliorate this problem in the numerical case by erecting
crisp membership functions along the horizontal axes that capture
the training inputs in continuous intervals. The domains shown in
Figure 4.25 are fish = [0,1), chickens = [1,3] and crabs = [7,9]; the ends
of the intervals are called cutpoints. Geometrically this creates
three crisp rule patches, as shown in Figure 4,25. (Actually they are
not patches, since they have no vertical extent, the outputs being
singletons; we show them with finite heights in Figure 4.25 so you
can see them.)

DDT(nL)

A

fish
63 ~~irzZZ2

-E
crabs

chickens

• > " L legs

mi
1 3 7 9

Figure 4.25 Crisp rule patches associated with (4.63)

The usual way to generalize a tree for continuous variables is to
simply place a cutpoint at the midpoint of each pair of adjacent.

CLASSIFIER DESIGN 275

distinct values taken by any continuous attribute in the training
data. The updated version of Qulnlan's classic tree-building
algorithm (IDS, Quinlan, 1983) for continuously valued inputs
called C4.5 (Quinlan, 1993) uses the feature values in the data as
cutpoints. We have done it a little differently in Figure 4.25 so you
can see the general idea, because several fuzzy generalizations of IDS
depart from the midpoint strategy used by C4.5. In any case, we refer
to extensions of this kind that imbed the n discrete, observed values
of feature i, i = 1 p, in some real interval (often the interval
[mi,Mi] shown in equation (4.20)) as cutpoint quantization.

Now any input between 1 and 3, for example, would evoke the
response "label 1" = (most like a) chicken, and 7-legged crabs will be
classified correctly. This may seem nonsensical for discrete inputs,
but it makes this important point: when we cover the training data
with crisp rule patches, the patches allow us to have outputs for non-
training inputs - i.e., the patches provide generalization capability
to Dp.j,. When the input variables are continuous, this makes a lot of
sense.

Suppose we add humans (crisp label = e^) to the three classes in
Figure 4.23. Since humans have 2 legs, the rules in (4.63) no longer
cover the four classes - we need another feature. Let x = number of
legs, y = number of hands for the object represented by x = (x, y)^,

x\ (2\ (S\ (0^ (2
and count the claws of crabs as hands. Thus i v I ~ I 0 I'I 2 I'I 0 I'I 2

are, respectively, the discrete-valued, numerical feature vectors for
all representatives of the four classes chickens, crabs, fish and
humans. One decision tree that covers these four classes is depicted
in Figure 4.26.

During training, we try to pick questions at the internal nodes in
Figure 4.26 so that they act like a set of sieves, separating more and
more training cases as we move down through the tree, until all the
examples in each terminal node are in a single class. Here, as in
Figure 4.23, the number of leaves equals the number of classes, but
again, this is coincidental (in fact, unusual). Unlike our previous
classifiers, the DT in Figure 4.26 uses the input features
hierarchically (one at a time), rather than jointly. This is not a
general property of all decision trees. All of the internal nodes in
some decision tree classifiers process the entire input vector.

276 FUZZY PATTERN RECOGNITION

> | f o. ^ o r ^ o. ^

Figure 4.26 A binary decision tree that covers four classes

Crisp rules corresponding to the tree in Figure 4.26 are:

^ B D T W ^ If {x = 2andy;4 2) Then
If (x = 2 a n d y = 2) Then D^^^
If (X9i2andy = 2) Then
If (x^2andy5^2) Then

:^)

(4.64a)
(4.64b)
(4.64c)
(4.64d)

Figure 4.27 shows a different solution to the problem in Figure 4.26.
Which tree, Figure 4.26 or Figure 4.27, is "best"? Both represent zero
error rate solutions, but their topology is slightly different. Thus,
the tree in Figure 4.26 has three internal nodes, while there are but
two in the tree in Figure 4.27. Figures 4.26 and 4.27 illustrate that
even in the simplest cases there is usually more than one covering
decision tree, and data of any appreciable size will often have many.
In machine learning, the node splitting principle chosen for
building the tree produces a covering tree that is optimal with
respect to the training criterion; and then most of the effort is placed
on pruning the tree so that it generalizes well.

CLASSIFIER DESIGN 277

Figure 4.27 An alternate solution to the tree in Figure 4.26

When a crisp decision tree uses only rules in disjunctive normal
form and the Vciriables are continuously valued, DQ^ is a piecewise
linear classifier whose decision boundaries are hyperplanes that
are parallel to the coordinate axes (hence the parallel axis bias in
classical decision tree learning). In the special case in Figure 4.24,
the three rules are points on vertical hyperplanes passing through 0,
2 and 8, because values on the horizontal axis are discrete.

If the constraint at each internal node is an inequality on a
continuously valued feature, then a set of covering rules represents
an lO relationship corresponding to capturing the training data in
crisp rule patches or hyperboxes with sides parallel to the
coordinate axes. This situation is depicted in Figure 4.28, which
shows crisp rule patches capturing training data for two linearly
separable classes (e = ducks and e = llamas).

278 FUZZY PATTERN RECOGNITION

h"
llamas |

Iff) W

ducks

• > x

a b e d

Figure 4.28 Geometry of rules on continuous numerical domains

The geometric interpretation of crisp rule patches is strictly correct
for numerical inputs. For categorical inputs, we can imagine
clusters in the input space corresponding to each categorical value
(ducks are feathery, llamas are furry (fuzzy?), but there is no way to
construct a graphical representation. The covering rules for the data
in Figure 4.28 are

If (a < x < b a n d e < y <f) Then Dj5^(x) = e^ , and (4.65a)
If (c < x < d a n d g < y <h) Then Tt^^[x) = e^ . (4.65b)

Although Murty's (1994) oblique code 1 can sometimes capture a lot
of training data with a few crisp rules, this is generally not the case
unless the data are linearly separable. On the other hand, n distinct
inputs can always be covered with n crisp rules by making the
hyperboxes (or parallelepipeds) small enough.

C. Crisp decision tree design

Methods for decision tree design can be put into four main
categories: (i) bottom-up approaches, some of which are very similar
to unsupervised hierarchical clustering as discussed in Chapter 3;
(ii) top-down methods; (iii) growing emd pruning approaches; and (iv)
hybrid methods. Top down approaches with subsequent pruning
comprise the large majority of currently popular induction
methods. All of the papers we discuss that develop fuzzy decision
trees for classification fall into this group. Top down approaches
involve node splitting rules, stopping criteria, and leaf labeling.
Splitting rules are based on node splitting functions and
termination criteria with constraints.

CLASSIFIER DESIGN 279

We want a decision tree that minimizes the generalization error
Ejj (X|^g|Xj^). Most machine learning algorithms find a tree that is

consistent, Ep (X̂ .̂ | X^̂) = 0, and then prune it. Typical tree design

starts with a crisp partition of the training data, and uses the labels,
in conjunction with some node splitting criterion function i, to
determine a tree structure that is optimal with respect to i. In the
training process X is repartitioned into subsets of cases. In
machine learning this is called partitioning the training examples
(the prefix "re" is dropped). Once the tree is built, we abandon i, and
use the structure it provides to define decision functions {^} at the
internal nodes {v}. In the trees shown so far, we have indicated the
decision functions at the nodes after the tree is built - not the node
splitting functions used to build the tree.

Deciding how to split the cases at an internal node v is guided by a

node splitting or impurity function i^ at v . Impurity functions are
often functions of relative frequencies of crisply labeled cases
"arriving at, or in" the node to be split. Using relative frequencies
amounts to deriving a numerical feature from the labels of the
training data to cluster the cases, and it can be done for both
numerical and categorical data. The basic objective is for the cases
that are sent to each child of v to be "purer" (more well separated)

than the cases that were sent to v . A function i: Nj.̂ i-> [0, oo) is called
an impurity function when

i (e j = 0, j = l c ,and (4.66a)

i(l / c) = maximum . (4.66b)

Recall that N̂ ^̂ = {ej,...,e^} are the vertices of N , and that 1/c is its
centroid (refer to Figure 1.2). Equation (4.66a) requires impurity
functions to vanish at nodes where all the cases are in one class.
Equation (4.66b) requires impurity functions to maximize at the
centroid of N , i.e., at nodes where the cases are equally distributed
among the c classes. In short, impurity functions vanish at pure
nodes, and maximize at the most impure nodes.

Let p = (pj,...,p^)^ ^'^fc' where p̂ = n . / n , i= 1 c for n crisply

labeled dataX = U Xj, X^ = n^ t̂ 0. The two most common impurity
i=l

functions (Breiman et al., 1984) are (Shannon's) entropy and the
Gini diversity index of the vector p = (pj Pc)^ ̂

280 FUZZY PATTERN RECOGNITION

^nt(P) = - 1 Pi log2 Pi . and (4.67a)
1=1

^Gini(p) = i - i p f = i p i - i p f = i p i (i - P i) • (4.67b)
1=1 1=1 1=1 1=1

The last form of (4.67b) is the way the Glni index appears when it is
called Vadja's quadratic entropy (Vadja, 1970). The Gini index can
also be viewed as an approximation to Shannon's entropy in (4.67a)
because (-log p) can be approximated by (1-p) for small p. Safavian
and Landgrebe (1991) list many other optimality criteria for tree
s t ructure design, including minimum expected path length,
minimum number of nodes, minimax path length, etc. For example,
Sethi and Sarvarayudu (1982) base their impurity function on
average mutual information gain.

Once an impurity function is chosen, it is used to measure the
impurity of internal nodes before and after splitting them into
children. Candidate splits are postulated, and the decrease in
impurity due to the split is calculated. The attribute selected for the
next split is the one that maximizes the decrease in impurity at that
node. Maximizing the change in entropy essentially minimizes the
expected number of tests needed to classify an object. The overall
impurity 1(T) of any tree T with M leaves is defined as

M

I(T)=Ii(PLk) , (4.68)
k=i ^'^

where p ,^ is the vector of relative case frequencies in leaf v . When
the leaves are all pure, each leaf has a crisp label vector attached to
it, p^^ -e for some J, the impurity of the tree is 0, and so the
training error of the tree is also 0.

The two most widely used algorithms for building crisp decision
trees are Quinlan's (1983, 1986) IDS (interactive dichotomizer)
method and its extension to C4.5; and CART, the classijication and
regression tree approach described in Breiman et al. (1984). IDS was
originally designed to deal only with pretty small sets of categorical
data. The machine learning community has essentially abandoned
IDS for Quinlan's (199S) much improved C4.5, which takes care of
this deficiency, and which is much more widely used than CART. In
statistical circles, however, CART is favored because of the
"regression trees" it can build.

CART and IDS are fairly similar: both models try to represent a
crisp partition of the training data in a decision tree structure; both
are top-down, node splitting approaches, and both attempt to
minimize tree size while simultaneously optimizing some

CLASSIFIER DESIGN 281

performance measure . The main differences between C4.5 and CART
are t h a t C4.5 u s e s entropy while CART u s e s the Gini index for node
splitting, a n d CART is p r u n e d by exhaustive search of all sub t rees
(Breiman et al., 1984), while C4.5 u se s a more efficient pessimistic
p run ing strategy, especially for small da ta sets (Quinlan, 1993).

Since all of the fuzzy models we discuss in the sequel refer to IDS, we
summar ize it in Table 4 . 3 1 , even though it h a s been supplan ted by
C4.5 in the machine learning community. The inpu t da ta to 1D3 are

a se t of n categorical d a t a vectors , {l^^czJ^. For example , t h e
a t t r i bu t e l ist or l inguist ic var iables for t he da t a given might be
(color, t ex ture a n d size). Color might be divided into (red, green,
blue), t ex ture into (smooth, rough), and size into (small, med ium,
large). Each such d a t u m is described by a 3-tuple such as e^= (red,

smooth, small), so ^ = 3. Our specification of 1D3 t reats the root node
as a leaf in the first pass through the WHILE-DO loop.

Table 4 .31 The IDS algorithm (gukilan, 1983)

In

Crisply labeled category da ta X^̂ = t'l > '2 ' n ' •- -^

Xt. - U X t , , . n^ = | X ^ , | a n d p ^ . = n , / n V i

Do

X, ; V,
tr L

: 0 ;

While I(T) > 0 ; % create child nodes p = relative

class frequencies of cases a t node J
Pick a leaf node v,, at which i J p , ,) > 0

Lk ent •̂'̂ Lk'

For all a t t r ibutes {.̂ j} not in pa th p(Vi, VLJ
For all a t t r ibute values {Q of ^ j , compute

w. = relative # of cases at child node for e.
^^ent.iJ|Lk = ^ent(PLk) " ^ Wjl^^,(Py|Lk) •

Choose the split(s) t h a t maximize(s) (4.69)

(4.69)

Update leaf node set V̂
End While

Out

A fully expanded crisp classification tree T with
|V j | internal nodes; M =|Vj^| leaves, and overall

M
impuri ty 1(T) = I v_(PLk) = 0 .

k=l

S o m e w h a t ana logous to HCM, which favors c lus te r s wi th m a n y
points (see Figure 2.3a), IDS is biased towards a t t r ibutes with m a n y
values, b u t th is can be partially compensated for by altering the basic
formula in (4.69) - see Quin lan (1993) for the details. Since m a n y

282 FUZZY PATTERN RECOGNITION

applications depend on continuously valued numerical data, IDS has
experienced many generalizations since Quinlan's original
formulation (Fayyad and Irani, 1992, Cios and Liu, 1992,
Seidlemann, 1993, Quinlan, 1993). Most of these updates take the
form of discretizing the input range of each numerical variable into a
number of subintervals or outpoints. To appreciate ID3, we (like so
many before us), repeat Quinlan's most well known example of the
original algorithm.

Example 4.13 This example, adapted from Quinlan (1983), illustrates
his original 1D3 algorithm for growing a classification tree.
Everybody repeats this example, so we have changed the objects from
"a" and "o" to "r" and "e" just to be different. The entropy impurity
function is used to determine a crisp classification tree that is
optimal in two ways: its nodes maximize the information gain at
each split of cases in the training data, and it is a consistent tree (the
resubstitution error rate is zero). The training data are listed in Table
4.32. There are 8 objects, indexed for brevity by the integers 1 to 8,
and these 8 training data are labeled as belonging in one of c = 2 crisp
classes named "r" and "e". We let R denote the crisp cluster of 5 "r"s and
E denote the crisp cluster of three "e"s in X.

Table 4.32 Training data for Quinlan's ID3 example

label
object

r
1

r
2

r
3

r
4

r
5

e
6

e
7

e
8

height
ha i r
eyes

tall short tall short tall
dark dark blond blond dark
blue blue brown brown brown

tall tall short
blond red blond
blue blue blue

Each object is represented by three attributes that are particular
values of three categorical variables: ^ = height, .̂ = hair color, and
•̂ o = eye color. Categorical values taken by the categorical variables
are {(= tall, 6 = short} for height, k = dark, (= blond, (= red} for
hair color, and {(,

31 blue, L = brown} for eye color. Visual inspection
of the attributes of objects in R and E does not lead to an obvious
decision tree that covers the training data.

Since each object is characterized by three attributes, and the number
of possible attribute values are 2, 3 and 2, this categorical feature
space will support at most 2 • 3 • 2 = 12 crisp rules, all of which have
the general form, for a particular input z submitted to the (as yet to be
determined) rule-base

lf{J^{z)=e^. and (.̂ (̂z) • L) -2J2' ^ ^ K̂ ^̂ = ()then DDT(z)="r"or"e".

CLASSIFIER DESIGN 283

Figure 4. 29 Illustrates the initial configuration of the training cases
at the root node. Think of the "r"s as rabbits and the "e"s as elephants.

Root node v.

Figure 4.29 Training data set X prior to splitting the root node

The relative frequencies of cases in R and E are 5/8 and 3 /8 ,

respectively, yielding 1(T) = - — logg — - - logg - = 0.954 as the

initial impurity of the system (in bits). Since there are three
attributes, there are three possibilities for splitting the cases at v ,
and IDS defines the optimal split as the one which maximizes the
gain of information (or gives the largest entropy decrease); the
possible splits are shown graphically in Figure 4.30.

Height Eyes

Figure 4.30 Possible case splits at the root node

284 FUZZY PATTERN RECOGNITION

Table 4.33 shows the proportions of cases that occur for each cluster
in Figure 4.30 for each of the possible splits.

Table 4.33 Relative frequencies of clusters for each
of the three splits of cases at the root node

A = height J = hair J = eyes

tall = e dark = (blue = (

p(^ij) = 5/8 pU^^) = 3/8 p (^3 j -5 /8

p(rUji) = 3/5 p(r|^2i) = l p(r|^3j) = 2/5
p(e|^^i) = 2/5 p[e\(2,) = 0 p(e|^3j) = 3/5

short= e^^ red = e^ brown= (^^

p{̂ 2̂) = 3/8 pU22)-l/8 p(̂ 32) = 3/8

p(rUj2) = 2/3 p(rk22) = 0 p(r|^32) = l
p(eUj2) = l/3 p{e\e^^) = l p(eU32) = 0

blond = 2̂3

p(̂ 23) = 4/8

p(r|<;23) = l/2

p(e|^23) = l/2

Next the entropy of each split cluster is computed. For example, the
entropies of the tall and short clusters for the height split are

2 , 2^ fl, 1
t^^Jshort) = i^je^^) = - - log^ 7̂ - o l°g2 o I = 0.918.

Now we use the prior probabilities of the tall and short clusters to
compute the overall entropy of the height split as

W K) = P K l H e n t K l J ^ PK2Hent(' ' l2) = | (0 . 971) + | (0 . 9 1 8) = 0 . 9 5 1 .

In a similar manner we find the overall entropies for the other two
splits as i^^^(haiT) = i^^^U^) = 0.5 and v^^Jeyes) = i^^J.^3) = 0.607.
Finally, each of these three entropies is subtracted from the initial
system entropy to get the overall entropy decrease for that split:

CLASSIFIER DESIGN 285

Ai^^Jheight) = I(T) - i^„t(^i) = 0.954 - 0.951 = 0.003

Ai_, (hair) = I(T) - 1 ^ (^) = 0.954 - 0.500 = 0.454 .
ent ent

Aî . (eyes) = I(T) - 1 , [J.) = 0.954 - 0.607 = 0.347
ent

Since the split of the root node by the attribute "hair" results in the
largest decrease in system entropy, this is the first split made by 1D3
for this data set. This split gives the root node 3 children. The
children of v are the three nodes shown in the middle of Figure 4.31:
two of them are "pure" - they contain samples from only one class -
and will thus be leaves in the final tree. The only node left to split is
the 'blond" cluster, which contains 2 cases each from the labeled data.
This node offers two possible splits, one on hair and one on eyes.
Repeating the procedure just completed for this split, you will find
that the preferred split is on eyes, and for this simple example, the
final tree has been reached. Figure 4.31 shows the final tree.

^

S)i!S ̂
\)

Figure 4.31 Crisp IDS classification tree for data in Table 4.32

Since the leaves of the tree in Figure 4.31 are all pure, this is a tree
with zero resubstitution errors, and is thus optimal Avith respect to

286 FUZZY PATTERN RECOGNITION

the training data, as it correctly classifies all of them. However, this
tree may or may not respond well to inputs that don't have the four
combinations of attributes that are missing in the training data. In
fact, without some sort of extension, the rules /? from this tree won't
even process the four missing cases.

There are four pure leaves in this tree, so the rule-base uses M=4 crisp
rules to cover the c=2 classes labeled e and e in Figure 4.31. Notice
that values of the height attribute J are not used at all. The four
rules, written out with words, in order, from left to right by the
ordering of the leaves in Figure 4.31 are:

R : If (hair= blond) and (eyes = brown) then z = rabbit ; (4.70a)
R : If (hair = blond) and (eyes = blue) then z = elephant; (4.70b)
Rg : If (hair = red) then z = elephant; (4.70c)
R^ : If (hair = dark) then z =rabbit. (4.70d)

Thus, it takes two elementary rules to cover each class. Another point
to notice about Figure 4.31 is that the three levels in this tree
correspond quite nicely to the levels in dendograms that represent
top down hierarchical clustering procedures. Compare Figures 3.4
and 4.31 to see this, but flip Figure 3.4 "upside down", since it was
built with a bottom up procedure. At the first level of T in Figure 4.31
all 8 data are in c = 1 crisp cluster; at level 2, there are c = 3 crisp
clusters, two of which are pure; and at level 3, there are c = 4 crisp pure
clusters. So, it's no surprise that hierarchical clustering has played a
role in several tree growing methods - indeed, ID3 is top down
hierarchical clustering for categorical data; bu t unlike the
algorithms in Chapter 3, ID3 is supervised - it gets to use the crisp
labels to construct pure clusters for classifier design.

There are many methods for termination of node splitting before
reaching a fully expanded tree, and just as many methods for pruning
fully expanded trees (Safavian and Landgrebe, 1991; Weiss and
Kulikowski,1991). These two aspects of the erection of D^^ have not
received much attention from fuzzy classifiers. We are content here to
note that termination of node splitting affects the performance of
Djj.j, Just as surely as termination of, say, any prototype generation
algorithm, affects the quality of a 1-np classifier that uses the
prototypes. Expansion can be terminated before completion, or fully
expanded trees can be pruned back to subtrees. In either instance, the
tree that remains will in all likelihood be impure. This is done in
hopes that the (guaranteed) increase in training error due to
abandoning a pure tree will be rewarded by a concomitant decrease in
testing error (i.e., better generalization).

CLASSIFIER DESIGN 287

When leaf v in the final tree contains cases of more than one type,

the relative percentages of each label, Pĵ e N .̂̂ , can be regarded as

the consequent output for inputs that travel the path p(v , v), i.e.,

Dĵ .j,(z) = PL e Nj^. For example, if the node labeled "eyes" in Figure

4.31 is, after pruning that tree, a leaf in a subtree of T, since it
contains 2 cases each of classes 1 and 2, p = (0.5,0.5)^ e N, is the
probabilistic label vector attached to this node. We still get exact,
unique matches to training data on the left sides of the crisp rules
(the firing strength is still 1 along the unique path p(v , v .)), but the
classifier output is now soft at impure leaves. A strategy such as
hardening by equation (1.15) can be used to convert soft output labels
to crisp ones. By our convention Dĵ ĵ, is now a soft (decision tree)
classifier, but hardly anyone would call the tree that produces such
decisions a soft decision tree. This terminology is reserved for the
more general situation discussed in Subsection F.

If each of the objects in Figure 4.31 was represented by a numerical
feature vector, then each of the four leaves would have a (sample
mean) point prototype v^^ associated with the data in leaf Vĵ . (don't

confuse the vector v, .e9^P with the vertex v , , e V ,) , and the
Li Li L

classifier tree in Figure 4.31 would be similar to a 1-nmp classifier as
discussed in Section 4.2.

While it is nice to exhibit the rules with their semantic meanings
(after all, this is one of the attractive features of rule-based
classification - easy to understand reasons for the labels assigned -
you've never seen a blond elephant with blue eyes? Too bad!), we need
to become comfortable with the symbolic notation for rule-base /?.
Here is system (4.70) in terms of linguistic variables, linguistic
values, and the classifier function it defines:

^ 1
If (J^= y and Ĉ3 = y =̂ DOT (z) = Ci ; (4.71a)

If U^ = y and Ĉ3 = (fgj) => DOT (Z) = 63 ; (4.71b)

If 1̂ 2 = y ^ DOT(Z) = 62 ; (4.71c)
If{^2=y=>DOT(z) = ei . (4.71d)

This form for /€ is a step towards the fairly compact general
formulation of fuzzy rule-based systems given in the next subsection.
We need to add a few things here and there (most importantly,
membership functions for the linguistic values { Ĵ), bu t (4.71)
contains most of the elements we need.

Once DQT is trained (and in practice, almost always pruned), it is
ready to classify test data. One or more components (numerical

288 FUZZY PATTERN RECOGNITION

feature values or categorical attribute values) of an unlabeled input
datum z are assessed by a crisp decision function at each internal
node as z traverses through the Internal nodes in T, until it arrives at
a leaf. For crisp decision trees with M pure leaves, each leaf is
associated with exactly one of the c labels ê e Nĵ ,̂ and, as in (4.71), a
crisp decision can be made without further consideration. In this
case the path, call it p(v , v ,) from the root v to leaf v . corresponds to
crisp rule R in /?, and when z traverses p(v , v), we say that rule R
"fires" with firing strength = 1, meaning that this is the unique rule
whose precedent arguments exactly matched the components of the
input datum. The fact that the consequent of R in this case is a single
label is due to the purity of the leaf v .. Even when the leaves are not
pure (and in C4.5, this is the usual case after pruning), classical
decision trees identify each leaf with the crisp class having the
majority of cases at the leaf.

D. Fuzzy system models and function approximation

This subsection contains a short description of the two main types
of fuzzy rule-based systems: the Mamdani-Assilian (1975) model
and the Takagi-Sugeno (1985) model. We abbreviate these as MA and
TS hereafter, without reference to the original papers, and when we
say fuzzy system, we mean fuzzy rule-based system.

LetX ={Xi,...,Xn}c9^P and Y ={yi,...,yn} c9^'i. We suppose an
unknown function S:9tP|-^9t^ for which y^ = S(x^), k=l,...,n, so
Y = S[X]. We call X and Y input-output (10) data, and let

XY = {(Xk,yk)^=(Xik Xpk.yik yqk)""-- k = l n}c=9lP^^bethe
concatenation of each input and output vector in X and Y. Finding a
good estimate S of S using XY is variously called interpolation,
collocation, function approximation, or most commonly,
supervised learning. In pattern recognition we are interested in
approximating classifier functions D: 9tP h^ N cz'Hi'^. We will use S
to emphasize the role of MA or TS systems as approximators to
vector fields in a more general setting. When p=l, S is called single
input, and when p >1, it is multiple input. When q=l, S is called
single output, and when q >1, it is multiple output. We abbreviate
these four cases in the usual way: multiple-input multiple-output is
MIMO, and similarly for MISO, SIMO and SISO.

There is some confusion in the literature about the difference in
meaning between the terms interpolation and extrapolation. In
numerical analysis interpolation and collocation are synonyms
that mean "through the training data", while extrapolation means
values taken a t " any points not in the training data". However, some
writers use interpolation to mean values taken "at points not in the

CLASSIFIER DESIGN 289

training data that lie 'in-between' points in the training data"; for
these authors, extrapolation means values taken on "points not in
the training data, and 'beyond it'". This is fine for real valued
functions, where interpolation would mean in the interval bounded
by the minimum and maximum points in the training data, and
extrapolation means outside this interval. When the data are p-
dimensional however, defining the notions of "inside" and "outside"
or "within" and "beyond" (the convex hull of the training data, for
example?) become problematical. In this book approximating
functions always extrapolate, and may or may not interpolate.
Since other writers use these terms in different ways, Just be careful
to check the writer's definition of how the term is used in a
particular book or paper.

There are two basic approaches to approximation. The classical
approach assumes a functional form for S that has a vector 9 of
unknown parameters, indicated as S(x;9). Then we use XY with a
principle of inference (and possibly, an algorithm to optimize the

model) to estimate some optimal parameters 9 of S(x;9). This gives

us S(x;9), an approximation to S that is optimal in the sense of the
model used to obtain it. Examples in this category include
regression analysis, collocating polynomials, and least squares
estimation with, for example, radial basis functions.

The second approach to approximation by supervised learning is to
find a computational transformation (a computer program) that
represents S. The computer program also depends on parameters 9
that must be acquired using XY, and there is no harm in again
writing S(x;9), now meaning a computer representation of S, so that

S(x;9) is again an approximation to S that is optimal in the sense of
the model used to obtain it. This group of techniques is sometimes
subdivided into "parametric estimation" and "linguistically
descriptive" methods. Neural-like networks, decision trees, and
rule-based systems are examples of computational transformations
that are used to represent S. (Indeed, in many instances these three
model styles can be transformed into each other.) If the learning
involves more than just a few numerical parameters - e.g., if the
basic structure of the network, number of rules, and so on - are also
learned, this field is sometimes regarded as (part of) model or system
identification. System identification covers a lot of ground; we will
discuss some aspects of it only in the context of decision trees, rule-
based systems and neural networks.

We divide approximation into three major steps: (i) structure
definition, (ii) parameter estimation and (iii) system validation.
Structure definition specifies the general architecture of S. For
example, if we choose a regression model, structure definition
includes decisions about whether to use linear or non-linear

290 FUZZY PATTERN RECOGNITION

regression, and the exact form of the objective function to be used. If
the model is a decision tree, structure refers to the number of levels,
nodes per level, number of leaves, edge weights, and so on. For
neural models we choose the type of network architecture, number
of layers, number of nodes, integrator and transfer functions for the
nodes, etc. For fuzzy models, s t ructure definition involves
specification of items such as the number of linguistic values for
each linguistic variable, forms for the antecedents and consequents
of rules, operators for the reasoning system, etc. Parameter
estimation in these three cases means, for example, finding the
regression coefficients or decision function parameters or network
weights or parameters of the membership functions of different
rules or nodes in the tree. Optimization and validation test the
system against performance requirements. This last step can
include fine tuning of either the initial structure or estimated
parameters.

Once the structure of S(x;8) is defined, we use XY to estimate 8.

Finding a good 9 is the "learning" done by the model; using Y (as

target outputs for S(x;8)) provides the "supervision". Finally, system

validation tests S(x;9) against performance requirements.

Roughly speaking, approximations are good in the traditional sense
when they can be evaluated on (or extrapolate, or generalize to)
inputs other than points in X with some degree of confidence. In
pattern recognition, good is almost always defined as low apparent
error rates on test data; in other functional approximation contexts
(e.g., control), good usually means an acceptable mean squared error

^ t e II " II2
on test data, EMSE(Xte|Xti.) = I Ft - S(Xk;9) / n^ .

k = l " "

Conceptually, fuzzy models approximate S with the set of rules
/? = {Rj ^M^' These rules are if-then rules whose outputs are
combined by some form of approximate reasoning to produce an
output for each input to the rule-base. Each rule R. has a premise
[antecedent or left hand side, LHS) with premise parameters, and a
consequent {right hand side, RHS) with consequent parameters.
These parameters, which may include M, the number of rules in /?,
are the items we seek to estimate or need to define. Since the overall
action of /€ as a function is to approximate S, we may write the

input-output relationship represented by /? as l«(x;9) = S(x;9) to
indicate this explicitly; and when S is a classifier function, we may

write K{x;B) = D(x;9). The basic MA and TS models are summarized
in Figure 4.32.

CLASSIFIER DESIGN 291

O
Input

Xi - ^

Xk •->

Fuzzify

mli-K

mi, - -mj
kl kr

LHS

T:[0,lpi-^[0,11

ai(x) = n(mnx))

M, aMW = n(m^(x))

0 Output /e(x)e5R^

TS Model

{u,(x);l<i<M}

M

® T S ^ ^ ^ " M

Iaj(x)u.(x)
i=l

Ia,(x)

MA Model
zMx) = ^(a, (x), moM; i = 1,..., M

u mou--mois

IXXXXl D„, o j^^
u

mOqi- -mOqs

[i IXXXX D„̂ <̂ „̂̂

i D.

S^(x) = 0(o<.(x},Z(x),u,Dp)

Figure 4.32 Architecture of the MA and TS Models

In step O, either model takes x e 9?̂ as an input vector. Step @
begins with the identification of the numerical range of each input
variable. For k =1 to p, a numerical domain D, is associated with a

'^ k

linguistic variable A that provides a semantic description of (r)
subdomains of D . The number r is the granularity of .^ . The
maximum number of distinct LHSs that can be formed as rule
antecedents from the r, 's is M = r, • r„ r . When M = M

k max 1 2 p max
we call t? a maximal rule-base. Generally r can be a function of k, but
we wiU usually use the simpler case r = r for k = 1, ..., p.

292 FUZZY PATTERN RECOGNITION

The J-th subdomain of^ represents an attribute value or linguistic
value, say (, which is represented by a premise membership
function (PMF) m|̂ ,: Dĵ i-> [0,1]. The membership function m|̂ . in
Figure 4.32 is indexed on i to associate it with rule R. We will drop
the superscript unless it is explicitly needed.

In Figure 4.32 the membership functions all have symmetric
triangular graphs, but this need not be - and very often is not - the
case. Assume that each input variable has the same granularity r.
The PMF set for the i-th rule, {mĵ jil < j < r}, that represents the

linguistic termset {̂ :1 < J < r} associated with variable k, 1 < k < p,

has many names in the literature: some writers call these functions
cognitive landmarks; others call them a membership termset, but
we prefer the more explicit name premise membership functions,
which seems to be an accurate description of what they are. We
assume that the union of positive supports of the {m^j:l< j< r}
covers D . When each of the p input domains is covered by a set of r
unimodal, identically shaped, equally spaced PMFs that have the
additional property tha t at each input value the sum of
memberships is one, the systemi is called a regular fuzzy system, and
the r'' rules in /? are called a complete rule-base. Step © is often
referred to as fuzztfication of the input domains.

Many w r i t e r s call the posi t ive s u p p o r t s of the
{m^j! 1 < k < p ; l < j < r ; l < i < M } a fuzzy partition of the "input space"

DjX--xD c9tP. This can be very confusing, as this terminology
clashes directly with our earlier and quite different use of the same
term in Section 2.1 concerning clustering, which produces a fuzzy
partition U e M̂ ,̂ ^ of a finite data set. We will use fuzzy partition as
it is defined in equation (2.2).

Step © comprises the action of the LHS of the rule-base, which is
composed of the antecedent or premise parts of M rules /€ = {R.}. The
premise parts of the rules operate on x and take the general form:

Rĵ HS; ai(x) = T(m'(x)) = T(mlki(xi),...,m|,kp(Xp)) , 1 < 1 <M. (4.72a)

m'(x) e 9?P

In (4.72a) a.(x) is the firing strength (confidence level, degree of
satisfaction) of rule 1 and T is any T-norm (intersection = n in
Figure 4.32 or AND) operator on T: [0,1] x [0,1] h^ [0,1]. T norms can
be extended by associativity to p arguments, so the calculation in

CLASSIFIER DESIGN 293

(4.72a) is well defined, and because T is valued in [0,1], 0 < a,(x) < 1.

Our notation is a little sloppy because in'(x) is not the value of a
fixed vector field m ' on x. Instead, the membership functions that
yield the p values of rnHx) for a particular x depend on different
membership functions among the {m } as x runs through its
domain. We use a similarly careless notation for consequent
membership functions (CMFs) on the output or RHS of MA models,
viz., mo ' (x) e 'Si^, "o" meaning output.

The action of T on in.'(x) is to <AND> its p arguments; this is one
aspect of approximate reasoning in the fuzzy system. The most
common choices for T are the minimum, or T norm, and the product
or T norm that we met in Chapter 3, and will meet in Chang and
Pavlidis (1977) in their seminal paper on fuzzy decision trees. For
these choices (4.72a) is, more explicitly,

Rj-HS; ai(x) = T3(in'(x)) = mlki(Xi)A...Am;,kp(Xp) , 1 <i<M; (4.72b)

Rj-H :̂ ai(x) = T2(m'(x)) = mlki(xi)-...m|,kp(Xp) , l < i < M . (4.72c)

If, say, the j - th component in rule R. is zero, mjĵ (Xj) = 0, then

a jx) = T(m'(x)) = 0 in (4.72b) or (4.72c). More generally, the same
thing is true in (4.72a) using any T-norm, because T(a, 0) = 0 for any
a in [0, 1]. We say that R fires (or is active, or is satisfied to the extent

of the value) whenever a.(x) > 0. A given input vector x in 9̂ ^ will
probably never fire all M rules - instead, most of the ai(x)'s will be
zero. If care is taken during fuzzification, it will never happen that
all of the firing strengths are zero for any input x. This is called
completeness of the rule-base /€, a property that depends on the rules
as well as the membership functions being used. Crisp decision tree
rule sets are never complete because in a crisp decision tree which
only interpolates its training data, when a non-training input is
processed, there is no path for it to follow from the root to any node -
that is, the firing strengths of all M crisp rules are zero.

Many (probably most) discussions about LHSs as in (4.72a) use a
somewhat different terminology than ours. When A j^ is a fuzzy set

such as "high", "tall", "long", etc. the premise clause it refers to is
often stated as "if x, is A,, ". Our preference is to use m.. whenever

k Jkj ^ Jkj
we can, because the function - and only the function - is the fuzzy set.
We will often state the LHS of rule i succinctly as " If a.(x)".

294 FUZZY PATTERN RECOGNITION

understanding this to mean that the full structure of (4.72a) is used.
This emphasizes the mathematical action of (4.72a), whereas its
semantic interpretation allows users to provide a linguistic
prescription for each rule.

Figure 4.33 illustrates the idea of T-norm aggregation for rule R..
Shown there are two identical sets of 3 premise membership
functions that represent two linguistic variables, A = temperature,
and J = Speed. The linguistic values for temperature are (= Low, (
= Med(ium), and (= High; the linguistic values for Speed are (=
Slow, e = Med(ium), and (= Fast; m is the membership function for

^^ -AitJ Ij

(..,i= 1,2 andj = 1,2,3.

mj2(x) = a j ^

m (y) = b (:

y Speed

Figure 4.33 How inputs to the LHS of R are coupled by a T-norm

Let X = (x,y)^ denote an input vector for the p = 2 dimensional
numerical domain associated with [J , ^) , and suppose that the
antecedents of rule R in /€ match this input pair as highlighted in
Figure 4.33. There are three other possible matches in Figure 4.33
for the same x, because there are two active PMFs for each variable.
This means that three other rules besides R will fire if these rules
are in /€. The linguistic terms and membership function values that
would be produced by these three rules are (Low, Medium) = (c, b),
(Med, Fast) = (a,d) and (Low, Fast) = (c,d).

CLASSIFIER DESIGN 295

Here is how the LHS of R reads in words for the highlighted
situation in Figure 4.33: "If {L = Medium) and [e = Medium)"; here is

how your computer reads the same thing: "If (mj2(x)) and {m^^[y))".
But you need to tell the computer what "and" means. So, choose a T-
norm to represent intersection. This joins the two atomic clauses in
the premise. If we use T = minimum, the linguistic statement "If U

s " iji

= Medium) and [(= Medium)" is translated, for the highlighted case
shown in Figure 4 . 3 3 , into the firing s t r e n g t h
ttjfx) = T3(mj2(x),m22(y)) = a A b = a. If you choose the product for
"and", ai(x) = T2(mi2(x),m22(y)) = a b = ab.
Step 0 in Figure 4.32 produces the output vector S(x). For the TS
model, the functions {Uj: 9tP i-> ^R'l: 1 < i < M} comprise the RHS of the
rule-base. Each u is a vector field whose components are scalar
fields of some specified form (e.g., constant, linear, affine,
quadratic, polynomial, Gaussian, exponential, etc.). It is common -
but not necessary - to specify that all the u 's have the same
functional form.

When the u ' s are all polynomials of the same order (i.e., all the
components of the output functions are, respectively, constant,
affine, quadratic, etc.), we refer to the TS model as a 0-th, 1-st, 2-nd,
... etc., order TS model. Within this class - as is the case in many
other branches of applied mathematics - the first order (affine)
models are by far the most popular and heavily used. For example,
rule extraction by clustering in XY makes sense for exactly this case
when the clustering model can produce flat (affine subspace)
prototypes (lines, planes, etc.), because these prototypes match the
shape of the graphs of the affine output functions being estimated as
the RHS's of a 1-st order TS model.

The output of the TS model is a convex combination of its M output
functions and firing strengths,

M

I a j (x) u . (x)
S.j^{x) = isi-^;^ . (4.73a)

l a i (x)
J=i ^

There is an important 0-th order variation of the MISO TS model
that replaces u.(x) in (4.73) with a fixed number. When the number

u.(x) = hj is the center of gravity (of the independent variable of
consequent membership function mo) of a single Mamdani style
CMF, this is called the method of height defuzzijication in the MA
model, and (4.73a) takes the simpler form

296 FUZZY PATTERN RECOGNITION

S^(X)

M

i=l
M
l a

J=i ^

(4.73b)

When the output function of R is a crisp singleton as in (4.73b), it
easier to find the parameters of the ensuing model, but the price of
simplicity is that it weakens the approximation capabilities of the
model. See Sugeno and Yasukawa (1993) for a nice method of
training the 0-th order TS model. An even simpler case arises when
the LHS membership functions are regular (for each of the p input
variables, all PMFs are symmetric, triangular membership
functions which cross each other at 0.5), for in this case the sum of
firing strengths in the denominator will always be 1.

Rj LHS : If (^ii=Med) and (̂ 22= Med)

Med Med

^ Speed y

Temiperature x

Figure 4.34 How the left and ri^t sides of R are coupled in the 0-th
order TS model for the highlighted input case shown in Figure 4.33

using the minimum and product for the T-norm

CLASSIFIER DESIGN 297

Figure 4.34 illustrates how the clauses in the left side of rule R in
^ i

Figure 4.33 are coupled through Takagi-Sugeno implication for the
0-th order model, where the i-th output function is a constant
surface, Uj(x) = k.. Let KJ{X.) denote the denominator of (4.73),

M

KT-(X) = X oCitx). The value of KX(X) depends on your choice for the T-
1=1

norm; here we consider T = Tg = A or T = Tg = •. When R. fires, the
effect of using the T norm to compute the firing strength is to lower
the corresponding surface u. (x) = kj (remember that a and b in
Figure 4.33 are < 1, a = a A b , and note that a/K^{x) < 1 because a is
one term of the denominator K (X)) to the new, smaller constant
aki/K^(x) ; and for the T = product T-norm, the surface may move
even further down (or up, depending on the relationship between
a/K^(x)andab/K,(x)),to abkj/K,(x).

If f? is maximal (i.e., contains 9 rules here) and each input value is
evaluated by two membership functions, there are 3 other pictures
like Figure 4.34 for the other three rules that would fire for this x,
that is, for the three pairs of membership values from the currently
active PMFs shown in Figure 4.33. Suppose that the other three rules
that fire are R , R and R. Applying equation (4.73) with the
minimum and product T-norms results in the outputs

M

I a i (x) u i (x)
- M . ST^(X) = ^

J=i

akt + dkj- + ckg + dk^
a + d + c + d

;and

M

Ia.(x)Uj{x) abk .+adk +cbk +cdk,
1=1 1 r s t S. j .g (x) - j ^

laAx) ab + ad + cb + cd
J = i ••

T=«

As the input x to Figures 4.33 and 4.34 changes, there is no change in
the values of the constants {k̂ }, but a, b, c and d may change for
different inputs that fire the same rules; the four k s and a, b, c and d
may all change when different rules in /?fire. You would be correct to
imagine that the upper surface in Figure 4.34 is fixed (once k is
chosen), and that for M rules, there will be (at most) M such constant
surfaces at the heights {k}. As the input changes, the rules fired
select which subset (of four or less) of these surfaces to use, the firing
strengths decrease the heights of the surfaces chosen above the

298 FUZZY PATTERN RECOGNITION

horizontal (input) plane, and (4.73) combines the current set of
heights to get the resultant output. This is illustrated in Figure 4.35,
where the four rules R, R , R and R are the ones selected as matches

i r s t
on the LHS (that is, the ones that are fired). We emphasize that this
figure illustrates the action of the TS rule for just one input - it does
not illustrate how the output of the TS system "looks" over all of X.

aM)K S^W

Figure 4.35 An output for the 0-th order TS model

It gets pretty hard to draw figures like 4.35 for more complicated
output functions, but the principle is identical. If the output
functions in a TS system were all quadratics in two variables, for
example, the i-th of the M surfaces would be the graph of the

function u.(x) = x'^A^x. + (bj,x\ + k^. For a given input, the fired rules
would again select subsets of these surfaces, and as in Figure 4.35,
the selected ones would be scaled down by their corresponding firing

strengths, and then their values at this point in 9t added in
accordance with equation (4.73) to get the TS output. In the most
complicated TS model, each of the M surfaces could be a different

CLASSIFIER DESIGN 299

type; one might be constant, one a quadratic, another a Gaussian,
and so on. As you can see, the approximation we are building with
fuzzy systems can have pretty complex components - and the 0-th
order TS model is the easiest case to understand!

Step back from Figures 4.33 and 4.34 and ask - what things do we
need to learn from training data to make this easiest of all TS
systems work? On the LHS, we need 6 PMFs. For this example there
are 4 trapezoidal fuzzy numbers, but they are special trapezoids -
each one needs 2 parameters for its "shoulder", so there are 8
parameters needed for the 4 trapezoids. There are 2 triangular fuzzy
numbers (each needs 3 peirameters). So we must estimate or (at least
adjust for optimal performance) 14 parameters for the premise
membership functions. Each consequent k. is also needed. Since

there can be at most r^ = 9 rules for this system, we need 9
parameters for the CMFs, so there are 14+9 = 23 parameters
associated with the membership functions. And we have already
decided that both LHS granularities are r = 3, that we will use the
types of membership and output functions shown, and that we have
chosen some T-norm. All of these choices face the system designer
for the 0-th order TS model. And it is the simplest form of fuzzy
system we discuss - now you can see why it is so popular! When we
design fuzzy decision tree classifiers (which are often equivalent to
such a system), many of these decisions are eliminated from the
user's view. We will return to the geometry underlying this model
when we get to subsection F.

Step 0 in the MA model is considerably more complicated than for
the TS model. The LHS works just as we have illustrated in Figures
4.32 and 4.33 - it is identical to the LHS of the TS rule-base. But the
RHS of the MA model is very different. Roughly speaking, the
sequence of operations on the RHS is (i) fuzzification; (ii)
inferencing; (iii) aggregation; and (iv) defuzzification. We briefly
discuss each of these steps.

As shown in Figure 4.32, each output variable z , k =1 q, is

fuzzified by assigning it a linguistic variable .^o , a linguistic

termset {(a } and corresponding set of consequent membership

functions (mo' } of, say, granularity s, i = 1 M, k = 1 to q, j = 1 to s.
These CMFs reside at the RHS of every rule. When an input is
submitted to this system, the LHS of the MA model produces a
positive firing strength a^{x) for each rule fired. Now the role of the
firing strength is somewhat different, for we use it to enter the CMF
set on the RHS of the rule-base. This is illustrated in Figure 4.36,
which depicts defuzzification by the center of gravity (COG) method.

300 FUZZY PATTERN RECOGNITION

Rj : If {̂ 12= Med) and (̂ 22= Med) Then t»^ = Low

Med Med

R : If (̂ , = Low) and (̂ „ = Med) Then &,= High

Low Med

Figure 4.36 One of the million ways to defuzzify MA rules :
area COG defuzzification

Rules R and R , fired for the input x shown in Figure 4.33, are shown
in the top portion of Figure 4.36. The case illustrated uses the
minimum for the T-norm, so rule i has firing strength a and rule s
has firing strength c. These firing strengths are carried to the RHS of
the MA rules, where the single output variable is the linguistic
variable ^ ="engine wear". The domain of J has been partitioned

(in the fuzzy systems sense) into 4 linguistic values: (="Very Low
(VL)", (^ = "Low (L)", (^ = "High (H)", and ^ ^ = 'Very High (VH)", with

CLASSIFIER DESIGN 301

corresponding consequent membership functions mo , mo , mo ,
mo spread across the expected numerical output range, whose
variable name is z in Figure 4.36. For the two rules fired the
memberships we will look up correspond to the linguistic values
that appear on the RHS of the rules. Suppose the rules are:

R : If k = Med) and {(= Med) Then Jt (=Englne wear) = Low
R : If [(= Low) and (e = Med) Then J» (=Engine wear) = High

Then we pick out the CMFs corresponding to these two output
linguistic values, and operate on them at their respective levels of
firing strength, i.e., at the values z(a^(x)) = a and z(a^(x)) = c. We say
operate on them because what happens next depends on the
inferencing operator you choose. In Figure 4.32, the output of rule i
is denoted as z'(x) = 4'(a,(x),mo'), where the symbol *P stands for
the operator used to produce the output, which is "some function of
the arguments shown, which are the firing strength a.(x) from the
LHS of rule i, and the q membership functions that fuzzily the RHS
of rule i.

There are two methods for combining MA rules. Rule-based
inferencing uses all M rules without segregation by linguistic values
(unfired rules will make no contribution to the output, however).
Each rule is represented by a relation, £md the union of all the rules
gives a composite relation for the entire rule-base. Then inferencing
produces a single output fuzzy set which is defuzzified by one of
many methods such as the COG. This scheme is somewhat analogous
to TS inferencing in that both use the entire rule-base. Composition-
based inferencing is more complicated. In this scheme each fired
rule produces a clipped (modulated) version of the associated CMF.
The modulated CMFs belonging to each (fired) linguistic output are
then aggregated with a union operator, again resulting in one output
membership function which is defuzzified by any of the various
defuzzification schemes.

More specifically, the M firing strengths a.(x) = (aj(x) aj^(x))^,
a.(x)e[0,l] for all i, and the M consequent membership function

values Z(x) = (z^(x) z'^(x))^, z'(x)e9^'' for all i, are defuzzified
with D , typically a center of gravity (COG) type calculation such as
shown in Figure 4.36. In Figure 4.36 the selected membership
functions are clipped, and their areas A and A are found. These
areas can be treated separately, summed, unioned, intersected, etc.;
and, they need not be trapezoidal - some writers make them
triangular, etc. In Figure 4.36 we illustrate the union method, where
the area centroid (h,„,v,„) of the union of Â and A,̂ is found, and

L,rl. L/ti L H

302 FUZZY PATTERN RECOGNITION

the horizontal coordinate ĥ ^̂ ^ is taken as the MA output Sj^^{x) for
input X. An important special case of Figure 4.36 occurs when the
MA system has singleton CMFs. If centroid defuzzification is used in
this case, the MA system is equivalent to a TS system with constant
RHS output functions - that is, a 0-th order TS system.

This brief description of the MA model will almost surely leave you
gasping - how can it, how does it work? Our brief treatment of fuzzy
systems hardly does this topic justice, but other volumes in this
Kluwer handbook series have extensive discussions of both models
(Nguyen and Kreinovich,1998, Tanaka and Sugeno, 1998, Yager and
Filev, 1998). Additional references on this topic that we have found
helpful include Driankov et al. (1993) and Klir and Yuan (1995). For
us it suffices, at least initially, to write the output of the MA model
as Kj^^ix) = 0(a.(x),Z(x),u,Dp), where operator 0 depends on choices
made by the system designer. We do have examples of the MA scheme
to present, and when we discuss them we will try to explain each one
explicitly, case by case (or, at least, reference by reference !).

When either type of fuzzy system is used to approximate a classifier
function, its outputs will be label vectors. Hardening non-crisp label
vectors as in (1.15) may be done after defuzzification when the
output of f? is a soft label vector, i.e., when K represents a soft
classifier function, and a crisp classification is required.
Summarizing, we now have a formal model of both the LHS and RHS
of each rule in /€, which takes the general form

^ r « .W=^{S; :0 !Sx) .Z (x) ,u ,D ,) - l ^ ^ ^ M • ^ .̂74)

We cannot write the rule-based system in (4.70) or (4.71) using the
formalism of (4.74) because the linguistic terms used there are not
related to measurable numerical variables (and so, fuzzification of
the input domains is not possible), but decision trees that handle
numerical variables will fit nicely into this framework. For
example, the simple set of rules in (4.63) can be made much more
mysterious looking by defining a set of 3 crisp premise membership
functions over, say, the extended input domain [0, oo) as follows:

meh.ken(nj = m , (n ,) = |^ ; ""^^^^^^ ;

m , (n,) = m,„(n,) = <^ }i crab̂ L̂ 12̂ L̂ |0 ; Otherwise

fl; nL = 0
mfl„u(nr) = m,o(nT) = i „ hsĥ L' iji L' Q. otherwise

CLASSIFIER DESIGN 303

With these PMFs, the crisp rule-based classifier at (4.63) becomes

If (mjj(nL)) Then Dj3^(nL) = ej ; (4.63a')
If (nij^dij^)) Then D^[n^) = e^ ; (4.63b')

If (mj3(nL)) Then D^^[n^) = e^ . (4.63c')

This isn't a very exciting system, but it's simple, and displays the
relationship between the rules and the notation we will use for more
complicated models. We will return to several aspects of the use of
the rule-based system in (4.74) for approximation of functions in
subsection F.

E. The Chang - Pavlidis fuzzy decision tree

Fuzzification of decision trees follows two paths; softening the
training process (how to build the tree), and softening the decision
functions at internal nodes (how to use the tree). Chang (1976) was
apparently the first person to write about fuzzy decision trees. Chang
and Pavlidis (1977) is the seminal archival paper on fuzzy decision
trees, and it was one unknowing precursor of the now widely known
fuzzy systems approach discussed in subsection 4.6.D. The origin of
probabilistic decision trees is much older; a specific reference for this
depends on what you regard as a probabilistic decision tree. Suffice it
to say that Duda and Hart (1973) mention this topic in connection
with sequential decision theory in statistics, which dates to the early
part of the 20th century.

We begin the exposition oi fuzzy decision trees (FDT) by returning to
the case of the fully expanded crisp decision tree. When [Vĵ l = M, each
of the M > c paths from the root to a pure leaf corresponds to a crisp
rule in /?. Two aspects of this need discussion: representation of the
choice of path by node decision functions; and aggregation of the edge
weights along the path to compute the firing strength of an activated
rule.

Figure 4.37 depicts an input z traversing the path p(v ,v , v ...,v , v)

from root v to leaf v which bears crisp label e , with the result that
1 Lj J

crisp rule R fires with firing strength=l, labeling input z as class J,

DDT-(Z) = Cj. We have appended I's to each edge along this path, which
can be interpreted as weights assigned to the chosen edges by
functions residing in the internal nodes that select the correct edge
for this z. The firing strength value of 1 for rule R can be calculated as
either the minimum or product of the I's along the path. The
untraveled paths have O's on their edges for this z, so the firing
strengths along these M-1 paths will be zero when intersection is
done with any T-norm.

304 FUZZY PATTERN RECOGNITION

DDT(z) = e j

Figure 4.37 Firing strength in a crisp decision tree

In Figure 4.37 internal node v„ has 3 children, internal node v has 5
3 6

children, etc. Let T have n nodes, M < n-1 leaves, and thus, n-M
internal nodes. Without loss of generality, suppose that internal node
V has p children. Chang and Pavlidis (1977) let X represent the
domain of node inputs (and are not explicit as to the data type, which
seems implicitly to be numerical feature vectors), and call any
function ^^ = (Oĵ ^ '-'^k)'^^^l^< IP 3. fuzzy decision function for v .

The p values {<t)ki(x):i = l,...,p} produced by this function can be
thought of as edge weights or path indicator values associated with v
for this X.

Chang and Pavlidis use this idea as a basis for defining fuzzy decision
trees as decision trees with fuzzy decision functions at each internal
node. They did not exclude the zero vector from the range of Internal
node functions, but we think they meant to, for otherwise the
possibility of x being trapped at an internal node exists if no exit edge

has a positive weight. In any case, we call •j^iX [-> [0,1]P -{0} = N

(see equation (1.1)) a soft node decision function at internal node
v^ 6 Vj. We use the notation of Chapter 1 here because it is correct
and convenient, but •k i^ '^o* ̂ classifier function in the sense used
in this book. The Job ^k ^^S- ^^ crisp decision trees, is to identify the
outgoing edge from v that an input should take as it makes its way

towards a leaf - in other words, ^^. is a crisp membership function

CLASSIFIER DESIGN 305

that represents the output of the internal computation or comparison
made by the crisp decision function at or in this node.

If the range of ^y^ is N for k = 1,..., n-M, the fuz2y decision tree
reduces to a crisp decision tree, so crisp decision trees do have
decision functions at their internal nodes, but they are usually
represented differently, as for example, in the stipulation of a
hyperplane condition. To illustrate. Figure 4.38 shows an expanded
view of the situation at node v of Figure 4.37. The node function

•e'-X i-> Nh5, so it produces, for any input in its domain, a crisp label

vector fglxjeNj^^. In Figure 4.38, fglx) = (0,0,1,0,0^.

/ (t)63(x) = l ' ^

(3)
Figure 4.38 A node decision ftinction in a crisp decision tree

Don't confuse internal node decision functions such as •k with
internal node splitting functions such as i^^^^^^ in ID3: decision
functions make decisions (assign edge weights) at internal nodes
during classifier operation, while splitting functions make decisions
about how to split internal nodes during tree construction.

Returning to Figure 4.37, we can now write the crisp rule for the path
shown there as

IF (l)i3(z) = 1 and(t)36(z3) = 1 and-• • (t)6s (Ze) = land(!)s,L, (^s) = 1
THEN DDx(z) = ej , (4.75)

where arguments of the different node functions are subscripted to
indicate that they may not all be the same. Recognizing that "and"
can replaced by any intersection operator (T- norm), equation (4.75)
can be written more compactly as

T((!)i3(z),(^36(Z3),--,(|)6s(Z6).<t's.L,(Zs)) =* D D T (Z) = ©j . (4.75')

306 FUZZY PATTERN RECOGNITION

Equation (4.75) represents the action taken when the input vector
matches the premise of rule R - in other words, it is rule R, which is
seen by noting the subscript L on the last argument of T in (4.75). Now
define

tti (Z) = T((̂ 13(Z), ^36 (Zg)-•••. *6s (^6 Us.L. (Zs)). l ^ l ^ M . (4.76)

Because of the boundary property T(a, 1) = 1 <=> a=l of any T-norm,
T((t)i3(z),(l)36(Z3),---,(])6s(Z6),(l)s.L|(Zs)) = l<=><|)„(z.) = l V * . I n ViCW of

this, we see that a. (z) = 1 when, and only when, all of the arguments
of T in (4.76) are 1. That is, rule R fires if and only aj(z) = l.
Conversely, if any of the arguments of the T-norm are 0, then
aj(z) = 0 and rule i will not fire - that is, the path p(v ,...v) from the

1

root to leaf i will not be used in a crisp decision tree unless the firing
strength of its rule is 1. As an historical aside, the term firing
strength was not well established, and Chang and Pavlidis called
a.(z) the fuzzy decision value of the path P(VI,VL) from the root to

leaf i in the tree. We call a. (z) the firing strength of R for input z.

(a^(z),e.^) (a . (z) ,e . ,) {ajz),e^j

Figure 4.39 The fuzzy decision tree of Chang and Pavlidis (1977)

Now suppose, as Chang and Pavlidis do, that a fully expanded tree has
been developed, and that the internal node decision functions are
valued in N . What path does z take in this case? Conceptually z can
traverse all n-M paths, and can arrive at all M leaves in the tree.
When this happens, we may imagine that all M of the rules fire, each
producing a firing strength 0 < a jz) < 1. Chang and Pavlidis discuss
two cases. They call the decision tree that uses the T -no rm (the

CLASSIFIER DESIGN 307

minimum) to produce firing strengths a fuzzy decision tree, and when
the edge weights along a path are multiplied together (so the T-norm
is the product or T-norm), they call the tree a probabilistic model.
Figure 4.39 summarizes the structure we henceforth call the Chang-
Pavlidis (CP) fuzzy decision tree.

Each leaf of the decision tree in the lower part of Figure 4.39 has two
pieces of information attached to it: a^lz), the firing strength or
decision value along the path from v to VL̂ in the chosen T-norm,

and e , one of the c crisp label vectors for the classes in the training
Ji

data. Chang and Pavlidis did not aggregate firing strengths across the
M leaves, nor did they collect leaves with like labels and aggregate
these, etc. Instead, they defined the output of the tree in Figure 4.39 as
the crisp label associated with the largest firing strength,

Dg^(z) = e. o a k (z } = max{ai(z)} . (4.77)
•"' l < i < M

This is a crisp classifier even though the tree that defines it is a soft
decision tree. D§T simply assigns z to the class that has the highest
firing strength in /?. There are some obvious generalizations of this
structure. For example, the tree in Figure 4.39 is pure, but it is well
known that pruning decision trees improves them. Some of the
leaves in subtrees obtained this way will not be pure, and the crisp
label vectors for these leaves will be replaced by soft label vectors.
Each of these could of course be hardened in the usual way, and then
(4.77) would still apply. A more interesting possibility is to aggregate
the evidence residing in the firing strengths of all the rules with a T-
conorm or some other form of aggregation such as a weighted mean.

Chang and Pavlidis spend the bulk of their paper on theoretical
results about algorithms to search a given fuzzy decision tree for the
path that leads to the solution shown in (4.77) without enumerating
all the paths (remember, this was 1977 - computers were still tiny in
power - but huge in physical size!). They defined top dov«i search of a
fuzzy decision tree as a search from the root to a leaf that always
makes the greedy choice - that is, takes the highest value available -
at each edge in the path. They give the simple example shown in
Figure 4.40 to illustrate the failure of top down search to find the
solution of (4.77). Taking the greedy path from the root accumulates
the decision values 0.6 and 0.5, leading to leaf 2 with decision value
0.30 in the T^ norm, which is not the solution of (4.77). Using the T

norm, the greedy path leads to one of two equally correct solutions.

308 FUZZY PATTERN RECOGNITION

T2 = . 0.18 0.30 0.45 0.05

T3 = A 0.30 0.50 0.50 0.10

Figure 4.40 Top down search failure (Chang and Pavlidis, 1977)

Top down search of a tree for c classes is almost always 0(c), and as
in Figure 4.40, can lead to the wrong leaf. There Is also a guaranteed
0(c) bottom up search. Chang and Pavlidis, wanting a faster method,
discovered a branch and bound backtracking (BBB) algorithm that
finds the path of maximal firing strength in 0(c) time, worst case,
and in O(log2c) time in the best case. You may think these
complexities trivial in 1999 and beyond, and for many problems
(Iris, for example, with c=3 classes) perhaps they are. On the other
hand, Wang and Suen (1987) process labeled character recognition
data with c = 3200 character classes, so evaluation time can become
important. Moreover, the number of leaves can be far greater than
the number of terminals (Wang and Suen, 1984), as we demonstrate
in Example 4.14, so this is a good result.

A fairly clever and interesting secondary result in Chang and
Pavlidis is that any linear classifier defined by a set of hyperplanes

in 9t for a c-class problem can be approximated arbitrarily well by
a CP fuzzy decision tree with trivial comparisons alone (i.e.,
comparisons such as z < k) . They do not give any methods for
finding or pruning trees, nor are they very specific about internal
node decision functions. They do, however, compare their method
with both crisp and probabilistic (i.e., using the product of the edge
weights Instead of the minimum to get firing strengths) classifier
trees on the problem of discriminating between handwritten
numerals "5" and "9", and their fuzzy decision tree does a little better
than the other two.

F. Fuzzy relatives of IDS

Most of the recent papers on fuzzy decision trees are related to either
ID3 or some other Induction algorithm (how to get trees) ; or they
generalize the CP tree (how to define soft decision functions and

CLASSIFIER DESIGN 309

approximate reasoning along paths in trees). Some of the fuzzy
generalizations of ID3 discussed below replace the impurity
function i^^ with a measure of fuzziness to assess potential splits at

internal nodes, while others continue to use 1̂^̂^ for node splitting,
but apply it to fuzzy quantities instead of probabilities due to
relative frequencies.

Wang and Suen (1983, 1987) proposed a set of modifications to the
basic CP decision tree, and Suen and Wang (1984) introduced a new
crisp hierarchical clustering algorithm called ISOETRP (roughly,
ISODATA driven by an entropy objective function) that essentially
competes with IDS as a crisp decision tree building algorithm. These
three papers together provide a way to construct decision trees,
make them fuzzy, prune them, and infer decisions in a slightly
different way than by equation (4.77). The clustering algorithm is
interesting and has some nice wrinkles, so we provide a brief
discussion of it first.

The basic premise in Suen and Wang (1984) is that node splitting can
be viewed as top down crisp hierarchical clustering. Tliey argue that
the clustering objectives of the SAHN type algorithms that were
discussed in Chapter 3 are not relevant to good node splits from the
standpoint of decision tree design. Their method acknowledges the
importance of Quinlan's (1983) use of i^^^ for node splitting, and

their objective function ("GAIN") for node splitting uses î ^̂ ^ as a
building block. The overall node splitting function in ISOETRP is a
ratio of a function of node entropy to a measure of cluster overlap
for potential splits (clusters) of the cases at the node at hand, and
this function plays the role of Aî ^̂ j^(S;Pj^) in ID3 equation (4.69).

The basic idea is to create an initial set of clusters at a node. Then
their "GAIN" function uses the labels of these cases to measure the
entropy reduction due to this split, normalized by a measure of
cluster overlap. Following this, the clusters are adjusted using a
number of ISODATA-like operations - INITIALIZE, DIVIDE, LUMP,
CREATE, DROP, DISTRIBUTE, RETRIEVE, UPDATE - that alter (sets
of) clusters in the node with the aim of improving the split from the
decision tree point of view. The adjustment of clusters by
application of the ISOEH^RP operations is done interactively by an
operator viewing dynamically updated overlap tables for the splits
being adjusted. The end result is a crisp clustering of the cases in the
node that determines the number of children nodes as well as the
children in them. The issue of cluster validity is solved here by the
operator, who simply picks the best looking result by viewing the
visually displayed overlap tables.

Suen and Wang compare ISOETRP as a clustering algorithm, to both
HCM and ISODATA on some fairly small 4D data sets derived from

310 FUZZY PATTERN RECOGNITION

noisy handwritten Chinese characters. In a refreshingly candid
summary, they concede that HCM and ISODATA are both faster, and
both do better at minimizing J than ISOETRP. But, they argue that
this is to be expected, since ISOETRP has a different objective - viz.,
the construction of a good classifier tree. They also reported trying
various hierarchical algorithms such as single linkage to crisply
partition the cases passing through the nodes, and state that this
approach met with little success.

The papers by Wang and Suen (1983, 1984, 1987) begin with the
assumption that a crisp classifier tree for continuously valued
numerical feature data has been built by whatever means (they use
ISOETRP of course, but C4.5 or CART would do). Then they introduce
internal node decision functions that attempt to approximate
Bayesian decision functions for the clustered regions in each
internal node. The diagonal norm is used to create statistically
meaningful elliptical regions in the feature space to measure
distances between the input datum and within node cluster centers.

Specifically, after training each internal node contains one or more
crisp subsets of labeled samples. Suppose c classes are represented at
internal node k. Compute the subsample means {Vĵ ^,..., Vĵ }, where

Vĵ J is the mean of cases (vectors) labeled class i in node k. For an
input z, Wang and Suen compute the c diagonal norm distances (see

(1.8)), 8 k,I ||z-Vj^ Jl J f-, and then order them in ascending rank,

5,, , < 5,, „<. . .< 5,, ,. Then Wang and Suen define the node decision
(k,l) (k,2) (K,C) °

function as

<t',w(z) =

52 - 5 2

max-^0. 0.5
rx2 ?2 A

"(k.l) "(k.l)

K

(4.78)

; i > l

where K is a user-defined parameter. These are the fuzzy decision
functions Wang and Suen use in (4.76), and like Chang and Pavlidis,
they may obtain a firing strength (again called a fuzzy decision
value) for every path in the tree. At this point, however, Wang and
Suen depart from the strategy shown at (4.77). Instead, they regard
the firing strengths as heuristic evaluations that can aid in finding,
but possibly not point to, the final label assigned to z.

Choosing a threshold t, they accumulate all the leaves, say L , with
firing strengths greater than x by conducting a depth first search

CLASSIFIER DESIGN 311

which abandons paths in subtrees rooted at internal nodes if the
fuzzy decision value along that edge is less than T. Then a global
training algorithm prunes the tree by creating a set of "extended"
leaves by considering, for each leaf in L , only its immediately
"adjacent" terminals (see Wang and Suen, 1987, for specification of
the adjacency criterion). At the end of pruning, the extended leaves
all have firing strengths above the threshold, and each is equipped
with a probabilistic measure of similarity between z and the mean
vector VL of the samples in it (assumed pure) that gauges the
relevance of each leaf to a given input.

In the recognition mode, top down search (which might miss the
solution of (4.77)) finds the maximal firing strength for input z. If
the probabilistic similarity of z to the leaf found is greater than a
second threshold y, the crisp label of that leaf is assigned to z.
Otherwise, they commission a heuristic search in the extended
leaves to find a terminal that does satisfy a. (z) > y, and if one can be
found, they use the crisp label residing there. Such a terminal might
satisfy (4.77), or it might not, but Wang and Suen argue that the label
of any leaf such that a, (z) > y is a good decision because it is (i)
related to the Bayes classifier through (4.78), and (ii) the tree has
been pruned with the fuzzy decision values.

Wang and Suen (1987) give results of applying their fuzzy decision
tree classifier to three sets of noisy Chinese characters having c = 64,
450 or 3,200 classes, 15 samples per class. They derive 64 features
for each datum, and trained the trees for each case using 2 / 3 of the
data for training, and the remaining 1/3 for testing. In the
experiment with 3,200 classes, the average level of terminals was
5,415. By their analysis, the tree building phase, using the
interactive clustering algorithm ISOETRP, is O(clog c). They
estimate that the pruning phase they call global training takes
about 1/10 of this time. Time consuming, but in their view, worth it.
Their best result on the 3200 class problem is an error rate of 0.07%
- that is, they miss 10 or 11 characters in 16,000 test cases.

Maher and St. Clair (1992) inject fuzzy sets into the ID3 framework,
and then generalize the inference procedure of Chang and Pavlidis
in equation (4.76). They assume continuously valued real inputs,
fuzzify each input datum in both the training and test sets, and use
this alteration of the data to create interval valued decision
functions. Their algorithm, called UR-ID3, thus builds a new type of
fuzzy decision tree, since it creates a support interval for each
possible classification of any test sample.

UR-ID3 first constructs a fully expanded crisp ID3 tree which
contains crisp decision functions at its internal nodes. This
construction is based on real-valued data, but quantization of each

312 FUZZY PATTERN RECOGNITION

input datum using outpoints (like C4.5) is not done. Thus, the IDS
tree will not be able to classify any non-training input. To
accommodate generalization, each point in the training data is then
spread across each of its feature values by determining a support
interval for the similarity of its value to each of the other n -1
feature values of the same coordinate in the data. Support intervals
are computed with possibility theory using triangular membership
functions centered at each feature value pair.

The result of softening the numerical features is to replace each edge
weight in the IDS tree, which is either 0 or 1, with an interval of the
form [nSj^.pSjj^] c [0,1], nSj[,̂pSjĵ being, respectively, the necessary
and possible supports of a feature at node k for class i. In other
words, the node decision function •j^iX H> [0,1]P-{0} = N is

replaced by an interval-valued function, ^^-.Xh^PdO,!]^), where

P[[0,1]P) is the set of all p-tuples of subintervals of [0,1]. Thus, edge
weights in the Chang-Pavlidis model are replaced by intervals.

When an input datum traverses the tree to its leaves, the result will
be a "firing strength interval", which is constructed by taking
intersections of path intervals. The interval arithmetic operations
used are

[aj ,bjv[a2,b2l = [a j + a 2 - a j a 2 . b j + b 2 - b j b 2] ^479^)

The application of (4.79a) along a path results in an interval, say
[a"®(z),aP®(z)] at leaf VL . Since each leaf is pure, it contains, say, n
crisply labeled samples from one of the c classes in the training
data. The relative frequency of samples in leaf VL is used to
normalize the firing strength interval by multiplying each endpoint
of the interval with the fraction njn, so leaf VL is now associated
with the interval

ir
n.af^(z)

n

n^gP^z)

n
(4.80)

Maher and St. Clair then collect all the leaves in the tree that have
crisp label e., j = 1 c, and aggregate the support intervals for label j

into one overall support interval IJ'̂ for the terminal block
associated with class j . This is done by applying (4.79b) to all the
intervals of form (4.80) that support each class. Figure 4.41
pictorially illustrates the soft decision tree of Maher and St. Clair.

CLASSIFIER DESIGN 313

/
*] [*,*]

\ /

A { [* , *] }

r %j
A { [* , *] }

T V A _
W A { [* , *] } }

[* ^ *] [*,*] [*,*]

A { [* , *] }

J
J

A { [* , *] }

c 3
Terminal block 1 for e,

i r =v {A { [* , *] } }
V

Terminal block c for e

Figure 4.41 The soft decision tree of Maher and St. Clair (1992)

At the end of the training step, each of the c classes is represented by
one support Interval of the form IJ" = V{A{[*,*]}}, j = l,...,c, as shown
in Figure 4.41. Now the tree is ready for operation. Input datum z
passes through the tree, and arrives at its bottom supported by
(possibly) c different firing strength intervals {IJ'̂ }. Of the many
possible ways to extract a final label, Maher and St. Clair opt for the
most conservative choice, by assigning z the label of the terminal
block associated with the support interval having the largest
necessity value for its left endpoint. Three sets of data are used by
Maher and St. Clair (1992) to illustrate UR-1D3. Here is an
adaptation of their presentation of classifier design wath the Iris (?)
data.

Example 4.14 Maher and St. Clair (1992) compare four classifier
designs using 75% of the Iris data for training and the other 25% for
testing. They repeated this for three different sets of randomly
drawn test cind training data. UR-ID3 was compared to the standard
1D3 tree, a 1-nn variation of IDS due to St. Clair et al. (1992), and a
standard feed-forward back-propagation (FFBP, Section 4.7) neural
network. The 1-nn variant of IDS differed from IDS only during
testing; in this phase of operation, if a path in the IDS tree did not

314 FUZZY PATTERN RECOGNITION

exist, then the "nearest neighbor" path in the tree was taken. Table
4.34 repeats the test results of their experiments as percent correct
on the test sets.

Table 4.34 Percent correct classification on 3 Iris test sets of
25 points each with four classifiers (Maher and St. Clair, 1992)

1D3 lD3-nn UR-ID3 FFBP
Iris 1 75.7 89.2 94.6 91.9
Iris 2 71.1 92.1 94.7 94.7
Iris 3 78.9 94.7 94.7 92.1
Ave. 75.2 92.0 94.7 92.9

The average number of internal nodes for IDS was 5, and the average
number of leaves (or crisp rules developed on 112 labeled data) was
45. Since UR-ID3 and ID3-nn use the same trees, these statistics are
valid for all three decision tree designs. This agrees with the general
belief that if nothing else, decision trees get big - fast.

The last row of Table 4.34 indicates that, for these trials, the fuzzy
interval-based decision tree classifier was much better than ID3,
and it was slightly better than the crisp ID3-nn approximation.
According to these statistics UR-ID3 was also slightly better than
the FFBP classifier network they used in this comparison.

We add three remarks about these results. First, the values displayed
in Maher and St. Clair for illustration of interval building with an
input datum from Iris lead us to believe that they actually processed
an integer valued data set that might be Iris with every value
multiplied by 10 (see "will the real Iris data please stand up" in the
preface). Second, it is pretty easy to train a feedforward network to
be consistently achieve 100% success with various data selection
schemes when applied to (the) Iris (we use). We illustrate this in
Example 4.21.

Finally, crisp decision trees built with C4.5 on Iris are slightly
better than any of the decision trees illustrated in Table 4.34. For
example, Hall et al. (1998) report that release 8 of C4.5 run with the
default parameters builds crisp decision trees on Iris that achieve an
average error rate of 4.7% - that is, 95.3% correct classification -
when trained and tested by 10-fold cross validation. This scheme
uses 90% percent of the Iris (?) data for training (135 samples) and
the remaining 10% (15 samples) for testing in each of 10 cycles,
rotating through the entire data set so that the union of the 10 test
sets is Iris, and their pairwise intersections are empty. This is a
somewhat more pessimistic error rate estimate than the 75/25 split
used by Maher and St. Clair because individual tests are closer to the
leave one out method, and averaging the error rate over 10 trials
produces a better estimate. The average tree size over 10 runs in Hall
et al. (1998) was 5.3 nodes (leaves and internal nodes). Thus, the C4.5

CLASSIFIER DESIGN 315

crisp tree size is an order of magnitude smaller than the trees built
by Maher and St. Clair's fuzzy decision tree methods.

Umano et al. (1994) present a fuzzy extension of 1D3 that can deal
with both real and categorically-valued attributes. Their scheme,
like that of Maher and St. Clair, uses the basic 1D3 algorithm to
build a tree, and then they extend its crisp decision functions at
internal nodes so that each training datum is captured by a larger
domain. Rather than cover each point with a possibly different
interval, they impose a set of discrete, user-defined premise
membership functions on each input variable.

Umano et al. assume that the input data have c classes, but that each
class is fuzzy. This is represented by attaching what is in essence a
user-defined possibilistic c-partition U(X) e M ^^of X = {Xj,...,x^}
to the input. Umano et al. use the fuzzy cardinalities of X computed
on the entries of U(X) to replace the relative frequencies used in 1D3,
and the IDS node splitting function is converted into one that
attempts to maximize information gain based on probabilities of
membership values. These authors present an example that is very
much like Example 4.13. To impart the flavor of their method
without filling several pages with fairly routine details, we abstract
it here as our Example 4.15.

Example 4.15 Umano et al. (1994) illustrate their fuzzy 1D3 method
on the following set of data (we have reordered it for clarity),

X
f 160 ^

60
^ blond ̂

r i 75^
60

Uedj

f 180 "i
70

^ blond ̂

(180 "l
80 ,

^black^

(170 ^
75

^black^

f 160 ^
75

^black^

fl75^
60

Iredj
f 165 ^

60
^blond^

P o i n t ® ® ® O © © @ ©
Class
Memb.

1
1.0

1
0.7

1
0.5

2
0.8

2
0.2

2
1.0

2
0.3

2
1.0

The first two components of each data vector are the p = 2 numerical
features height and weight of 8 objects (presumably humans), while
the third component is the variable "hair color", with q = 3 values:
blond, black and red. Directly beneath the data are the crisp class
labels attached to the 8 points by the authors, and directly below the
crisp labels is another value associated with these 8 data, which is a
subjectively defined set of fuzzy memberships. The authors are not
clear about the source or meaning of these memberships, so we
interpret them as a measure of confidence in the crisp label
assigned, and represent them as a possibilistic 2-partition of X,

316 FUZZY PATTERN RECOGNITION

U(X): 1.0 0.7 0.5 0 .0 0 .0 0.0 0 .0 0.0
0 .0 0 .0 0.0 0 .8 0.2 1.0 0 .3 1.0

By our interpretation, the first datum definitely belongs to class 1
and not at all to class 2, the second belongs to class 1 to the extent 0.7
and not at all to class 2, and so on. Umano et al. don't describe the
fuzzification of the Input data quite this way. They simply identify
the first 3 points as "being in" class 1, and the last 5 points as having
a class 2 label. In their paper the non-zero values we show in the
matrix U are simply called membership grades given to the 8
examples. This is an example where each datum comes with a crisp
label, and other information is used to augment the original label
structure of the problem. In effect, each point in the training data
has both a crisp and possibilistic label.

Compare the first and last vectors in X to see that the two classes are
pretty mixed, since datum 1 is, by its memberships in U, definitely
in class 1, while datum 8 is definitely in class 2, but the only
difference between these two objects is in the first feature, 5 (cms ?)
in height. This is even more pronounced in points 2 and 7, which
have identical representations but, according to U, object 2 prefers
class 1, while object 7 has a small amount of membership in only
class 2.

The authors then define three sets of discrete premise membership
functions over the three input variables. As a first example of the
notation we use for fuzzy systems, we list each of these PMFs as a set
of ordered pairs in the general form (x, m (x)):

'• ^ i ij i

PMFs (m .̂(Xj)} for height:

= {(160, 1), (165, 0.8), (170, 0.5), (175, 0.2)}
= {(165, 0.5), (170, 1.0), (175, 0.5)}
= {(165, 0.2), (170, 0.5), (175, 0.8), (180, 1.0)}

PMFs {m (x)} for weight:
2j 2

2̂J = Ught m^j = {{60, 1), (65, 0.8), (70, 0.5), (75, 0.2)}

2̂2 = middle m^^ = {(65, 0.5), (70, 1.0), (75, 0.5)}
2̂3 = heavy; m^^ = {(65, 0.2), (70, 0.5), (75, 0.8), (80, 1.0)}

PMFs {m (x)} for hair color

(^^ = light m^j = {(blond, 1.0), (red, 0.3)}
3̂2 = dark m^^ = {(red, 0.6), (black, 1.0)}

(= low

(= middle

m
11

™12
^13-high

"^13

CLASSIFIER DESIGN 317

Notice that our parameter r, the granularity of the sets of PMFs in
Figure 4.32, is variable here: r ^2 = 3- V2- Also notice that while
the PMFs shown in Figure 4.32 are continuous, these authors use
discrete PMFs (but they do not limit their version of fuzzy ID3 to
this). Subsequent calculations using Umano et al.'s node splitting
functions and several additional heuristics lead to the fuzzy
decision tree shown in Figure 4.42, which is our adaptation of
Umano et al.'s Figure 1.

hair: .

Light Dark

j ^

low'

"6 - I 0.84

middle heavy

^' ~ ' 0 . 8 4 j u^
0.71
0.29

middle high

u.
0.61
0.39

u - I 0-03 "2 - 1 0.97 " 3 \ 0.84 j

Figure 4.42 Umano et al.'s fuzzy decision tree for the data set X

This tree has 3 internal nodes and the training data are used to
produce fuzzy label vectors at the 6 leaves; Uĵ e Nj.̂ is attached to
leaf VL for k = 1 to 6. Compare this to the CP tree in Figure 4.37,
where each leaf contains a path firing strength and crisp label.
Umano's tree is equivalent to the rule-base /€
rule, 1 < i < 6, has the form

{R,,. R } whose i-th
6

a j (x) ^ D ; ^ ^ (x) = Uj (4.81)

In (4.81) the LHS has 3 premise clauses, but some of the rules have
less than three. When an input datum is submitted to this tree, its
values may partially match all 6 of the fuzzy rules (that is, may
arrive at all 6 leaves in the tree in Figure 4.42). The firing strength
along each path is computed with the left side of (4.81) using the
product for tiie T-norm, T =T . Each edge in the Umano et al. tree has

318 FUZZY PATTERN RECOGNITION

a fuzzy label vector attached to it (this is not shown in Figure 4.42),
which stands in sharp contrast to the edge weights in the CP tree
(numbers in [0, 1]), and edge intervals in UR-ID3. Umano et. al also
apply the product to each component of the fuzzy label vectors along
the edges. And finally, aggregation of the evidence developed at each
leaf for the input datum is done with addition, which can lead to
certainty values greater than 1. Umano et al. say that when this
happens. Just normalize them. They call the overall inferencing
method (x x +). The output of Umano et al.' s fuzzy decision tree is a
fuzzy label vector for each input, so this design is a fuzzy classifier
in the sense used by us - that is, H(z) = DDJ(Z) = U E NĴ , . If desired,
this output can be hardened in the usual way.

Finally, Umano et al. give a numerical example using n = 220
samples of transformer data which have two labeled classes of
causes of failure, which are themselves subdivided into 4 and 17
subclasses. Half of the data were used to train the fuzzy decision tree,
and the other half were used to test it. They give some error rate
statistics for their tests, but since this method is not compared to
any other method, it's hard to guess what the statistics tell us about
the method. But we like this as an example of generalization of both
the fuzzy CP tree, as well as crisp 1D3.

light middle heavy

u
®

r- / ^
f l i eight ^

" 4 Hi]
L ® J

low mic die high

I >

M^\ "3-[0.3j
© ® 0

V -/ ^ J

u
0

Figure 4.43 Zeidler et al.'s fuzzy decision tree for
Umano's et al.'s data set X in Example 4.15

Zeidler et al. (1996) discuss an interesting modification of the fuzzy
IDS approach of Umano et al. (1994) that seems to extend its utility
in that some of the subjectivity in Umano et al.'s design is removed.

CLASSIFIER DESIGN 319

These authors give an algorithm for automatic generation of
continuous premise membership functions tha t span each
numerical input variable (recall that the user simply defined
discrete premise membership functions In Umano et al.). The PMFs
are all trapezoidal, and are adjusted dynamically during the
construction of the tree. Zeidler et al. process the data shown as X in
Example 4.15 with their algorithm, and obtain the decision tree
shown in Figure 4.43, which is our adaptation of their Figure 3.

Compare Figures 4.42 and 4.43 - there are some striking differences.
Umano et al.'s tree is rooted on the linguistic variable "hair color"
and has 6 leaves, all associated with rather fuzzy labels. Zeidler et
al.'s tree doesn't even use hair color, is rooted on the numerical
variable "weight", has only 5 terminals, and 4 of the 5 terminals are
associated with crisp labels - that is, they are pure leaves. The two
objects labeled 2 and 7 in the original data end up in the only leaf
that doesn't have a crisp label. Recall that these two objects had
identical features, but different class labels. We think that Zeidler et
al.'s approach produces a clearer picture of the structure of the data
than Umano et al.'s. Unfortunately, Zeidler et al. did not try this
method on any real data set, so it is even more difficult to make any
assessment of its relative utility than the classifier tree of Umano et
al. These authors do give a very clear example of processing an
unlabeled input vector z with their tree:

R[z] = K

r 62 ^ r 62 ^ . ^ „
^0.68 162

red
- n^
- • '^DT

162
red

0.32;"^^'

The last method we discuss in this subsection is due to Janikow
(1996a, 1998). Janikow fuzzifies both the construction and
inferencing procedures for decision trees. His model has many of the
same elements as the fuzzy systems shown in Figure 4.32, although
he prefers to regard the fuzzy rules aspect of his decision trees as an
artifact, rather than the reason for the trees. Janikow gives a nice,
clear discussion of most of the previous work on fuzzy decision
trees, and their relationship to fuzzy systems. He uses the
methodology of ID3 as a template for his fuzzy tree building
algorithm, which, in his words, "is the same as that of 1D3. The only
difference is based on the fact that a training example can be found
in a node to any degree."

Janikow's (1998) fuzzy ID3 is not a complicated algorithm, and
while he illustrates it only with numerical data, it is equally
applicable to nominal data. The node splitting function is formally
an entropy function, but the arguments of v̂ ^̂ depend explicitly on
the PMFs of the linguistic variables chosen to fuzzily the input
domains. The central idea is that memberships {m..(x)} of the

320 FUZZY PATTERN RECOGNITION

attribute values that occur along paths from the root to the current
node play an active role in the determination of which cases arrive
at a node, and how much each should be weighed in the split. Values
of {T({m (x)}} accumulate as incremental firing strengths along
each path, using a T-norm of choice, and these contribute to the
overall case count at the current node. At termination the leaves of
the tree may not all be pure, and further, the same case may occur
with partial membership in more than one leaf. These terminal
memberships are possibilities (they don't have to sum to 1).

Janikow (1998) points out that once the tree is built, there are any
number of possible choices for inferencing with it, some of which
are interpolative (if the data are numerical); and some of which are
not (necessary if the data are nominal). When operating as a
classifier, all the leaves with paths of positive firing strength can be
found, and these consequents can be aggregated using a T-conorm
and then defuzzified, or simply combined using a weighted mean.
Janikow discusses four methods of inferencing based on the
weighted fuzzy mean or simplified max-gravity method (Mizumoto,
1988). Two of them use information about the most common label in
terminal blocks, and the other two try to account for within-leaf
label inconsistencies. Janikow also discusses four reasoning
procedures based on finding a dominant leaf with the center of, sum
of and maximum gravities defuzzification strategies. Then he gives
the numerical example repeated here as our Example 4.16.

Example 4.16 Janikow (1998) illustrates his fuzzy ID3 method on
the following set of data, which is strikingly similar to the one used
in Example 4.15 (and not just because, like Quinlan and Umano et
al.,n = 8).

Y _ fro.20^ fO.aO'l f0.90~] fO.60'] f0.90\ fO.lO^ f0.40\ fO.85
^-^^ 0.15 ' 0 . 2 5] ' 0 . 20 j ' 0 . 50> 0.50 •0 .85J ' 0.90 ' 0 . 8 5

Point ® ® (D ® @ ® & ©
Class
Weight

1
1

1
1

1
1

1
1

2
1

2
1

2
1

2
1

Figure 4.44 is a scatterplot of X c= 9t^. The point z shown in Figure
4.44 is not one of the training data - it's a test input that we will
classify with the fuzzy decision tree after it has been built. Janikow
imagines that the classes represented in the data are related to
decisions a lender must make about borrowers : class 1 = not
creditworthy, and class 2 = creditworthy. In our standard notation
these two classes would be represented by the crisp label vectors
Cj =(1,0)^^ and e^ =(0,1)'^.

CLASSIFIER DESIGN 321

Employment
A

H(w,a}

Medium High
- ^ ^ Income

Figure 4.44 Janikow's data and premise membership functions

Since this is a c = 2 class problem, Janikow arranges his decision
system outputs so that they are numbers in [0, 1] instead of label
vectors, so we write this classifier function as Dp^:9t^ i-> [0,1].
Janikow uses the labels 0 = not creditworthy and 1 = creditworthy
for the two classes, and regards fuzzy outputs of his system as
numbers between 0 and 1 (instead of fuzzy label vectors in N). Since
there are only two classes, hardening a fuzzy output corresponds to
using 0.5 as a threshold on the output of the system. For example,
0.47 is hardened to yield 0 = class 1 (non-creditworthy), and 0.64 is
converted to the class label 1 = class 2 (creditworthy).

The simplest way to classify anyone on this basis would be to plot
their coordinates and see which side of the hyperplane through the
corners (0,1) and (1,0) the datum fell on: above would presumably
correspond to an acceptable risk, and below, to a person not to be
trusted to repay a loan. The data shown are not linearly separable by
this hyperplane, which would commit three training errors. There
are separating hyperplanes, however, such as H(w, a) shown in
Figure 4.44, which will produce no errors on resubstitution.
Consequently, from the point of view of classifier design, one of the
things we will want to know is whether a decision tree approach
offers more than this simple solution, which can be found by eye.

Examination of Figure 4.44 tells us - without computation - that
horizontal splits (along the employment axis) will be more effective
at the root of any tree covering these 8 cases than vertical splits

322 FUZZY PATTERN RECOGNITION

along the income axis. Cases 1-3 and 6-8 can be isolated from 4 and 5
with jus t two cutpoints along the employment axis, and the eight
training data can be easily covered with 4 crisp rule patches that
jrield no training errors. But we know that such a classifier will not
generalize well.

Janikow defines termsets of three linguistic values, {low, medium,
high}, for each of the linguistic variables income and employment.
Figure 4.45 shows the general form of these functions for the first
linguistic variable (income), which are limited in Janikow (1998) to
trapezoidal fuzzy numbers. The same functions are used for the
variable employment.

Low Medium High

m 11 "3><o^XF\, Income

Figure 4.45 Janikow's premise membership functions

Janikow leads the reader through sample calculations for all the
functions used during node splitting in his fuzzy 1D3 tree building
algorithm, and arrives at the final tree shown in Figure 4.46.

©

« i

0.7
0.5
0.6

:^z
Class 1

low medium high

«ll «3
® I 0.5

TK:
VL3 [Class 1

low middle high

^ 2
>

« 5

© 0.7
& 0.8
© 0.7 J

1^5 Class 2

' e i "0
® 0.5

^ 2 « 4

. ® loj
k>̂

^ L , Mixed

Figure 4.46 Complete decision tree for Janikow's data

CLASSIFIER DESIGN 323

As expected from the geometry of the features for the training cases
seen in Figure 4.44, the terminal tree is rooted in employment, with
cases 1-3 and 6-8 immediately splitting from the root to terminal
nodes VL and v^ . The second linguistic variable is used to split the
remaining cases, and although there are (presumably) only 2 cases
left, notice that Janikow's method also pushes case 2 into a second
terminal leaf, VL . Case 4 acquires its own terminal leaf v and

2 Ivg

also moves into v. , which it shares with case 5. Also shown in

Figure 4.46 are the firing strengths along the paths from the root to
the leaves. This tree corresponds to a 5 rule fuzzy system, but note
that rule 4 has two possible consequents, since the cases are mixed.
And conversely, object 2, which has a crisp case 1 label, arrives at
VL with a firing strength of 0.5, and at VL with a firing strength of
0.33. In other words, rules 1 and 2 in the fuzzy system represented by
this tree both support a match to training data point 2, but with
different levels of confidence, whereas rule 4 supports a match to
several outcomes, the strength depending on the matched label.
Similarly, object 4 is also labeled class 1, with equal firing
strengths of 0.5 in 2 different leaves.

Janikow's avowed purpose is to focus on decision trees, not fuzzy
rules, so he spends little time distinguishing MA and TS type rules
that might be equivalent to this tree. Janikow does talk about using
the firing strengths that arrive at terminal nodes in conjunction
with defuzzification to make subsequent classifications. So, we
assume that each of the possible consequents (class 1 = too risky,
class 2 = creditworthy) has a fuzzy set associated with it.

Janikow shows how the classifier represented by the tree in Figure
4.46 operates using the center of gravity method of inferencing on
six new test data. Since the input space is [0,1] x [0,1], the rule-base
will always have an output in [0,1] with the defuzzification being
used, we expect that Dp.j,(0) = 0,D^(1) = I. And indeed, Janikow
shows how the input vector y = (0,0)^ causes the response
«.(y) = (1,0,0,0,0)^, where (x(y) is the (ordered) set of firing strengths
of the paths leading to the 5 terminal nodes in Figure 4.46. Only rule
1 is fired for this input, and this input will be unequivocally labeled
class 1 (too risky). This certainly agrees with the location of this
datum in the feature space. In words : "IF employment is low and
income is low THEN no credit". What would our simple hyperplane
H(w,a) shown in Figure 4.44 do for this input? The same.

The test input z = (0.32,0.70)^ plotted on Figure 4.44 results in the set
of firing strengths <x(z) = (0,0,0.3,0.67,0.40)"^. Now three of the five
rules have positive support, and it is necessary to combine them

324 FUZZY PATTERN RECOGNITION

with some form of disjunctive aggregation. Janikow, using the
center of gravity defuzzification, arrives at an overall value of 0.71
for this input, that is, D^.j, (z) = 0.71. Recall that hardening here
corresponds to rounding off, so 0.71 corresponds to the label 1 =
creditworthy, that is, H(D^(z)) = Cg = 1, so we will happily allow z
to go into debt. Our hyperplane H(w, a) would too.

Janikow (1998) goes on to process three input data with missing
values, the inputs (unk, 0.75), (0.5, unk), and (unk, unk), where unk =
"unknown". The test data used do not illustrate the efficacy of this
tree as a classifier, however, since none of them has a crisp label.
Now the hyperplane fails, but Janikow's tree produces the outputs
0.63, 0.59 and 0.51, respectively for these three points - that is, upon
hardening (rounding off to 1 = class 2), all three of these inputs
represent people that will be granted credit.

The last input point is particularly interesting; the defuzzified
output value is not exactly 0.50, even though the input datum (unk,
unk) would suggest a coin flip to make the ruling in this case, since
nothing is known about the input and the sample priors are both
0.5. Janikow says the value 0.51 occurs because the case counts in
the leaves is different from those in the root. Thus, the root starts
with 4 examples of each class, but the leaves contain 3.13 in-leaf
cases for class 1, and 3.20 cases for class 2 (these counts are the sums
of the firing strengths in the leaves), so the training method imparts
a slight bias towards class 2. Tuning the CMFs and PMFs might be
used to balance the in-leaf counts so that they matched the root
priors to solve this problem, but Janikow does not mention doing
this in his 1998 paper. See Janikow (1996b) for a discussion of
optimizing the initial tree found by this method. As an aside, we
remark that this seems to be the model used by many (at least
American) bankers, who cheerfully let anyone who wants to go into
debt, with consequences following the truth of their situation - only
later.

The last thing we mention is that Janikow (1998) does a creditable
job of comparing the utility of his method to another scheme for the
function approximation problem we introduced in subsection 4.6.D.
Janikow builds a fuzzy IDS tree using the same data that was used by
Suh and Kim (1994) in connection with approximation of the
Mexican hat function. Let x = (x,y)^, and consider the function

h (x)
40 sin{nJx^ + y^ / 35)

"X 7t O
V x ^ ^ y V 3 5 '^^^ • (4.82)

407C ;x = 0

CLASSIFIER DESIGN 325

Suh and Kim sampled h over the domain [-120, 120] x [-120, 120]
'^ mex

13 times in each direction to obtain the training data X . They
^ mex -̂

then used the 169 lO triples {{x , h (x)} to build a fuzzy
"^ ij mex Ij •'

membership function neural network to approximate h . In brief,
'• "̂ ^ m e x

Suh and Kim manually generated 13 sets of fuz:^ rules (one for each
set of data along a line of constant y value on the sampling grid),
partitioned each of the two input variables with 13 triangular
premise membership functions and 7 consequent membership
functions, trained the 13 networks, and then combined their outputs
to produce approximations K(x;6) ~ h (x), where B represents the
parameters of the networks acquired during training.
Janikow (1998) trains 1D3 based trees on the same data, and shows
the output of two trees on the training data and at test points in
between them. The approximating rules (as represented by the fuzzy
decision trees) differed only in the method of inferencing. Visual
comparison of the surfaces recovered by Janikow's fuzzy decision
trees and the neural network approximations appear to favor the
neural network approach. Janikow (1998) seems to concede this by
referring us to his (1996b) paper on optimizing the membership
functions as a means of improving the approximation. In favor of
his method - and we tend to agree with him - are the facts that his
trees were not tailored to this particular problem, and the fuzzy ID3
rules were not generated manually.
We have one more fuzzy decision tree methodology to discuss (Chi
and Yan, 1996, Chi et al., 1996), but we defer discussion of these
papers to the section on classifier fusion, because these authors
combine their version of fuzzy classifier trees with other techniques
such as nearest prototype and Markov chain classifiers to
(hopefully) improve the overall performance of either individual
classifier.

G. Rule-based approximation based on clustering

Since a fuzzy decision tree is equivalent to a set of fuzzy rules,
building a fuzzy decision tree amounts to extracting a set of fuzzy
rules from numerical or linguistic data. Tree induction (and
consequently, the rules a tree represents) from numerical data using
algorithms such as ID3, C4.5 or CART does not depend primarily on
structure in the data; rather, it depends most heavily on the relative
frequency information that resides in the crisp labels of the data.

In this section we develop an alternate approach to rule extraction
from numerical data that does just the opposite; it tries to focus on
geometric properties of the data as captured by clustering
algorithms. In a few cases we find the method of this section used
directly for classifier design, but most of the important work in this

326 FUZZY PATTERN RECOGNITION

area is aimed at approximating functions used in prediction and
control. In any case rule extraction by clustering is a nice
application of the material in Chapter 2 on clustering, now used as a
tool in a very different context than its original domain. We begin
with a discussion of the feasibility of approximating functions with
fuzzy systems.

The Mexican hat example presented by Janikow (1998) that we
discussed in subsection 4.6.F was our first example of using fuzzy
rules to approximate functions. While Janikow's example shows the
feasibility of using a fuzzy decision tree (and therefore, a fuzzy
system) for function approximation, there can be problems with
this approach. For example, computational complexity can be very
high, and further, Janikow's results - the first we have seen for
approximation by fuzzy decision trees - are visually inferior to
those obtained by Suh and Kim (1994). The first question that comes
to mind is - why should we expect a fuzzy rule-based system to do
well at all? A theoretical answer to our question comes from the
field called universal approximation (UA) theory.

We won't spend much time on this topic, because we do not explicitly
rely on the results of UA theorems to design and construct a good
classifier. But like many before us, we take some psychological
reassurance from such theories, and as an old friend of ours once
told us , "nothing is so practical as a good theory." Universal
approximators are sets of functions {W(x;9):X cSt^ i-> SR̂ îG e Q},
where Q is a parameter space for 9, that provide arbitrarily good
approximations to every element in other sets of functions, say 3 =

{f: X c 91P i-> 9t''}. The measure of goodness is a norm on SR'',
typically X is compact, and every function in 3 is continuous. The
approximation to f is uniform by such families; i.e., once e is given,

for any f e 3 , you can find a set of parameters 9 for which

f(x) -l?(x;9) < e for every x e X. For example, Fourier series are a
set of universal approximators for square integrable functions on
[0,271].

There are any number of theorems guaranteeing that various MA
and TS rule-based systems are universal approximators. The
conditions on X and f vary, and there are usually other special
conditions or constraints on the result that depend on the particular
system you have in hand. This answers one question we raised in
Example 4.17; in principle, a fuzzy system designed with any
method - clustering included - may provide a good approximation to
well enough behaved functions. Unfortunately, none of these UA
theorems is constructive - that is, none of them tell us how to find
the approximating system. That's why their value to the designers of
a working pattern recognition system not high.

CLASSIFIER DESIGN 327

There are also many UA theorems for neural networks. Figure 4.47
depicts a 21 point lO data set that Narazaki and Ralescu (1993)
obtained by uniformly sampling the function

S(x) = 0.2 + 0.8(x + 0.7 sin(x)}, 0 < x < 1 (4.83)

over the base points X^^ = {0.00,0.05,.... 1.00}, which comprise a set
of input training data, with corresponding output training data

S(l.OO)}. Y2j={S{0.00), S(0.05),

S(x)

^•Training Data X^^Y^^

f • •
0.9 #

•
• •

0

0.7 •

• . •

0.5
0 •

- •

0.3 • •

• • •
» ' ' ' ' '

0.2 0.4 0.6 0.8

Figure 4.47 Data set X̂ Ŷ̂ ^ is 21 samples from (4.83)

Narazaki and Ralescu used X^^Y^^ to illustrate the approximation
capabilities of five different feed-forward neural network
architectures. Approximation of S by the five schemes they describe

yielded an average Ej^gg(XjQjX2j): PI:K -s(xj^:e) 7.42%

on 101 test inputs uniformly distributed over [0,1]. The
approximation capabilities of NNs are well known, so this is not
surprising. Notice that these test data include the 21 training inputs,
so this error is a little optimistic; nonetheless, this is a nice result.
We will use these data to illustrate several rule extraction methods
in Example 4.17.

To appreciate the relat ionship between smoothness and
approximation, recall that the lO data available for identifying S

328 FUZZY PATTERN RECOGNITION

are XY = {(x̂ ^ ,y^f: k = l ,n}c9tP+i. Roughly speaking, XY is the
"diagonal" of the Cartesian product XxY. The discrete set XY is also
assumed to be a subset of the graph G of S, which is in turn a subset

s
of 9tP X 5R1. Figure 4.48 shows these relationships.

9t̂
X Y = ©

X

.#"
0 ©o o ooo p o o GO © OpO

Bumpy 1

o

o
o

oo o \ o o o

© o o o o ©
Mo o oo©

o
©

0
0

oo o \ o o o

© o o o o ©
Mo o oo©

o
©

'" oo o o o o o

Gc

•9tP

Figure 4.48 The sets X, Y, XY, X x Y and G

Rule extraction can be done by clustering in X, Y or XY, resulting in
c-partitions U^.U^.orU^^, respectively. The superscript shows
which of the three data sets is the basis of clustering. We assume that
the clustering method also produces either point prototypes
y x ^ r.yX| yY _ S^yjl o r V ^ = {(v^, v ^ ' ^ } ; or non-point prototypes

B^={bf}) . BY={b^} or B ^ = { (b f , b f r } . Many of the rule
extraction methods depend on projections of these prototypes from
XY to X and/or Y, and they also rely (almost always implicitly) on
the smoothness of S.

When S is very smooth, as the sine curve in Figure 4.47 is, we will be
able to find nice approximations to it with fairly course, low order
fuzzy systems - in particular, with first order TS systems. When S is
"bumpy" but still smooth (the graph of S in Figure 4.48 is like this at
one spot), we will need a higher order approximation, more rules,
finer premise membership function structure, and so on, to get
decent approximations to the lO data.

Since we use rule-based systems in classifier design, it's nice to
know these UA theorems exist. That's really all we need to say about

CLASSIFIER DESIGN 329

this aspect of approximation to classifier functions by fuzzy
systems, except for this very important point. Crisp classifier
functions D: 5RP I-> N^^^ cannot be continuous, because their range is
discrete, so UA theorems in this special case lose some of their
appeal. However, be careful to distinguish what function you are
approximating when you worry about this statement. In equation
(4.2) we show the crisp classifier function Dygg(z) = ej, which
cannot be a cont inuous function of z, but the function
f (x) = (x, w) + a that defines H(w, a) is certainly smooth, and can be
used to implement D^ E 5' ^° ^^^ situation for classifier design is not
as bad as it might seem. When classifier functions are soft, UA
theorems directly underlie our attempts to approximate them with
rule-based systems.

If you want more information on universal approximation, start
with Kreinovich et al. (1998). Jus t to give you a taste of what you will
find there, we report some statistics about this paper: (i) UA
theorems due to no less than 13 different named authors for the
three year period 1990-1992; (ii) 220 references, clustered usefully
into categories (numbers in () are number of references) such as:
basic results (37), TS m,odel (8), fuzzy rule patches (8), "complicated"
implications (3), hierarchical systems (9), distributed systems (4),
discrete systems (9), stability (9), neural networks (23), fuzzy neural
networks (4), and our favorite, "how to choose the best variant of
fuzzy rule-based modeling methodology (21). We are not making fun
of these papers - we love them. (Our only complaint is that there
aren't any references in the category "how to design a good rule-
based classifier".)

Kreinovich et al. (1998) emphasize that there are at least three
performance criteria besides the observed mean squared error
(MSE) on test data that a good UA should possess; stability,
computational simplicity, and smoothness. These authors present a
really nice discussion that compares fuzzy systems to neural
networks using each of these criteria. For us, perhaps the most
important aspect of their discussion on this topic is that fuzzy
systems are inherently less smooth than neural networks because
the T-norms and T-conorms used during reasoning are - with rare
exceptions - not smooth themselves. Arguably, this means that
classifier functions represented by fuz2y systems will be, on average,
less smooth than those built with neural networks. We think that
the architecture and membership functions on the LHS of fuzzy
systems are also very important when considering the overall
smoothness of these two kinds of systems. In any case, this is a good
thing to keep in mind when you set out to design that perfect
classifier.

330 FUZZY PATTERN RECOGNITION

When XY appears to have no clusters, can we expect rules extracted
by clustering to afford good approximations? Look again at X2jY2j
in Figure 4.47 - how many clusters do you see? Most observers would
say either "none" (no substructure), or "one" (all of the data, viewed
as a single curvilinear arc), so your initial reaction might be "No
way [can you get rules with clustering]". How well would single input,
single output rules for a simple MA model that are extracted by
clustering in X2jY2^ represent this system? Pretty well. Our next
example also shows that the lack of smoothness in fuzzy systems
approximations can sometimes be offset by replacing the usual
PMFs such as triangular and trapezoidal fuzzy numbers with non
standard PMFs such as polynomials.

Example 4.17 Referring back to Figure 4.47, recall the data set X Y
of Narazaki and Ralescu. Figure 4.49 shows these data, along with c
= 5 point prototypes {A =v.} in 9t that lie on 5 prototypical line

segments {L : x = v^ + t d j extracted by clustering X2jY2j with the
fuzzy c-elliptotypes (FCE) algorithm (see equation (2.32)),
implemented in the ACE interface (Runkler and Bezdek, 1998c). The
lines have infinite extent, but the PMFs extracted from the data only
provide each of them with support over a subinterval of [0, 1].

I S^(x)

Figure 4.49 TS approxiination of S in (4.83) using FCE-AO
in tlie ACE interface with trapezoidal and triangular PMFs

CLASSIFIER DESIGN 331

The approximating fuzzy system is a first order TS system whose 1-
th output function is a line (written here in point slope form),
Ui(x) = Si(x - Xj) + yj. Clustering with FCE provides estimates for the

parameters of each Uj(x) as v. =(Xj,yj), ŝ =bfi/bfi, where b^j and

bĵ j are the components of b ^ in the x and y directions. To
understand exactly how FCE produces these estimates, we repeat
equation (2.32)

D^ =aD^ +{l-a)U^ ; 0 < a < l • (2.32, repeated)

lines points

We did not provide a geometric interpretation for this measure of
distance in Chapter 2, but think it useful here. Figure 4. 50 shows the
geometry of the distance Dj^ jj^used by the FCE objective function.

, ^

Bf = the i-th "elliptotype"

Figure 4.50 Geometric inteipretation of FCE distance (2.32)

The distances s and t and the location of the "foot" of the line with
length D̂ Q ^ in Figure 4.50 are controlled by a. When a= 1, s = 0 and
FCE becomes FCL with pure line prototypes. When a = 0, t = 0 and
FCE becomes FCM with pure point prototypes. For 0 < a < 1, the
prototypes are not geometric entities with recognizable names (and
in particular, they are not ellipses, as we pointed out in Chapter 2).
But for any a > 0, the lines component of FCE as shown in Figure
4.50 can be used to find linear prototypes. That's how Runkler and
Bezdek (1998c) used FCE in the current application, and more
importantly, that 's how you can get lines from any clustering
algorithm that associates a covariance matrix with each cluster.

332 FUZZY PATTERN RECOGNITION

Parameters for FCE in this example are m = 2, a = 0.001, and the
Euclidecm norm was used in the objective function. This choice for a
focuses most of the objective function's attention, when computing

u , , on the distance D. = x, - v. . This choice makes FCE seek
ik Lo.ik II ^ '11

almost "all points", which forces the cluster centers into the data.
The direction vector b for the i-th line is the principal eigenvector
of C , the i-th fuz2y covariance matrix in FCE (see Figure 4.50 and
equation (2.27)). Rule i in the system under construction takes the
simple form (don't confuse a in (2.32) with firing strength a (x) in R)

IFa.(x) THEN Ui(x) = s j x - x j + yj; i= 1, 2, 3, 4, 5.

The premise membership functions {m.(x) } in Figure 4.49 are built

by projecting the 2D point prototypes V̂ 2i"*̂ 2i from FCE onto the x
axis. This is shown in full notation in Figure 4.49 for only the

projection v^ î 21 _^ y^ î _ Then triangular membership functions

are centered about v^ .v^ .v^ ; and trapezoidal membership

functions are shouldered at v^, v^. The domains of positive support
are chosen so that each PMF is zero at the same x at which the next
PMF (to the right) is 1; because of this construction, the sum of PMF
values at any input is 1.

In this SISO system each x e [0,v^2l]^_J[v^2l i] fjj-es jus t one rule

with firing strength 1. Each x e [v^ 21, Vg 21] will yield two values, say

m.(x) and m^^(x) from adjacent PMFs, and we know that

m.(x)-i-m.^j(x) = 1. Equation (4.73) produces the output, which for

this simple system becomes, for j = 1, 2, 3, 4,

^ _ [m.(X) • (Sj(x - X.) + y.)] + [m^Jx) • [s^Jx - x^J + y^^)̂]
o_olxj — - - - -

^̂ mj(x) + mj^j(x)
= [m.(x) • (s.(x - X.) + y.)] + [mj^j(x) • (Sj^i(x - x^^j) + y^^j)].

The approximation function S (x) produced by these 5 rules is
plotted on Figure 4.49. Notice especially that this function is NOT
smooth at the local maximum and local minimum of the underl3ang
function S at (4.83) - it has cusps, so this TS model is not so smooth.

Runkler and Bezdek (1998c) give a second method for approximating
S based on finding piecewise polynomials for the premise
membership functions, and the result is a much smoother fit, both
to the training data, and to test sets not in the training data. Table

CLASSIFIER DESIGN 333

4.35 reports the training and testing errors obtained with both
schemes. The test data X Y were generated by evaluating S(x) at

101 input base points x^ = Xj^^+ 0.01; k = l 100: x^ = 0. We omit
the Y factors of the data sets in Table 4.35 for brevity.

Table 4.35 Training and testing errors (in percent) for
approximations to S(z) extracted from X Y with FCE clustering

Triangular PMFs Polynomial PMFs

rules El(^2llV ^l^^oJV ^^\l\\? ^P^10ll^2l)

2
4
5
11

36.30 37.60
15.30 15.50
6.40 6.03
4.64 4.03

28.40 28.70
11.90 11.40
5.01 4.98
3.85 3.50

The measures of test and training errors for these results were mean
absolute relative errors (converted to % for the Table 4.35 values by
multiplication by 100),

I |S(X^)-S^(X,) |

E, (X, IX J = ^^^^^^ ; and (4.84a)
1 t'̂ ' ^ lO lS(x^)

Ei(Xt , |Xt ,)= '^ ' '^% . (4.84b)

Several observations about these results are in order. First, training
and testing errors drop as the number of rules increases (i.e., as c, the
number of clusters found in X Y increases). Also notice that the
improvement afforded by polynomial PMFs is highest when c is
lowest. As the number of triangular PMFs increases, the
conventional TS system becomes relatively better, but is never as
good as the polynomial based system. Both of these trends will
generally occur, and are due to the fineness of the fuzzy rule patches
used by the approximating system.

Second, the generalization error is about half of that reported in
Narazaki and Ralescu (1995) using various neural network
approximations. This does NOT tell us that either TS model is better
than the neural network models in any sense - it tells u s that
approximations of the same order of magnitude are easily obtained
using both approaches. Finally, the use of polynomial membership
functions in the antecedents of the rules smoothes out the
approximation considerably.

334 FUZZY PATTERN RECOGNITION

= S,pc,(x)

Figure 4.51 TS approximation of S in (4.83) using FCE-AO in
the ACE interface with piecewise polynomial PMFs

The solid curve in Figure 4.51 is the graph of the function S that
generates the training and test data, and the dashed curve is a pretty
smooth approximation to it by the TS model with polynomial
premise membership functions. Several of the PMFs, which are now
piecewise polynomials, have cusps, but the cusps at the local
minimum and maximum of the approximating function S in
Figure 4.49 have been eliminated.

Runkler and Bezdek (1998c) also present a second approach to the
approximation problem in this example that is based on clustering
with an algorithm built by selecting hyperconic membership
functions and prototypes from the ACE toolbars (Section 2.6) that
are not AO matched (that is, are not necessary conditions for
minimization of an objective function by alternating optimization).
Results from this second method are slightly better than those
shown in Table 4.35, but the algorithm used was not discussed in
Chapters 2 or 4.

How do we fix the size of the rule-base when we cluster to extract
rules (cluster validity, hiding again)? In view of Table 4.35 in
Example 4.17, tendency assessment and cluster validity seem
relatively unimportant for rule extraction by clustering, because
good approximations to S do not rely primarily on cluster
substructure in the pattern recognition sense for their success. For
reasonable functions, simply increasing c will almost always
improve the approximation accuracy, as the clustering model
responds with finer substructure (more rules). This is analogous to
choosing smaller and smaller s tepsizes for functional

CLASSIFIER DESIGN 335

approximation as is done in classical numerical analysis. Many
authors, however, do use validity functionals V when clustering for
rules, and in this application V becomes essentially a pruning
mechanism for the underlying fuzzy decision tree that maps to the
fuzzy system. This trend probably began with Sugeno and Yasukawa
(1993), who introduced V expressly for this purpose. Other validity

Ox

functionals that have been used this way include V^^ and V^^ (Pal et
XB GG

al., 1997b). Babuska and Kaymak (1995) use the compatible cluster
merging (CCM) algorithm (Section 5.6.A) to find the number of
linear clusters automatically.
Example 4.17 shows that extracting various parameters of a fuzzy
system with clustering works. It is easy to find other examples in the
literature of data that do not possess visual cluster structure but
which, when clustered for rules, produce fuzzy systems that afford
excellent approximations to the generating function. For example,
Kim et al. (1997) discuss approximation of the MISO function

S(x,x) = fl + ̂ + ̂ l ; l < x , x < 5 , (4.85)

with rules extracted by clustering samples from (4.85). Sugeno and
Yasukawa (1993) used samples from this function to illustrate
function approximation for the 0-th order TS model. Sugeno and
Yasukawa report a resubstitution MSE of 0.079 on 50 triples of lO
training data using 6 0-th order fuzzy rules.

Kim et al. use the same lO data with fuzzy c-regression models
(FCRM) clustering as discussed in Section 2.4 to extract 3 fuzzy rules
for a first order TS system. The i-th rule, i = 1, 2, 3 is

R,: IF [ml(x)Am^(x)] THEN Ui(x) = a i+ biX + CiX, (4.86)

where the PMFs are Gaussian. „ ; , . , = e - (' - ' i ' / " ; r . p , ^ , „e t e r s Of .he

LHS PMFs {Xj =(1^5,0')} and RHS output functions (pj = (aj,b;,c.)}
are estimated by clustering in XY with FCRM. Specifically, FCRM
fuzzy partition U yields initial estimates of the Gaussian PMFs as

n
2 UikXkj

,-. I _ k=l 1 . ;;.i
l̂ J

I ^ l k

; o • = I
I U,k{Xkj-Aj)^

k=l (4.87)
l u

k=l k=l
ik

Initial parameters for the RHS output functions are obtained
directly from FCRM as linear regression functions (that is, local

336 FUZZY PATTERN RECOGNITION

linear models of the 10 data). The final step in Kim et al.'s approach

is to fine tune both sets of parameters {(A' p)̂} using gradient
descent. They report that the final set of three fuzzy rules produces a
resubstitution MSE of 0.0551 - an improvement over the error
reported by Sugeno and Yasukawa (1993).

The models used by Runkler and Bezdek (1998c) and Kim et al. (1997)
have two important things in common, and one important
difference. The big difference between these two approaches lies in
the use of the clustering outputs. Both methods use the lO data XY to
find estimates for (U-^, B-^), and in both cases the {b̂ ^̂ } are linear
prototypes. However, Runkler and Bezdek essentially ignore the
fuzzy partition IJ-^ e M .̂̂ ,̂ and use only the prototypes {b^} during
construction of the rules. Kim et al., on the other hand, chose to use
everything the clustering algorithm provides them, viz., (U^^,B-^).
There is no reason to prefer one scheme to the other, and more
generally. Pal et al. {1997b) survey many other schemes besides
these two that use the information extracted from XY by C in other
ways. We are not willing to say that there is a "best way" to use the
information you can get from clustering XY to extract rules; we
think the choice is dictated by a number of factors, one of the most
important of which, and the one you have the least control of, is the
data itself. However, the similarities between Runkler and Bezdek
(1998c) and Kim et al. (1997) do give us one clue.

In both Runkler and Bezdek (1998c) and Kim et al. (1997) the
underlying fuzzy system is a first order TS model, and the clustering
algorithms used can both generate linear prototypes. Thus, G
produces direct estimates of the TS output functions for this case.
Functional approximation with linear models is hardly new. After
all, the geometric meaning of the derivative of any real function at a
point is that its value gives us the slope of the line tangent to the
graph of the function at this point, and the tangent line provides the
best local linear approximation to the curve. Our supposition is that
clustering algorithms most effectively extract TS rules when their
prototypes match TS output functions. If this is correct, then the
best choice for G if you are building a first order TS system would
seem to be any clustering algorithm that is capable of generating
lines in the product space. This includes, for example, the GK, GMD,
FCL, FCE, RFCM, and FCQS algorithms discussed in Chapter 2, and
any other Q that involves hyperellipsoidal clusters with covariance
matrices (such as the model of Nakamori and Ryoke, 1994), whose
principal eigenvectors can be used to supply lines through the
corresponding cluster centers.

Extending this idea, if you wanted local quadratic approximations,
then a second order TS model would be appropriate, and you would

CLASSIFIER DESIGN 337

have a somewhat more hmited set of natural choices for the
clustering algorithm C, which in this case would have to be able to
generate quadratic prototypes. Thus, you might try RFCM or FQRS.
We will discuss several other ways to build fuzzy systems for
function approximation with clustering, but the fact that some
clustering non-point prototype algorithms can produce direct
estimates of first and second order polynomials, coupled with the
fact that first and second order TS models have exactly these
functional forms on the RHS of the rule-base, suggest to us tiiat this
is probably the best combination of fuzzy systems and clustering for
function approximation.

Having some examples of function approximation by rules extracted
with clustering under our belts, we ask some general questions about
the use of clustering in this domain. What tasks in the design of a
rule-based fuzzy system can be relegated to clustering? Where should
we cluster, X, Y, XY, or all of these? What clustering algorithm
should we use? How do we use the clustering outputs in c-partitions

U^,U'',orU-^''; point prototypes V^,V' ' , or V^" ; and non-point
prototypes B^ , B^, or B^^ to create pieces of a fuzzy system? What
might go wrong when clustering is used for rule extraction? We
address these questions, but like many topics in this book,
functional approximation by clustering is an area of right-now
research, so don't expect definitive off-the-shelf answers. Instead,
look for the general ideas, and think of ways to improve them.

What tasks in the design of a rule-based fuzzy system can be
relegated to clustering? Table 4.36 shows nine tasks involved in the
establishment of /€ that seem most amenable to clustering.

Table 4.36 What humans (!£^0) and clustering (>#0
can do for the MA and TS fvazy systems

Left Side of the Rule Base

a 1 Select input variables x x
1 P

2 For i = 1 to p: choose or find:
?o 2a numerical range D for x

a 2b linguistic variable J,

a in 2c the # r of linguistic values for J

?e Ik 2d linguistic values {(} for J
& ' It i a in. 2e PMFs {m },1 <J < r

?D in 3 Select the number of rules, c

f) in 4 Define the structure of each rule

a 5 Select T-norm T = n

338 FUZZY PATTERN RECOGNITION

Table 4.36 (con't.) What humans {^^) and clustering (tlO
can do for the MA and TS fuzzy systems

Right Side of the Rule Base

a 6 Select output variables z z
^ l a

!© 7TS Select forms of u , l<i<c

a ^ 8TS Determine parameters of the (u.}
7 MA For k = 1 to q: choose or find:

50 7MAa numerical range Do, for z,
'̂ k k a 7MAb linguistic variable ^o,

'^ k
50 Ik 7MAc # s of linguistic values for Jo

?o 7MAd linguistic values {(o, } for Jo,
^ ki k a Kk 7MAe CMFs{mo. },1 <J < s

KI
55) 8MA Select T-conorm u

a 9MA Select defuzziflcation operator D

5[) i*t 10 Couple LHS-RHS (choose =>)

Steps 1, 2a, 2b, 2d, 5, 6, 7TS, 7MAa, 7MAb, 7MAd, 8MA and 9MA in
Table 1 are always done by the modeler, perhaps with the help of an
expert. For example, although each cluster may correspond to a
linguistic value in the LHS or RHS of a rule-base, linguistic values
are words such as "high", "fast", "light" that must be chosen by
humans, but the PMFs and CMFs that correspond to each of these
words can be chosen by humans, or discovered by clustering. The
first column of the table shows you that humans can (and often) do
all of the remaining tasks too. The hypothesis for this subsection is
that clustering may be able to do some of them more reliably, and
perhaps more efficiently. We will discuss some clustering methods
that have been used to replace intuition and/or trial and error in
one or more of steps 2c, 2e, 3, 4, 7MAc, 7MAe, 8TS and 10 in Table
4.36.

Where should we cluster: X, Y, XY, or all of these? This interesting
question has no easy answer, since it's easy to give examples where
each domain is needed, and other examples where each domain
fails. Figure 4.52 illustrates a situation where c = 4 in XY, c = 3 in Y
because Y, and Y, will be mixed into one cluster, and c = 2 in X

1 4
because of the mixing of X with X and X with X . (We have "lifted"
the projections of X Y onto 5RP and X Y onto 9t̂ so you can see
them.) If you had a reliable cluster validity function or other means
for discovering the "right" number of clusters, you would not obtain
consistent results when comparing the rules suggested by clustering
in these three domains.

CLASSIFIER DESIGN 339

9̂ q

XoY 3 ^ 3

X2Y2

• • •

• • • •

Y 1 U Y 4
X4Y4

• * • • • * • « • * • • • •

X 1 U X 2 X 3 U X 4
> 91P

Figure 4.52 Different numbers of clusters in all three domains

Figure 4.52 illustrates an important point that often causes
confusion when clustering is used to build fuzzy systems. The tacit
assumption in the pattern recognition use of clustering (chapter 2) is
that some unlabeled data set has "clusters", and all we want to do is
find them. The data in Figure 4.52 do have visually apparent
clusters in each of X, Y and XY. The problem here, however, is that
the clusters don't seem to properly reflect the additional
information we have in this application - viz., that the labels tell us
there is a functional relationship between the input and output pairs
in the training data. There may be rules that cover the data in Figure
4.52, but our point in this figure is that discovering the rules hy
clustering might be difficult, if not impossible in this situation.

We have already discussed the principle of matching prototype
shapes to TS output functions. Another point about Figure 4.52
concerns the shapes of the clusters in the data. We know from
Chapter 2 that one of the principal desires for clustering algorithms
when used in the context of pattern recognition is that the model
underlying them match the geometric shapes of the clusters. In
Chapter 2 we discussed models that attempt to match ellipsoidal

340 FUZZY PATTERN RECOGNITION

shapes - volumetric or cloud clusters. Most cloud seeking models are
point prototype models that looked for central tendencies in X, and
represent structure with point prototypes. Shell clusters, on the
other hand, are best matched by non-point prototype models. You
see the shapes of the clusters in XY in Figure 4.52. A single clustering
model would have a hard time matching the variety of shapes in the
clusters you see in Figure 4.52. Moreover, in this illustration it
looks like the clusters in X and Y are linear, but this is an artifact of

the drawing - X and Y are sets in 9t^ and 9^'', and they can also have a
variety of shapes, perhaps all different. And finally, for p, q > 3, you
have very little information about cluster shapes in any of the three
domains. Nonetheless, to the extent possible, the choice of C should
also be dictated by any knowledge you can glean about cluster
shapes.

Figure 4.53 illustrates a case where there appear to be c = 2 clusters
in XY, and c = 4 clusters in both X and Y.

9^q
A.

Y4j

Y 3 *
•

XY

*

^ ' 5

• • • • » • • • • • • • •

X, Xo
• • • • • • • • » • • • > • 9^P

X Q X A

Figure 4.53 Different numbers of clusters in the product and fkctors

Trying to extract rules for function approximation from the data
shown in Figures 4.52 or 4.53 by clustering may lead to very
confusing results. When we want to build a classifier with rules, the
training outputs are usually crisp label vectors, and this presents a
somewhat different situation. Figure 4.54 illustrates a case where
there are c = 2 crisply labeled classes in the training data. In the
upper view in Figure 4.54, the input data X lie along the horizontal

CLASSIFIER DESIGN 341

axis, a n d the ou tpu t da t a (crisp labels or label vectors) lie along the
vertical axis.

• Class 1
o Class 2

Figure 4 .54 An XOR-like data set for classifier design

We can arrange the scales of the data so that there are c = 1, 2, 3,
clusters in X. For example, with p = 1 we might have

Xj = {1, 2, 3, 4, 5, 6, 7, 8, 9. 10, 11, 12}
X^ = {1, 2, 3, 4, 101, 102, 103, 104, 105, 106, 107, 108}
Xg = {1, 2, 3. 4, 101. 102, 103. 104, 201, 201, 203. 204}

etc

{1, 2. 3, 101, 102, 103, 201, 201, 203, 301, 302, 303}
etc....

., 12

:c=l
;c=2
:c=3
:c=4
etc.

Now suppose we append the label 0 to the class 1 feature vectors and
the label 1 to the class 2 feature vectors - tha t is, the target output set

is Y = {0, 1}. In the product space 9tP^\ shown in the lower view of
F igu re 4 . 5 4 , t h e lO d a t a XY will h a v e t h e g e n e r a l form

X = (Xj,.. . , X , 0)^ for class 1, and x = (Xj x ,1)^ for class 2. There

are either c = 1 or c = 2 clusters in Y: your assessment will depend on
the relationship of Y to X. For example, if the input da ta were

X = {11. 11.1. 11.11 11.1111111111} c=l

a scatterplot of XY at equal resolution along each axis would suggest
t h a t there was c = 1 cluster in X, 2 in Y, and 2 in XY. On the other
hand , for the input da ta

X = {1, 102, 103, 104, 201, 202, 203. 204. 301 . 302. 303, 304}, : c=4

342 FUZZY PATTERN RECOGNITION

a scatterplot would suggest 4 clusters in X, 1 in Y, and most likely 3
in XY. The point here is that lO data for classifier design is
somewhat different than for functional approximation, because the
outputs are not continuously valued, nor do they necessarily satisfy
any "smoothness" criterion as they might in the functional
approximation problem.

Figures 4.52-4.54 illustrate the difficulty of proposing a guideline
about where to cluster that reliably covers all possible cases. In a
recent survey by Pal et al. (1997b) of 14 papers on rule extraction by
clustering, the authors of the papers studied used either MA and TS
models (or both), or some hybrid of one of them. Of the 14 authors,
11 advocated clustering in XY, 3 clustered in X, and 2 clustered in Y.
One set of authors (Delgado et al., 1997) clustered in all three spaces,
and one set (Nakimori and Ryoke, 1994) clustered in part of XY.

Another important consideration when choosing the proper
domain for clustering is the relationship of p to q. In every example
we know of where functions are approximated by fuzzy systems that
are derived by clustering, the input and output domains have
roughly the same (order of magnitude of) dimensions. We know of at
least one industrial application at Siemens in Germany where p is
about 220 and q = 1 (this application is proprietary, so we can't give
you a reference). What if, for example, p = 200, q = 1? Do you think
this would have any effect on the efficacy of clustering to extract
rules? Most clustering algorithms eventually rest their cases on
distance calculations. For example, if you cluster in XY with any of
the c-means models in this situation, you will need to make

calculations that entail distances like ||(s:k,yk)-Vi| . Using the
Euclidean norm, for instance with p = 200, q = 1, we can write this
distance in component form as

^ k - y k J - ' ^ i
200 - ^

U=i J
input

+ (yw-V2m.) ' • (4.88)

output

If the scales of values in the input and output features are about the
same, the input feature values will certainly dominate the distance,
essentially masking the contribution of the output values to the
location of cluster centers in the product space 9t^°^. The same
remark applies to the opposite scenario, when p = 1, q = 200. Clusters
discovered in XY's with such imbalance may be a poor choice for
representing lO relationships. We are not aware of any studies that
investigate this problem in relation to rule extraction by clustering,
and what to do about it, but we think it is a problem that deserves
careful attention if and when the dimensions p and q differ by more
than a handful of integers. To shoot from the hip (risking a total
miss, of course), we suggest trying Joint statistical normalization, so

CLASSIFIER DESIGN 343

that each feature in XY has sample mean 0 and sample variance 1
when p and q differ by more than a half dozen or so integers. This
will at least partially offset the effect of inequitable domination of
the joint distances by one set of variables or the other when making
calculations like those in (4.88) during clustering in XY.

Chiu (1997) unequivocally states that when the rules are for
approximation of functions with continuous outputs, clustering
should always be in XY, and when the function being approximated
is a classifier function (as would be the case in Figure 4.54),
clustering should be in each of the crisply labeled subsets of X alone.
Since each of the c subsets of X can be separately clustered into say, c
rules, /€ will be subdivided into c subsets of rules (one set for each
class in XY) using this scheme. We tend to agree with Chiu's advice
about where to cluster when the labels are crisp, because this
strategy is in line with our general belief that the RHS of the TS
model should be chosen to reflect the geometry of the function being
approximated. Here, the function is not continuous (many inputs

from 9?^ may cause the same response in N c 9?̂)̂. However, if the
training data have soft labels they cannot be subdivided and
clustered separately, and we are back to the question of where best to
cluster, X, Y or XY.

Suppose X = XjW--uX^ cSRP has c crisply labeled classes with

IxJ = Uj for i = 1 to c. Chiu applies the SCM clustering algorithm to
each X. separately, obtaining, say, c clusters for X, i = l,...,c. Each of
the clusters thus contributes c. rules to the rule-base, and the total

c
number of rules is M = X c,. Since there are c subsets of rules

1=1
corresponding to the c subsets in X, we add an index to the rules that
indicates which class they pertain to: let R , a and u denote the i-th

ij y ij •'

rule, its firing strength, and its output function for the i-th class,
respectively, j=l , . . . ,c ; i=l,...,c. Chiu uses a variation of the zero-th

order TS model for which the ij-th rule has the general form

R.y a..(x)=»u..(x) = i , i= l , ...,c;j = l,..., c. . (4.89)
Chiu uses the T norm (product) to compute the LHS firing strengths
in (4.89), and departs from the standard TS model by abandoning
the general TS output formula in equation (4.73). Instead, Chiu
computes the output of fZ[x) for a given input x e SRP as

344 FUZZY PATTERN RECOGNITION

Although many writers have used other methods to design fuzzy
rule-based classifiers, only a few have used clustering towards this
end. Here we abstract an example presented by Chiu (1997) on- japes!
- the Iris (but which one ?) data.

Example 4.18 Chiu (1997) advocates the use of clustering to extract
rules for classifier design based on his subtractive clustering
method (SCM), which is related to the mountain clustering method
of Yager and Filev (1994a, b). Since this is an example of classifier
design, the crisp labels of Iris play an active role in the development
of the fuzzy rules.

First, like many before him, Chiu drops the first two features in Iris,
so the data set for which results are discussed is really the 2D data
set X = Iris (Figure 4.12). This simplification not only makes the
classifier work better, but more importantly, means that we are
looking for a 2 input, single output system. Chiu says he normalizes
the input data, but does not give the method of normalization.
However, the domains of the extracted rules suggest that he
multiplied Iris by 10. The output training data consist of the
integers 1, 2 £ind 3, corresponding, respectively, to the crisp labels of
the three classes in Iris. Consequently, the model being developed is
a 0-th order TS model - that is, a TS system with crisp singleton
output functions, u.(x) = i, i=l, 2, 3. Remember that here u(x) is

simply a label to identify a class; the rule-base /? does not attempt to
approximate the numerical values 1, 2 or 3.

Chiu subdivides Iris into its three 50 sample components, and
separates each subset into 40 training data and 10 test data (the
method of subdivision is not specified). Recall that the MCM and

SCM objective function is J M C M I ^ ^ I ' ^ ^ " ^ ^ ^' ^ . Chiu defines
k = l

a constant r = •\J4/a that he calls the SCM cluster radius for all
prototypes. In the example being discussed r = 0.5 (so a = 16).

Chiu clusters the 40 points in each subtraining set, and finds that c =
1 cluster (i.e., one SCM prototype per class) is sufficient to produce a
training error of 3/120 = 2.5% on the training data, and 0/30 = 0%
apparent error on the 30 test data. This is a somewhat curious
reversal of the usual case, where the resubstitution error is lower
than the test error. But that's pattern recognition - it all depends on
the points you happen to use for training and testing! Each of the
three rules found by this process started with a set of two PMFs,
which were "two-sided" Gaussians, and the PMFs were optimized by
the gradient descent method given in Chiu (1995).

CLASSIFIER DESIGN 345

Figure 4.55 is our adaptation of Chiu's (1997) Figure 9.5, which
shows the three rules extracted by this process in a pleasant
graphical style. Chiu does not identify linguistic values for the two
sets of three premise membership functions shown vertically in
Figure 4.55, so we have assigned them the values "Low", "Medium"
and "High" simply to make this example more uniform with
previous illustrations. Chiu does not give functional forms for the
PMFs either, and although the two sets are not visually identical,
they are certainly very similar.

IF
petal length x is

AND
petal width x is

THEN
class is

R.

R„

R„

69 1

69 1

Figure 4.55 SCM rules for classifying Iris^ (Chiu, 1997)

According to Chiu, Figure 4.55 shows the linguistic aspect of rule-
based classification to good effect. For example, he asserts that the
first rule essentially states that flowers with small petals (small
petal length and petal width) are Iris Sestosa; that medium size
petals are class 2 (Iris Versicolor), and the Iris Virginica (class 3)
have relatively large petals. Although it might take you a while -
say, 10 minutes - this conclusion can be reached by simply looking
at the values of features three and four of Iris (try it - look at the
third and fourth columns of Iris in Appendix 2, or at the scatterplot
in Figure 4.12). This is not to take away from Chiu's example, for if

346 FUZZY PATTERN RECOGNITION

the data had, say, 100 variables, an exercise like this would be an
exercise in sheer folly.

Now we return to the remaining questions on our checklist about
using clustering to extract fuzzy rules. The main questions
outstanding are: what clustering algorithm G should we use? ; and
how do we use the clustering outputs in c-partitions U^,U^,orU^^;
point prototypes V^,V^, or V^^ ; and non-point prototypes B^ ,
B^, or B *̂̂ to create pieces of a fuzzy system? We have already
provided one answer for these questions - viz., match the prototypes
B to TS output functions, and the answers to them are almost
inseparable, so we tackle them together here in a little more detail.

The most important distinction (after the types of functions being
approximated) between various approaches to rule extraction by
clustering seems to be whether the clustering algorithm generates
point prototjrpes or non-point prototypes. When C produces point
prototypes, they are usually used to locate central tendencies in the
input and output domains, and the memberships from U are used to
(somehow) produce at least initial estimates of the PMFs and CMFs
(or output functions in the TS model) which are "centered" about the
prototypes. This case is best understood by first studying the
situation for crisp partitions of the data.

Let U^ <^{Xj,...,X^} be any crisp c-partitlon of X. When Y=S(X),
under the assumption that S is a 1-1 function, each cluster Xj e X is
carried to a crisp subset Yj = S[Xj] c Y, and the labels of points in Y.

c
are inherited from those in X. Moreover, Y = UYj and Yj n Y. = 0

' 1=1

for i ?!: j . Consequently {YJ is a crisp c-partltlon of Y with the same
partition matrix as X, U'^ = U^. We say that U^ is S-induced on Y by
the pair (S, U^), and indicate this by writing U^lU"^. (S, U^) also
Induces (the same) crisp c-partltion {XYj}<->U''̂ on XY, viz.,

U'^^sU^^. Similarly, if we start with a crisp partition U^ of Y, the
pair (S, U^) Induces the same crisp partition on X and XY (but if the
relationship of lO pairs is not 1-1, the same x e X or y e Y may end
up with more than one label vector). And if the beginning partition
is of XY, it Induces, using the forward and inverse algebras of sets,
the same partitions on X and Y. Thus, our assumption that S is 1-1
and tha t y = S(x) for every (x,y)eXY Insures a unique
correspondence between crisp partitions and sample means of the

sets X, Y and XY, namely, (X, U^, V^) <^ (Y, U^, V^) o (XY, U ^ , V ^)
with U^iU '^ iU^.

CLASSIFIER DESIGN 347

Many authors correctly call (LJ-'̂ .V^) and (U^,V^) "projections" by
S of (U^^, V^^). These operations and this terminology carry over to
fuzzy, probabilistic and possibilistic parti t ions created by

clustering in X, Y or XY. Thus, the projection of a fuzzy U-'^ e Mj.̂ t̂o

X and Y, for example, simply means (X,U^) <^ (Y,U^) o (XY,U^)
with U'^iU^iU'^. On the other hand, we are aware of papers that use
the values in one or more of these three partitions in a functional (as
opposed to partitional) role, and in some cases the authors again
refer - incorrectly - to the use of an induced U as projection. So, be
careful about this term.

The situation illustrated in Figure 4.52 - where S is not a 1-1
function - makes it clear that U^^, for example, may partition XY in
a "nice" way, but this does not imply that the S-induced partitions
U^ and U^ are equally "nice" partitions of Y and X. Thus, in Figure
4.52 a natural partition of XY into 4 clusters would induce quite
unnatural partitions on X and Y in the input and output domains.
This comment applies as well to partitions induced on the other sets
starting from Y or X, and it bears importantly on the question of
which of the three sets, X, Y or XY, is the appropriate domain for
clustering in the context of rule extraction.

From the approximation point of view, S should be at least
continuous, and if it is a 1-1 function it will be invertible. Figure
4.56 shows the (ideal) relationship between the input and output
data that seems to underlie many methods based on point prototype
clustering algorithms. The assumption of continuity (which cannot
be verified for computational representations of S anyway, but
which is important to recognize from the analytical point of view) is
the key one. Continuous functions bind neighborhoods in the three
domains together (but continuity alone is not enough to guarantee
that disjoint sets are carried to disjoint sets); and contained in these
neighborhoods, we hope, will be the crisp clusters in X, Y and XY
found by C, and the sample means of the crisp clusters give us their
central tendencies. The likelihood that our hope will be fulfilled
depends on many factors, the principal one of which is that the data
actually come from a smooth process.

Consider the sample means | v f | <-> |Vj^ | of the clusters in a pair of

crisp partitions of X and Y where U '̂̂ sU^. If S were linear we would

have v^ = sfv^j for each i. This is far too strong for our purposes,

but if S is continuous, every neighborhood of vf̂ will map to a

neighborhood of vj as shown in Figure 4.56.

348 FUZZY PATTERN RECOGNITION

Output

4

Input

Figure 4.56 Relationships between neighborlioods, crisp clusters
and sample means in X, Y and XY data when S is continuous

Continuity means that for any e > 0 there is a 5{e) > 0 so that
^x <5(e) Fk - """i < £ • Consequently, it is reasonable to

assume that when Xĵ - Vj is small, y^ - Vj will be too (this is an

assumption because 5(e) could be very large for a very smadl e). This
assumption enables us to (conceptually) translate the i-th cluster
into an i-th fuzzy rule :

MA models : If x is close to v^ then y is close to v

TS models : If x is close to v^ then y = Uj (x)

(4.90a)

(4.90b)

Point prototypes are almost always used for 0-th order TS models.
Usually the antecedent part (LHS) of either form in (4.90) is written
as a conjunction of p atomic clauses,

If(Xi is dose to v^ and • • • Xp is close to v^) (4.90c)

CLASSIFIER DESIGN 349

As soon as we m a k e the t e rm "close to" precise, equa t ion (4.90)
ext rac ts rules from crisp c lus ters in X, Y or XY us ing their sample
m e a n s . For convenience we refer to th i s me thod a s crisp rule
extraction (CRE). One role played by the crisp membership functions

in CRE is to identify the points from which { v ^ j <-> {v^} A {vf^ j
built . Once th is is done, the PMFs {m } (and for the MA model,

y
CMFs {mo }) can be erected in 3{^ and '!K^ in several ways,

y

are
the

Cr isp m e m b e r s h i p funct ions defined by the rows of any cr isp
p a r t i t i o n a re s u p p o r t e d by d i sc re te s e t s of po in t s , a n d t h e
membersh ip values (there are c of them over each suppor t point, b u t
c-1 of t hem have the value 0) are O's and spikes of height 1. This is
i l lustrated in Figure 4.57 for c = 2 and p = q =1, where X X ^ u X ^ ,

Y = Yj u Y2 a n d XY = X^Yj u X2Y2 all share the identical crisp 2-
p a r t i t i o n

u^iu^iu^ - ^ 1
0 0

1 0
0 1

cluster 1
(ducks)

0
1

0
1

cluster 2
(llamas)

(4.91)

X in

S(x| out

m o j =ch(Uj'^)) mj=c l i (U(^))

Figure 4.57 CRE for the MA model from 2 crisp clusters and sample
means (not shown : zero values of V^^ and V^^

A c o m m o n way to m a k e cr isp membersh ip functions from these
rows is to take the convex hull of the data corresponding to each row
in t he projected cr isp par t i t ions U^ a n d U'^ a s the numer i ca l
domain of i npu t and ou tpu t membersh ip functions. For example,
the convex hull of the first row of U^ yields the domain for the crisp

350 FUZZY PATTERN RECOGNITION

PMF nij = ch(U^j) shown in Figure 4.57, etc. Graphs of the PMFs
{ml and CMFs {mo.} for linguistic termsets of granularity r = s = 2
are the rectangular functions defined over domains {D} and {Do},
which are the convex hulls of X^, Yj, i = 1,2.

We have displaced the CMFs and PMFs in Figure 4.57 so you can see
them as the two rows of the matrix in (4.91), and thus can extend
your imagination to a similar figure for any value of c. In reality, all
c membership functions will be distributed along a single axis, that
is, the c rows of U^ and U^ will result in c crisp membership
functions in the input and output domains along each input and
output variable axis. Figure 4.57 depicts the ideal case, where the
clusters are well separated so their projections don't overlap. Often,
however, the cluster substructure is mixed (overlapping), and then
the nice clean picture shown in Figure 4.57 can deteriorate into a
real mess.

There can only be 2 rules for Figure 4.57 and because mj n ma = 0 , a
given input fires jus t one of them. Since the membership functions
are crisp, any T norm in the antecedents of the rules will return the
number 1 as the firing strength for any input. For the MA model
shown in Figure 4.57, y = SMA(X) depends on the choice of D . If we
use the center of gravity approach, and let COG , COG denote the y
coordinate of the COG of the rectangular functions mo and mo ,
respectively, we get : IF x e Dj THEN y = Sj^(x) = COG., j = 1,2.
Thus, the implemented MA approximation for S would be a
function, but not 1-1, and would not generalize well at all. In the TS
model, the result of firing rule i, i=l, 2 is simply y = STS(X) = Ui(x).
This is a pretty uninspired use of the clustering outputs: we can do
much better.

Understanding Figure 4.57 leads to an appreciation of how the rows
of projected non-crisp partitions can be used in various ways to
soften crisp rule extraction. Please compare Figure 4.57 to Figure
4.28 to see the relationship between the crisp rules extracted by
clustering and crisp rules that you might get from a decision tree
approach. Figure 4.28 shows you the same crisp rule patches that
you see in the product domain in Figure 4.57. The crisp rule patches
extend beyond the training data so that the rule-base can produce
outputs for non-training inputs. This immediately shows us why
rule extraction based on (4.89) with crisp clustering algorithms is
not very robust - the rules suffer from exactly the same problem as
crisp decision trees. Thus, we follow path similar the one taken by
Chang and Pavlidis (1977). Here, the failure of crisp patches leads us
to the use of fuzzy or possibilistic clustering algorithms for rule
extraction in function approximation.

CLASSIFIER DESIGN 351

There are many soft rule extraction (SRE) methods based on
clustering (e.g., Sugeno and Yasukawa, 1993, Yoshinari et al., 1993,
Sin and deFigueiredo, 1993, Yager and Filev, 1994b, Nakamori and
Ryoke, 1994, Chiu, 1994,1995, Babuska and Kaymak, 1995, Cheng et
al., 1995, Runkler & Palm, 1996, Delgado et al., 1997, Kim et al.,
1997, Runkler and Bezdek, 1998c, 1999). The number of ways
authors have used the information produced by clustering for SRE
defies an intelligent (computational, artificial or biological
intelligence!) classification of methodologies. We are content here to
illustrate several approaches of SRE for function approximation,
and refer you to the literature for detailed discussions.

If you apply any soft clustering algorithm to (say) XY that results in
a pair (U^^, V^^), the point prototypes can be projected onto X and Y
exactly as in Figure 4.57. Now, instead of 0-1 rows in the matrix in
(4.91), you will have (say) a fuzzy partition of the ducks and llamas.

YSTTXY U^sU'sU^'^ =
0.9
0.1

0.8
0.2

0.7
0.3

0.2
0.8

0.1
0.9

0.4
0.6- (4.92)

soft boundary between ducks and llamas

U,

S(x)

2n

U 2k

U, 21
rX ^ x

T"ri]W.

Figure 4.58 The basis of MA point prototTpe soft nile extraction

352 FUZZY PATTERN RECOGNITION

At this Juncture different authors strike out in many directions. The
most straightforward extension of CRE is to project the rows of U-'^
onto X and Y, leading to the situation illustrated in Figure 4.58 for
an SISO system. In Figure 4.58 we show only the projection of the
first row of U onto X and the second row of U onto Y. Both values
from each column in U can be projected into both spaces. You can
visualize the "missing" values in Figure 4.58 by recalling that each
column sum in U is 1, so the difference between the value shown and
the dashed line marked " 1" represents the value not shown for each
column. Alternatively, if you imagine rotating, say, the vertical
memberships 90 degrees to the right and aligning their "0" axis with
the "1" axis of the horizontal memberships, each membership line
will have two components that sum to 1.

We will not repeat Figure 4.58 for the non-point prototype case, since
the only difference between a figure for this case and Figure 4.58
would be the depiction of non-point prototypes (lines, planes,
quadratics, etc.) in the product space containing XY. Figure 4.49
shows non-point prototypes this way, but does not depict the values
of U like Figure 4.58 does only because Runkler and Bezdek (1998c,
1999) did not use U in the work discussed in Example 4.17.

The problem you now face is what to do with the projected (point or
non-point) prototypes and discrete sets of memberships lying along
the range of each variable in the input and output domains. In
Example 4.17 Runkler and Bezdek (1998c) simply ignored U, and
placed premise membership functions with user-selected shapes
that satisfied a regularity constraint by the positions of the
projected point prototypes (because they used a TS model, CMFs were
not needed). No attempt was made to subsequently optimize the
PMFs.

Yager and Filev (1994b) use their MCM algorithm to procure c

prototypes V ^ e 9^PI for the MA model, MISO case. For an MISO

system with input x e 91^ and output y e 9t, V^^ is converted into

the fuzzy rule: If "x is CLOSE to v^" then "y is CLOSE to v^".

Now defining the fuzzy sets m^ = CLOSE to v^ and mo^ =

CLOSE to vf, we get the rules : If m.(x) then mo,(y) ;i = l c.
Each antecedent clause is translated into p atomic clauses :
Xĵ is m ,j^; k = 1,..., p . Gaussian-like membership functions are

-((x - V ') ^ / 2 C T ^]

used for the PMFs and CMFs : m..(x^) = exp ^ " « ' «' and
_f(y_vy)2/2a^)

mOj(y) = exp ^ ' ' \ Oy is the spread of the j - th antecedent of
the i-th rule and a is the spread of all of the consequents.

CLASSIFIER DESIGN 353

Yager and Filev {1994b) used the height method of defuzzification for
the MA model (equivalently, the TS model with zero-th order
functions for the consequents). Initial estimates of the parameters
Oy are taken as 1/1/2^, where P is one of the MCM parameters in

Table 4.16. All parameters of the system (vj|,v^,a..) are then further
tuned with gradient descent to minimize the total squared error

n M 112

X y,^-S(x.) . Although MCM determines the number of
prototypes (and hence rules) automatically, control of c is implicit
in the parameters of the MCM potential function and the threshold
value used to stop the process. Thus, an inappropriate choice of these
parameters may over-determine or under-determine the number of
rules. U is not used, of course, because MCM does not produce one.
The approach in Chiu (1994) is very similar, differing principally in
the use of SCM instead of MCM.

Some authors abandon the PMF structure of the LHS of /? shown in
Figure 4.32 altogether, opting instead for a much simpler scheme in
which the firing strength a.(x) of R in (4.72) is replaced by some
presumably reasonable function of x. Specifically, a simplified
form of (4.72a) is used:

R.: \|/.(x) ; l < i < c (=M) . (4.93)

In (4.93) the functions {\|/.} are usually interpreted as membership

functions for clusters in the input space 91^, and indeed, are often
found or defined this way. The fuzzy system defined using (4.93)
instead of (4.72) is not the LHS of a proper MA or TS model, so we
call the resultant fuzzy system a hybrid MA or hybrid TS system,
respectively, according as the RHS of /€ is configured in an MA or TS
fashion.

Abandoning the PMF structure disables linguistic interpretation of
the rules , effectively skipping much of the bother and
computational complexity (and arguably, some of the utility) of
finding linguistic termsets and using approximate reasoning to find
ttj (x). To see how authors use this idea, it is convenient to have a
slightly different notation for the function in (2.7a) defined by the
first order necessary condition required of U for local extrema of the

FCM objective function. For any x, v. E 9?P,X ?i v^.i = 1 c,V = {v.},

any inner product induced A-norm ||x||^ = x"^Ax, and m > 1 we let

354 FUZZY PATTERN RECOGNITION

V|/.(x) = FCMj(x,V)s
c

I
J = l

/
x-vj

A

2 A
m-1

)

c

I
J = l ^

X - V .
Jl A ;

2 A
m-1

)

, 1 < 1 < c. (4.94a)

Another popular choice for \|/j in (4.93) is an exponential function in
p variables centered at v.,

v|/(x) = EXP.(x.Vj) = e 2V« 'llAJ l< i<c (4.94b)

Values of (4.94a) and (4.94b) lie in (0, 1), and both are maximum
when X = Vj (for this to be true for (4.94a) it is necessary to define
FCM.(x, V) = 1 <=> X = Vj). The shapes of these two functions as
continuous variables of x for fixed V can be very different because
FCMj depends on the location of all c prototypes, whereas EXP. is
always radially symmetric in x about v . Moreover, (4.94a) is not
generally unimodal, whereas (4.94b) has but one maximum. This
important consideration has been largely ignored in rule extraction
by clustering (see Runkler and Bezdek (1999) for an extended
discussion of this topic).

Sin and deFigueiredo (1993) consider only hybrid SISO TS models.
They use FCM to cluster in XY, and the XB index V^„ at (2.102) to

XB

select an optimal number of clusters. With A the identity in (4.94a)
rule i is : IF FCMj(Zj(x), V ^) THEN Uj(x), where z.(x) depends on
both the input x and the output u.(x). The CMFs {u.(x)} are then
estimated by minimizing Ê = £ ^tk^f^if^k) ~yk) ^^^ ^ ~^' ^'•••' '̂ •

k=l '
Please be careful about our confusing use of u here; u is the ik-th
entry of U, while u.(x) is the output function for the i-th rule in /€.
The role of U is limited to using its i-th row as weights of E.. Sin
and deFigueiredo suggest that the output functions might be
represented, for example, by training c feed-forward neural
networks with XY. The only example they give, however, uses the
psuedoinverse method to find the least squared error solution for
the coefficients of a first order RHS.

For generalization, given xeSRP, let z.(x) = L^ j^^J. The firing

strength of rule i is computed as aj(x) = FCM.(Zj(x),V-'^); then
S.pg(x) is computed with equation (4.73) as usual. Notice that each

CLASSIFIER DESIGN 355

rule uses a different z^[x) to get its firing strength, and that this
number depends on both the input to and output of rule R.

In one of the most widely ranging papers we know of for SRE,
Delgado et al. (1997) offer 6 methods they call ESTl, ..., EST6, for
constructing both proper and hybrid MISO TS models for function
approximation. We briefly review this paper to exemplify jus t how
rich the variety of methods you can choose from really is. Several
methods of cluster validity are alluded to, but only the Fukuyama-
Sugeno (1989) index is exphcitly discussed. EST1-EST3 are 0-th
order hybrid models that do not decompose the input space, instead
reljang on (4.93) for direct estimation of firing strengths.

For ESTl and EST2, FCM is used to cluster XY, and then only V^ and
V^ are used. Rule i for ESTl is, using the Euclidccm norm in (4.94a) :
IF FCMj(x,V^) THEN Uj(x) = v^. For generalization, given xe3i^,
compute a^(x) = FCMj(x,V-'^) and u.(x) = v^, 1 < i < c; then S.j^(x)is
computed with equation (4.73). This scheme makes no use of the
fuzzy partition U ^ . EST2 is ESTl with (4.94a) replaced by (4.94b)
and A = C, the fuzzy covariance matrix for cluster i (from, for
example, the GK algorithm).

EST3 applies FCM to XY, uses the terminal fuzzy partition U^^ to
initialize U''̂ ' emid then runs FCM on X alone (at the same value of c).
Then the lO data and equation (4.94a) with the Euclidean norm are
used with both V ^ and Vf (here Vf is obtained by running FCM on
X - it is not the projection of V^^ onto X) to define constants for the
output functions of a zero-th order TS model. Specifically, for 1 < i <

u,(x) =
i [F C M , (X^ , V ^) • FCMj ((x^. yk). V ^)] " y^

i [F C M , (X^ , V ^) • FCM, ((x^, y^), V^)j™
(4.95)

In (4.95) m is the same weighting exponent that is used for FCM
clustering. Again with the Euclidean norm, rule i for EST3 is : IF
a,(x) = FCM,(x,V^) THEN u,(x) at (4.95). For generalization, given

X e 91P, compute a.(x) = FCMj(x, V^) and u.(x) = v,̂ (by (4.95)), 1 < i
< c; S.j^(x)is computed with equation (4.73).

Method EST4 in Delgado et al. (1997) uses an approach to design a 0-
th order hybrid TS model that is quite unlike any of the methods
reviewed so far. In this scheme X and Y are clustered separately into.

356 FUZZY PATTERN RECOGNITION

say c and c clusters, where c and c are not necessarily equal, but
are chosen by one of a number of different validation strategies
which are enumerated in Delgado et al. only through references.
Under this plan the rule-base can have ĉ • c rules, and each rule is
assigned a weight w.. that is called the certainty of the rule that
relates cluster i in X to cluster J in Y. Also mentioned are one set of
input membership functions {m.(x)} defined on 9?^and a set of

constant output functions, V , that are found by clustering in Y.
Delgado et al. do not specify what clustering model is used to find
these parameters.

If FCM is the clustering model that produces V^ and V^ in X and Y,
respectively, and \|/j(x) is computed with (4.94a) or (4.94b), rule i

takes the general form : if a.(x) = FCM.(x, V-'̂) then u (x) = v^ with
certainty w... Delgado et al. suggest several ways to compute the {w }

from XY and the {vj/.(x)}. Finally, a T norm is selected to integrate
the information in the weights and input memberships, resulting in
the following generalization of (4.73): given xe^t^ , compute
aj(x) = FCMj(x, V^) and u.(x) = Vĵ , 1 < i < c.; then EST4 is computed
as

I I T (V i (x) , w , .) v J
EST4(x) = ^^^ . (4.96)

i lT(v| / ; (x) ,w)
i=ij=i •'

Several examples given in Delgado et al. (1997) suggest that ESTl-
EST3 are somewhat better than EST4, and not enough details are
given about EST4 to understand exactly how things are done.
Nonetheless, this exhibits several very different approaches to the
use of clusters in X and Y to secure rules to approximate S.

EST 6 clusters in XY to establish a hybrid 1-st order MISO TS model.
XY XY

FCM is used to produce U and V , which are then used to initialize
the GK clustering algorithm (recall that this is one of the clustering
models capable of producing "linear" prototypes from the principal
eigenvectors of fuzzy covariance matrices. Section 2.3.A). Outputs of
the GK algorithm are then used to initialize the LHSs of the system.
Equation (4.94a) is correct in functional form for the GK model, but
instead of a fixed A-norm, AO of the GK functional produces
estimates of c matrices {A.}. Delgado et al. use these in (4.94a) with V^
from GK to define rule i for EST6 as follows: If aj(x) = FCM^ (x, V^)

CLASSIFIER DESIGN 357

P
Then u.(x) = ajQ+ X â ĵ x,̂ . The coefficients {a^^:! < 1 < c;0 < k < p}

k=l
of the consequent functions are then estimated using recursive least
squares, and Delgado et al. state that the GK partition U^^ is used
during this procedure, bu t they do not state how. Finally, these
authors also state that they used a genetic algorithm to optimize this
system with respect to the MSE error it commits on XY, but no
details of the GA or how it was used were given.

We have now seen several ways that the values {u } in fuzzy
partitions U found by clustering in X, Y, or XY are used functionally
in conjunction with point prototypes. Another approach taken by
some authors returns us to Figure 4.58, where the values {u } are

shown as sets of discrete points projected from U^^ onto the input
and output domains of the fuzzy system. Again, a variety of
approaches for using these memberships have been reported in the
literature. Figure 4.59 shows a set of projected memberships (like
the ones in Figure 4.58) in either an input or output domain of a
fuzzy system, and a few of the many ways we might construct
membership functions from them.

1 o
o

o °

O o

0
memberships linear interpolation

1
o \ / o

o ^ / o x / o

Q>/

triangular Cauchy B-splines

Figure 4.59 Using projected memberships from U to build FMFs

More generally, each row of U corresponds to (n values of) a
membership function for the 1-th cluster. It is possible that
"projection" assigns more than one membership value to a feature
value. When this happens some type of aggregation operation
(usually the maximum) must be used to resolve the conflict and
assign a unique membership value to the feature value. When there
are p features, the i-th row of U^^ will be "projected" onto all p of
them for each k = 1 to n, but the shapes of the p membership

358 FUZZY PATTERN RECOGNITION

functions resulting from this operation may be very different
because the distributions of values in each feature vary.

Sugeno and Yasukawa (1993) discussed several ways to build
membership functions from the values {u }, including piecewise
linear interpolation and convex completion as shown in Figure
4.59. If the functions used to fit the projected memberships (such as
the ones produced by convex completion) are not smooth, when they
are combined with a non smooth T-norm or T-conorm such as the
minimum or maximum, the approximation to S can be pretty
bumpy.

The bottom tier of Figure 4.59 depicts three methods that are smooth
approximations to projected memberships in U^^. We can simply
erect triangular (or trapezoidal) membership functions (e.g., Sugeno
and Yasukawa, 1993, Genther and Glesner, 1994, Klawonn and
Kruse, 1997), perhaps centered at the projections of V^^; we can use
predefined shapes such as Cauchy or Gaussian functions, again

XY
centered at the projections of V (e.g., Chung and Lee, 1997, Runkler
and Bezdek, 1999); or we can use a numerical technique such as B-
splines or least squares to fit, say a radial basis or cubic function to
the memberships (Halgamuge et al., 1995). See Runkler and Bezdek
(1998c) for a catalog of other functions that can be used, as well as a
unified interface (the ACE membership function toolbar) from
which they can be built.

In any case, once we have the membership functions, they can be
taken either as the final PMFs (and/or CMFs in an MA model), or as
initial estimates that will be subsequently tuned using a technique
such as gradient descent (Yager and Filev, 1994b, Chiu, 1994), or
genetic algorithms (Delgado et al., 1997). With a little thought, you
can invent a new way to use this information too. The point is, (U^^,
B'̂)̂ carries a lot of information that can be used, but may not be
trusted with absolute confidence. Why not? That's the last question
on our list, and the easiest one to answer.

Finally, what might go wrong when clustering is used for rule
extraction? Chapters 2 and 3 contain only a fraction of the
clustering algorithms you can use to extract rules from data for
fuzzy systems. But even this fraction is fraught with peril for the
unexperienced user in both pattern recognition, where you really
just wcint the clusters, and here, where you are using clustering as a
tool for building fuzzy systems. The biggest danger all of us face in
either application? Clustering algorithms WILL produce clusters
(i.e., partitions) - that's their job - whether the data possess any or
not. Perhaps approximation of functions by fuzzy systems is an
even bigger danger. We'll leave you hanging on this unsettling note,
and return to this thought in Section 4.11. Here's a hint to whet your

CLASSIFIER DESIGN 359

appetite : our coverage of this topic amounts to surve3angjust a few
trees in the jungle qffunction approximation.

H. Heuristic rule extraction

Structural parameters of rule-based classifiers are not always
estimated with training data using decision trees, clustering or
whatever else happens to be on your mind at design time. Often the
rules are simply defined by the modeler, and the lO data cire used for
testing and refinement of the subjective design, and possibly for
parametric estimation, optimization and validation. While this
may sound unscientific, the two examples in this subsection show
that the "trial and error" method of rule-base development is alive
and well, is sound, and can lead to very effective rules for
classification. This section contains two examples of classification
performed with fuzzy rule-bases that are developed this way, and
which, for lack of a better word, we will call heuristic designs. Both
examples use the MA formulation of rule definition and inference
structure.

Our first example involves a straightforward classification problem
- recognizing two similar chromosomes from features extracted
from their images (Keller et al., 1995a, b). The rule-based system
discussed in Example 4.20 "locates" a portion of an image of a
handwritten address that contains the street number, and is based
on the work of Gader et al. (1995a). This is not a traditional use for a
classifier, and it shows quite nicely the power and flexibility of
fuzzy rule-bases for classification. As you will see, this system uses
MA rules.

Example 4.19 Human genetic investigations have provided some of
the most dramatic progress in medicine in recent times. One of the
standard tools used is karyotyping, a process of visualization and
interpretation of chromosomes. This labor-intensive process can
yield a large amount of information about a human subject and
suspected or potential disease processes. To decrease the labor
involved, efforts have been made to automate the process of
karyotyping. These efforts have achieved only limited success to
date. Successful automation of the karyotyping procedure would
have far reaching economic implications. Cost reduction would be
significant because of the large number of specimens analyzed each
year around the world.

Many pattern recognition approaches have been used to classify
isolated chromosomes using features which are either directly or
indirectly related to the banding patterns that result when
chromosomes from cells in metaphase (the stage before cell
division) are stained (Errington and Graham, 1993, Graham and

360 FUZZY PATTERN RECOGNITION

Piper, 1994, Stanley et al., 1995, 1998). The banding patterns are, in
principle, unique to each of the 24 classes of chromosomes in a
human cell (homologue pairs of chromosomes numbered 1-22, and
either a homologue pair of X chromosomes for a female, or X and Y
chromosomes for a male).

Figure 4.60 shows idealized representations (ideograms) and
par t icular examples for two similar chromosome classes
(chromosomes within the same "Denver Group", Errington and
Graham, 1993). It is difficult to directly match the real
chromosomes to the ideograms. The "banding level" is connected to
the resolution of the bands in a complete cell image (a metaphase
spread). The "400-band level" in Figure 4.60 means that there should
be roughly 400 dark bands visible in all 46 chromosomes in the
metaphase spread. The "narrow" point of the chromosome is called
the centromere, which divides the chromosome into two arms: the
P-arm (or short arm) and the Q-arm (or long arm).

1 6 - 4 0 0 Band Level

p. '3 -3-
13. 1-

-13.2

-12
11.2-^ 1

Centronl^i-e'-^^^]} -^

Q. ^^ '0-23
2 4 - H

1 8 - 400 Band Level

• • -11 .3
11.2-1 1

Centromere- z a a E - n i
11.2-1 1

• -12

Cefitfoffwre

p.

Ceifitomeire

2 1 -

23-

1-22

Figure 4.60 Ideograms and examples for chromosomes 16 and 18

Features such as centromeric index (the ratio of the length of the
short arm to that of the entire chromosome), relative length, and
banding pattern information, including bandwidth, numbers of
bands, band spacing, and band intensity can be used with human

CLASSIFIER DESIGN 361

knowledge to create a rule-based classifier for recognition of these
two chromosomes (Keller et al., 1995a, 1995b).

To distinguish chromosome 16 from chromosome 18, rules were
developed to generate class confidences directly from Centromeric
Index (CI) and Relative Length (RL). Table 4.37 contains the rules
used to determine the class 16 confidence from these measurements
(class 18 rules are similar).

Table 4.37 Fuzzy rules for class 16 confidence
based on Centromeric Index and Relative Length

Cl->
iRL VL L M H VH
VL VL VL L M H
L VL VL L M H
M VL L L H H
H VL L M H VH
VH M M H VH VH

Keller et al. used five linguistic values for all their rules: Very Low
(VL), Low (L), Medium (M), High (H), and Very High (VH). Since
relative length is less reliable than the centromeric index, its
variation has less effect on the consequent than changes in CI. An
example of the rules used is:

IF Centromeric Index is High
AND Relative Length is Very High
THEN Chromosome 16 Confidence is Very High

The rules and membership function definitions for the premises
and consequents were entered into the CubiCalc RTC fuzzy logic
development environment (CubiCalc, 1990). The fuzzy sets described
in the rules were heuristically generated by examining the values of
the variables on a small training set of 400 band level chromosomes
taken from images acquired at Ellis Fischel Cancer Center,
University of Missouri-Columbia. For the two chromosome classes
50 rules were generated based on the CI and RL features.

A set of rules involving CI and RL would be sufficient to separate
some chromosome classes. However, chromosomes 16 and 18 have
similar relative lengths and centromeric indices. So, additional
feature information (found in the banding pattern) is needed. The
banding pattern is characterized by the number of bands in each
arm, relative bandwidths, and relative distances of bands from the
centromere. However, it is difficult to correctly segment the bands in
real chromosome images, so indirect measurements are often used.
Chromosome "blobs" are found in metaphase spreads (not an easy
task in itself: Stanley et al., 1995, 1998). The medial axis, or
skeleton of each (hopefully) single chromosome is generated by

362 FUZZY PATTERN RECOGNITION

standard image processing techniques such as thinning (Gonzalez
and Woods, 1992). The length of the chromosome is then the
Euclidean or pixel length of the skeleton. For each point of the
skeleton, both the average intensity along each line perpendicular
to the skeleton and within the blob (the density profile) and the
second moment of those densities along the perpendicular (the
shape profile) are calculated (Piper and Granum, 1989).

Shape Profile
A

2 0 -

Chromosome 16 Profile
400 Band Level

16

12

8-h

\ •'^\ Centromere m \ I •.
• • - ' ' V ^ ' \ •

0

A
•
\ i..r 4 -

< P-arm H<- -Q-arm-
^

I I I I I I I I I I I I I I I I I i
1 10 20 30

•-> Pixel

Shape Profile
A

16 --

4 -

Chromosome 18 Profile
400 Band Level

/ \ • •

12 -|- Centromere 7'* \ \ • \

V V\ / '-
I

/
U p-arm—>^^ Q-arm-

0 I I I I ! I I I I I I I I I I
1 10 20 30

• > Pixel

Figure 4.61 Shape profiles for chromosomes 16 and 18

CLASSIFIER DESIGN 363

Figure 4.61 shows shape profiles for typical examples of
chromosomes 16 and 18 as measured at pixel locations along the
axis of generated skeletons. The shape profile contains direct
information about the banding patterns.

To extract band-related information, "standard" weighting
functions were correlated with the shape profile of each arm of the
chromosome under investigation. The weighting functions were
designed to match the banding pattern exhibited by the chromosome
arm for the specific class. This approach was used because it
eliminated the need to segment the bands directly, which could lead
to considerable false information by disobeying the principle of
least commitment. These features are similar to the "wdd" features
employed by Piper and Granum (1989) but they carry more direct
evidence about particular class banding patterns (see Keller et al.,
1995a for more details on the functions used).

Table 4.38 shows the eight rules generated for one of the three
banding pattern correlation values for the p-arm. Keller et al. used
similar rules for three band correlation functions, giving a total of
24 rules for class confidence based on shape profile information.
The rules and membership functions were heuristically generated.
Hence, /? had M = 74 rules for this 2 class problem.

Table 4.38 Class confidence based on the p-arm
banding pattern of data file (wdl6tbp)

wdl6tbp 16 Confidence 18 Confidence
VL VH VL
L H M
M M H
H L VH

In a preliminary test, features were extracted from 23 400-band-
level chromosome # 1 6 images and 30 400-band-level chromosome
1 8 images in the database. The inference done in Cubicalc was
based on the MA model and employed the minimum operator to
compute firing strengths, summation as the rule aggregation
method, and center of gravity (COG) for defuzzification. By using
maximum class confidence as the crisp decision rule, Keller et al.
obtained 100% correct classification for # 16 and 87% correct
classification for # 18 (resubstitution). By thresholding the
difference between chromosome 16 confidence and chromosome 18
confidence, and rejecting chromosomes whose confidence difference
was too small, they report 100% (resubstitution) reliability on this
small set with a 23% rejection rate. Finally, the confidence values
can be used in subsequent processing.

364 FUZZY PATTERN RECOGNITION

Our second example comes from the field of handwritten address
recognition (Gader et al., 1995a). Recognition of handwriting is
important for automating document processing functions such as
mail sorting and check reading. As we have seen and will see again
(Wang and Suen, 1983, 1984, 1987, Chi and Yan, 1995, 1996, Chi et
al., 1995, 1996), fuzzy set theory can be an appropriate framework to
address several problems in handwriting recognition. Handwritten
character and word classes are not crisp sets. Inherent amibiguity
exists at several levels, requiring that multiple sources of
information be utilized to correctly interpret handwriting.
Furthermore, document analysis systems consist of multiple stages
of processing: image processing to separate handwriting from
background, segmentation to isolate individual regions such as
lines, words, and characters, feature extraction to characterize
pattern classes, and finally, classification. Each stage of processing
contains uncertainty since the algorithms do not always yield the
correct result. Therefore, there are two sources of ambiguity in
handwriting recognition: the data are inherently ambiguous and the
algorithms are imperfect.

Example 4.20 The ambiguity between numerals and alphabetic
characters in handwriting is a problem, as shown in Figure 4.62,
which contains, for example, an "F" as the first letter of the word
"Franklin" that looks like the numeral "7"; and an "1" as the first
letter of the word "Ingraham" that can be mistaken for the number
"2"; and several number "7"' s that are very similar to the "F".

Figure 4.62 E^xamples of confusing street numbers and letters

Developing an effective interpretation system of handwritten
addresses for automation of mail delivery is a challenging task. The
numeric fields in an address, i. e., the street numbers and ZIP code,
play a crucial role in reducing the complexity of the address
interpretation task. If these numeric fields are correctly detected
and identified, the number of possible addresses is significantly
reduced. Correct location and interpretation of the street number
field reduces the number of possible street names. Thus, we must
locate the street number without any knowledge of the street name.
This is not a "standard" classification problem, since the goal is to

CLASSIFIER DESIGN 365

find the location where the street number ends (if there is a street
number in the image). There is the equally important task of
recognizing the digits, which in this example was performed by feed
forward neural networks (Section 4.7).

Potential address images were input to the system as described in
Gader et al. (1995a). Image processing was used to segment subimages
of lines from handwritten addresses into sequences of primitives.
Six neural networks were used in the confidence assignment: two for
numerals (0-9), and four for alphabetic characters.

Two types of feature vectors were used as inputs to the neural
networks, the transition feature vector and the bar feature vector.
The bar-features are completely described in (Gillies et al., 1992,
Gader et a l , 1992, Gader et al., 1995a), while the transition features
are described in (Gillies et al., 1992, Gader et al., 1997a, b). The
neural networks were trained using backpropagation, and used
class-coded outputs. They also contain a class named "garbage" to
account for segments which did not represent any character image,
such as multiple cheiracters or pieces of characters.

Transition features are the locations and numbers of transitions
from white pixels to black pixels along horizontal and vertical
lines. Transition calculations are performed from right to left, left
to right, top to bottom and bottom to top. This information is
encoded as a feature vector with 100 elements. Three neural
networks for the confidence measurements used transition feature
vectors, one each for upper and lower case alphabetic characters,
and one for digit recognition.

The bar features encode directional information from the
foreground and the background. First, up to 8 feature images are
generated, each corresponding to one of the directions east,
northeast, north and northwest, in either the foreground or the
background. Each feature image has an integer value at each
location that represents the length of the longest bar which can fit at
that point in that direction. For each of the 8 feature images, 15
different subimage zones are created. The values in these zones are
summed and normalized between 0 and 1. The result is a feature
vector of size 120. Three neural networks for the confidence
measurements used bar feature vectors, one each for upper and lower
case alphabetic characters, and one for digit recognition.

Primitives often contain only parts of characters. To obtain
confidence measurements on characters, subimages of pairs and
triples of the primitives were also used to obtain character
confidence assignments using the neural networks. Hence, there
were six character confidence readings and measurements at the end
of each primitive, each corresponding to a single primitive, a pair or
a triplet of primitives, in either upper or lower case characters. The

366 FUZZY PATTERN RECOGNITION

maximum of these 6 confidence measurements was used as the
character confidence feature for the fuzzy rule-based system.

A fuzzy logic system with 48 rules that aggregated results of image
processing and character recognition modules to assign confidences
concerning the locations of street numbers in address blocks was
developed in Gader et al. (1995a). The neural networks described
above were used to assign alphanumeric character class confidences
to combinations of primitives. Each consecutive combination of
primitives starting with the leftmost primitive was assigned a
confidence value by the fuzzy rule-base indicating the possibility
that the combination represented a complete numeric field, i.e., the
potential location marker for the numeric portion of the street
address. One example of a rule in this system is:

IF the next primitive is too complex to be recognized as
digits,

AND the numeric field confidence of the current primitive
is large,

AND the gap size between the current and the next
primitive is medium;

THEN the street number confidence should be positive
large.

Linguistic values of each linguistic variable were represented by
standard trapezoidal membership functions. For example, the
membership functions for the linguistic values small, medium,
large, and huge are shown in Figure 4.63 for the linguistic variable
gap (size). Notice that Large and Huge are both 1 for x close to 1.

m(*)M

A Small
1

Medium

\

Large Huge

i
0.00 0.25 0.45 0.75

> x=gap
1.00

Figure 4.63 Membership functions for the linguistic variable "gap"

Gader et al. followed the usual pattern for the development of
heuristic rule-based systems: an iterative cycle of rule definition.

CLASSIFIER DESIGN 367

test ing, and rule refinement. The rules in the fuzzy rule-base were
initially wri t ten based on p ic tures of address blocks (SUNY, 1989).
The system w a s t hen t ra ined with 71 image blocks us ing the s ame
MA model t h a t w a s descr ibed in Example 4 .19 , implemented in
Cubicalc. The system w a s t ra ined on the 71 images, each of which
was crisply labeled a s having or not having a numer ic address field,
a n d if present , i ts location. The training process w a s i terated unt i l
the r e su l t s were satisfactory. Following each t ra in ing cycle, the
sys tem w a s adjus ted ba sed on a n analysis of the resu l t s , paying
par t icular at tent ion to the error cases .

After t raining, 78 new image blocks were used as a test set. A few
a d j u s t m e n t s were m a d e b a s e d on these r e su l t s . For example ,
additional rules (such as rules to handle "P.O. Box") were added to the
ru le-base , and a few ru les were changed. The union of the t ra ining
a n d tes t se ts was t hen u sed a s a reference trciining set, a n d a blind
(validation) t e s t w a s conduc ted on 155 addi t ional image blocks .
During the blind test, the ou tpu t confidence value was thresholded.
Those locations a t which the overall system confidence was above a
u se r specified threshold were labeled a s locations of street n u m b e r s
by the system.

Table 4 .39 Success and location error rates for
the training and validation sets

Success rate
t r a i n va l ida te
9 1 % 8 6 %

Location rate
t r a i n va l ida te
9 1 % 8 7 %

Table 4 .39 shows the resul ts of the final t raining r u n and the blind
tes t of 155 images, 79 of which contain street number s . The success
ra te is t he percentage of answers t h a t are correct; either a n image
block contained a street n u m b e r and it was correctly located or it did
no t conta in a s t ree t n u m b e r a n d the sys tem indicated no s t ree t
n u m b e r . The location rate is the percentage of s treet n u m b e r s t h a t
were correctly located.

The performance of th i s system i l lustrates the capacity of a n MA
fuzzy ru le-based sys tem for locating s t reet n u m b e r fields. A wide
variety of mult i- layer feedforward networks for locating t he s t ree t
n u m b e r s were also t ra ined us ing backpropagat ion and tested us ing
the s a m e training, test and validation da ta sets . The numer ic i npu t
variables used by the fuzzy logic system were also used for the neura l
ne tworks . The networks performed reasonably well - b u t not a s well
a s t he fuzzy logic sys tem. The bes t success ra te on the t es t d a t a
ob ta ined by any n e u r a l ne twork w a s 79%. The fuzzy ru l e -base
achieved a test ing success ra te of 86%, which is significantly bet ter
t h a n t h a t achieved by any of the neural networks ©.

368 FUZZY PATTERN RECOGNITION

Gader et al. (1995a) conjectured that the reason the fuzzy logic
system outperformed the optimized neural network was that the
granularity of knowledge required to locate street numbers is
"coarser" than that required to perform tasks such as character
recognition. Tasks that require knowledge about the world that is
not statistically represented in the data are difficult or impossible
for neural networks to learn, but this type of knowledge can be
encoded with rules.

I. Generation of fuzzy labels for training data

Several of the methods discussed so far require soft labels for the
training data in order to build the decision or classifier function.
This includes the soft k-nn rules, the fuzzy integral, fuzzy decision
trees, soft rule - based classifiers, and fuzzy aggregation networks
(Section 4.7). This was done as early as 1985, when Keller and Hunt
(1985) softened the training of the classical linear perceptron. The
assignment of soft labels to training data is an important step in the
overall process of classifier design. In this subsection we discuss
some methods of assigning fuzzy labels to data in order to generate
fuzzy classifier functions.

Most of chapters 2 and 3 deal with generating soft labels for objects
represented by feature vectors or relational data. Since clustering is
unsupervised in general, it may not be the best choice for labeling
training data in this context, since the best clusters are those which
minimize some clustering criterion, and the algorithmic clusters
found may not reflect the actual "ground truth" available in the
physical labels in the training data (but see House et al., 1999 for an
example that this is not always the case). Clustering algorithms
sometimes create membership values for training points that have
crisp label i which are larger for some class j^ i . This happens, for
example, in the context of 1-np design, if a training point from class
i is closer to the class j prototype than to that of class i.

To insure that soft training labels maintain the "truth" about the
training data (i.e., are consistent with the physical labels supplied
with the data), some form of supervision is required. One way to
accomplish this in the clustering framework is to cluster the data
one class at a time, as, for example, Chiu (1997) recommends when
you want to build a fuzzy rule-based classifier using labeled data
with clustering. In order to get meaningful "typicality"
memberships, you should consider using a possibilistic model such
as PCM to acquire the soft labels, since label vectors from any fuzzy
clustering algorithm contain values that represent degrees of
sharing between classes. PCM produces an inverse distance-type
membership for each training point from its class prototype. After
finding and correctly labeling class prototypes by any means.

CLASSIFIER DESIGN 369

inverse distance membership functions can be generated for the
training data.

Variations of the k-nn technique have been used to obtain fuzzy
labels. Jus t taMng the fraction of the number of class i vectors in the
k nearest neighbors to a training point as its membership in class i
suffers from the same problem as fuzzy clustering. There is no way
to guarantee that the "true" class of a training point will maintain
the largest membership. For example, consider the "F" in the word
"Franklin" in Figure 4.62. It is possible that for a given training set,
in feature space all of the neighbors of the feature vector from that
"F" would be vectors from the character "7", because this "F" really
looks like a "7". Hence, simple fractions would give this feature
vector zero membership in the class "F", even though it actually was
an "F" written by some person. This is one dilemma you have when
dealing with real data: even though an object may actually be
member of class i, its feature vector often mingles with those of
other classes. Example: build a classifier that identifies men and
women based on the 2D input feature vector height and weight. No
classifier we are aware of would, based on this pair of
measurements, correctly label Heidi Gillingham, who at one time
was a center for the Vanderbilt women's basketball team, height = 6
feet, 11.5 inches. If you were to create a soft label vector for Heidi, its
maximum value would almost certainly interchange the correct
label with the wrong one.

One clever but simple method to acknowledge this uncertainty in the
training data was developed by Gader et al. (1995c), and could be
called a possibilistic k-nn labeling procedure. For a training vector
from class i, their approach was to use the fraction of the k nearest
neighbors to be the memberships for all classes J it i, and to preserve
unit (or at least very high) membership in the true class i. This way,
the "F" may have high memberships in multiple classes, reflecting
the ambiguity of its feature vector. As an example, the "F" in Figure
4.64 received high membership in its class, but also reasonably high
values for "I", "L", "S" and "T". In Gader et al. (1995b), these
possibilistic training labels were used as desired outputs for a
multilayer perceptron. What was discovered was that in terms of
pure character recognition, crisp labels worked better, but when the
results of the character recognizer were submitted to a word
recognition system (Gader et al., 1995b), word recognition rates
increased significantly when using the possibilistic labels. By
acknowledging the ambiguity of handwritten characters, the total
system could keep multiple hypotheses alive and hence, piece the
words together more effectively. This adheres to the principle of
least commitment.

370 FUZZY PATTERN RECOGNITION

* . b c : d l . P a h H J k 1 n n c i p q r > t . u w y H y

• • • • • • • • • • • I

^

Figure 4.64 A handwritten training "F' and its possibilistic
memberships in the character classes

If enough training data are available (as in some image processing
applications), normalized histograms of the feature data can be used
to estimate class memberships. While this approach is most often
used to calculate class confidence with respect to one feature, it can
easily be extended by constructing histograms of each of the various
features, and the individual feature memberships can be aggregated
to get combined memberships both for the training and test data.

Generating soft labels for crisply labeled training data is tricky, and
it is very problem dependent. If the goal of a classifier is character
recognition, then the evidence in Gader et al. (1992, 1995b) suggests
that crisp training labels are better, However, as the goal (and the
processing) became more complex, e.g., word recognition, fuzzy,
probabilistic or possibilistic labels may provide more realistic
information and better final results. You should use the simplest
tool to solve your problem. As system complexity grows, tools such
as employing soft labels for the training data become more
attractive. In fact, uncertainty is always fruitful - as long as you try
to understand it too.

4.7 Neural-like architectiures for classification

Much has been written in the last twenty years or so about "neural
networks", a term we abbreviate by "NN" - recall that we use (nn) for
nearest neighbors. Network architectures such as the MA and TS
fuzzy systems and fuzzy decision trees do not draw their original
inspiration from a desire to mimic biological NNs (BNNs) - although
they do have desirable properties such as parallelism which can of
course be associated with the BNN. However, several of the models
discussed in this section are in some rudimentary sense (neural-
like) network structures that do attempt to imitate BNNs. Other
volumes in this handbook contain good descriptions of many

CLASSIFIER DESIGN 371

neural-like network structures, especially for control (Nguyen and
Sugeno, 1998). Our presentation is limited to those fuzzy set-related
NN models that seem particularly useful for pattern recognition.

Most authors distinguish between BNNs and computational NNs by
calling computational s t ructures aimed at imitating BNNs
Artificial NNs (ANNs). A few authors have made a further
distinction between ANNs and computational NNs (CNNs). Fine
distinctions about the meaning of various terms used in this field (if
they have useful meanings at all!) simply distract readers from the
main point, which is the interface between NN models and fuzzy
logic as used for numerical pattern recognition. Readers interested
in this aspect of NNs, including discussions about "computational
intelligence" and "soft computing" are encouraged to consult, e.g.,
Bezdek (1992, 1998), Marks (1993), or Zurada et al. (1994). We will use
NN for computational approaches that mimic the BNN, and leave it
at that.

There are two distinct areas of integration between fuzzy pattern
recognition and NNs. First, we may use the conventional NN for a
variety of computational tasks within the larger framework of a
pre-existing fuzzy model. In this category, for example, are attempts
to build [membership] function representat ions with NNs;
implementation of fuzzy logic operations such as union (max-nets),
intersection (min-nets), and even fuzzy logic inference. There is also
a great amount of current effort being expended in using NNs to
derive optimal rule sets for fuzzy controllers (another approach to
rule extraction) - that is, to automate the process of membership
function extraction and tuning of term sets that are used in both
fuzzy pattern recognition and control.

On the other hand, many writers are investigating ways and means
of building "fuzzy NNs", by incorporating the notion of fuzziness
onto or into a NN framework (as opposed to using the NN within a
fuzzy framework). For example, the target outputs of the NN during
classifier training can be fuzzy label vectors (points in the interior
of the triangle N shown in Figure 1.2). In this case, the NN itself is
implicitly functioning as a fuzzy classifier, and is conceptually
identical to any other fuzzy classifier function D imaged in N .
Operationally, of course, the mathematical function D is implicitly
represented by an explicit computer program or piece of hardware
that implements the NN.

Another way to incorporate fuzziness into a standard NN is by
altering the integrator/transfer functions at each node so that they
perform fuzzy aggregation (union, weighted mean, or intersection)
on the numerical information arriving at each node. Yet another
way to introduce fuzziness into the NN framework is through the
input data X to the NN, which may be "fuzzified" in one of several
ways.

372 FUZZY PATTERN RECOGNITION

A. Biological and mathematical neuron models

The BNN is one of the systems that enables organisms (in particular,
humans) to perform biological pattern recognition. Figure 4.65
depicts the simplest ideas we have about the atomic unit - a neuron -
of a BNN. Each neuron has an axon (pulse transmitter), soma (pulse
emitter), dendrites (pulse receptors), and is connected to other
neurons by synapses (connectors). In Figure 4.65 a packet of data
(electro-chemical pulse x) has been emitted by the soma, and is
traveling along the axon.

dendrites

Figure 4.65 A rudimentary biological neiu-on

Figure 4.66 depicts part of a BNN. The term network derives from the
interconnections (which may not be entirely physical) between
neurons. At a point of data transfer, a synapse (the connection
neighborhood) transmits data packet x from a dendrite of the
emitting neuron to a receptor of the receiving neuron. It is believed
that each transfer encounters variable resistance (modeled in Figure
4.66 by a synaptic weight vector w) to the conduction of energy.
Information (electrical, chemical, biological in form) is generated,
flows, is assimilated, and somehow used to solve problems in the
BNN. Our assumption is that each neuron does something like
(numerical)computing - this gives rise to the hope that
computational "neurons" and networks of them can be used to
imitate this structure and its performance.

The synaptic weights at a node in the BNN are believed to vary over
time, and it is assumed that this is one of the major mechanisms by
which the brain "adapts" to changes in its environment (i.e., to
changes in its input data and/or output requirements). Another
means for achieving adaptation to system tasks is thought to be
through the activation and deactivation of (sets of) nodes in the
network, again "on the fly". That the brain can and does adapt in
real time is inarguable - it is the mechanisms for doing so that are
not well understood.

CLASSIFIER DESIGN 373

Figure 4.66 Part of a biological neural network

Hardware Implementations of computational NNs have become
common (e.g., Serrano-Gotarredona et al., 1998). Many companies
now market "NNs on a chip", including products advertised as "fuzzy
NN chips", etc. If you are interested in this aspect of NNs see issue
4(4) of the 1996 IEEE Transactions on Fuzzy Systems. It is not our
purpose to pursue this topic, so we are content to show Figure 4.67,
which illustrates the components of a typical electro-mechanical
(or possibly optical) version of Figure 4.66, that is, a layout of
(hardware and/or software) components in an architecture that
ostensibly mirrors the biological version of one neuron.

Components of the input and weight vectors x and w of Figure
4.66 are shown as real numbers in Figure 4.67; as usual, we assume
that X ,w eSRP. The analog of the soma is called a node of the
network, x. is the input to the node, and w is the weight vector for
(or at, or in) the node. Some writers prefer to regard the scalars
{w :i = l,...,p} as weights on the edges entering the node, while

others regard w as a weight vector attached to the node. We use one
or the other of these interpretations at various times. The node in
Figure 4.67 is called N - the jth node in the network.

374 FUZZY PATTERN RECOGNITION

axon
(signal in)

sjmapse
(resistor)

>-AAA/
w..

soma
(processor)

Figure 4.67 An electrical circuit that models the standard neuron

Figure 4.68 illustrates what usually happens at each node in the NN.
Two functions are active. First an integrator Junction
f: 9tP' X St'i' h^ 9t combines a node weight vector co e 3i^' with the
input vector x e 91^'; often, but not always, co = w, the weight vector
shown in Figure 4.67. Notice that the dimensions of x and w are,
respectively, p ' and q'. Usually p ' = q', but these dimensions can
and do change from layer to layer, so we leave the notation flexible.
We use primes here to indicate that this neuron can be anywhere in
the network (the input vector to the network will always be in 9?^,
and the output vector from the network will be in 9^''.

Node
Input

X e 9tP'-

node
weights

- > x -

integrator
function

f:9lP'x9ti'H^9l

> y = f(x,a)) —

transfer
function

F:9^h^9t

> z = F(y)-

Node
Output

- > z e 9 ?

Figure 4.68 A mathematical neuron

The traditional, historically first, and still most popular choice for
f is the Euclidean inner product (McCulloch and Pitts, 1943); when
to = w e 9?P, y = y(x) = f(x, w) = (x, w) + a. Recalling equation (4.3)

and Figure 4.4, we see that this choice sets up a hyperplane H in Si^
at each computing node where it is used, and we call f a linear
integrator function. Justification for this terminology lies in the

fact that every affine function on 9t^ can be written as a linear
function on Si^'*'^ by defining the p+1 tuples x'=(x^,... ,x ,1)^ and

CLASSIFIER DESIGN 375

w'=(Wj w ,a)^, for which (x', w') = (x, w) + a. The parameters

w' = (w, a) of H are (part of) the weights that are sought during
training for each node of the network that uses linear integrator
functions. In the neural networks literature a is often called the
offset or bias of such a node, and the node itself may be called a first
order neuron. It will be convenient to have a special notation for
this oft-used integrator function; we call it f , the subscript referring
to the hyperplane that it defines.

"Higher order" neurons arise when the inner product is replaced by a
more complicated function. For example, a second order neuron is
realized by replacing f(x, w) = (x, w) + a with a quadratic form in x,
f (x, w, W) = x^Wx + x^w + a, where W is a p x p matrix of additional
weights that are associated with f. In this case the weights of the
integrator function f are the triple of parameters co = (W, w, a). The
form of f is limited only by your imagination. You will encounter
many substitutes for these simple functions in the literature of
"fuzzy NNs".

The action of f is followed locally in each computing node by
applying a transfer (or activation) function F to the value of the
integrator function on its inputs. F is used to decide if the node
should "fire" (produce an output), and if so, how much "charge", and
of what sign, should be broadcast as output in response to the input
X. The most typical choice for F is the unipolar logistic (sigmoidal,
squashing) function,

where X in 9̂"*" and p in 9? are real constants that adjust the shape of
F. Specifically, X controls the steepness or slope of Fĵ and p controls
the crossover point along the y axis at which inflection occurs, viz.,
Fj^(y) = 0.5 <=> y = p. Without loss of generality we discuss F̂ ^ for P =
0, since this parameter simply shifts F̂ ^ to the left or right of the
origin. F̂ ^ is called a unipolar activation function because its range
is (0, 1). Figure 4.69 depicts F̂ ^ for three choices of the steepness
parameter X with P = 0 for y in [-5, 5].

376 FUZZY PATTERN RECOGNITION

0.0

Figure 4.69 E£Fect of steepness parameter X on F^

At ^ = 0 the graph of Fĵ is the horizontal line y = 0.5. As ^ increases,
the shape of Fĵ becomes more and more like the step function which
jumps from 0 to 1 (which are the asymptotes of F as y -^ ±oo) as X
approaches °°. The linear transformation

F....(y) = 2 F , (y) - l = l ^^_,,^_^, - 1 (4.98)

of (4.97) is called the bipolar form of the logistic function because its
range is (-1, 1), with limits ±1 as ^ approaches o°, the sign depending
on y. That is, the limit of F̂ ^ j^. with p = 0 is just the sign function,

iijB{FL.bi^ = sgn(y) =
1;

-1;
y > o
y < o (4.99)

Another function that can be used as a transfer function which has
the same basic properties as F^^^ is the hyperbolic tangent,

F(y) = A, tanh(|3y). There are many other transfer functions in the
fuzzy NN literature; we will meet some of them later in this chapter.

Now combining the action of the integrator and transfer functions,
consider the composition of f followed by F. We call this the node
function 4> = F o f, whose job is to convert vector inputs to a single
node into real outputs, z = 0(x) = F o f(x) = F(y). When the integrator
function is f ̂ and the transfer function is F^ (unipolar) we write

*^LH~^L°^H' ^^'^ ^^ ^̂ ^̂ ^̂ ^^^ standard or McPitts (after
McCulloch and Pitts, 1943) neuron

We have already met the idea of node functions, which in section 4.6
were associated with the nodes of a decision tree classifier. It is
entirely proper to regard those node functions in the same light as
the ones currently under discussion. Both types make decisions
about what values "travel" along paths in the network. One of the

CLASSIFIER DESIGN 377

main differences in the two network structures is that in decision
trees there is but one input edge per node, and usually many output
edges with different values; whereas most neuron models have nodes
with many inputs, and only one distinct output (that may go many
places, but has the same value on each outgoing edge). In Section 4.11
we will discuss the equivalence between some special classes of
decision trees and certain types of neural networks.

Decomposition of O into its two components enables us to analyze
the mathematics of one node more carefully, and is very helpful in
understanding the relationship of NN methods to other classifier
designs. Imagine that you can rotate a hyperplane H so that it stands
vertically, parallel to the vertical z-axis, and you are standing at
infinity, looking down along H towards the origin of the horizontal
axis. Figure 4.70 shows an "end-on" view of what you would see if you
could position yourself at the "edge" of the hyperplane H in Figure
4.4 that is created by f . Then superimpose the action of transfer

function F with ^ = 1 and P = 0 on [-5, 5]) onto your field of view.

y ^ f n W
> y

Figure 4.70 Geometric interpretation of node function O „ = F

In this different view of the geometric meaning of the linear
integrator function f , you would see the half spaces H~ and H^ to
the left and right of H. The logistic function provides a non-linear
response to node inputs that fall on either side of H. Since F takes
values in the open interval (0, 1), you might be tempted to interpret
them as memberships, and in the proper linguistic framework, this
could certainly be a membership function for some linguistic value.

378 FUZZY PATTERN RECOGNITION

But , u n d e r t he se c i r c u m s t a n c e s , would you call th i s a "fuzzy
neuron"? We think not. We will encounter ins tances of fuzzy models
t ha t d i scuss node computat ions in terms of <E> ra ther t h a n F o f, a n d
we will look carefully for the added value provided by fuzzification
of t he node function, or of i ts cons t i t uen t s , the in tegra tor a n d
t ransfer functions.

B. Neural network models

The definition of the computa t iona l NN given in DARPA (1988, p .
60) is: "a n e u r a l ne twork is a sys tem composed of m a n y simple
p r o c e s s i n g e l e m e n t s ope ra t ing in para l le l whose funct ion is
de te rmined by network s t ruc tu re , connect ion s t reng ths , a n d the
processing performed a t computing elements or nodes". The network
s t ruc tu re (or topology) refers to the way the nodes are connected to

each other; the connection s t rengths are the weight vectors {co }; and

node processing refers to local computat ions done by O a t any node
in the network.

Figure 4 .71 shows a general NN archi tec ture , with no par t icu la r
a s s u m p t i o n s m a d e abou t the node functions t ha t are used . The
ne twork topology in Figure 4 .71 h a s feed-forward, feed-backward
a n d cyclic connec t ions be tween a n d among its nodes . Most NN
mode l s u s e d in p a t t e r n recogni t ion a r e feed-forward only, a
simplification t h a t seems necessa ry for bo th computa t iona l a n d
analyt ica l t ractabi l i ty.

x e 9 t P

Input
LaycT

NN:91P h^Ji"
• > ue5R'^

Out.pul.
Layer

Figure 4.71 A computational neural network

CLASSIFIER DESIGN 379

See Table 1 in Hecht-Nielsen (1988) for an early list of the thirteen
(supposedly, in 1988) most common NNs as well as a tabulation of
neurocomputers for each model built as of that date. The most
complete current listing of NN architectures and software is perhaps
the Handbook of Neural Computation (Fiesler and Beale, 1997). A
good recent list of hardware implementations of NN architectures is
given in Chapter 27 of Chen (1996).

Most NNs have layers. In Figure 4.71 there is an input layer, whose
nodes {N': j = 1,...,p} almost always "perform" no computations. The
purpose of the input layer is to indicate how the data enters the
network in p parallel input streams, and to show how the input
features are distributed to the first hidden layer, whose nodes are
indicated by the notation {N :̂J = l,...,kj}. Hidden from what you
may ask? Hidden from the input and output layers, so we are told.
Integer k is the number of nodes in the first hidden layer. The qth

hidden layer has k nodes {N? :i = l k }, etc., and the nodes of the
y q ' J J ' ' q "

output layer axe (N": j = l , . . . ,c}. Thus, superscripts indicate the
layer, and subscripts indicate the node number within each layer.

The output layer usually has computations at each node. When we
discuss a general NN, we may omit the superscripts and speak about
node Nj for simplicity. We call the hidden and output layers in a NN
the computing layers of the NN. The architecture in Figure 4.71 is
symbolically denoted by the sequence of numbers representing the
number of nodes in each layer as p: k^: • • •: kq: c.

If the last functions applied to values flowing through the output
layer in Figure 4.71 are of the form (4.97), the output of the NN is a
possibilistic label vector, u = {û u^)^€N ^ (see equation (1.1)).
This hardly justifies calling such a network a possibilistic NN, so
don't be tempted to interpret it that way unless there is enough
semantic Justification to entitle the network to this descriptor.

It is convenient to have a notation for the set of all parameters of a
NN that must be "learned" (acquired during training). For example,
if a node has linear integrator and logistic functions, Ô^̂^ ~ ^ L ° ^H '

then the ith node weight vector has the form u> = (X,, B . w, a) . When
^ 1 I t 1 1

the total number of nodes in the network is N, we call W = (u , ..., co)
the network weight vector. For example, if there are 8 input nodes, 2
hidden layers with 3 and 5 nodes, respectively, followed by an output
layer with 4 nodes, i.e., an 8:3:5:4 architecture, then there are
(8 + 3)-3 +(3+ 3)-5+ (5+ 3)-4= 95 parameters to learn assuming
feed forward connections only.

380 FUZZY PATTERN RECOGNITION

The cardinality, |W| ofW, which is the number of parameters to
estimate, is important, because it influences the size of minimally
acceptable training sets. Theoretical guidance for network size (as
measured by |W|) for a given set of lO data is limited to cases where
very idealized assumptions are made about the training data. For
example, Baum and Haussler (1989) give the bound

32 • W A

E (X IX) ,
D*̂ te' tr y

log.
32 M

E (X IX)
D^ te' ti'.

< n = X .where (4.100)
tr I tr

M is the total number of hidden nodes in a single layer and
Ejj(Xj^g|X^) is the desired fraction of errors that you will tolerate on
the test set. They assert that a single layer neural network with
bipolar output nodes will "almost certainly" generalize [to
Ejj(Xj^g|X^) on similar input data] if the fraction of errors
committed on the training data is less than half of the desired test
error, E^^iX^X^) <Ej^{XJX^) / 2, and (4.100) is satisfied. Haykin
(1994) calls (4.100) a distribution-free worst-case bound on the size
of the training data. Ignoring the logarithmic term and the
multiplier 32 in (4.100) gives the simpler first order estimate,

Iwl
<n,,. , (4.101) ED(X,e|X^) "^

which Haykin (1994) asserts is a good rule of thumb in practice.
Equations (4.100) and (4.101) bound the size of the network in terms
of the number of samples, but not the number of total values
(number of features times number of samples), in X . Another rule of
thumb that involves p, the number of features per sample, is
10 • |W| < n^̂ • p . For example, |W| < 150 • 4 / 10 = 60 for resubstitutlon
training (i.e., n = n = 150) of the Iris data, which limits the network
weight vector to a total of 60 parameters. None of these bounds
account for the variability that real data possess, and there are as
many of them as you have time to read about, but you should always
be cognizant of the "power" of your training data - its size certainly
limits the total number of parameters you should estimate with it,
be the design a NN or some other type of classifier.

Ju s t above the diagram in Figure 4.71 you see NNIS^P h-> 3i^. This
emphasizes that mathematically the NN is just a vector field. We use
the notation NN when the role of the NN as a function is being
emphasized; of course, NN is a computational transformation
realized only by computer Implementation. And we use (unbold) NN
when talking about a NN generally, or in the engineering design

CLASSIFIER DESIGN 381

sense, as an input - output system. In this regard NN Is exactly like
the classifiers based on decision trees and fuzzy systems discussed
in section 4.6. Here, NN will be a feature selector, clustering
algorithm or classifier function depending on the discussion at
hand. When it Is a classifier, we use our standard notation D»„,.

NN

One touted advantage of neural networks Is that their parameters
can be "learned" from labeled training data. But this is true of every
classifier - that's what supervised learning means. The real power of
NNs lies In the way they build up functional approximations to lO
mappings that underlie the training data. ICreinovIch et al. (1998)
provide a very nice discussion of this aspect of NNs In the context of
universal approximation theory. Parametric learning by a NN Is
based on an update junction or strategy that converts the current set
of weights W{ at the t-th training cycle or Iteration Into a new or
updated set Wj+i. The action of the update or learning rule can be
written symbolically as Wj+j =U{Wt). Updating Is done during
training whenever the NN system output(s) do not correspond well
enough to the desired labeled outputs. For pattern recognition, this
usually means that the NN is operating as a classifier.

Input Layer Hidden Layer(s) Output
Layer

Figure 4.72 The FF network with node functions <I> = F o f

There are many principles that guide the choice of a learning
strategy. Different learning rules are chosen to match a specific
network architecture; most update rules attempt to optimize some
function of the observed error(s) between the desired and observed
outputs of the network. By far the most popular and pervasive NN to

382 FUZZY PATTERN RECOGNITION

date is the feed forward (FF) network, (Zurada, 1992, Haykin, 1994).
Figure 4 .72 shows a typical representa t ion for a FF network. The
main difference between this s t ruc ture and the one shown in Figure
4.71 is in the topology of the interconnections between the nodes. In
a FF network there are no self loops or feedback connections; da ta a t
each s tage of the network in Figure 4.72 can only flow forward (to
t he n e x t layer) from left to r ight . The s t a n d a r d a lgor i thm for
upda t ing in the FF case is the back-propagation technique invented
by Werbos (1974). Given the central importance of back-propagation
in t he t ra in ing of FF networks , these ne tworks are referred to a s
feed-forward back-propagation (FFBP) networks . They are usua l ly
called multi-layer perceptrons (MLP). Many au thors , including u s ,
reserve the t e rm MLP for the special case of the FFBP network in
which every node function is (i>^^ = ^ L ° ^H •

In t h e BP m e t h o d , t h e e r ro r funct ion for a given 10 pa i r

(x e 9^P, y e 91*̂) is the s u m of squared errors between the desired and

II 1 1 ^
target outputs , E(x, W) = NN(x, W) - y . E is regarded as a function
of t he c u r r e n t network weight vector, a n d differentiation of th i s
function of W^ leads to necessary conditions for adjus tments of the
weights by gradient descent. The inpu t is fed forward, and the error
it c a u s e s p roduces u p d a t e s to the cu r r en t weights t h a t are t h e n
propagated backwards th rough the network layer by layer - hence,
FFBP. We will not repeat the formulae for th is well known procedure
here . If a specific need ar ises in connect ion with fuzzification of
some p a r t of the FFBP design, we will d i scuss w h a t s eems mos t
appropria te a t t ha t junc tu re .

It is impossible for u s to es t imate how m a n y fuzzy var ian t s of the
FFBP s t r u c t u r e shown in Figure 4 .72 have been d iscussed in the
l i terature of so-called "fuzzy-neuro (aka neuro-fuzzy)" sys tems in the
las t decade . Suffice it to say t h a t the re are leas t a half dozen
textbooks whose titles suggest t ha t they deal exclusively with this:
for example, Newal Fuzzy Systems (Lin a n d Lee, 1996),Weuro-Fuzzy
and Soft Computing (Jang et al., 1997) and Neuro-Fuzzy Controllers
(Godjevac, 1997). In order to appreciate some of the extensions of the
NN to be developed subsequent ly , we presen t in Example 4 .21 the
r e s u l t s of u s i n g the s t a n d a r d FFBP ne twork to design a cr isp
classifier with the Iris data .

Example 4 .21 The Iris data is labeled, and can be used to estimate the
pa ramete r s of a FF network in many ways. Here we show the resul ts
of t ra in ing the s ame MLP network with three different t raining and
tes t ing s t ra teg ies . Specifically, we t ra in t he ne twork shown in
F igure 4 . 7 2 wi th n o d e func t ions ^ L H ~ ^ L ° ^H ^ ^ i ^ S b a c k -
propagat ion with these three protocols:

CLASSIFIER DESIGN 383

A. X^̂ = X = Iris, leading to the resubstitution error estimate

E„ (X|X).
NN

B. X = the union of the first 25 points from each of the three labeled
classes; X = the union of the remaining 25 points from each class,
leading to the estimate E„ (X | X). Cross validation was not done
for this example.

C. Finally, we illustrate the leave one out procedure by building, for
k = 1,...150, the classifiers {D^Nk' ^^ constructing the training and
test sets X|̂ j^ = X - {Xĵ } and X^̂ j^ = {Xĵ }. From these we can compute

150

an average error rate, E_ (X J X ,)= S E„ (X, . |X, ^) / 150 .
°NN '^ ^ k t l °NN,k te.kl t r . k ^ '

The MLP we used for all three experiments was a simple one: it had
two hidden layers with 6 nodes each and an output layer with c = 3
nodes. Since the Iris data is 4 dimensional, this gives a 4:6:6:3
configuration. The 15 computing nodes all use the linear integrator
function f and the logistic function F . For simplicity we fixed X = I

H L
and p = 0 for the logistic functions at all 15 nodes. Consequently, the
only parameters that must be estimated are the weight vectors {w}
and bias constants {a.} of the 15 hyperplanes at the computing
nodes. That is, the cardinality of the weight vector for this structure
is |W| = (4 + 1) • 6 + (6 + 1) • 6 + (6 +1) • 3 = 93 parameters. Do we have
enough data to expect good generalization with this structure? Since
(4.100) and (4.101) are for single (hidden) layer networks, they don't
apply to our topology. The only guideline we have is the rule of
thumb 10 • |W| < n^ • p. Solving this inequality for n with the values

p = 4 and |W| = 93 gives n̂ ^ > 10 • 93 / 4 = 232.5. Since n = 150 for
Iris, no scheme for training and testing this network can satisfy this
rule of thumb. Let's see how good the rule is.

Each of the networks for experiments A and B was initialized
randomly. Training was terminated when the MSE on the training
data was less than 0.01 for 10 consecutive passes (epochs) through it,
or at the maximum specified limit of 200,000 epochs. For
experiment C, the network was initialized randomly at k = 1, 51 and
101, i.e., at the start of each new class, and the weights from the
training runs at these three k's were retained and used to initialize
the remaining 49 training sessions for points in that class. Without
this "jump start" for better initialization, some of the experiment C
runs ran to the iteration limit of 200,000 passes without satisfying
the (successive Iterates) termination criterion. In other words,

384 FUZZY PATTERN RECOGNITION

carrying the final weights from the previous run forward to
initialize the next training session in the leave one out tests helped
network training a lot.

All networks used learning rate and momentum factors of 0.5. The
learning rate refers here to a multiplier in the update rule for the
weights, and has exactly the same meaning as the term did in earlier
sections. We have not discussed momentum, since there has been
little work that we know of on "fuzzy momentum". Momentum is a
term that is added to the update rule for the network weights, and it
is often able to accelerate back-propagation learning towards
termination. See Section 4.5 in Zurada (1993) for an excellent
discussion of this topic.

Experiments A and B aren't very exciting, and are easy to report.
Training method A with n = 1 5 0 led to a MLP classifier with a
resubstitution error rate of zero, and training method B with n = 75

" tr
terminated at a network with 1 testing error. Thus given all
(experiment A) or half (experiment B) of the Iris data for training, it
is n o t h a r d to find a n e t w o r k for w h i c h
E„ (X| X) = 0; E„ (X. IX,) = 1. Don't forget that the resubstitution
estimate is usually optimistically biased as you evaluate this result.

Experiment C is more interesting, for here we use n = 149 of the 150
points in Iris for training (which is almost the same training data as
resubstitution uses), and test the resultant classifier on the point
held out (which is not resubstitution). In our set of 150 trials using
this scheme, the classifier built with X^^^ = X-{Xj^} and tested on

•^tek ~ ^^k^ gave the wrong classification for k = 2, 42 (called class
21 were class 1), 57 (called class l | w a s class 2) and 71 (called
c l a s s3 |was class 1). Thus, for this network configuration,
Ej, ({x,}|X-{x.}) = 4/150 = 2.66o/o.

NN,k

How did our rule of thumb about the number of parameters versus
the size of the training data do? Well, this rule of thumb is not tied to
a specific error rate like (4.100) is, so we cannot say that it failed
(except in case A - no one would argue that a perfect score is
undesirable). On the other hand, the worst case, experiment C,
produced an average error rate of 2.66% with less training data than
the rule of thumb recommends. So? Take rules of thumb for what
they are - general guidelines or heuristics that work sometimes, for
some algorithms, and some data sets.

The errors committed in experiment C are particularly interesting
in that class 1 (Sestosa) is usually the subspecies that is handled
perfectly by classifiers, but here, the leave one out networks
committed two errors on class one test points, while class 3

CLASSIFIER DESIGN 385

(Virginica) here showed no errors. This suggests that the decision
functions built by the network are more complex than the simpler
ones we have studied so far. The leave one out error rate is really a
little misleading because it is not for j u s t one classifier;
nonetheless, it is often taken as a "representative" best (and most
pessimistic) estimate of the error rate that can be expected using a
similar design on the same type of data. We also remind you that
these results depend on the initialization used, and for a different
set of starting points, something entirely different could happen.

Recalling Table 4.9, we know that the experiment C error rate
(2.66%) can be achieved with c = 7 LVQ prototypes. However, the
error rate shown in Table 4.9 is the resubstitution error rate on all
150 points, and experiment A in this example shows that the FFBP
NN easily achieves 0% errors in the resubstitution case. Since the
leave one out error rate is the most pessimistic one we can compute,
and here we have 2.66% for it, we are tempted to conclude that a
simple MLP of the type represented by the 152 classifiers designed in
this example is, for this data set at least, more likely to produce
lower generalization errors than the nearest multiple prototype
classifiers in Section 4.3.

Finally, we comment on the training time it took for each of the 150
leave one out classifiers designed in experiment C. In 57 of the 150
designs, termination was achieved in less than 1000 passes through
the training data, which took about 5 seconds on a SUN
workstation. This was the case for all 50 points in class 3. At the
other end of the scale, the 32nd point in class 1 took more than
46,000 passes through the 149 training data to satisfy the
termination criterion. This sounds like a lot, but this run only used
about 4 minutes of CPU time. Moreover, once trained, NN classifiers
are fast, and (for small data sets anjrway) we think some type of
network design should always be tried when you start building
classifiers with labeled data.

To show the versatility of the FFBP network, we give another
example of its use for an entirely different pattern recognition
problem - feature extraction. This idea had its origins in the work of
Cottrell et al. (1989). Many papers have been written that use the
basic idea illustrated in Example 4.22.

Example 4.22 We seek a 2-dimensional data set extracted from the
Iris data by a FF design. Figure 4.73 shows the architecture of the
network to be used. There are 4 input nodes, one hidden layer with 2
computing nodes that use ^^^^ = F̂ ^ <= f j ^ , and the output layer has 4
nodes, thus making a 4:2:4 configuration. The wrinkle here is that
the target outputs for this application are the input vectors. That is,

386 FUZZY PATTERN RECOGNITION

we want the NN to function like the identity map, so
NN(Xĵ) = Xĵ Vk. The idea that underlies this design is that if NN
does function as the identity, then the data flowing through every
layer of the network will, by and large, possess the same
"information" as the inputs themselves. And in particular, the

vectors y^ = (yik'y2k^^ ^ ^ ^^^* ^^^ copied from the output of the
hidden layer should be a good pair of extracted features in this
loosely defined sense.

Figure 4.73 A MLP approach to feature extraction from the Iris data

As shown in Figure 4.73, the basic structure of the six computing
nodes is that each used a linear integrator and logistic transfer
function. We use bipolar logistic transfer functions in this example
to demonstrate that the only difference between these and their
unipolar relatives is a matter of scaling. Since the range of the Iris
data is [0.1, 7.9], each logistic function was scaled by 10, enabling the
output of each node to range over the interval [-10, 10). Thus, the
specific form of each node function is lOOĵ ^^^.

As in Example 4.21, the parameters of all 6 bipolar logistic
functions were fixed at ^ = 1, p = 0, so the parameters acquired during
learning in this example are again the weight vectors [w} and bias
constants [a} of the 6 hyperplanes at the computing nodes. Now

there are only |W| = (4 +1) • 2 + (2 + 1) • 4 = 22 network parameters, so
n > 10 • 2 2 / 4 = 55. Our rule of thumb says we can use Iris, or any
subset of it with at least 55 samples, for training. Moreover, this
network satisfies the requirements laid out for equations (4.100)
and (4.101). With M = 2 and |W| = 22, we can either pick n ^ a n d

CLASSIFIER DESIGN 387

compute E^[X^JX^), or fix EplX^^IX^^) at some desired level, and
solve (4.100) for n . Suppose we insist that the generalization error
in (4.100) be less than 10%, Ep(X^JXj^) = 0.1. Then with (4.100) we
compute

'°''W(^ 45,489 » 1 5 0 ,
.1 J °\.l'

so by (4.100) it will impossible to attain a 10% test error. Indeed,
using (4.100) with 100% test errors leads to

740 \ , „ . ,
" - ' ' 3,078 > 150. n<T}

These results suggest that we can't hope for the success we reported in
Example 4.21 for this problem. But to be fair to the error bounds, we
point out that the bound in (4.100) also assumes that during training
we can obtain a resubstitution rate on the training data that is no
more than half of the testing rate, and we did not conduct this
experiment.

All 150 points in Iris were fed sequentially through this network
during training to acquire the network weight vector. Training was
terminated when the overall sum of squared errors between the
inpu t s and ou tpu t s of the network was less t han 17
misclassifications of the hardened outputs. At termination, the
resubstitution MSE was 16.971. By (4.100), this means the best
generalization error we could expect is about 34%. Putting 0.34 into
the denominator of (4.100) gives n = 10,845. Hmmmmm

Returning to the problem at hand, after termination, each point in X
= Iris is fed through the network one more time, generating
Y = {yj y^g^} c 9^^, a labeled set of 2D vectors that can be used to
represent the 4D Iris data. Figure 4.74 is a scatter plot of the 150
points in Y found by this technique. Each y automatically acquires
the same label as x in the original data set, so the class labels of the
50 points in each of the three clusters can be illustrated by different
symbols.

The vertical lines y = 2 and y = -1.03 represent a linear classifier
that separates the extracted data into three groups. It is easy to see
that the 4 " x 's" to the left of the vertical line y = -1.03 are the only
resubstitution errors committed by this classifier. Thus, the two
dimensional data set Y extracted by the FFBP network provides a
substantial improvement over the resubstitution error rate that can

388 FUZZY PATTERN RECOGNITION

be achieved by a set of hyperplanes in the original four dimensional
data set X. In fact, Figure 4.74 shows that only one feature, y
needed to achieve this error rate.

1' IS

y2

^ •

A. Class 1 = Sestosa
X Class 2 = Versicolor
I Class 3 = Virginica

6 —

• | | ' l

•I m i^B

•
• X

X X

X
X X X

x X X
^ X

X

5

^ X) ^ X

V

xc

^^

^

M ^ %

A
AA

A

-1.03

Figure 4.74 A NN approach to feature extraction from the Iris data

Before you get really excited about the NN method, we want to show
you the result of feature extraction on Iris using the standard linear
transformation known as principal components analysis (PCA). We
aren't going to discuss this topic; instead you are referred to the

CLASSIFIER DESIGN 389

wonderfully readable treatment of PCA in Johnson and Wichern
(1992). Figure 4.75 shows the projection of Iris onto its first two
principal components. Comparing this view to Figure 4.74 shows
that PCA and the NN in this example extract very similar features.
We are again able to construct a pair of hyperplanes in Figure 4.75,
by eye, that commit either 3 or 4 resubstitution errors - depending
on how good your eye is - on the extracted data (if you make the
calculations, it turns out to be 4 errors).

PC,22

PC, 12

Figure 4.75 Feature extraction from Iris with principal components

390 FUZZY PATTERN RECOGNITION

And finally, let's have a closer look at Ws the data scatterplotted
in Figure 4.12. Figure 4.76 is another plot of the same data, now
shown with the extra information that accrues from having crisp
class labels. This also depicts a feature extraction method - the
special case called orthogonal projection illustrated in Figure 2.22.
And again, it's easy to construct a piecewise linear classifier with
the pair of hyperplanes in Figure 4.76 that commits only 3 or 4
resubstitution errors.

• fli

^ Class i = Sestosa
X Class 2 = Versicolor
I Class 3 = Virginica

Figure 4.76 Feature extraction from Iris
by orthogonal projection (selection) to get Iris

Given Figure 4.76, you must be wondering - why bother with these
complicated classifier designs when I can just project the data into

CLASSIFIER DESIGN 391

5̂ and eyeball a pretty good linear classifier onto its scatterplot?
Well, if you can do it this way, you should do it this way - as Einstein
once said "simple is best - but only simple enough to work". But the
reason it works here is because Iris is nice to us. For one thing, p = 4,
so there aren't a lot of pairs of features to look at. But suppose you
have p = 100 features. Then there will be 4,950 pairs of features to
scatterplot, so selection by visual inspection becomes pretty tough.
We think you should always try simple tricks like this, but don't
count on them too much. After all, you don't expect the hare to void
turd the size of elephant dung.

The MLP can also be used to select (instead of extract, as in Example
4.22} a good subset of features. For example, Pal and Chintalpudi
(1997) made a simple modification of the conventional MLP for
feature selection. Each input layer node becomes a computing node
by associating it with a multiplier which lies between 0 and 1. If the
multiplier is zero then that feature does not pass into the network,
while if the multiplier is 1 then the associated feature passes into
the network unat tenuated . For intermediate values of the
multiplier, the feature is partially attenuated. Pal and Chintalpudi
realized the multiplier using a multiplier function with a tunable
parameter.

Using our terminology, let f(x) = x be the identity function, let
G^:9^ i-> [0,1] be a monotonic, non-decreasing real-valued function
parametrized in the real number X (e.g., the unipolar sigmoid), and
define F(y) = y • G^(y). Thus the effect of 0(x) = F o f(x) = y • G^(y) is

to multiply X by a multiplier function g with a tunable parameter X,
where G,(y) is in [0,1]. If gjy) of an input node is 1, then the
corresponding feature is important and passed unattenuated into
the net; if G,^)= 0, then that feature is irrelevant or harmful and is

A.

not allowed to enter the network. The Type I fuzzy neuron depicted
in the lower half of Figure 4.77 is very similar to the input node
structure proposed by Pal and Chlntlapudl, but the Pal and
Chintlapudi neuron does not necessarily produce outputs that lie in
the interval [0, 1].

In Pal and Chintlapudi the non-input layers are exactly like those
in the conventional MLP. The multiplier parameters A,̂ i = 1,..., p, are
learned along with the connection weights using the usual back-
propagation algorithm. The training starts with all multiplier
functions set to almost zero, i.e. with almost 100% attenuation.
Thus, at the beginning of training, practically none of the features
are allowed to pass into the network. As the network trains, it
selectively allows only some important features to be active by
adjusting their multiplier values as dictated by the gradient descent.

392 FUZZY PATTERN RECOGNITION

The training can be stopped when the network has classified
satisfactorily i.e., when the training error rate has gone down to a
tolerable value. Features with high values of the attenuation factor
(i.e., small multipliers) may be eliminated from the feature space.

Ghosh et al. (1993) discuss the conversion of a multilayer perceptron
to an unsupervised network by the introduction of concepts from
fuzzy theory. This fuzzy neural network can extract objects in a
noisy environment in a completely unsupervised manner by
minimizing a measure of fuzziness computed on the output of the
network.

Yan (1993) presents a scheme for extracting multiple prototypes
from crisply labeled training data, X^̂ = {Xi,...,x„] c 9?^, using a 3
layer perceptron that is very similar in spirit to the method
presented in Example 4.22. Yan's objective is to reduce the size of Xjj.

through the transformation V^ = X^^ = fi(X^), exactly as depicted in

Figure 4.2. Yan uses a p+2 : c: c multilayered perceptron as the
function fi. We remind you that in the setting of multiple prototypes
in Definition 4.2, c is the number of classes in X , c < c. Yan's desire

tr

is find a set of multiple prototypes, called V in Definition 4.2, for
which c « n, and for which the resubstitution error of the 1-nmp
classifier D„ „ „ in equation (4.7) is zero (we have also called this
consistency). While consistency is a stated objective in Yan (1993),
no guarantee is claimed; the method is consistent for one of the
numerical examples given, and may be for the second one too, but
this is not stated.

Did you notice that Yan's MLP structure was p+2 : c: c? In this
interesting paper Yan increases the dimension of the input space by

II l|2 /

2, adding the number \\xy.\\ /2 as the p+1- st coordinate of each x, ,
and the constant 1 as its p+2-nd coordinate. Yan argues that the
number \\xy^\\ /2 is chosen so that this MLP - without sigmoids in the
computing nodes and before training - can be regarded as an
approximation to the 1-nn rule in equation (4.38).

The c output nodes are completely fixed, using a linear integrator
function that has user-defined weight vectors depending on just two
parameters of opposite signs. The activation function in each output
node is the unipolar sigmoid F in (4.97) with ^ = 1, P = 0. Thus, there
is no adjustment in the output layer during training.

The desired prototypes in Yan's scheme are the weight vectors (in
9̂ P) of the hidden layer nodes, each of which uses the stemdard node

CLASSIFIER DESIGN 393

function <J>LH with fixed sigmoidal parameters as in the output
layer. Backpropagation training adjusts the initial prototypes
(which are specified in the paper by a third user-defined parameter),
and at the end of training, the n points in X that have c classes are
replaced by the c point-prototypes in the vector V At this state Yan
has the basic equipment needed to build the 1-nmp classifier
D J., needing only to pick a distance measure (Euclidean in the

• c c'
paper). Yan calls the prototypes obtained by this MLP "optimized
prototypes".

Two numerical examples are given in Yan (1993), both for 2D data.
The first example is an "XOR-like" data set of 162 points in the plane
that form (roughly) four clusters in the shape of an "X", but the
clusters have only c = 2 crisp labels. These 162 labeled data points
are replaced by c = 4 2D "optimized prototypes" with the result that,
when used in the 1-nmp rule in (4.7), they give zero resubstitution
error. The second example uses 500 labeled (image) data that are
distorted digits for training, and another 500 data for testing. Yan
states that the 1-nn rule achieves 99% accuracy using all 500
training data to label the test data, and that 10 optimized prototypes
obtained with his method achieve a testing success of 99.4%,
slightly better than the full 1-nn rule, using only 2% (10/500) as
many points. We will return to this interesting method in Section
4.8.

The objective of Section 4.7.B has been to introduce the terminology
associated with the most popular NN models. The remainder of this
chapter is devoted to specific ways that one or more components of a
NN model can be altered to accommodate and manipulate fuzziness.
Any and all of the modifications we describe can justifiably be
called fuzzy neural networks. As we mentioned earlier, this has been
done in so many ways that it is impossible for us to lead you through
the forest; the best we can hope for is to give you a glimpse at some of
the trees.

C. Fuzzy Neurons

Example 4.21 (and a metric ton of papers over the last 15 years)
demonstrate how good plain old FFBP and especially MLP nets can
be in pattern recognition, and in particular, for classifier design.
Fuzzy sets were created to deal with linguistic information and
provide an interface between linguistic and numeric descriptions.
So, we hope you see in what follows that two advantages can be
realized by networks that have Type I fuzzy neurons as defined in
equation (4.102). The most important contribution of adding
fuzziness to a NN structure is that, after training, the nodes of a
fuzzy neural network can admit a linguistic interpretation, i.e.,
some insight can be gained into how the features combine to make a

394 FUZZY PATTERN RECOGNITION

class decision. The opaqueness of FF nets has always been an issue;
it's hard to trust a "black box". The second advantage is that for
many types of data, we have found that networks of fuzzy neurons
train in many fewer epochs (although the calculations done during
training may increase).

Keller and Hunt (1985) first introduced fuzzy sets into the training of
a single perceptron (don't we just love to cite ourselves?). We have not
discussed the perceptron, nor do we intend to, for it is arguably the
most well known linear classifier that had its roots in a desire to
mimic the BNN. But for the record, it's a linear classifier that was
originally designed for c = 2 class problems, and the perceptron
learning rule is an iterative procedure that finds estimates of the
parameters of the sought after separating hyperplane. When the
training data have two linearly separable classes, the perceptron
convergence theorem guarantees us that the iterative learning
procedure converges to a separating hyperplane in finitely many
steps (Duda and Hart, 1973).

Keller and Hunt 's fuzzification of the perceptron training rule
generally resulted in faster convergence, also guaranteed a
separating hyperplane if one existed, and produced good results
when the data were not linearly separable - a big problem with the
classical perceptron training algorithm (Rosenblatt, 1957).
Fuzzification of the training rule was extended to MLP nets by Pal
and Mitra (1992). These connections to NN training, along with the
use of neural networks to perform operations like fuzzy inference
will not be pursued here. The reader is referred to Lin and Lee (1996)
for development of these and other relationships between fuzzy sets
and neural networks.

There are many ways to integrate fuzzy sets into a neuron model.
Most of these methods involve changing the integrator and
activation functions of the standard McPitts neuron. Some involve
changing the input data and/or the weight values from real numbers
to fuzzy sets. There are even multiple taxonomies developed to
describe the various possible modifications. Lee and Lee (1970, 1975)
were the first to postulate and describe fuzzy neurons and they
analyzed fuzzy neural networks based on their fuzzy neurons from
the standpoint of fuzzy automata theory. See (Lin and Lee, 1996,
Jang et al., 1997, Godjevac, 1997, Pedrycz et al., 1998) for extensive
details about many forms of fuzzy neurons. Gupta and Rao (1994)
discuss various principles of fuzzlfying neurons and neural
networks; and Buckley and Hayashi (1994) provide a nice summary
of fuzzy neural nets that process fuzzy signals and/or have fuzzy
weights.

We begin with the basic mathematical neuron model in Figure 4.68.
Most of the fuzzy variants of this node change the form of one or
more of the input vector x, the weight vector w , or the

CLASSIFIER DESIGN 395

integrator/activation functions f/F. The fuzzy neuron which seems
to be encountered most often in pattern recognition is called the
Type I neuron. Each input Xj is still a real number, but the weight w^
is "thought of as a fuzzy set whose membership function is m . The
integrator/activation function pair O = F o f is replaced by some
fuzzy aggregation function. That is, the output of a Type I fuzzy
neuron is given by

0^j(x,m^j) = mj(xJ®m2(x2)<8)--®m (x (4.102)

where the vector m.j,j = (m^, • • •, m)^ of input edge membership
functions effectively become the "weights" for the node. The symbol
® in (4.102) is used to represent a fuzzy set connective operator:
union (OR neuron), intersection (AND neuron), generalized mean, or
hybrid. If ® is a T-norm, then the Type I fuzzy neuron simply
computes the LHS activation or firing strength of a fuzzy rule Ui (x)
exactly as in equation (4.72). Figure 4.77 shows you the conceptual
difference between the McPitts and Type I fuzzy neurons.

x„

McPitts Neuron

fxl = =
hH^ ' j^g-M(w,x)+a-P)

m

2 m (x) Type I Fuzzy Neuron

mp(Xp)^'' V—-^ <I).ĵ (x,m.ĵ) = mj(Xj)®---(8)mp(Xp) 5G)t.
Figure 4.77 Standard and Type I fuzzy neurons

We have added graphs of specific membership functions on the input
edges to the Type I fuzzy neuron for illustration, but these functions

396 FUZZY PATTERN RECOGNITION

can be any membership functions. In view of Figure 4.77 you see why
we say that the weights are "thought of as fuzzy sets. They are not
weights at all in the normal neural networks sense, but are used to
convert real inputs into membership values that lie in [0, 1]. Thus,
the use of in.j,j = (m^ . - .m)^ serves to normalize the input features.

These functions allow you to choose membership function shapes
that weight different features and feature values differently, and by
this device you can build a lot of factual as well as heuristic
knowledge about the process generating the data into the model.

From the pattern recognition standpoint the input edge membership
functions also serve as a mechanism to convert raw input features
into degrees of satisfaction of a class h5^othesis. Yamakawa et al.'s
(1992) fuzzy neuron, on the other hand, has a fixed membership
function and also a tunable real weight for every input link to a
neuron.

You can see from Figure 4.77 how a layer of AND neurons can be used
to emulate the LHS of a fuzzy rule base. If the AND layer is followed
by other layers of specialized neurons, like OR neurons and
"weighted averaging" neurons, then you can view the action of a
fuzzy rule base as a special case of fuz^ neural networks. The so-
called adaptive-network-based fuzzy inference system (ANFIS, Jang
et al., 1997) is one such realization, although there are many in the
literature. Our purpose here is not to study all the interconnections
between fuzzy sets and neural-like structures and get thereby be
caught in the jungle of function approximation (see the excellent
article by Dubois et al., 1998, reproduced in part in section 4.10). We
are interested in the value-added to the pattern recognition problem
when standard neurons are replaced by fuzzy neurons. What could
that possibly be?

Using a parametrized operator (such as Yager unions and
intersections, weighted generalized means, etc.), a fuzzy neuron can
be defined which affords the opportunity to be trained (i.e., it's
parameter(s) can be learned). A back-propagation algorithm can be
devised since partial derivatives of these families of operators can
be computed. Krishnapuram and Lee (1988, 1989, 1992a) used these
basic operators in a network that has Type I fuzzy neurons to do
multicriteria decision making. One basic problem is that the
category of neuron must be determined (does the data represent
conjunction, disjunction, or compensatory criteria?). This makes
the training algorithm cumbersome. In what follows, we develop the
use of hybrid fuzzy connectives, first for a single Type I fuzzy
neuron, and then in the next section, for networks of such neurons.

Fuzzy set theoretic connectives, i.e., unions, intersections,
generalized means, and hybrid operators, are useful for aggregating
memberships functions. The resulting membership depends on the
type of aggregation operator used, and this type is dictated by the

CLASSIFIER DESIGN 397

"attitude" that we expect the aggregation connective to have. These
operators are very useful in decision analysis and decision making.
You are referred to (Dubois and Prade, 1985, Mizumoto, 1989, Klir
and Yuan, 1995, Dyckhoff and Pedrycz, 1984) for a more complete
description of fuzzy set connectives, which is what a Type I fuzzy
neuron computes.

First, we need to develop some aggregation operators that can be
used for unions and intersections. The most well known and oldest
of these is the generalized (or weighted) mean of order q (which was
called a q-norm in older mathematics books such as Beckenbach
and Bellman, 1961). This function combines a set of p positive
inputs, say x = (Xj x)^; Xj > 0 V i, with a set of p convex weights,

say w = (Wj,..., w)^, as follows:

M (w,x)= I w x ^
1=1

i / q

.q^iO , (4.103a)

where the weights w = (Wj,..., w)^ satisfy the constraints

w, >OVi; i w =1 . (4.103b)
1=1

M can be interpreted as a node function, say ^^ = F j , o f where

the in tegrator and t ransfer functions are defined as
p

f (x,w)= XW|X^ and F^. {y) = y^^'^. The parameter q may or may

not be part of the unknowns that must be estimated when using
(4.103b) as a fuzzy neuron. When q is unknown, it corresponds in
some very loose sense to the offset parameter a of the linear
integrator function used by the McPitts neuron.

The generalized means of orders - 1 , 1 and 2 are, respectively, the
harmonic, arithmetic and RMS means of x. The weights (w} may be

(usually are) chosen to be equal to (1/p), and then M (1/p, x) <>= ||x|| ,
the Minkowski q-norm in equation (1.11). Here are the most
important properties of M (Beckenbach and Bellman, 1961):

M Q(w,x) = lim{M (w , x) | = n x ^ ' , q ? t O ; (4.103c)

M^(w,x)= limJM (w,x)| = max|x.} ; (4.103d)
q^~> l< lSp

398 FUZZY PATTERN RECOGNITION

M_^(w,x)s lim |M^(w,x)| = niin{xJ ; and (4.103e)

M_(w,x)<Mq(w,x)<M_^(w,x) Vqe9? . (4.103f)

M is called the geometric mean. If we relax the positivity constraint

on the {x.}, and require only that these numbers be non-negative, we

must restrict q to be positive, or define M (w,x) to be 0 for all q < 0.

When the {x.} are all positive, M (w, x), is a non-decreasing

function of q, and when they are all distinct, M (w,x) is strictly

increasing,

p < q = > M (w,x)<Mq(w,x), Xj >OVi . (4.103g)

For the special case when Xj e (0,1] for all i, equations (4.103e) and
(4.103f) show that for all real q, M (w,x) is f
(largest) T-norm and smallest T-conorm of x:
(4.103f) show that for all real q, M (w,x) is pinched in-between the

n 's4-T3(x)<Mq(w,x)<S3(x) -^ u ' s , x̂ e (0,1] Vi. (4.103h)

Because of (4.103h), all of the M (w,x)'s can be interpreted either as
intersections or unions. Here, the weight w associated with x can be
thought of as the relative importance of x. In the context of
aggregation of fuzzy evidence, when we use the mean of order q, we
attempt to choose q to suit the required (or desired) degree of
optimism or pessimism we have about the values concerned. For
example, M (w, x) can be used to approximate behaviors such as "at
least" and "at most" (Krishnapuram and Lee, 1988). When used in
fuzzy aggregation networks (which will be discussed in Section
4.7.D) the generalized mean is useful for determining redundant
features.

In the hybrid connective, high input values are allowed to
compensate for low ones. For example, the additive and
multiplicative y-operators are defined pointwise with respect to a
common argument, respectively, for fuzzy sets whose membership
functions are m. and m„, as weighted arithmetic and geometric

A B ^ °
means of any fuzzy set union and intersection:

m^©^ ffig = (l - y) (m ^ n m 3) - i - y (m ^ u m g) ; and (4.104a)

m ^ ® ^ m g = (m ^ n m 3) ' i - ^ ' (m ^ u m g) T . (4.104b)

CLASSIFIER DESIGN 399

Both of these operators can act as a pure intersections or unions at
the extremes of the parameter y: y = 0 gives the intersection, while y
= 1 gives the union In both connectives. But these families of
connectives also allow the intersection and union to compensate for
each other when 0 < y < 1. Thus y can be regarded as the parameter
that controls the degree of compensation afforded by its connective.
Any union and intersection operator can be used in equations
(4.104); see Dubois and Prade (1985) or Klir and Yuan (1995) for more
extensive discussions on this point.

For pattern recognition applications, the aggregation operators in
(4.103) and (4.104) are often used as integrator functions in Type I
fuzzy neurons. The definitions given below are for individual
membership values of the inputs, which can also be interpreted as
degrees of satisfaction of some criteria for class labeling.

Zimmermann and Zysno (1983) introduced an exponentially
weighted multiplicative hybrid operator that they called the
multiplicative y-model. To write the formula in the style of a Type I
neuron we add the exponential weight vector, w = (Wj---w)^ to
equation (4.102),

O^(X, m„,, w) = (n m, (x.)"' f-y • (1 - n (1 - m. (X.))^' r, with (4.105)

1=1 1=1

IWj = p andO<y< 1 . (4.106)

Here w. is the weight associated with input Xj and is related to the

importance of Xj. The degree of compensation between the union and
intersection parts of the operator is controlled by y e [0,1] . The parts
of this connective are not strictly unions and intersections (the
exponential weights prevent them from being commutative).
However, the factors in (4.105) function in much the same way. The
summation in (4.106) insures that the "union" part is always larger
than the "intersection" part. Krishnapuram and Lee (1988, 1989,
1992a, 1992b) studied some properties of Type 1 neurons that used
the generalized mean, the y-model, and Yager's (1980) union and
intersection operators. These authors developed back-propagation
training algorithms for FFBP networks that used all these neurons.
The additive y-model neuron is defined as:

^jK,m^,w) = {l-y)(hm^{xX') + yil-ha-m^{x^)r') [4.107)

While this y-model incorporates weights that can be estimated with
training methods, increased flexibility can be obtained by replacing

400 FUZZY PATTERN RECOGNITION

the fixed multiplicative union and intersection parts with a
parametrized family of union and intersection operators, for
example, Yager operators (Yager, 1980). These union and
intersection connectives can be inserted directly in equation (4.107).
However, in order to match more closely the way in which a
traditional neural network handles inputs and weights, we can also
incorporate exponential weights into the new operators. Using
(4.104a), the output value of the Type 1 fuzzy neuron takes the form

Oy (x, m^j, w) = (1 - Y) • yi + Y • 72 - where (4.108a)

y i = l - (l A

1

l(l-m,(x,)"''f ^ p e [0, oo) , and (4.108b)

1 A ijm.(xj-.f P e [0, oo) , with (4.108c)

Since the weights (w.) are tunable, such neurons may be realized
using the fuzzy neurons of Yamakawa et al. (1992) with a different
aggregation function than they used. The fuzzy neuron of Yamakawa
et al. has a membership function and a real weight associated with
each input connection. Strictly speaking, neurons with hybrid
operators or the fuzzy neurons of Yamakawa et al. are not of Type 1.
The additive hybrid operator at (4.108) is constructed from a Yager
union and intersection (1980) of the exponentially weighted inputs.

p
In this case, the constraint X w = p (which ensures that the union

i=l

part is always greater than the intersection part in the
multiplicative Y-model of (4.105)) is no longer needed. All that is
required is that each weight is greater than or equal to zero (Keller et
al., 1994b). The mj(Xj) e [0,1] are the inputs or criteria to be
aggregated, w represents the weight associated with the input mj(Xj)
and is related to the importance of that input, and Ye [0,1] controls
the degree of compensation between the union and intersection
parts of the operator.

Additive hybrid Type I fuzzy neurons are studied in Keller and Chen
(1992a, b) and Keller et al. (1994b), and training algorithms similar
to those for multiplicative hybrids are developed in these papers. We
will not include the details of the training algorithms since they are
essentially back-propagation, except with more complicated partial
derivatives. To reduce the complexity of the derivatives, Keller and
Yang (1995) modified the Yager operators to Include multiplicative
instead of exponential weights. As will be seen in the example that

CLASSIFIER DESIGN 401

ends this section and the examples in the next section (as well as
those in Chapter 5), the actual form of the Type I fuzzy neuron does
not have a particularly strong affect on the overall quality of
approximation provided by the associated fuzzy neural network.
The speed of training and semantic interpretation of the nodes and
weights are where the advantage of this type of fuzzification of NNs
really lies.

Hayashi et al. (1991) develop training algorithms for similar hybrid
operators (non weighted inputs, with other choices for the union and
intersection parts), for use in an information retrieval scheme. This
is similar to the use of additive hybrid operators in Keller et al.,
(1994b), which concerns itself with general decision making.

Example 4 .23 This example considers the training of a single
neuron to approximate the lO relationship of an empirical data set
which is conjunctive in nature. The operator and data were studied
in (Thole and Zimmermann, 1979). The first two columns of Table
4.40 show the input data, n = 20 vectors x = [x^,x^)'^ e 9t^, while
column 3 displays the desired output d(x). We call this 10 data X .

Table 4.40 X and outputs of single neuron approximations

^ 1 ^2 d(x) O
^ M

^A <&
^ Y

$ 1
LH

0.00 0.99 0.01 0.02 0.19 0.05 0.00 0.31 0.30
0.91 0.42 0.52 0.59 0.50 0.56 0.57 0.55 0.57
0.22 0.15 0.17 0.10 0.09 0.07 0.18 0.09 0.07
0.55 0.80 0.67 0.61 0.53 0.65 0.66 0.57 0.57
0.02 0.45 0.01 0.06 0.09 0.03 0.04 0.11 0.09
0.50 0.44 0.49 0.38 0.32 0.45 0.47 0.30 0.29
0.69 0.40 0.54 0.46 0.39 0.51 0.51 0.40 0.40
0.85 1.00 1.00 0.91 0.87 0.89 0.92 0.82 0.85
0.42 0.62 0.46 0.43 0.36 0.49 0.51 0.36 0.36
0.32 0.21 0.14 0.17 0.14 0.19 0.25 0.13 0.11
0.48 0.31 0.40 0.30 0.25 0.35 0.38 0.23 0.21
1.00 0.00 0.00 0.03 0.19 0.05 0.00 0.35 0.35
0.63 0.34 0.44 0.39 0.32 0.43 0.44 0.32 0.31
0.28 0.45 0.24 0.26 0.22 0.31 0.35 0.20 0.18
0.13 0.51 0.10 0.17 0.16 0.19 0.21 0.16 0.14
0.33 0.24 0.30 0.18 0.16 0.21 0.28 0.14 0.12
0.97 0.26 0.33 0.48 0.40 0.41 0.40 0.49 0.50
0.48 0.01 0.02 0.05 0.10 0.03 0.02 0.12 0.10
0.55 0.96 0.71 0.69 0.60 0.66 0.70 0.65 0.67
0.13 0.98 0.19 0.31 0.28 0.26 0.23 0.39 0.38
MSE 0.006 0.014 0.004 0.003 0.025 0.025

Epochs 42 73 15 29 1000 5000

402 FUZZY PATTERN RECOGNITION

Three Type I fuzzy neurons, O^ (4.105), O^ (4.107), Oy (4.108), the
generalized mean neuron <t>^ (4.103a), and one standard neuron,

*LH' ^^^^ trained via back-propagation to approximate this data -
that is, weights were sought during training that minimized

20 2
MSE^JX) = l (0 . (z , . *) - d (x ,)) / 2 0 .

k = l

For the generalized mean Oj^ , the initial weights and exponent
q

were w = w = 0.5, q = 1, and as shown in Table 4.40, the final value
of q after learning is q= -1.02. The exponential weights started at 1.0
and the initial value of y was 0.5. The standard McPitts neuron was
trained for 1000 (<E>LĴ) and 5000 (O^̂)̂ epochs. All training runs were
terminated when the maximum change in any parameter was less
than 0.0001.

The outputs upon resubstitution are shown in Table 4.40. The mean
squared errors for all six neurons are similar. The fuzzy neurons (we
include the generalized mean as a fuzzy neuron, and notice that it
enjoyed the smallest MSE of the lot) enjoy a slight advantage in
terms of smaller training errors over either of the McPitts neuron.
We think the real payoff, however, is that the number of epochs
needed to reach the error rates shown was much less for the fuzzy
neurons than the standard ones. Interestingly, the MSE of the
standard neuron stabilized at 0.0248 (rounded to 0.025 in the table)

in about 3500 epochs - that is, the MSE for ^^^ did not decrease in
the last 1500 passes through X . Of course, it is possible that if
training were extended, or if a smaller learning rate, or a different
initialization were used, this level might have decreased.

Table 4.41 Final parameters of the fuzzy Type I neurons

Neuron Y(or q) ^ 1 ^ 2

0.46

0.19

1.04

1.04

0.96

0.96

* Y
0.05 0.65 0.62

o
^

-1.02 0.49 0.51

Table 4.41 displays the final values of the parameters of the Type I
fuzzy neurons. Both O^ and O^ ended vwth a y near zero, indicating
that the overall aggregation was intersection-like. The negative
value for q in the generalized mean indicates that it acts here as an
intersection-like operator (tending slightly towards the min = T
norm and jus t a little to the "left" of the harmonic mean, which is

CLASSIFIER DESIGN 403

realized at q = -1). It is interesting that <I>ĵ remained almost
completely compensatory (y = 0.46). Our ability to interpret the
nature of the neuron (e.g., intersection-like) is sometimes offered as
an additional advantage of using fuzzy neurons. It's hard to draw
much stronger conclusions from this simple example, but it gives
you an idea of one way that fuzziness can be injected into the atomic
unit of a neural network.

D. Fuzzy aggregation networks

When the Type I fuzzy neurons from Section 4.7.C are put into a
network structure, the resultant configuration has been called a
fuzzy aggregation network, or FAN (Krishnapuram and Lee, 1988,
1989, 1992a, 1992b, Keller et al., 1994b, Keller and Chen, 1992a).
These networks have the advantage that, after training, the nodes
can be interpreted as "mini-rules", i.e., there is a higher degree of
transparency in what the network learned than is available in
traditional neural networks. There are many variations of the
material presented in this section - too many to cover in any logical
fashion. What we hope to do instead is show, by example, how you
might develop a fuzzy network approach that is tailored to the
application you are interested in.

With this approach, the decision process can be viewed as a
hierarchical network, where each node in the network "aggregates"
the degree of satisfaction of a particular criterion from the observed
evidence. The inputs to each node are the degrees of satisfaction of
each of the sub-criteria, and the output is the aggregated degree of
satisfaction of the criterion. Such networks can be utilized to
address the object classification problem, and as we shall see in
Chapter 5, they are quite effective for image segmentation, which is
also jus t a pattern recognition problem "in the small".

The classification problem using the fuzzy aggregation net
framework reduces to : (i) determining the structure of the
aggregation network to be used; (ii) determining the nature of the
connectives at each node of the network; and (iii) computing the
input supports (degrees of satisfaction of criteria) based on observed
features (This should "ring-a-bell"! It's a critical step). The structure
of the aggregation network depends on the problem at hand.
Krishnapuram and Lee (1988, 1989, 1992a, 1992b), and Keller et al.
(1994b) developed learning procedures based on back-propagation,
so that both the type of connective at each node, as well as the
parameters associated with the connective, can be learned from
training data. Besides general pattern recognition and decision
making problems, these fuzzy aggregation networks have also been

404 FUZZY PATTERN RECOGNITION

used in network structures for fuzzy logic inference (Keller et al.,
1992, 1994c).

Example 4.24 In this example from Krishnapuram and Lee {1992a,
b), we consider the problem of recognizing two classes based on four
features. The features for each class were generated using a
multivariate Gaussian probability density distribution. The mean
and variance of the first two features in both classes were the same.
The third and fourth features had different means and variances in
each class. A total of 121 sets of features were generated for each
class. Out of these 242 vectors, approximately 90% were used for
training and 10% were used for testing, repeating this process 10
times (10-fold cross validation).

From the training data, the mean and variance of each feature in
each class were calculated. This gives 8 means and 8 variances. The
membership value (or the degree of satisfaction of the criterion) of
each feature in the two classes was calculated assuming a Gaussian
membership function. Specifically, the membership value mj. of Xj
(the ith feature) in class j was given by

my(x,) = exp-"^'-^«'V(2^)^) ^ (4.109)

where p... and a^> are the sample mean and the standard deviation of
the ith feature in the jth class. This gives two membership values for
each feature (one for each class) or a total of 8 membership values
per data vector. These are the input membership functions on each
edge of the input side of the two fuz2y Type I output nodes used in this
example.

Krishnapuram and Lee (1992a) used a single hidden layer
aggregation network with 8 nodes (hi, h2 h8) and 2 fuzzy Type I
output nodes (ol and o2) for this classification problem. This
network is shown in Figure 4.78(a) with inputs at the bottom of the
sketch. Notice that this is not a fully connected network - feature
value x is distributed only to h i and h2, x to h3 and h4, etc. Here

1 •' 2

nodes h 1 and h2 in the hidden layer tell us to what extent feature 1
supports class 1 and class 2, etc. In the training phase, the desired
value of the output nodes o 1 and o2 were chosen to be equal to 1 and 0
respectively, if the data point came from class 1, and they were
chosen to be equal to 0 and 1 respectively, if the data point came
from class 2.

CLASSIFIER DESIGN 405

class 1 class 2

"^11 ™12|™21 ™22 I "^31 ™32i ™41 ™42 ™31 ,™32 I ™41 ' ™42

X j = ^ 2 5 ^ 3 ' •'^4

(a) the original network

X g = X ^

(b) redundancies removed

Figure 4.78 Fuzzy aggregation network for a two class problem

A modified gradient descent algorithm (Krishnapuram and Lee,
1992a, 1992b) was used (to account for the constraints on the
weights) with the multiplicative y-model as the aggregation operator
for training the parameters yand 5 associated with ol and o2. As the
t raining proceeded, the weight values associated with all
connections emanating from the first four nodes of the hidden layer
gradually decreased toward zero. Four other weights also dropped
towards zero, producing the much simpler network shown in Figure
4.78(b). The final parameter values were: for node ol , y = 0.922, w =

4.66, w^ = 3.34; for node o2, y = 0.923, w^ = 4.64, w^ = 3.36. This
indicates that these features were redundant. Krishnapuram and Lee
state that this suggests that the weights associated with x and x
should be reduced relative to other weights in the network.
Constraints on the weights such as the ones in (4.103b) or (4.106) are
crucial if this is to be achieved.

The overall rate of correct classification for ten-fold cross
validation was 92%, the same performance attained by an optimal
Bayes classifier trained with the standard mixture model equations
(which in this case are decoupled and can be computed non-
iteratively because the data have crisp training labels). Thus, this
aggregation scheme performs as well as a Bayesian classifier on
data that match the assumptions for an optimal Bayesian design.

Aggregation networks using Oj^ as the node function in Type 1 fuzzy
neurons have been successfully applied to a variety of problems
(both two-layer and multi-layer) including the determination of

406 FUZZY PATTERN RECOGNITION

creditworthiness, and recognition of tanks, armored personnel
carriers and false alarms with excellent results (Krishnapuram and
Lee, 1989, 1992a, 1992b).

One important aspect of the training procedure for aggregation
networks is that the resulting networks can be interpreted
linguistically, since the final parameters allow us to loosely
characterize each node as a conjunction, disjunction or mean of the
values being aggregated. Based on the parameter values, it is even
possible to say something about the strength of the operation, i.e.,
that the node is a strong or weak conjunction of evidence. For
example, the generalized mean behaves like an intersection (union)
operator for negative (positive) values of q. Similarly, Oj^ and O^
behave like intersection (union) operators for values of y close to 0
(1). Interpretation of these operators can provide insight into the
nature of the decision process, and into the nature of the training
data itself. This could be used to advantage, for example, if the
designer had the information necessary to heuristically tune the
performance of the network. We will see "mini rules" such as these
used for image segmentation in Example 5.10 in Chapter 5.

Another important aspect of these networks is that they can be used
to identify redundant features. Krishnapuram and Lee (1989, 1992a,
1992b) define three kinds of redundant features: (i) uninformative,
(ii) unreliable, and (iii) superfluous. Uninformative features are
those whose values are approximately the same in all feature
vectors. Unreliable features are those whose means and variances
are roughly the same in all classes. And finally, superfluous features
are those that are highly correlated. Features that have the first two
of these three characteristics are not very useful for classifier
design. Features with the third characteristic can increase the
reliability of a classifier, since they all provide similar
information. Krishnapuram and Lee (1989, 1992a, 1992b) use
numerical experiments to support their assertion that aggregation
networks using node functions based on either Oj^ or Oj^ can

q

eliminate uninformative and unreliable features, as indicated by
the training weights for such features tending towards 0. Example
4.24 shows an instance where unreliable features (1 and 2) are
eliminated this way.

Because the weights for Yager-type nodes {<i>y) are exponents of
feature values which lie in the interval [0,1], and because y
determines the "mixing" of union and intersection components for
the desired node, it is possible to detect features which do not
contribute to the decision using Oy as well. The farther away from
1.0 a weight becomes during training, the less impact that feature
has in the combination of values made at the node. When y is greater
than 0.5, the node leans more towards a union, and so, large

CLASSIFIER DESIGN 407

exponents tend to signify unimportant features, while for more
intersection-like nodes (y < 0.5), a small exponent keeps a feature
from contributing to the node output (Keller and Chen, 1992b). This
allows features in the training data to be investigated as to their
potential for contributing to the final aggregation.

We end this section with an example of a two level network showing
how fuzzy aggregation networks can be used to solve recognition (or
decision) problems in high level computer vision. In one sense, this
use is similar to employing neural networks to model fuzzy rules, a
technique investigated by several authors (Wang and Mendel, 1992,
for example). We include this example in Chapter 4 because the
discovered "rules" are object recognition decisions - that is, the
network is performing classification, and hence, is a classifier.

Example 4.25 This example combines some results discussed in
(Krishnapuram and Lee, 1992a) and Keller et al. (1994b). We will
show how the miultiplicative and additive hybrid operators can be
used in a two layer network to simulate a classification problem in
computer vision. The goal is to recognize a stool from an arbitrary
viewpoint. The stool is assumed to have four cylindrical legs and a
top that can be square or circular. However, depending on the
viewpoint, the top may be perceived as a parallelogram or an ellipse.
The strategy here is that a strong fuzzy classification should result if
either group of features (legs or top) is present. The two layer
network shown in Figure 4.79 was used by both (Krishnapuram and
Lee, 1992a) and Keller et al. (1994b).

stool

legl leg2 leg3 leg4 topi top2

Figure 4.79 Aggregation network or "stool recognition" problem

In the first layer, the simulated evidence associated with the four
legs is combined to make a hypothesis at op-2, and the simulated
evidence supporting the shape of the top is combined at op-3. In the
second layer, the hjqjothesis concerning the existence of the stool is

408 FUZZY PATTERN RECOGNITION

made at op-1 by aggregating the evidence coming from op-2 and op-3.
Different aggregation operators such as Oj^, O^ and Oy were used
for op-1, op=2 and op-3 ("op" stands for operator in this example).
The training data set was constructed synthetically using the
following decision strategy.

IF all four legs exist in the current view
OR IF there is one of the two possible types of tops
THEN accept the hypothesis that the object is a stool.

Because of the way the desired outputs were assigned in the S5mthetic
data, it is expected that after training, the connectives for op-1, op-2,
and op-3 will be disjunctive, conjunctive, and disjunctive,
respectively. If we use O^ ,̂ O^ or Oy for the three nodes, the three y
values at the nodes y ,. 7, and y should be large, small, and

'stool 'legs 'top °

large, respectively. A subset of the synthetic input data, vectors
X 6 SR̂ , together with their desired output values d(x), is shown in
Table 4.42. Only a subset of the 48 input/output tuples are shown.
The entire data set, which satisfies the above stipulations, consists
of n = 48 lO pairs which are all symmetric combinations of those
listed in Table 4.42.

Table 4.42 Sample inputs and desired output d(x)

legl leg2 leg3 leg4 t o p i top2 d(x)
m j x j) m2(x2) m3(x3) m4(x4) m^CXg) mg(Xg)

0.10 0.10 0.10 0.10 0.10 0.10 0.01
0.10 0.10 0.10 0.10 0.10 0.90 0.90
0.10 0.10 0.10 0.90 0.10 0.10 0.05
0.10 0.10 0.10 0.90 0.10 0.90 0.93
0.10 0.10 0.90 0.90 0.10 0.10 0.10
0.10 0.10 0.90 0.90 0.10 0.90 0.95
0.10 0.90 0.90 0.90 0.10 0.10 0.20
0.10 0.90 0.90 0.90 0.10 0.90 0.98
0.90 0.90 0.90 0.90 0.10 0.10 0.98
0.90 0.90 0.90 0.90 0.10 0.90 0.99

The results of training (i.e., resubstitution errors incurred after
training) are displayed in Table 4.43. In this example, the
parameters were initialized as follows: y was set to 0.5, all of the w 's
to 1.0 and P (for the Yager connectives) to 2.0. All training runs were
terminated when the maximum change in any parameter was less
than 0.0001.

CLASSIFIER DESIGN 409

Table 4.43 Desired output and results using 5 networks

d(x) * . , * . O,, NN5 NN20
M A Y

0.01 0.18 0.19 0.04 0.004 0.02
0.90 0.90 0.90 0.90 0.90 0.94
0.05 0.18 0.19 0.08 0.03 0.05
0.93 0.93 0.90 0.96 0.93 0.92
0.10 0.19 0.20 0.08 0.07 0.07
0.95 0.90 0.90 0.96 0.96 0.95
0.20 0.26 0.25 0.20 0.27 0.23
0.98 0.91 0.91 0.96 0.97 0.98
0.98 0.74 0.71 0.96 0.79 0.93
0.99 0.97 0.97 0.96 0.99 1.00

Epochs 385 5000 1248 5000 20000
MSE 0.0059 0.0068 0.0004 0.0016 0.0003

For comparison, we trained a standard FFBP network with
configuration 6:3:1 where the parameters of the logistic functions
were fixed at A, =1, P = 0, so the parameters acquired during learning
in this example are the weight vectors {w} and bias constants {a.}.
We trained this network to 5000 and 20000 iterations through the
training data. The outputs of these two networks are in Table 4.43 in
columns labeled "NN5" and "NN20", respectively. The final
parameters for the fuzzy aggregation networks were as follows (the
weights {w} are numbered from left to right):

Network of O., neurons
M

op-1

op-2

op-3

Tstooi=l-0; w^=1.03; W8=0.97

Y,,„ = 0.06; w = 1.00; w = 1.00; w = 1.00;. w = 1.00
"=6® 1 2 3 4

Yt„„= 1.0; w = 1.00; w = 1.00
™P 5 6

Network of O^ neurons

op-1 : Tstooi = 0-99:

op-2: Yiegs = 0-00;

op-3: Ytop = 0.99;

w = 0.985; w = 1.015
7 8

w = 0.999; w = 0.999; w = 1.059; w = 0.944
1 2 3 4

w = 1.000; w = 1.000
5 6

Network of O neurons

op-1: Ystooi = 0.96; (i = 0.41; w = 1.172; w = 1.227
7 8

op-2: Y,.«c = 0.03; B = 1.94; w = 0.98; w = 0.98; w = 0.99; w = 0.97
f Hegs " ^ 1 2 3 4

op-3: Ytop = 0-92; p = 2.24; w = 1.639; w = 1.639

410 FUZZY PATTERN RECOGNITION

As can be seen, for all three fuzzŷ models, op-1 and op-3 turned out to
be primarily union connectives, while op-2 leaned toward
intersection. The results in all cases matched the desired values
pretty well, especially considering the small amount of training
data.

Furukawa and Yamakawa (1998) recently proposed a 4 layer feed
forward fuzzy NN which can extract local features (structural
information) directly from inputs such as handwritten characters
and employ them for recognition. The interesting aspect of this
method is that each layer uses a different type of fuzzy neuron and
each performs a different task. The first layer gets the local features
from the input image. The second layer filters off dispensable
features and integrates the local features obtained by the first layer
into more global features. The third layer compresses the size of the
map of local features. The fourth layer is self-organized by learning
and gives similarities of the input image to all of the learned images
in the output layer.

E. Rule extraction with fuzzy aggregation networks

There are many methods to generate fuzzy (and crisp) rules
automatically from training data through the use of fuzzy network
structures (Wang and Mendel, 1992, Berenji and Khedhar, 1993, Lin
and Lee, 1996; Jang et al., 1997, Lin and Cunningham, 1995). We
discuss a method developed by Krishnapuram and Rhee (1993a)
which uses the FAN from section 4.7.D to induce a set of fuzzy rules
which are used for classification (see Example 5.10). This technique
is fairly general, and can be applied to any classification problem.

Krishnapuram and Rhee (1993a) describe an automatic rule
generation procedure which they used for supervised image
segmentation (i.e., pixel classification). The procedure consists of
the following three stages: estimation of the class membership
functions (m.}, where m..(x.) represents the membership value of
feature i for each class j ; estimation of the membership functions
{ m^^} of the linguistic labels to be used in rule base /€ to describe each
feature i; and generation of the rules in /€ that best describe the
training data.

Suppose there are p features and c classes. In the first stage,
Krishnapuram and Rhee use the smoothed histogram of each feature
in each class to generate the membership functions (m , i=l p;
J=l, . . . ,c}. The smoothed histograms (m } play the role of the
Gaussian membership functions used in Example 4.24 (see (4.109)).
Krishnapuram and Rhee use a network similar to the one in Figure
4.78 to eliminate uninformative and unreliable features. The

CLASSIFIER DESIGN 411

generalized mean was used as the node function in the output nodes.
At the end of this stage the remaining features are used in the rule
generation process.

The first step in the second stage is to generate the membership
functions {m^} for the various linguistic values (such as low,
medium and high) that each non-redundant feature can take. This is
done by first computing a smoothed histogram of a given feature.
Unlike the computation of my, data from all classes are used for this
purpose. This process generates p smoothed histograms. Each of
these histograms is then approximated in terms of a weighted sum
of Gaussians. Krishnapuram and Rhee (1993a) use a polynomial fit
to the histogram to determine the number of peaks in the histogram;
this information is used to establish the number of Gaussian
functions needed, as well as their initial means and covariance
matrices. Then, a gradient descent procedure that minimizes the
error between the smoothed histogram and the weighted sum of
Gaussians is used to fine tune estimates for the means and variances
of the Gaussians.

Each Gaussian function that appears in the weighted sum
approximation of the feature i histogram is treated as the
membership function of a linguistic label associated with feature i.
The membership values for an observed feature value in each of the
labels can be calculated using these membership functions. The
final step is to obtain a compact set of rules with conjunctive and
disjunctive antecedent clauses. To achieve this, Krishnapuram and
Rhee use a three-layer fuzzy aggregation network. They initially
start with an approximate structure for the aggregation network
which is then pruned after training.

Figure 4.80 shows the structure of the approximation network for
generating rules (jump ahead to Example 5.10 if you want to see this
approach used in an actual problem). In the approximation
network, the bottom layer consists of p groups of nodes, with the i-th
group consisting of r nodes, where r is the number of linguistic
values (granularity) defined on the i-th feature. We denote the
linguistic values associated with feature i by (^^^..^(^ . Node k of

group i (which is associated with (,) in the bottom layer uses the

membership function m ^ of the linguistic label (which is a
Gaussian function determined in the previous stage) as the
activation function.

The hidden layer consists of p groups of c nodes each. The jth node in
group i in the bottom layer is connected to the kth node in the
corresponding group in the hidden layer if a small a-cut (e.g., 0.05) of
m^̂ has a non-empty intersection with the support of m . The

412 FUZZY PATTERN RECOGNITION

rationale behind this connection is that if the support of the
membership function of a hnguistic label has no intersection with
m , then it cannot appear in the antecedent clause of a rule that
describes class i (remember that m is the smoothed histogram of
feature i values from class k). This connection process is repeated
for all the groups in the bottom layer.

Class 1 Class j Class M

Feature 1 Feature i Feature p

Top
Layer
Rules

Hidden
Layer
PMF

Clauses

Bottom
Layer
Ling.

Values

Input
Layer

Figure 4.80 An approximation network for generating rules

The kth node of all groups in the hidden layer is connected to the kth
node of the top layer for k = l,...,c. All hidden and top-layer nodes
use a suitable fuzzy aggregation operator such as the generalized
mean or the y-model as the activation function. The i-th feature (x)
is fed to the i-th group of bottom-layer nodes as input. This
completes the construction of the initial fuzzy aggregation network
for this method.

The target values (crisp class labels) in the training data are chosen
to be 1 for the class from which the training data was extracted, and
0 for the remaining classes. The aggregation operators (such as the
generalized mean) used in the hidden and top layers have weights
associated with each of their inputs. Each node in the hidden layer
represents a combination of atomic premise clauses (e.g., feature i is
low and feature j is high). However, the nature of the combination
depends on the aggregation operator (e.g., generalized mean) chosen,
and is not necessarily as in (4.72a).

As the network is trained, the weights corresponding to redundant
antecedent clauses in the hidden layer become insignificant. This

CLASSIFIER DESIGN 413

happens because typically there is a constraint on the weights. Each
node in the top layer in Figure 4.80 represents a combination of
rules for a class. The weights for redundant rules also become
insignificant during training. The network is then pruned by
removing all connections with very low weights (e.g., < 0.0001); the
thresholds chosen in the top layer are usually data dependent.

The resulting network is interpreted as a set of fuzzy decision rules.
The nodes in the hidden and top layers can represent either
conjunctive, disjunctive or compensatory nodes, depending on the
final values of the parameters of the aggregation function. Also, the
connection weights determine the relative importance of the
antecedent clauses in a rule. Since all the rules are determined
simultaneously, an optimal set of rules is obtained, as opposed to
individually optimal rules that would result from a serial process.
In the notation of Section 4.6.D, the final network represents the
rule base /?. Another attractive feature of this method is that it
automatically identifies redundant features in the first stage. For
example, this method eliminates the first two features of Iris (Rhee,
1993, Krishnapuram and Rhee, 1993a), leaving the third and fourth
features (scatterplotted in Figure 4.12) to support the classifier. The
rules discovered for Iris look like this:

R : IF feature 3 is low OR feature 4 is low
THEN class = Sestosa

R : IF feature 3 is med OR feature 4 is med
2

THEN class = Versicolor

R : IF feature 3 is high OR feature 4 is high
THEN class = Virginica

The structure Just described, like ANFIS (Jang et al., 1997) and many
others, is applicable for many types of data and problems - both in
classifier design and elsewhere. Example 5.10 in chapter 5
illustrates this approach to learn a small set of fuzzy rules for an
image segmentation problem.

4.8 Adaptive resonance models

Competitive learning models (besides the ones already discussed in
Section 4.3) have been studied by many researchers (Grossberg,
1976a, 1976b, Rumelhart and McClelland, 1982, Carpenter and
Grossberg, 1987a, Rumelhart and Zipser, 1985). This section is about
Carpenter and Grossberg's adaptive resonance theory (ART) and
some fuzzy relatives of it.

The original model was called ARTl by Grossberg (1976a, b). There
are some interesting parallels between the evolution of crisp

414 FUZZY PATTERN RECOGNITION

decision trees and ARTl. Like Quinlan's ID3 (Section 4.6), ARTl was
developed in a somewhat broader context than clustering or
classifier design; Quinlan was interested in rule extraction for
semantic explanations of rule-based decisions, while Grossberg
wanted to mimic rudimentary connections believed to operate in
our biological neural networks. When people began to use these two
crisp models strictly for pattern recognition purposes, both were
found deficient because both were created for a special type of data
(IDS for any discretely valued inputs, and ARTl for binary inputs,
which are also discretely valued, with only two values) that are
relatively rare in everyday pattern recognition. So, both developers
generalized their original designs to accommodate continuously
valued features : Quinlan's 1983 1D3 was imbedded in his 1993 C4.5;
while Grossberg's 1976 ARTl was generalized to ART2 in Carpenter
and Grossberg (1987b).

ARTl and many of its unsupervised relatives are nothing more than
sequential point prototype generators, so a logical place for this
subsection from the pattern recognition point of view would be
somewhere in Section 4.3. On the other hand, unlike some of the CL
models discussed in that section, many investigators besides
Grossberg have invested substantial effort in connecting ART to
(presumed) elements of the biological neural network, so we decided
to defer this section until after our brief discussion about the BNN in
case this aspect of ART interests you. Our aim here is to make sure
that you understand the basic structure of ARTl from the pattern
recognition viewpoint. Following Moore (1988), we separate the
algorithmic component of ARTl from its architectural design, and
present only the algorithmic aspects of ARTl, Grossberg's (1976a, b)
original model.

A. The ARTl algorithm

Recall from Section 4.3.A tha t any c point prototypes
V = (Vi,..., Vp} c 9tP can be substituted into (2.6a), and the result is
the crisp partition UnpCV), the nearest prototype partition of X. As
pointed out in Section 4.3.A, subsequently applying (2.6b) to the
rows of U(V) results in the sample means, V = V, so it is not
incorrect to regard the prototypes V = V as a representation of
Unp(V). Much of the ART literature uses this alternate way to
describe crisp clusters in terms of their nearest prototypes, so we
will follow this convention in this section.

Most competitive learning models suffer from a problem we can
loosely call "unstable Icciming". Grossberg (1976b) proved a theorem
about the competitive learning model described in Grossberg (1976a)
which essentially states that if not too many input vectors are
presented to the algorithm relative to the number of categories, or if

CLASSIFIER DESIGN 415

the inputs do not form too many clusters, then the prototype that
represents each class eventually stabilizes. This competitive
learning model was also analyzed by Rumelhart and Zipser (1985),
whose simulations confirmed Grossberg's theorem. However, non-
frivolous counterexamples demonstrate that such competitive
learning models cannot learn temporally stable prototypes in
response to arbitrary inputs (Grossberg, 1987). For these
counterexamples, system response to the same input data on
successive presentations can be different due to prototj^e updates
that take place in response to intervening data (Shih et al., 1992,
Baraldi and Alpaydn, 1998). Consequently, the response to a given
input pattern might never stabilize. Carpenter and Grossberg
(1987a, 1988b) demonstrated several environments in which
periodic presentation of Just four inputs can cause instability.

Moore (1988) characterizes the stability of CL models in terms of two
properties she calls stable and stable . Specifically, a CL model is
stable in case no prototype returns to a previous position during
training; and it is stable when only finitely many prototypes are
created during learning. The assumption for these two definitions is
that there is an infinite supply of data. Stable is a property
possessed by individual prototj^DCs, while stable is a property of the
entire prototype set V.

Stability is one of two problems that Grossberg's ARTl was designed
to address. The second problem was called plasticity by Grossberg.
Plasticity refers to the ability of a CL model to learn new inputs after
it has stabilized on previous training data. To understand both the
problem and Grossberg's method of fixing it with ARTl, suppose that
a CL learning model has been running for a while, and its prototypes
are fairly stable. Most of the CL models we have discussed so far
(Section 4.3) use an update equation with the general form of
equation (4.11), rewritten here to save you the trouble of looking it
up:

The plasticity problem is related to the learning rate distribution in
(4.11) - that is, the numbers {ajkt}- In almost every case we know of,
the standard method of achieving stability under (4.11) is to begin
with values for the {tti^t} close to, but less than, 1; and then to
decrease the {aj .̂t} towards zero as time (iteration number t)
increases. The plasticity problem arises because smaller learning
rates may disable the model's ability to respond appropriately to
new inputs that have not been seen by the algorithm until the {ajk tJ
are small. To understand this, we assume that VQÎ is any prototype

416 FUZZY PATTERN RECOGNITION

that will be updated with (4.11) for the current input x, and rewrite
(4.11) in a more suggestive form:

Av = (v„ew - Void) = o.[x - v^id) (4. I D

Figure 4.81 The update geometiy of CL models that use (4.11)

Figure 4.81 illustrates the update geometry of (4.11'), and hence, of
all the algorithms in Section 4.3 that use (4.11) to update prototypes.
The vector Av takes its general direction from the difference vector
(x - VQIJ); its magnitude depends on the value of a; and the sign of a
determines whether the update moves v^^^ towards x (attraction, the
region "above" vector v^y^) or away from x (repulsion, the region
"below" the vector Voy).

When a = 1, v^^^ = x; when a = 0, Vj,ew = Void, i.e., the prototype is
unchanged; and most importantly for plasticity, when a is positive
but close to 0, Av will be very small. Under these circumstances
algorithms that use (4.11) to update their prototypes don't have
much choice - they become stable as a^^^ -^ 0 because Av is so small
that they can take only tiny steps. If the learning rates actually get
to zero, the updates stop, and the prototypes are completely stable.
Now suppose that a^^ « 0, and that a new input arrives in the
system that has not participated in the update scheme. The impact
of this point on the locations of the {Vj} may be insignificant, even
though the new input itself is importantly related to the structure of

CLASSIFIER DESIGN 417

the overall input data. This is the plasticity problem, and it tugs CL
models in the opposite direction from stability.

ARTl is motivated by this so-called stability-plasticity dilemma of
competitive learning (Carpenter and Grossberg, 1987a). Apparently,
the best situation would be if the CL system could switch between the
plastic and stable states and vice-versa as the need arose. Such
characteristics can be built into a network by adding a feedback
mechanism between the competitive layer and the input layer. This
philosophy has resulted into two well known prototype generation
architectures, ARTl (permits only binary inputs) and AKTZ (suitable
for analog / gray level inputs). In ART-type networks outputs of the
processing elements reverberate back and forth between layers,
resulting in a stable oscillation when proper prototypes develop - a
kind of resonance - hence the name ART. Study of the structure that
achieves this takes us into the architectural details of ART
networks, which is not covered in this book.. We will follow Moore
(1988) by presenting a simple description of ARTl in the language of
Section 4.3.

ARTl assumes that inputs are binary valued p-vectors, that is, input
data have the form x = (Xj ^)^ e {0,1}P. While the general case is
to assume an infinite input stream, we will always deal with finite
data sets X = {xi,...,Xn} c (0,Ip, |X| = n . ARTl uses two similarity
measures between the binary input vectors and the prototypes it
constructs. Let x be the current input vector, x^ e {0,1}^, and let {v}
be a set of c binary-valued prototypes (we shall see later that ARTl
guarantees this). Define

Si(Xi,,Vt) = ^̂ '̂'ii' „ , i= l....,c; p>0 ,and (4.110a)
P+IKIL

S2(Xi,.Vi)=\, ^', i = l c . (4.110b)

The closest protot3^e to x maximizes s , and for small values of p,
(4.110a) is an estimate of the ratio of overlap between x and v

k i
(recall that these are binary-valued vectors, so the dot product
simply computes the number of matches between x and v.) and the
magnitude of the prototype. Using a small value of p helps with the
"all zero prototypes" problem. This measure is sometimes called a
search parameter in the ARTl literature.

418 FUZZY PATTERN RECOGNITION

Similarity measure s is used to evaluate the extent to which x and
V are matched: this number will range between 0 and 1, being 0 if
there are no matches, and 1 if x, < v , where ordering of vectors is in

k I '^
the usual component by component sense. In other words, (4.110b)
computes the fraction of matches between the input and the
prototype. This measure is compared to a threshold p called the
vigilance parameter. We will describe the role each of these
measures plays in determining (nearest prototype) cluster shapes
after we discuss the operation of the ARTl algorithm, which is
summarized in Table 4.44.

Table 4.44 The ARTl algorithm

A. Training phase : find V without U

Store Unlabeled binary-valued data X c {0,1}P,|X| = n
<•• maximum number of iterations: T

Pick *• search parameter p : 0 < p « 1
•• vigilance parameter p : 0 < p <1

For t = 1 to T
For k = 1 to n

Iterate V'<-V
REPEAT

Si (xj,, Vj) = max{Si (x^, v j)}

V ' < - V ' - { V j }

(4.111a)

l F (v ' = 0 a n d s 2 (x ^ , v ,) < p)

Then V<-Vu{Xk}

(4.11 lb)

lFs2(x^ ,v .)>p (4.111c)
Then Vf <- Vj A X,̂ (bitwise AND)

UNTIL (V' = 0)
Nextk

Nextt

(4.11 Id)

B. Prototype relabeling of V with U ĵ. using, e.g., (4.13)
C. Optional (crisp) clusters if Ujj.is unknown, with, e.g., (2.6a)

F k - V i i < l < j < c , j ^ i

otherwise. Resolve ties arbitrarily
•Vi,k

The prototypes built by ARTl are accumulated in Table 4.44 using
our standard notation - V is the set of prototj^es at any point during
training. Table 4.44 has the same general organization as Table 4.4 -
it is set up so that if you have labels for the training data, these can
be ignored in step A, and then used in step B to create labeled

CLASSIFIER DESIGN 419

protolypes. Thus, AERTl can be used to design prototype classifiers
ju s t as we did with other CL models in Section 4.3. The usual
specification of ARTl (e.g., Moore, 1988) does not give a termination
criterion. Carpenter and Grossberg (1988b) show that ARTl
terminates after a finite number of iterations (remember, an iterate
is one pass through all of X, sometimes called one epoch) in the sense
that no new clusters will be formed, and the prototypes of existing
clusters will stop changing - a point at which ARTl is said to be
stabilized. We have added an iterate limit T in Table 4.44 as a matter
of practicality, since the finite number of passes needed to achieve
stability for a particular data set is not known, and might be very
large.

Many ART papers call s a search criteria because it controls search
through the current prototypes, beginning with the closest (winner).
Equation (4.11 la) shows that ARTl, like LVQ and SHCM, begins as a
winner take all CL model - it selects v - the closest prototype to input
X - for possible updating. If there are no prototypes, the input is
declcired a new prototype (and hence, ARTl creates a new cluster). If
there are protolypes, and the winner fails to achieve resonance, the
"second best" (next closest prototype to the input) is tested by
(4.11 la); and so on, until one of the existing prototypes gets updated
or, failing this, a new prototype is created. Consequently, the
"winner" in ARTl - that is, the prototype that gets updated - is the
one that exhibits maximum response among the subset of
prototypes that satisfy the vigilance test. Thus, ARTl is a CL model
which only updates one prototype per input, but not necessarily the
"winning" one in our previous sense of the word winner as used, e.g.,
in connection with Kohonen's LVQ. Dynamic creation of new
prototypes by ARTl seemingly frees it from the problem of how
many to look for, but like the mountain and subtractive clustering
methods of Section 4.3, the terminal value of c, the number of
prototypes chosen by the model, depends implicitly on the choice of
the ARTl parameters p and p.

At the beginning of ARTl there are no prototypes, so without loss, we
initialize the prototype set by V<-{Xj}. Whenever ARTl creates a
new prototype, it is one of the input vectors - in other words, the first
Instance of each prototype in V is a binary valued vector, v e (0, 1}P .
Consider the prototype update equation V; f-VjAXj^ in (4.11 Id).
Both arguments of the bitwise AND are binary vectors, so the new
updated prototype will again be binary. Moreover, taking the bit-
pair minimum in each of the p coordinates of the two vectors means
that whenever a 1 is removed during this operation, it cannot be
restored by a later update of the same prototype.

While the updated prototype vector Vĵ ^̂ in Figure 4.81 for

algorithms such as LVQ and SHCM can move in any direction in 9?^,

420 FUZZY PATTERN RECOGNITION

the updated ARTl prototype vector v, <- Vj A X^ can only gravitate
towards the origin, and can only move parallel to the axes of the
lattice {0,1}^. A side effect of this asymmetric updating strategy is
that ARTl is biased towards creating a lot of prototypes if the input
data are strings with a lot of O's. ARTl imposes this constraint on
the directions that prototype updates can take in an attempt to
control the stability (motion) of the prototypes during learning.
This stands in sharp contrast to the method used, for example, in
LVQ, where stability is achieved by scheduling the learning rates so
that {ttii^t}"^'^- ^66 Baraldi and Alpaydn (1998) for a discussion
related to conditions on the {c^y.^} under which AKTl may converge.

If ARTl is terminated before stabilization, the crisp partition U(V)
associated with V is not guaranteed to be Ujjj,(V) unless optional
phase C in Table 4.44 is used - that is, a last pass through X after
termination of ARTl is needed to construct Uĵ CV) with equation
(2.6a). However, if ARTl is stabilized at termination, a theorem due
to Carpenter and Grossberg (1988b) guarantees that U(V) = Unn(V),
without using step C in Table 4.44. Carpenter and Grossberg call this
situation "direct access by perfectly learned patterns". To be sure you
have Unu(V), jus t use step C, which always guarantee it. We
summarize some other properties of ARTl derived by Carpenter and
Grossberg (1988b) that are also paraphrased in Moore (1988) :

aw- The vigilance parameter essentially controls the diameter of the
clusters. Consequently, increasing p usually results in more
clusters (higher c) with decreased cardinalities. Carpenter and
Grossberg call this the self-scaling property (the word "self may
be a little misleading, since you pick p) ;

f̂ Distinct clusters have distinct prototypes ;

•% ARTl clusters are stable ;

k> For X c {0,l}P,|VARri| ^2^, so ARTl is stable^ on finite or infinite

input sets. (However, ARTl is not stable for X C 5 R P , but

remember that ARTl was not designed for vectors in 3i^);

~^ After stabilization, Vj c Xĵ V Xĵ e class i. Here v^ c Xĵ means
that X has a 1 wherever v does. Moreover, each x, belongs to the

k i k '̂

j th crisp (nearest prototype) cluster if and only if v. is the largest
subset of X among the c prototypes.

CLASSIFIER DESIGN 421

ARTl is not particularly attractive as either a prototype generator
a n d / o r crisp clustering algorithm because of its limited
applicability (binary valued data). Moore (1988) asserts that it might
be useful for binary character recognition, but that it may not be
suitable for signal processing problems where the O's possess as
much information as the I's. Nonetheless, APTTl is significant for
three reasons: first, the issue of plasticity versus stability is both
interesting and important, and ARTl was the first model to clearly
identify this problem and propose a solution to it; second, relatives
and generalizations of ARTl can handle continuously valued data,
and these extensions are as good as any other model you might
choose to try - but as usued, the proof will always be in the pudding;
and lastly, the attempt to connect this model to elements of the
biological neural network has a certain charm, even though, in our
opinion, the actual connection between any computational NN and
the BNN will never be known.

The ARTl architecture is equipped to deal with only binary input
vectors; ART2 can handle both analog and binary data. All of the
basic building blocks of ARTl are used in ART2. The main difference
between the two schemes is in the architecture of the input layer L^,
which is split into a number of sub-layers containing both feedback
and feed forward connections. The processing in both the input
layer L and output layer L of AP5T2 is similar to that in ARTl. For

further details, see Carpenter and Grossberg, (1987b). There is yet
another version of ART called ART3 (Carpenter and Grossberg, 1990)
for parallel search of learned patterns.

B. Fuzzy relatives of ART

The ARTl model can handle only binary inputs. The usual
interpretation of a binary feature value in ARTl is that 1 indicates
the presence of some quality, and 0 indicates its absence. In real life
many descriptive features are fuzzy, or partially present to some
degree. This is, of course, the raison d'etre for fuzzy sets in the first
place. The most prominent generalization of ARTl to continuously
valued data is based on this observation (Carpenter et al., 1991a). To
get an ART model for continuously valued data. Carpenter et al.
proposed a generalization of the ART model they called fuzzy ART

(FART) which assumes input data in [0,1]^, and uses the fuzzy set
aggregator we call the T norm for the computation of activities and
the adaptation of weights. We briefly discuss the changes needed to
convert the ARTl algorithm in Table 4.44 into the FAIRT algorithm.

FART begins with the output nodes (which are in what is often called
layer 2, denoted here as L , with nodes (L }) initialized at the value 1;

i.e., Vj = fv^j,...,Vpj) =(1,...,1) = l , j = 1 c. For this initialization,
each category is initially uncommitted, and when an output node

422 FUZZY PATTERN RECOGNITION

wins, it becomes committed. The similarity measu re s a t (4.110a)

u s e d by ARTl to control t he s ea rch pro(

presented to the FAKT algorithm is given by

u s e d by ARTl to control t he s ea rch p rocess when i n p u t x is

Si.FARr(^k.Vi) = " I ' ^ 1 = 1 c ; P > 0 , (4.112)
P + Filli

w h e r e P > 0 is a constant . The AND operation in (4.112) is defined
c o m p o n e n t wise u s i n g T , i.e., A(X,v) = (Xj A v ^ , . . . , x A V). The

winner node J is selected, a s in ARTl s tep (4.111a), by maximizing
the modified search criterion,

Si,FAKr(^k>'^j) = S ^ K F A K r (^ k ' ^ » • (4.113)

If t he re is more t h a n one winning node . Carpenter et al. (1992)
sugges t u s ing the winner with the smal les t index. The o u t p u t is
subsequent ly computed by

f Xfc, if Lo I is inactive
S = ^ r , , • (4.114) A(XJ^,VJ) , if L2J is chosen

The vigilance tes t in Table 4.44, equat ion (4.11 lb) , is made in FART
us ing a generalization of the matching criterion s at (4.110b),

||A(Xk,Vi)|L
X k ' V i) = - ' ' — i i — n — ^ ' i = l . - - - . c '2,FART I'^-k' *1

Fkiii
(4.115)

Using (4.114) and (4.115), when the J t h category is chosen (again, it
may or may not actually be the winner), resonance occurs if

l|S||i=||A(Xk,Vj)||j>p||xk||i . (4.116)

When this happens , the update equation in (4.11 Id) is replaced by

Vj <-a(A(Xk,Vj)) + (l - a) V j , (4.117)

where a e [0,1] is the learning rate, a^^^ = a , for all i, k and t. Other
aspec t s of the algorithmic operation of FART are very similar to our
specification of ARTl in Table 4.44.

Carpenter et al. (1991a) asser t t h a t when the da ta are "noisy", it is
better to begin with a = 1 when J is a n uncommit ted node, a n d then
switch to a < 1 after the node is committed. T h u s Vj = x^ if x is the

CLASSIFIER DESIGN 423

first input at which Lj j becomes a winner. Carpenter et al. (1991a)
call this strategy fast commitment and slow recoding.

In a large set of data with many distinct values, the possibility of
ending up with a large number of prototypes is high. FART tries to
control the proliferation of categories by normalizing the input
data. The simplest choice is to convert each incoming vector to a
unit vector using the standard procedure, x^ <- x^ / |xk|| . Another
type of normalization discussed by Carpenter et al. can be achieved
by complem^ent coding. Let the complement of the input vector x be

x'̂ where xf = l - a j , i=l p. The com.plem.ent coded input c(x) is

defined as c(x) = (x, x"̂) = (aj, . . . , ap, a j , . . . , ap)^. Note that for any x,

||c(x}||j = p , and hence complement coding imposes an automatic
normalization to the fixed length of p (see the denominator of
(4.11 lb) to understand the motivation for this). A neural realization
of FART is discussed in Carpenter et al. (1991b).

So far we have discussed ART models only in the context of
prototype generation associated with either nearest prototype crisp
clusters, or possibly, as a basis for the design of nearest prototype
classifiers (as in Section 4.2). A class of neural architectures for
incremental supervised learning that results in a crisp classifier is
known as the adaptive resonance theoretic MAP (ARTMAP,
Carpenter et al., 1991c). An ARTMAP system has two ARTl modules,
ARTĵ and ARTt,, that can create stable categories in response to an
arbitrary sequence of input presentations.

ARTMAP is trained in the usual way using (X , U) for design, and
(X , U) to test the classifier. The subnet ART, receives an input
^ te te' ^ ^

datum Xk e X^r, while the ARTi, subnet uses the corresponding crisp
output label u^ e Ufj. e Mjjcn- ART^ and ARTj, are connected by an
associative learning network and an internal controller to ensure
autonomous operation in (near) real time. The learning rule
a t tempts to simultaneously minimize predictive error while
maximizing predictive generalization. The learning scheme
increases the vigilance parameter of AIRT^ by the minimal amount
needed to correct a resubstitution error at ART^̂ . A prediction
failure at ART ,̂ increases the vigilance parameter of ART^ by the
minimum amount necessary to initiate hypothesis testing by ART^j.
This process is known as m.atch-tracking.

Carpenter et al. (1992) also generalized ARTMAP for "fuzzy inputs" -
that is, input vectors in the hypercube [0,1]^. Fuzzy ARTMAP
(FARTMAP) replaces the ARTl modules ART^ and ART^ of ARTMAP
by fuzzy ART or FART modules. These two FART modules are

http://com.plem.ent

424 FUZZY PATTERN RECOGNITION

connected by a module called the map-field, F^^. The map-field has
the same number of nodes as the L2 layer of ART ,̂ which are
connected to the L2 layer of ART^. For ARTMAP, inputs to both
ARTa and AFH'j, are presented in the complement code form. Let x be
an input vector and u be its corresponding crisp output label vector;

then ARTa is given the input c(x) = (x,x^)^ and ART^ receives

c(u) = (u.u'^)'^ as its input. The map-field F^^ is activated whenever
one of the ART^ and ART^ categories is active. If both of them are
active, then F * becomes active only when ARTg predicts the same
category as that of ART ,̂ via connection weights between F^^ and
ART^. The output vector of F̂ *̂ is 0 when the category found by
ART^ is disconfirmed by ART,, and in that case ART^ searches for a
better category. Readers interested in this scheme are referred to
Carpenter et al. (1992) for a detailed discussion of FARTMAP.

Baraldi and Parmiggiani (1995) proposed a crisp variant of ART 1
called simplified ART (SART). SART is a self-organizing feed
forward network that uses a soft competitive learning scheme to
update the prototype vectors associated with the output (L2 layer)
nodes. The Fuzzy SART (FSART) model, also proposed by Baraldi
and Parmiggiani (1997b), integrates the SART architecture with a
soft learning strategy employing a fuzzy membership function.
Similar to SART, FSART is also a self-organizing feed-forward
network. While processing, FSART adds a new node to the output
layer whenever the system fails to categorize a data point, and
removes previously allocated nodes whenever they are no longer
able to win the competition for any input vector. One advantage of
FSART is that it does not require any preprocessing such as
normalization or complement coding, and it is quite stable with
respect to small changes in the input parameters and the order of
data feed. But FSART is computationally expensive compared to
ARTl because it needs to determine the "neighborhood-ranking"
(Baraldi and Parmiggiani, 1995) whenever it considers a new input.

Blonda et al. (1998) discuss an application of a fuzzy hybrid neural
network called the fully self-organized sim.plified adaptive
resonance theory (FOSART) model of Baraldi and Parmiggiani
(1997a). The FOSART model is a member of the family of neural
networks called radial basis function (RBF) networks, and we want
to include an example from Blonda et al. in this section because it
provides us with a very different type of fuzzy NN structure that also
ties together several models discussed in previous sections. Towards
this end, we take a short excursion into the world of RBF networks.

CLASSIFIER DESIGN 425

C. Radial basis function networks

Haykln (1994) provides a nice discussion of RBF networks, so we
will not spend a lot of time reviewing them, but Example 4.26 will
make more sense to you if we spend just a few pages discussing RBF
networks, which are very interesting in their own right. The most
important difference between an MLP and an RBF network is that
the computing nodes in the first (and only) hidden layer of a typical
RBF network use radial basis functions as node functions, instead of
the more familiar linear integrators followed by sigmoids as used,
for example, in all computing layers of MLPs (Section 4.7).
Apparently Broomehead and Lowe (1988) were the first authors to
employ RBFs instead of "standard" node functions in a feed forward
network architecture.

When X = (x ,...,x } c91^ is a set of n distinct points, the functions

RBF = RBF((p,||*||) = |(p(x-xj |)> are called a set of radial basis

functions. In the older literature of classifier design, families such
as these were often the kernel functions for classifiers such as
Parzen's window (Duda and Hart, 1973). Since any norm can be used
for RBF, there are infinitely many sets of RBFs for each choice of (p
(sometimes called the generating function of RBF, which at this

point is an arbitrary mapping from 9?"̂ to 3i). The points in X are
called the centers of the basis functions. RBF functions are linearly
independent as long as the points in X are distinct.

The function (p(||x-xj) is radial because the norm is radially
symmetric about x ; and RBF is a "basis" only in some ill-defined
sense - viz., that some linear combination of the functions in RBF
will approximate lO data XY arbitrarily well. In the language of
Section 4.6.D, certain families of RBFs are universal approximators
(Park and Sandberg, 1991, 1993), so if the "power" of a network is
measured by its UA ability, RBFs are equally "as powerful" as MLP
networks, and MA and TS fuzzy systems as well.

As mentioned at the beginning of Section 4.6.D, radial basis
functions are one of the leading choices for families that are used for
"conventional" function approximation (Powell, 1990). Once a norm
and generating function 9 are chosen, the general form of an
approximating RBF family is

S(x:B)= iwk(p(ix-Xki)-(w. , (x)) , (4.118)
k=l

426 FUZZY PATTERN RECOGNITION

where the unknown parameters or weights which must be estimated
with lO training data XY are 8 = w = (wj w^)^ e 9t", and we define

,(x) = (cp(||x-xi||) cp(||^-x„||))\

Chen et al. (1991) assert that the shape of cp for RBF is not as crucial
to good approximations of S as the choice of centers. A more
realistic view is that the quality of the approximation in (4.118)
depends jointly on four things: (p, the norm, the centers, and the
data used to build the approximation. Chen et al. (1991) identify four

families of su i table genera t ing functions: (p(t) = t^ log t;
± i 2

(p(t) = f|32+t^)"2, and (p(t) = e"**''̂ ' . Thus, the most familiar, but

certainly not the "best" or only choice for the i-th function of an RBF
\2

set is a multiple of the univariate Gaussian density (p(t) = e i/pr

where t = x - x , for p-dimension inputs, with each of the n data

points used as the mean, M = x for all i as in (2.18), for example. It is
fairly common to assume a circular covariance structure for each
function, Ej = af I. Under these circumstances we have the Gaussian
radial basis functions

GRBF = i (p(||x-Xil) = i
-^l--' 2a ;i = l,...,n (4.119)

Substituting (4.119) into (4.118) gives

S(x:8)
k=l

1

(4.120)

which provides approximations to S by linear combinations of p-
variate Gaussian functions centered at the data with spreads (or
widths) {cf}. If the (af} are unknown, they become part of the
parameter vector 8 that must be estimated.

When n is large (as it will be in almost all interesting real data sets),
the approximation in (4.118) gets pretty unwieldy, so we abandon X
as the set of centers of the RBFs, and use our old friends
V = (Vj,..., Vq) e 9 '̂'P, a set of q prototypes in 9^P instead of the n data
points, as centers of a set of q functions that are sometimes called
generalized radial basis Junctions (Haykin, 1994). Using V instead of
X in (4.118) gives the approximation

CLASSIFIER DESIGN 427

S(x:8)=iwi(p(| |x-Vi||) = (w,.f(x)) . (4.121)

If (p and the norm in (4.121) have been chosen, the parameters that
need to be estimated are now the weight vector w, the q prototypes
{v.}, and any other parameters needed by the node function (j) (such

as the width parameter if the RBFs are Gaussian). We can easily cast

the approximation problem (finding 9 in (4.121)) in a network
architecture. Define the integrator and activation functions at node
i, i = l,...,q, in the hidden layer as

fi(x) = ||x-Vi|| ; {4.122a)

Zi=<t),(x) = Fi(fi(x)) = (p(||x-vJ|) . (4.122b)

In the notation of Section 4.7, the node functions for the q hidden
layer nodes are then {^i = (p o f j ; i = l,..., q}, the hidden layer node
weight vectors (assuming that the parameters of the functions
specified by ip do not need to be estimated) are the q prototypes V, and
the output of the hidden layer is the vector z = (zi,...,Zq)^. For
convenience, let w' =(w,,,.. . ,w . , a j ^ be the weight vector for the

i ^ 11 ql 1' =

output node o , and denote the vector obtained by adding a 1 as z's
last (new) coordinate by z ' , z' = (Zj Zq, 1)^. Now define the
integrator and activation functions at c output nodes (o, i = l,...c),
which comprise the output layer, as

f„i{z) = (wi,z) + a i=(wj ,z ') : (4.123a)

Foi(foi(^» = K ' ^ ' > = foi(^) • (4.123b)

Equation (4.123a) shows that the i-th output node uses a standard
linear integrator function with weight vector w{ to be estimated,
and uses the identity map for activation. In other words, the output
layer comprises a set of c nodes that use node functions that in the
early literature were called continuous perceptrons (without
sigmoidal activation functions, Zurada, 1992). In our reserved
terminology for MLPs, the node functions are specifically
*̂LH ~ ^L ° ^H' ®° ^ ^ hesitate to call this output layer a single layer
perceptron (SLP), but, following Haykin (1994), we cautiously do so
here. The output layer has q inputs coming from the hidden layer
and c outputs. Combining the equations in (4.122) and (4.123) in a
network architecture gives the structure shown in Figure 4.82.

428 FUZZY PATTERN RECOGNITION

Input Layer Hidden Layer Output Layer
(RBFs) (SLP)

Figure 4.82 A tjrpical radial basis function network

We have shown the hidden layer (or kernel nodes) in Figure 4.82
with q nodes, so the layering architecture of the FIBF network in
Figure 4.82 is compactly described as p:q:c. Like the feed forward
network in Figure 4.71, the network in Figure 4.82 is a vector field,
RBF:9tP h^ 9̂ *̂ , i.e., the network in Figure 4.82 realizes the
approximation S(x:6) = RBF(x:W), where 8 = W is the network
weight vector. If all of the parameters in the hidden layer are
assumed known, then W = (Wj w ') ; if there are unknown
parameters associated with the hidden layer nodes (e.g., the spatial
locations and shape parameters of the RBF centers), then W includes
these parameters as well. Notice that the p: q: c multiple output RBF
network can be separated into c single output networks of size p: q: 1.

The i-th output node of the RBF network produces the real number
Ui = (wj, z'); i = 1,..., c. When the target output vectors in Y are crisp
label vectors, the usual method of converting the network output
vector u = RBF(z) to a crisp label is to first normalize the outputs of
the SLP so that each value lies in the closed interval [0, 1] or the open
interval (0,1). One convenient way to do this is to replace the identity
in (4.123b) by, for example, a unipolar sigmoid function, so that the
output layer becomes a single layer perceptron in the sense of
section 4.7 with node functions ^^^ =Fj^of^. This converts the
output of RBF to a possibilistic label vector which can, if desired
(and must, if training error rates are to be computed), be hardened

CLASSIFIER DESIGN 429

with the function H in (1.15). Hardening is not necessary when using
the MSE between the computed and target outputs as a measure of
generalization quality of the network in question.

Comparing Figures 4.72 and 4.82, we see that the RBF and MLP
networks are similar in that both are feed forward structures, but
they also have some differences. The main distinctions are that the
RBF network usually has only one hidden layer, whereas the MLP
very often has two or more; the node functions in the hidden layers
are very different; and while the output layer in the MLP usually has
nonlinear node functions, the output layer in the RBF network
usually has linear node functions as shown in Figure 4.82. There are
other differences between the two architectures; we leave discussion
of these to Haykin (1994).

There are several training strategies for an RBF network. The
simplest way to proceed is to assume the number q of fixed RBFs in
the hidden layer, centered at q points selected randomly from the
data. The fixed RBFs are often chosen as a special case of the
Gaussian functions in (4.119) which have fixed and equal standard
deviations that are proportional to the maximum distance between
the chosen centers, so that (4.119) becomes

GRBF={(p,(x) = e"(''"""''^/'^^^;i = l....,q} , (4.124)

where 5 = max< v. - v. >. This fixes the width of each function in
max -—„—' 1 J

(4.124) at o = Smax/V^ • ^ • With this approach, the only parameters
that need to be learned by training are the c weight vectors of the
hyperplanes used for the output node functions, and this can be done
(for c = 1 at least) with a technique such as the psuedoinverse
(Broomheade and Lowe, 1988).

A second method for training RBF networks, called hybrid learning,
is a two stage process. This method begins by temporarily regarding
the RBF network in Figure 4.82 as two "separate" networks that are
trained independently, and then "put together" for testing and
operation. If you imagine temporarily breaking all the edges in
Figure 4.82 between the hidden and output layers, the network on
the left {"lefi half-net') will be a p:q layer network with p input and q
RBF "output" nodes; while the network on the right [" right-half-nef)
will be a q:c single layer perceptron whose inputs are the left half
outputs.

How will we train the left half-net? Moody and Darken (1989) first
suggested that any unsupervised method could be used to get the RBF
centers. Methods for doing this fall into the two groups depicted in
our Figures 4.1 and 4.2: (i) selection to find q centers among the n

430 FUZZY PATTERN RECOGNITION

training data ; or (ii) extraction, using, for example, any point
prototype clustering algorithm (Chapter 2), or any other point
prototype generator (Chapter 4) to find centers for the q RBF node
functions. If clustering is used, you will need to settle the issue of
how many centers (q) to look for (cluster validity, again). Since we
are dealing with labeled 10 data, the number of classes (c) is given,
but this will be the number of output nodes in the right half-net. We
have dealt extensively with this issue in previous sections: suffice it
to say that if you choose to train the left half-net with unsupervised
learning, the target output set Y is simply ignored during training.
Once the centers are obtained, Moody and Darken then used "nearest
neighbor heuristics" (which are not the k-nn rules discussed in
Section 4.4) to find the width of each (Gaussian) RBF.

Once the left half net of size p:q is trained, we know the exact
structure of the input and output layers in the right half-net because
this network is a q:c single layer perceptron, which may be trained
in the usual way (for example, with the least mean squared or LMS
algorithm, Widrow and Steams, 1985). This results in estimates for
the q weight vectors {Wj} of the hjqierplanes residing in the output
nodes of the right half net. During training, outputs of the left half-
net on X become inputs for training the right half-net against the
desired target outputs Y .

When this "two-part" hybrid approach to training the network in
Figure 4.82 is completed, the left and right half-nets are "pasted
together" (or, if you prefer, operated in cascade). Now the p:q:c RBF
network can be tested with X Ŷ (recall our notation XY for JO data

te te
in Section 4.6), and then operated as a network classifier or function
approximator in the usual way. The two stage hybrid approach to
training an RBF network might be superior to the fixed, selected
centers training method, but we say might because, as we have
emphasized many times, the success of clustering algorithms at
discovering good point prototypes for clusters in X depends on
whether the data possess clusters that match the clustering model
chosen to search for them. And, as always, the ubiquitous cluster
validity problem is there to haunt you.

In the third training method, the entire network weight vector W,
which includes the free parameters in both the hidden layer and
output layers, is learned. This is sometimes done by standard back
propagation training based on gradient descent conditions (Poggio
and Girosi, 1990). Chen et al. (1991) discuss a supervised learning
scheme which incrementally selects a number of centers in the data
for RBFs using a method based on orthogonal least squares (OLS).
Key features of the OLS method are that it adds centers chosen from
X one at a time, always maximizing the increment to the explained
variance between the desired and observed outputs, and it is
relatively stable in the sense that it can be done without ill-

CLASSIFIER DESIGN 431

conditioning problems when using the orthogonal projection
theorem. This is much like using principle components analysis for
feature extraction, where each additional component used in the
linear combination accounts for a successively smaller amount of
the remaining total variance in the input data.

The basic model in Blonda et al. (1998) is the RBF network of Figure
4.82, and their training method is the two part, hybrid approach
that we couched in terms of "left half and "right half nets. These
authors compare three classifier designs that differ principally in
the method used to train the left half-net. Specifically, they describe
two fuzzy schemes and a non-fuzzy approach that uses Kohonen's
unsupervised self-organizing feature map (SOFM, subsection 4.3.D).
The right half-net in all three classifiers is the single layer
perceptron with node functions 0^^ = Fĵ o f̂ as in Section 4.7 (i.e.,
hyperplanes followed by the unipolar sigmoid), trained with the
standard LMS method.

The first of the three classifiers discussed by Blonda et al. (1998) uses
the fully self organized simplified adaptive resonance theory
(FOSART) model (Baraldi and Parmiggiani, 1997a) to build the left
half-net. This procedure is basically a heuristic point prototype
generating algorithm that combines certain aspects of ARTl,
competitive learning, and fuzzy c-means clustering to determine the
number of nodes q and the positions of the q RBF centers (prototypes
V). The hidden layer (the output layer in the left half-net) consists of
a variable number of RBF nodes, which are analogous to the L layer

in ARTl. Unlike ARTl, however, FOSART nodes can be created or
deleted during training. Initialization of the FOSART centers in
training the left half-net is also a little different than ARTl;
FOSART starts with two nodes, v and v^, taken as the first pair of
distinct inputs submitted to the network.

Each FOSART hidden layer node uses a fixed width Gaussian radial
basis function as in (4.124), but with a different fixed width than the

value determined by 5 =max^| |v , -v in that equation. In

Blonda et al., the spread of the RBF functions is fixed at
a = 1/K, K e(0,l]. K is a user defined parameter that is functionally
equivalent to the (normalized) vigilance parameter p in ARTl and
FART, since it controls the proliferation of nodes in the output layer
of the left half-net built by the FOSART algorithm. While the nodes
in the standard RBF network (Figure 4.82) are not viewed as
"competitive" in the sense of the competitive learning models
discussed in Section 4.3, the hidden layer nodes in FOSART are
made competitive in Baraldi and Parmiggiani (1997a) in a way that
is somewhat similar to the competition in the ARTl L layer.

432 FUZZY PATTERN RECOGNITION

More specifically, let x be the cur ren t i npu t vector a t i terate t, and
suppose t h a t the FOSART hidden layer current ly possesses s nodes
(and hence, s prototypes). We are using t here to index passes (epochs)
t h r o u g h X, b u t FOSART also keeps t rack of the "age" of each node
created in the ou tpu t layer (of the left half-net). Let x denote the age

of t he i-th node , i= l , . . . s . (we will explain short ly how th i s set of
p a r a m e t e r s is manipulated.) We indicate th i s extra "time" variable
wi th a n addi t ional subscr ip t , so Vj^^ ^ is the prototype for node i
which h a s age x. a t iterate t. FOSAE^ first computes the values

*i,t :xj,) = e ;i = l , . . . ,s (4.125)

The largest value in (4.125) is u sed to identify the winner node, say
<t'w.t (^k) for the winning node v ^ ^ j__i, for th is input . The smallest
dis tance in the exponent of (4.125) gives the largest value of the RBF,
a n d conversely, so th i s terminology m a k e s sense . The value Jus t
below the winner value in (4.125) identifies the prototype t h a t is
called t he second place node (second bes t neuron) , since it comes in
second in the competition for x .

FOSART compares (!)w,t(2Ck) to t he "vigilance" paramete r , a n d if

(j)^t(Xj^) > p = 1 / K , resonance occurs . When th is happens , some of

the nodes in the RBF layer will be updated . When (|)„ Jxjj) < p = 1 / K.
FOSART creates a new node v

s+l • \

with a n RBF centered a t v
s+ l

When resonance occurs so tha t learning ra tes are needed, these are
c o m p u t e d by s u b s t i t u t i n g t h e funct ion D^^^ = l-(\)^^{x-^) i n to
equat ion (2.7a), the necessary condition for membersh ips in fuzzy c-
means , with m = 3. So tha t you don't have to t h u m b back to Chapter
2, the explicit construct ion is

Uik.t
1

l-<t'i,t(Xk)

1

l-<l>t,t(Xk)
i=l,...,s (4.126)

Since va lues computed with (4.125) lie in (0,1) the value in (4.126)
always exists . The winning node in the o u t p u t layer of ARTl h a s
lateral connect ions to all the other nodes in i ts layer. In FOSART,
only some of the nodes in the RBF layer are upda ted . Blonda et al.
call the non-winner nodes t ha t get upda ted "synaptically linked" to
t he w inn ing node . (This feature is bor rowed from the SOFM,
subsec t ion 4.3.D, hence the "SO" par t of FOSART.) In other words,
FOSART main ta ins a n upda te neighborhood A/(Vi^j J in SOFM style
for each node in the RBF layer, b u t unlike SOFM, it is not the inverse

CLASSIFIER DESIGN 433

image 7V'̂ (d,T.j J of a topologlcally connected display space. The
topological connectivity of the prototypes is maintained in FOSART
by a distance rule which can form topology preserving maps
(Martinetzetal., 1994).

Update neighborhoods of the RBF nodes expemd and contract during
training as nodes and node links are created and deleted using the
following heuristics. Given a winner and second place nodes for any
input, a sjmaptic link between these two nodes is created (7\/(Vj .̂ J
grows) if the distance between their prototypes is "fairly similar" to
the set of existing distances between pairs of linked centers that
already exist for both nodes.

More specifically, the links from any RBF node to other nodes in its
current update neighborhood satisfy a link constraint. Let
{ ĵ.xj.tJ = MVIT;J t); FOSART requires the ratio of the maximum to
the minimum pairwise distances of the prototypes in neighborhood

q,x ,t s,T ,t mm ^ • ^ • t S,T.,t % • A/(Vî j t) to satisfy maxj

The threshold % is chosen by the user, and FOSART currently
employs the value % = 1.6. Now suppose v and v „ to be

the current first and second place winners. If nodes w and w2 are not
already linked, a link is established between them if the ratio of

their intemode distance, IV , ^ - V „ to the minimum of the

two sets of distances for pairs of nodes in A/(v) and

Mv„2,Tw2.t^ is less than or equal to x = 1-6. If the link from wl to w2
is inserted, new sets of distances are computed over both
neighborhoods, and any links in either one that no longer satisfy
the link constraint are deleted. Moreover, links that have not been
used for an entire pass through X are now deleted (i.e., A/(Vî . j)
shrinks).

At resonance, learning rates are computed for all s nodes in the
output layer as follows:

%t=<

'wl

Ki. t) -Ki , t) ' :i = wl

(Vt)-(Vt) ' '''i.,t^^^^.i.„,.0 '
(4.127)

0 ; otherwise

434 FUZZY PATTERN RECOGNITION

As we have said, t is a user specified constant that controls the time
available for learning. In Blonda et al. (1998) Xj e[0,oo) is a real
number which begins at 0 and simply accumulates the sum of the
learning rates applied to the i-th RBF node. Thus, after computing
(4.127), the ages of the s nodes are reset using Xj <- tj + cc^_•^^^. Baraldi
and Parmiggiani (1997a) call the winner node wl stable (and updates
of this node stop) when T^^ > 3 • t , for at this point the exponent of
the second factor for the winning node in (4.127) is > 3. After
computing (4.127), the nodes in the RBF layer are updated with
equation (4.11),

Vi.Ti.t = Vi,Ti,t-i + aik,t(Xk - Vi,,j,t-i). t i < 3 • T; i = 1 s. (4.128)

Notice that a condition for updating is that the node has not reached
its stabilization age. If a current node in the RBF layer is never a
winner (in the ART sense) for an entire epoch but others are, and it
has not already "stabilized" (so that updates on it have stopped), the
node is then deleted from the network. Updating stops when either
(i) all of the nodes have stabilized (none are updated for an entire
epoch); or (ii) when ||Vt - V^.J < e in some convenient matrix norm.
At this point FOSART has created a set of q RBF nodes and provided
estimates for the centers of the RBF node functions in the output
layer of the left half-net.

After the output layer of the left half-net is determined by FOSART,
the right half-net is trained. Blonda et al. (1998) do not specify how
the weights of the output layer are initialized, what the parameters
of the unipolar sigmoids are, nor how training is terminated. The
two independently trained half-nets are then coupled, and the
resultant p:q:c RBF network, structured as in Figure 4.82 (except for
the sigmoids in the c output nodes) is called the FOSART-SLP
classifier. With this as background, we present an example
abstracted from several papers about FOSART.

Example 4.26 Blonda et al. (1998) consider classifier design in the
context of lesion detection in MR images taken from a patient
diagnosed with multiple sclerosis (MS). An interesting ancillary
aspect of this work is the comparison of results using standard MR
images with a new type of MR imagery called magnetization-
prepared rapid gradient echo (MP-RAGE), which can produce
thinner slices than standard MR devices. Figure 4.83(a) shows one
slice from the Tl MP-RAGE sequence for the patient with MS.
Unlike brain tumors, which produce very visible lesions (see Figures
4.16 and 4.19), multiple sclerosis produces small heterogeneous
lesions that are in some sense similar to microcalcifications in
digital mammograms - small, well distributed, and hard to see. Can
you find them in Figure 4.83(a)?

CLASSIFIER DESIGN 435

(a] Tl iMP-RAGE Image Cb] Labeled data

(c) color key for image [b)

Figure 4.83 (a) Raw MP-RAGE image data, and (b) training data
selected from (a) by a neuroradiologist, with (c) color key for view (b).

Figure 4.83(b) shows the training data extracted from the MR slice
corresponding to Figure 4.83(a) by an expert neuroradiologist. The
labeled data consist of a total of 8627 pixels. The number of pixels in
each of six tissue classes are reported in Table 1 of Blonda et al.
(1998), repeated here as our Table 4.45. Half of the pixels in each of
the c = 6 classes were randomly selected for training, and the
remaining 50% were reserved for testing the three classifiers
discussed by the authors.

Standard 3D spin echo MR images such as those shown in Figures
4.16(a) and Figures 4.19 (a)-(c) result in pixel vectors which have the
form discussed in Example 4.5, viz., x = (Tl , T2 , p). The MP-RAGE
data, which is derived from an extension of the turboflash
technique (Brandt-Zawadzki et al., 1992), is a function of the Tl
gradient spin echo sequence. MP-RAGE also produces three
dimensional data which has been successfully used in brain image
analysis (Blonda et al., 1996a). The data used for the images in this
example are 3D pixel vectors made by replacing the Tl-spin echo
intensity with the Tl MP-RAGE intensity in the 3D spin echo data.
This gives us pixel vectors x = (Tl-RAGE^, T2^, p..), leading to the

data setX = {x^j, x^^,..., x x ^ in 3i^. The images used by Blonda
et al. (1998) had spatial dimensions m = n = 256.

436 FUZZY PATTERN RECOGNITION

Table 4.45 Pixels in tissue classes selected by a neuroradiologist
(after Blonda et al., 1998. Tables 2-4)

Tissue Abbr. # of pixels
white matter (WM) 1675
gray matter GM) 1294
cerebro-spinal fluid (CSF) 1251
pathology (PT) 479
background (BK) 848
other (OT) 3080

The color key in view (c) of Figure 4.83 would enable you to see a total
of 10 Isolated regions in view (b) that are labeled pathology (PT) - if
you could see view (b) in color. Reproduced in shades of gray,
however, it is pretty hard to see the regions labeled PT, so we have
superposed an arrow in the center right of view (b) pointing to 2 of
the 10 pathology regions (which are enclosed by one circle), and
circled the rest of them without arrows in little ellipses so you can
find them. There are 6 circled regions: 4 of them contain 2 pathology
regions each, and the other two contain Just one.

The first classifier discussed in Blonda et al. (1998) is the RBF
network discussed prior to this example, with the left half-net
trained by FOSART, and the right half-net trained by the standard
LMS rule. Protocols for the runs made will be given shortly.

The second classifier discussed In Blonda et al. (1998) is based on the
same two layer p:q:c RBF structure that FOSART finds. In the second
design the number of hidden layer nodes is fixed at the FOSART
determined value of q, and the centers of the fixed width Gausslans
specified In (4.125) are found by applying a modified version of the
batch FLVQ algorithm (subsection 4.3.H) to the training data.
Baraldl et al. (1998) recommend 3 heuristic modifications of
descending FLVQ based on conclusions they drew from 10 numerical
experiments. The recommended modifications to the algorithm of
Table 4.12 are that: m = 1.05 (Instead of 1.1); that termination
criterion e = 0 (that is, the recommendation is to abandon the
computation of E In Table 4.12, and always run descending FLVQ to

the final value m = 1.05); and finally, that a value for Am = [m^ - m^)
always be chosen in the range [0.01, 0.05], regardless of the values
selected for m and T. The classifier discussed in Blonda et al. (1998)
that is illustrated in this example used all of these modifications to
descending FLVQ while determining the prototypes for the RBFs In
the hidden layer of the FLVQ based classifier. The structure of and
weights for the output layer were determined In exactly the same
fashion as for the FOSART-SLP design. This second classifier will
be called the FLVQ-SLP network.

CLASSIFIER DESIGN 437

Finally, a third two stage p:q:c RBF design that was structurally
identical to the FOSART-SLP and FLVQ-SLP networks was built by
Blonda et al. using Kohonen's self organizing feature map (SOFM)
approach to find the centers of the RBFs in the output layer of the
left half-net. In the experiments below the initial learning rates
were a^^^ =0 .5Vi ; and these rates, applied uniformly across the
nodes being updated, decreased monotonically with the formula
t*ik,t = <̂ ik,o (l ~ {t/T)). The value of T was the total number of training
data times the number of epochs run. For example, the first run used
47 epochs on 8,627/2 training data, so T=202,734.

The update neighborhoods for the four unsupervised SOFM runs
shown in Table 4.46 were linear arrays in this example, and the
initial sizes (radii) of the update neighborhoods for the four runs
discussed in Table 4.46 were 10, 6, 6 and 5, respectively. For
example, if the neighborhood size is 5 and Vj4t is the current
winner, the prototypes that get updated are the 11 consecutively
indexed centers {Vgt Vig.t}- The radius of the neighborhood in
SOFM display space was also decreased monotonically with the
equation [r^ = ro(l-(t /T))] . The SLP layer was built and trained as
the other two classifiers were. Initialization and termination
conditions for the SOFM prototypes and SLP weight vectors are not
specified in Blonda et al. (1998).

Now we are finally ready to discuss the results shown in Blonda et
al. (1998). Four training runs -with X^ were made with FOSAPTT-SLP
using four different values for the "vigilance" parameter, 1/p = K =
0.044, 0.010, 0.120 and 0.147. The total number of RBF hidden layer
nodes at termination in each of these four runs was then fixed as the
number of RBF nodes in the other two networks (that is, all three
classifiers had the same architecture in each run, initially
determined by the FOSART-SLP runs). The number of hidden RBF
nodes for the 4 FOSART runs was q = 22, 109, 160 and 254. In other
words, all three classifiers had 3:22:6 configurations for run 1, etc.

The number of passes through the training data to termination for
the FOSART runs was also forced on the other two classifiers. The
FOSART runs terminated in 47, 14, 12 and 15 passes, respectively, so
the other two classifiers were designed using protot3^es (that were
possibly still being updated) at the same number of passes. Table
4.46 combines the information reported in Tables 2, 3 and 4 in
Blonda et al. Protocols for the FOSART-SLP runs were z = 100, e = 1;
and for FLVQ-SLP, m^ = 2 and m^= 1.05. Table 4.46 shows the MSE
achieved on the training and test sets, as well as the percent correct
classification for both training and testing in each of the four runs.
In terms of the MSE criterion FLVQ does consistently better (is
lower) than SOFM, and is lower than FOSART in 5 of the 8 cases

438 FUZZY PATTERN RECOGNITION

shown. In terms of error rates (here shown as percent correct),
FOSART is a few percent lower than both of the other designs in all 4
resubstitution cases, and is lower than both of the other classifiers
in all of the test error cases except for SOFM, run 2, where it is a
little higher than SOFM.

Table 4.46 Training and test results for the image in Figure 4.83(a)
(after Blonda et al., 1998, Table 1)

Run resubst i tu t ion MSE (X^ test MSE (X)
te FOSART FLVQ SOFM FOSART FLVQ SOFM

1 183.4 153.8 183.6 190.1 155.1 178.8
2 57.1 59.2 73.8 67.9 63.9 75.0
3 41.8 49.1 64.3 52.9 52.4 65.8
4 28.3 31.2 43.9 39.8 36.4 47.8

resubst i tu t ion : % correct test error : % correct
FOSART FLVQ SOFM FOSART FLVQ SOFM

1 68.4 73.0 72.5 67.0 71.8 70.4
2 75.2 76.9 77.1 74.7 76.2 72.5
3 75.7 78.2 78.3 74.9 77.2 77.6
4 71.1 79.3 78.7 76.3 78.3 78.5

What can be concluded from these experiments? None of the values
in Table 4.46 suggest a real advantage to any of the three designs.
Rather, and very similarly to Table 4.14, where four algorithms,
including LVQ and descending FLVQ also produced very similar
results on Iris, we view the three classifiers in this example as being
very similar. With a little tuning here and there, it is quite likely
that any of the three designs could realize the "best" outputs.

Figure 4.84 shows the final segmentations of the original image
made by the three classifiers in run 1, with the same tissue color key
as used in Figure 4.83(b) appended to each. These segmentations were
made by running the classifiers on the entire 65,536 3D pixel vector
image data. Each classifier has c = 6 perceptron nodes with node
functions (JJLH = FL ° f H ^t its outputs, so the overall structure of the
trained networks is as possibilistic classifiers that produce a label
vector u G Npg for each pixel. The labels are then hardened with

(1.15) and each pixel was colored using the color assigned to the
corresponding tissue class during the initial labeling of the training
data (i.e., the colors shown in Figure 4.83(b)).

CLASSIFIER DESIGN 439

() I

! I' I

i : • > .

I ;

(a) FOSART-SLP

() I

I T

I .!

i ; Vi

(b) FLVQ-SLP

Figure 4.84 Segmentations of Figure 4.83(a), Blonda et al. (1998)

440 FUZZY PATTERN RECOGNITION

V , i : . ; i ' : . . ;: • " • / . • • ' • • . ; • ' . ' . ' • ' r i - ' / ' V . ' . ' '
> 1 1 1 1 ' ' '

' " ' » .
V • (• ' i i ' . • • • , ! .

, . ' . • " ' '*• ' . ' . ' , " ' " . ' ' • ' ' • ' . ' . ' . • ' •
' • ' • • . '

.'•' (' • " , '. ' " • . ', ' ' ' ' ' 1 ' • " ' . " ' ' " " . I I

' . • • • ' . • • ' . . •
" ' " . • . • . ' < i ' - " ' • • ' ' ^ • • ; \ " ; ' : ' * , , . >

1 . '' "..
h'" . ' • • • ' . ' . " • I . • • ' * , . ' . * • 1 1 - 1 , ' ' • ' ' ' I 1 *

: • ' " ' . ! i' ' . . • ' * » • i ' • I • [*

i 1 " • "1 1 ' ' ^

t

.'••••• . • ; • • ,

• • • ' I ' ' » .*

(> i

iky.:. : :. - • • • • * I I
• ' '••'•,

i,-^-}-r '. > *. '1 ' ' • , •

••••' : >

i
; J • 1 ..

i i . iv ; . .•> ,' • ' ' I 'k •' ', • > : ,
! • ' • :

• (' ' 1
i i V ^ •• ,- • • ' : i

,' i ' ' ^

f

•: ; ! • • • • •

' ; • • . ;

r!

' • ' • 1 1 • ' , ' ; • - l '
" . • • (

• : . - ' • • • ' . i •

! i . . . " • ''i

I ' " . " " , ' ,

i '''• ;'^
f S i

' •»* tV f : ' • ..i-.
' (! v : - • " '• • ' • ' ! . *V • • • ' • ' " . ' • •

• ' ! .'•'• . • •

1 • 1 .
1 c; .vi

•-.-.I, <•• • ' • / I ' ' - ' • . . .' 1 ['.

i^:;:.h ••••'•.
. ' ' ' • , ; •••;v] j \V W

1 • • ' • ' i >• \ • • . ' ' • ' ' . . '•:; . . r - i i " ' • ' ' ' ' • ' . • ' " , ' • \ ' .
;•! i u : . ••;',:.•.•.'

(c) SOFM-SLP
. , . • ' . - . . ' . : . ' .'••'ui':

Figure 4.84 (con't.) Segmentations of Figure 4.83(a)

Visual comparison of these three images to the ground truth - the
labeled image in Figure 4.83(b) - is pretty difficult in shades of gray,
and is further complicated by the fact that all 65,536 pixels are
colored in Figure 4.84, but only a small fraction of them (8,627) are
visible in Figure 4.83(b). If you could see the color images, the
FOSART segmentation would look a little better than the other two
on some of the lesions in the lower half of the image. It's a little hard
to understand why this is true, since FLVQ and SOFM both enjoyed
lower MSEs and higher percent correct classification than FOSART
for run 1. Perhaps a more informative display would be the
difference images on just the ground truth pixels in X , which would

show the effectiveness of the three classifiers at labeling MS lesion
pixels in the test set.

Blonda et al. (1998) assert that the performance of FOSART recorded
in Table 4.46 shows that it is stable to small changes in the
parameter K. They also state that the 3D data used, with the Tl MP-
RAGE intensities, produced somewhat better results than the
standard 3D spin echo MR data. No evaluation of the medical
significance of the images in Figure 4.84 is reported by Blonda et al.

The ARTl/FART architecture seems to have minimal influence on
the design of FOSART, although several of the basic concepts (node

CLASSIFIER DESIGN 441

creation, vigilance) of ARTl are certainly evident in FOSART. Our
overall assessment of the classifiers in Example 4.26? In the first
place, ŵ e think that the method of comparison w âs at best, a little
unfair, and at v^rorst, crippling to the FLVQ and SOFM methods. The
architecture discovered by FOSART w âs forced on the other tw ô
networks (and hence, not necessarily optimal for their performance
criteria).

Comparing the three classifiers built by prototypes obtained from
the same number of training epochs - again picked by FOSART - also
seems unfair to the FLVQ-SLP and SOFM-SLP designs. After all, the
rate of convergence of different algorithms that are looking for a
solution to a common problem is often different, but, mindful of the
tortoise and the hare, it is certainly possible that slower algorithms
can produce better solutions in every sense except the time
parameter used to stop them. FOSART was allowed to terminate,
while the other two designs were simply sampled at the same time
before they terminated in their ovvrn right. This seems to prejudice
the examples given in favor of FOSART. We appreciate the authors'
honest attempt to compare apples to apples, but in this case, some
apples seem more equal than others.

Given these disclaimers, it surprises us that FLVQ and SOFM
performed better than FOSART under these circumstances. It might
be the case that on a level playing field, the FLVQ and SOFM based
designs would enjoy an even clearer advantage than is evident in
this example. Finally, you have to wonder how a standard RBF
network (sans fuzziness) or the crisp MLP with one or two layers
would compare to the results in Example 4.26, or for that matter,
how well segmentations with a non-neural model, several of which
have already been discussed (and see Chapter 5 for more), would
compare with the outputs shown in Figure 4.84.

Nonetheless, we like the basic ideas in this example, because the FF
networks discussed in Blonda et al. (1998) have a very different
flavor than the ones discussed in Section 4.7. Dynamic
reconfiguration of the RBF layer during left half-net training seems
like a good and clever idea; the authors assert that this has the effect
of countering the tendency of ART-like models to overfit the data,
and this strategy eliminates dead nodes. The manipulation of the
update neighborhood in FOSART (the RBF layer in the left half-net)
is also very different from ARTl/FART and indeed, SOFM as well.
This aspect of the FOSART scheme may provide it vinth some nice (as
yet unproved) local properties akin to topological connectedness of
the update neighborhoods. On the other hand, FOSART is a little
like the color resulting from mixing 4 or 5 different paints - it might
be splendid, or it might black everything out. So, when you try a
hybrid scheme like this, add a little bit at a time, stir well, and test
often.

442 FUZZY PATTERN RECOGNITION

Radial basis function networks (crisp or otherwise) provide a
fundamentally different approach to classifier design than the MLP
model discussed in Section 4.7. However, there is a connection

-fik-'.iri
between RBF networks and FAN models. Choose ^^ (x) = e ^ •' in
(4.122b), where A is a positive-definite diagonal matrix. Then ^^(K)
can be written as a product of p ID Gaussian functions, which can be
interpreted as the membership functions for the linguistic values
appearing in the bottom layer of a FAN (refer to Figure 4.80).
Consequently, the outputs of the hidden layer units in Figure 4.82
can be interpreted as the conjunctive combination of membership
values. The output layer nodes in an RBF network have linear
activation functions which can be realized as generalized means.
Thus, RBF networks are roughly equivalent to FANs that have
conjunctive nodes in the hidden layer and generalized mean nodes
at the output layer. Estimating the parameters of ^^[x.) for an RBF
network is roughly equivalent to estimating the parameters of the
membership functions in a FAN.

RBF networks are usually easier to train than back-propagation
designs, are related to several well known conventional methods -
e.g., Parzen windows, and provide approximations that are much
more local than FFBP designs (Llppman, 1989). We think that RBF
networks are important enough to deserve a whole chapter - but in
another book ©. We will discuss a few other fuzzy NNs in Section
4.11.

4.9 Fusion techniques

Real applications, such as assisted medical diagnosis, handwritten
word recognition, automatic target recognition, burled land mine
detection, etc., are, unfortunately, not like the Iris data. By this we
mean that it is rarely the case that successful systems can be
designed using only a few features and almost any classifier, as Is
the case with the Iris data.

More often, many sources of information are needed to provide
partial (soft) classifications, followed by an aggregation function of
some type. This strategy has become widely accepted, and is known
by many names, including data fusion, information fusion,
multistage classifier design or classifier fusion, sensor fusion, and
so on. However, the key Ingredients in most of these approaches are
shared by them all: multiple sources of information provide partial
classifications; the classifications are then somehow joined
together to give a final (hopefully better) decision than any
component classifier could. If you think of features as the sources of
information, then many of the classifiers we have discussed in this
chapter can be regarded as fusion devices.

CLASSIFIER DESIGN 443

We will only scratch the surface of this extremely important topic in
the hope that you will use our discussion as an entry point into the
l i terature. Hall (1992) discusses a variety of mathematical
techniques that can be useful in the context of sensor fusion.
Dasarathy (1994b) focuses on decision fusion and contains over 700
references on this topic, going back to 1981. We will use the terms
information fusion and sensor fusion interchangeably, even though
there are clearly distinctions between them.

There are several ways to develop a taxonomy of the levels at which
information fusion activities can take place. One such hierarchy
includes data level, feature level, and decision level fusion (Sims
and Dasarathy, 1992, Dasarathy, 1994b). If the data are temporal in
nature, such as a sequence of images over time, we should add
temporal information fusion to this list.

A. Data level fusion

Data level fusion involves combining sensor outputs directly. A
primary example of data level fusion is the combination of precisely
registered images from multiple sensors or wavelengths, such as
color images, multispectral images, or images acquired using
multiple infrared bands. This type of fusion is quite useful only y"
precisely registered information is available. Figure 4.85 shows an
example of data level sensor fusion for two registered images from
different sensors that contain information about buried land
mines. Using the DARPA Backgrounds data, which is based on
ground penetrating radar (GPR), and a forward looking infrared
(FLIR) image acquired by Geo-Centers, Inc., suitable image
processing techniques can provide complementary evidence of the
presence or absence of the mine-like objects. There are three objects
of interest in the illuminated scene, two near the top of the frame,
and one at the bottom. The GPR image (top left panel in Figure 4.85)
had strong returns for the two objects at the top of the image. Since
the bottom object is not in the data, subsequent processing of this
image alone (shown immediately to the right of the GPR image, with
the targets indicated by small white arrows and 'T"s), misses the
third object, and produces a detected false alarm. However, by
combining the registered FLIR and GPR image data before
processing, and using morphological operations on the combined
data, the three objects were detected and the false alarm eliminated,
as shown (very faintly) in the bottom right view of Figure 4.85.

Figure 4.85 is a very simple example that demonstrates the concept
of complementary sensor fusion at the data (or image) level. It's
possible that in processing the one FLIR frame in the bottow left
view, all three objects could be found without false alarms, but it is
just as likely that 0, 1, or 2 might have been detected. This is one
frame (out of thousands) - and is one of the few we could find that
showed objects in both the GPR and FLIR images. Hence, Figure 4.85

444 FUZZY PATTERN RECOGNITION

is really only a conceptual diagram that attempts to answer the
question- "what is data level fusion?".

raw GPR image processed GPR image
without data fusion

^ '

raw FLIR image output from processing
fused (FLIR+GPR) images

Figure 4.85 Data fusion aids object detection

A main difficulty in fusing image data this way is that the images
must be accurately registered in order to perform pixel by pixel data
fusion. Due to differences in range and resolution of various
sensors, direct data level fusion such as this is usually effective only
in carefully controlled situations.

While the potential payoffs of sensor fusion are high, there are
many difficulties. Image data are often unregistered and non-
collocated. Passive imaging sensors can be registered but they often
have different resolutions, causing different intensity distributions
which can make registration and matching a difficult problem. The

CLASSIFIER DESIGN 445

variation in object signatures from different sensing modalities
also make it difficult for an algorithm to reliably match potential
objects of interest in different image types.

Another problem in sensor fusion is that information may be
missing in one sensing modality but available in another. This
statement can be true in a partial sense. An object may be partially
occluded in one sensing modality but not occluded in another. There
may be high contrast between two regions in one modality but not in
another, etc. These attributes (occlusion, contrast) are not binary -
they are true to some degree. The fusion algorithm must use
whatever partial information is available.

Measurements on sensor outputs always contain uncertainty. This
uncertainty is caused by inherent physical limitations (resolution,
etc.), from the partial information problem, and from imperfections
in the algorithms themselves. A practical and effective fusion
algorithm must make full use of the available information without
being overwhelmed by imprecise and conflicting measurements.
The use of fuzzy set theoretic models within the information fusion
domain explicitly recognizes this uncertainty and provides
mechanisms which often successfully manage the uncertainty and
thereby arrive at more realistic answers than crisp, precise models.

Another type of fusion that can be regarded as either data level or
sensor level fusion is discussed in a pair of papers by Hathaway et al.
(1996) and Pedrycz et al. (1998), who present three models for fusing
heterogeneous fuzzy data (HFD). The objective of this type of fusion
is to convert fuzzy numbers into numerical data vectors (feature

vectors in 9t^). Using our standard notation, we let n column vectors

in a data set X = {x , x , ...,x } c 91^ be arrayed as a p x n object data

matrix, which we denote as X e 9t^" by letting column k of X be the

column vector x X = [x^ x^ ••• x^ j . Here dimension p is the
number of generalized coordinates in the chosen representation of
the heterogeneous fuzzy data; p will vary as the parametrization of X
does.
To understand what type of data this is, Consider the speed s of a
vehicle. The features used for describing and classiiying vehicle
speed (of, e.g., t rucks on a highway) can have various
representations. If measured precisely at some time instant, speed s
is a real number, say s = 100. Figure 4.86(a) shows the membership
function, mjs) = 1 o s = 100; otherwise, mj(s) = 0 for this case.
This piece of data could be collected by one observation of a radar
gun.

446 FUZZY PATTERN RECOGNITION

mjs) moCs) mJs)

° 1 1 1
90 100 110

(a) numerical

90 100 110

(b)intetval

90 100 110

(c) linguistic

Figure 4.86 Membership functions of crisp and fuzzy data

Next, suppose that two radar guns held by observers at different
locations both measure s at the same instant. One sensor might
suggest that s = 90, while the second measurement might be s = 110.
Uncalibrated instruments could lead to this situation. In this case,
several representations of the collected data offer themselves. One
way to represent these temporally collocated data points is by the
single interval [90, 110], as shown by the membership function m (s)

in Figure 4.86(b), maCs) = 1 <=> 90 < s < 110; otherwise, m2(s) = 0.
Another plausible representation is to center a small interval of
radius e about each observation, leading to the pair of real intervals
[90-e, 90+e] and [110-e, 110+e]. Both representations make the same
point - that data can come to us in the form of real intervals.

Finally, it may happen that vehicle speed is evaluated non-
numerically by a human observer, who might state simply that "s is
very high". In this case the observation can be naturally modeled by
a real fuzzy set. The membership function m (s) shown in Figure 1(c)
is one (of infinitely many) possible representation of the linguistic
term "very high", mg(s) = max{0 , l -0 . l | l00-s |} ,se3<. Taken
together, the three forms of data shown in Figure 4.86 are called
heterogeneous fuzzy data (HFD), and our objective is to find a
transformation of these three types of fuzzy numbers so that each of

the input data wind up in the numerical feature space SR̂ .

Let 9? be the real numbers, /(9t) = / be all closed real intervals such
as [a, b], and J^{'3i) = jT be the real fuzzy subsets of 9 .̂ Every element
of iT is a membership function m: 5̂ h^ [0,1]. Next, let

jP = j x fx-'-xy (4.129)
p times

An element of iF is a function that represents a real number, real
interval or fuzzy set of real numbers; an element of J^ is a p-tuple of
them. For example, the vector x = (1.32, | sin(x) |, [-3, 4.5], 2.77, x^ for

CLASSIFIER DESIGN 447

X in [-1,1]) is in y^. The most general form of HFD is a collection of n

vectors X = {x^,x^,---,x } c 7 ^ . Hathaway et al. (1996) discuss
several parametric representations of this data as a set of
generalized coordinates in some real, finite-dimensional vector
space.

Because real numbers and intervals can be represented by crisp
membership functions, each vector in X can be regarded as a p-tuple
of real membership functions. This is the case that is discussed in
Pedrycz et al. (1998). We will briefly discuss the simpler case set out
in Hathaway et al. (1996), of parametric HFD models by considering
here only the more restricted case obtained by constraining the
membership functions for each coordinate of x to be symmetric

trapezoidal fuzzy numbers.

Our notation for any representation of a symmetric trapezoidal
fuzzy number is m (x; a , a , a) = m (x; a), where a = (a , a , a) is the
vector of parameters that specifies m in the chosen representation.
We will regard m as the standard representation of a symmetric
trapezoidal fuzzy number, and will refer to a as the center, a as the
inner radius, and ag as the outer radius of the graph specified by
m (x; a). Using this standard representation, we let

iFiT(a) = {m^:9?i-^[O,l]:ae9t3;a2,a3>0} . (4.130)

jFiTP(a) = iFiT(a) X :riT(a)x- • • x;73T(a) c J^^ is obtained by replacing J
p times

in (4.129) with !)^ST{si). There are four kinds of symmetric
trapezoidal fuzzy numbers in JiT(a), viz., real numbers, intervals,
and symmetric triangular and trapezoidal fuzzy numbers.

Every coordinate of a vector x in j73TP(a) has a unique
representation as an element of iFvST(a) for an appropriate choice of
a. When every element in a data set X is in ^^^^(a), we call it
parametric HFD, because each generalized coordinate of every x in

X has a unique representation as an element of !FST[a) for some
choice of a. We abstract a simple example from Hathaway et al.
(1996) that shows how their parametric HFD model can be used for
data fusion, which in turn enables us to do clustering and classifier
design with this type of mixed data.

Example 4.27 Table 4.47 lists, without parentheses or comma
delimiters, a set of n = 9 data points in 7JT^(a). The superscript of
JiT^(a) indicates that each data point comprises a pair of

448 FUZZY PATTERN RECOGNITION

generalized coordinates; â for i = 1, 2. For example, interpret row
one in this table as the generalized coordinates of the vector
Xj =(1.1,0.0,0.0,1.5,0.0,0. o r 6 9t^. The first triple of coordinates
specifies the symmetric trapezoidal fuz^ number m (x; 1.1, 0.0, 0.0),
the real number 1.1, and the second triple specifies the symmetric
trapezoidal fuzzy number m (x; 1.5, 0.0, 0.0), which is the real

number 1.5. The pair of generalized coordinates for x in JS^ (a)
specifies a real interval and a real number, and so on.

Table 4,47 A 9 -point parametric HFD set in JiT^(a)

First Variable : â Second Variable: a
2

^ 1 1.1 0.0 0.0 1.5 0.0 0.0

^ 2
1.5 1.0 0.0 2.1 0.0 0.0

^ 3 0.2 0.1 0.2 1.7 0.3 0.2

^ 4
3.1 0.3 0.0 4.1 0.5 0.0

^ 5 2.7 0.0 0.1 3.0 0.0 0.2

^ 6
3.5 0.2 0.0 4.7 0.1 0.0

^ 7
4.5 0.0 0.0 0.6 0.0 0.0

^ 8
4.7 0.0 0.0 0.3 0.0 0.0

^ 9
4.6 0.0 0.0 0.6 0.0 0.0

For the representation of X in j75T (a), p = 6 because each input
variable requires 3 numbers for specification as a symmetric
trapezoidal fuzzy number. By this device the original set of 18 (2 for
each of the 9 input data) membership functions are converted into a
set of 9 vectors in 9t^, and this is how the data are fused; all of the
HFD inputs are transformed into vectors in 6-dimensional
EucUdccin space. The nine 6D vectors in Table 4.47 are the fused data
- that is, the transformation of the inputs to 9t^ accomplishes the
fusion. Now we may process the columns of Table 4.47 with any
pattern recognition algorithm that uses object data.

Figure 4.87 is a sketch that illustrates the 18 membership functions
in fST{Q.) that are specified by the HFD set in Table 4.47. The frames
in Figure 4.87 are not to scale. Each sketch in Figure 4.87 is 1 unit
tall. The horizontal scales vary from one to two units wide so you
can only see the approximate relationships of the various data to
each other. Moreover, the parameters of the functions are given in a
different way than in (4.130) so that the sketches fit in the figure.

CLASSIFIER DESIGN 449

First Variable Second Variable

1.1

1.5 2.5

0.2 0.3 0.5

m:::
3.1 3.4

A
2.72.8

m
3.5 3.7

4.5

4.7

1
4.6

! . - - - - . - •

1.5

2.1

1.72.02.2

m
4.1 4.6

S'.O 3"2

M
4.74.8

0.6

0.3

0.6

Figure 4.87 Graphical representation of the HFD in Table 4 .47

450 FUZZY PATTERN RECOGNITION

Figure 4.87 illustrates how the parametric HFD model fuses data of
the three types discussed in the speed example into a uniform
numerical framework. Data points 1,7,8, and 9 are pairs of real
numbers; they would be collected by point-valued sensors, x shows
a real interval as its first coordinate, and a real number as its
second entry; this would result from an instance of the (sensor 2,
sensor 1) pair for object 2. x and x could be the result of
observations by sensor type 3 on both variables. And so on.

It now makes sense to ask about clusters in HFD. The idea itself is
easy to grasp, and the computational means for doing cluster
analyses in HFD are available in the setting of !FST^[,&). We can
apply any object data clustering algorithm to the generalized
coordinates of X obtained by this representation, and it will produce
clusters. Hathaway et al. applied the fuzzy c-means clustering
algorithm (Subsection 2.2.A) to the data In Table 4.47 with m=2, c=3,
e=0.0001 and the Euclidean norm for the objective function. The
termination criterion was E^ = |Ut -U^ . iL ^ ^•

The initialization they used Is Indicated with subscript 0 in the
upper half of Table 4.48, and it grouped points {1,4,7}, {2,5,8} and
{3,6,9} into c=3 crisp clusters. The lower half of Table 4.48 contains
the final prototypes, indicated by subscript f, which were obtained
In 14 iterations of FCM.

Table 4.48 Initial and final FCM prototypes for X in Table 4.47

First Variable : a Second Variable : a„
1 2

^2 0

2.90 0.10 0.00 2.07 0.17 0.00

^2 0 2.97 0.33 0.03 1.80 0.00 0.07

^ 0
2.77 0.10 0.07 2.33 0.13 0.07

^ f 0.94 0.31 0.07 1.76 0.10 0.07

^2f
4.59 0.00 0.00 0.51 0.00 0.00

^3.f
3.17 0.21 0.02 4.11 0.25 0.04

Table 4.49 shows the Initial (crisp) and final fuzzy partitions of the 9
HFD data points. Hardening Û in Table 4.49 with (2.10) leads to the
crisp 3-partition (shown by the shaded and bold cells) X = {x , x , x }
u{X^,X^,Xg}u{X^,Xg,Xg}.

CLASSIFIER DESIGN 451

Table 4.49 Initial and final FCM 3-partitions for X in Table 4.47

^ 1 ^ 2 ^ 3 ^ ^ 5 = 6̂ ^ 7 ^ 8 ^ 9

row 1, U 1 0 0 1 0 0 1 0 0
row 2, U 0 1 0 0 1 0 0 1 0
row 3, U 0 0 1 0 0 1 0 0 1

row 1, Uf 0.97 0.84 0.93 0.01 0.22 0.03 0.00 0.01 0.00
row 2, Uf 0.01 0.06 0.03 0.00 0.11 0.02 1.00 0.99 1.00
row 3, Uf 0.02 0.10 0.04 0.99 0.67 0.95 0.00 0.00 0.00

since each point in Table 4.47 and Figure 4.87 has two components,
it is possible to construct a 3D view of each row in the data that
shows the 2D membership function for each object. Figure 4.88 is a
3D plot of the data and final prototypes in which the data have been
lightened, and the three prototypes darkened so that you can see
them.

m(x,y)

Figure 4.88 The terminal FCM prototypes for c = 3 are used
to classify HF data point z

The second prototjrpe (cluster center) corresponds to the point v =
(4.59, 0.51). (Actually, this is true only after the computational
results are rounded to two decimal places. To four decimal places,
prototype \^^= (4.5868, 0.0013, 0.0004, 0.5137, 0.0001, 0.0008)"^, so

V does not, strictly speaking, correspond to a vector in 9̂ . The

452 FUZZY PATTERN RECOGNITION

first a n d th i rd c lus ter cen te rs have all non-zero coordinates , and

t h u s define trapezoidal pjTamids in JST (a).

Ha thaway et al. also showed t h a t the prototypes obtained in th i s
example can be used as a bas i s for 1-np classifier design. By way of
i l lus t ra t ion, suppose t h a t the 9 point HFD da t a are regarded as
" t ra in ing data" , a n d t h e o u t p u t of t r a in ing is the se t of HFD
prototypes for c = 3 shown in Figure 4 .88 . Suppose t h a t z is the

t r i a n g u l a r m e m b e r s h i p funct ion in jFiT (a) specified by t h e
generalized coordinates z - (z,, 0, 0.25, 1.0, 0, 0)^ a s i l lustrated in

Figure 4 .88 . As plotted, z a p p e a r s visually equ id i s tan t from the
prototypes for c lasses 1 a n d 2. The HFD model enables u s to make
th is a well-defined concept.

An easy calculation of the Euclidean dis tance from z to each of the 3

p r o t o t y p e s in the representation space J i T ^ (a) c 9 t ^ yie lds t h e
resu l t s in Table 4.50. If the first coordinate of z is 2.65, the nea res t
prototjqje is V , 3aelding the class 1 label. If the first coordinate for z

is 2 .70 (as shown in t he thi rd co lumn of Table 4.50), the label
assigned by the neares t prototype classifier would be class 2.

Table 4 .50 Ulustxation of a nearest prototype classifier for HF data :
tabulated are E^uclidean distances 5 (z, v)

z = 2.65 z = 2.70

1
2
3

1.93 1.98
2.00 1.96
3.17 3.16

This shows how a classifier can be designed us ing fused da ta t h a t
will look for the closest ma tch to a n unlabeled observation among a

library of generalized prototypes. The representa t ion space ^iT^(a)
provides the essent ia l ingredient - viz., a unified framework for
p a t t e r n recognit ion us ing models t h a t a re already available a n d
well u n d e r s t o o d . All of t h e u s u a l p r o b l e m s a s soc i a t ed wi th
c lus ter ing, c lus ter validity a n d nea re s t prototype classifiers - for

example, w h a t dis tance measu re (in 9t^) a n d how many prototypes
per class to use - become sensible questions to ask and t iy to answer.

CLASSIFIER DESIGN 453

B. Feature level fusion

Feature level fusion is much more general and directly takes
advantage of the ability of different sensors to measure
complementary information. This level of fusion involves
combining multi-dimensional, quantitative feature vectors derived
from sensor measurements, possibly together with qualitative
information. For example, one sensor may give shape information
while a different sensor may provide depth. This level of fusion has
many similarities to complex pattern classification problems
(Wootton et al., 1988, Keller and Hobson, 1989, Keller and Osbom,
1991, Keller etal., 1991).

(M:

^ • > :

Figure 4.89 Feature level fusion to reduce false alarms

As an example consider the Geo-Centers GPR system, which
produces a volume of data as the sensors are moved downtrack. The
coordinates are downtrack, cross track and time (which roughly
correlates to depth). In Figure 4.89, two views of the Geo-Centers GPR

454 FUZZY PATTERN RECOGNITION

data are displayed: panel (b) is a surface plot where the energy below
the surface is "summed up" into a downtrack-crosstrack plane; and
panel (c) is a depth plot representing the radar returns in time and
downtrack given a fixed crosstrack value. The objects are at
locations denoted by very faint "tick marks" in panels (a)-{c) of
Figure 4.89. Panel (a) of Figure 4.89 is a thresholded version of the
image in panel (b). All of the objects are accounted for, but many
false alarms are also evident in panel (a). While the raw data is the
same, different features emerge by processing it in different ways. In
looking at the depth plots, Frigui et al. (1998a) and Gader et al.
(1998b) noticed that the high energy locations in the panel (b)
surface plot corresponded (roughly) to rising and falling edges in the
panel (c) depth plot at locations related to the size of the objects.
Panel (d) of Figure 4.89 represents two thresholded outputs of
gradient masks operating on the image in panel (c). Darker values
represent strong rising edges, while the lighter color corresponds to
falling edges in panel (d). Note that there are still false alarms in
panel (d). Hence, by combining these sets of features, we might expect
to enhance detection capabilities while eliminating false alarms.

Keller and Gader (1997) proposed one method of combining
information on energy (panel (a)) with the information on rising
and falling edges (panel (d)) using a fuzzy rule:

1F there is significant energy in the GPR surface plot.
AND there are rising and falling edges in the GPR depth plot
AND the edges are close
THEN confidence in mine is high

View (e) in Figure 4.89 shows an implementation of the above rule.
This particular implementation lost two of the desired detections,
but significantly reduced the number of false alarms from the
standard approach (panel (a)). Don't read too much into Figure 4.89;
it is Just an example to illustrate the concept of feature level fusion.

C. Classifier fusion

Decision level fusion generally involves combining information
from algorithms that have partially or fully processed individual
sensor measurements (or features derived from them), and perhaps,
other qualitative information that may reside in rules such as the
land mine rule jus t given. The division between feature level fusion
and decision level fusion is not crisp, but decision level fusion is
generally considered to be at a higher level, such as combining the
outputs of several classifiers. (Tahani and Keller, 1990, Gader et al.,
1995a, Gader and Mohamed, 1995, Cho, 1995, Kuncheva et al. 1998).
This fusion level is the primary emphasis of this section.

The basic assumption that drives decision level fusion schemes is
that classifier algorithms are imperfect. Thus, a good strategy for

CLASSIFIER DESIGN 455

enhancing the performance of classification systems is to construct
multiple independent systems and then combine the results,
hopefully achieving higher reliability and robustness through
redundancy. The hope is that each individual system makes
independent errors which can be overcome using advanced fusion
schemes.

Figure 4.90 illustrates a general architecture for classifier fusion. In

this Figure D is any classifier function, D: 5RP h^ N . The value u =
s= J • pc

D(z) is the label vector for z in 9t^. D is a crisp classifier if D[9t^] is
always a crisp (binary valued) label vector; otherwise, the classifier
is fuzzy, possibilistic or probabilistic, which, as we have done
earlier, we lump together by the term soft classifiers.

Training data

-X5>^u,^ Fusion
Classifier
D = F({D,})

'i^(5)^H(u) = e,

^'r^D

iTesting data

Figure 4.90 Classifier fusion models

On the left in Figure 4.90 we show a bank of L first level classifiers -
it would not be wrong to conceptualize these as the input layer of a
network, and this often helps in visualizing the fusion operation.
Each D could be a soft classifier of a different type; for example, D
might be a nearest prototype classifier, D , a multilayered
perceptron. D a fuzzy decision tree, and so on. Most of the time, the
L classifiers {D } use the same training data to acquire their
parameters independently, but for classifier fusion this is not
necessary. Exceptions to this include the bagging (Breiman, 1996)
and boosting (Drucker et al., 1993) approaches for creating
ensembles of neural networks.

The fusion classifier D = F(Di DL) , where F is a specified "fusion
operator" that integrates the outputs of the bank of classifiers in the

456 FUZZY PATTERN RECOGNITION

first level, generally maps soft labels to soft labels, D: N h^ N .As
with other classifiers, we often use the hardening function
H:N i-> N in equation (1.15) to get a final crisp output from D as

shown in Figure 4.90. For classifier fusion to improve recognition
rates over individual classifier outputs, different classifiers must
make different mistakes. A fusion method should emphasize the
strengths of individual classifiers and subsets of classifiers, avoid
weaknesses, and use dynamically available knowledge about the
inputs, the outputs, the classes, and the classifiers.

There are three styles of classifier fusion. The simplest type is when

Dis a fixed operator without any unspecified parameters that
cannot be trained and which is simply chosen by the user - e.g., the
minimum, maximum, weighted mean, etc.; in this case we call D a
non-trainable fusion operator. A more aggressive approach to
fusion allows D to be trained simultaneously but independently
from each of the L D 's using the same training data; then we call D a
separately trained fusion operator. Examples of this type of
operator include fuzzy integrals (Tahani and Keller, 1990, Keller et
al., 1994a, Gader et al., 1996b, Wang et al., 1998), OWA operators
(Cho, 1995), decision templates (Kuncheva et al., 1998, 1999), and
many others that we will meet later in this section.

Lastly, if D is trained simultaneously and in conjunction with the L
D 's using common training data, we call D a co-trained fusion
operator. There aren't too many examples of this third type of
fusion. Jacobs et al. (1991) discuss a mixture of "experts" that use a
gating network for D that is trained together with the first level
classifiers. However, this model selects (as opposed to combines)
classifier outputs, so is not exactly what we call a co-trained fusion
model.

As an introduction to time-based fusion, Sato et al. (1997) discuss a
temporal version of FCM called TFCM (Section 2.6) that integrates T
time slices of data sets having fixed spatial sizes in a weighted
objective function across time. The output of TFCM is a single fuzzy
partition matrix U for the entire set of time slices coupled to T sets of
prototype vectors {V , ..., VJ, one set for each slice. When the frame
rate of temporal sequences is high, TFCM may be useful for "short
bursts" within the overall sequence of temporal data, because
changes in the scene will be very slight. In this situation the number
of objects (that is, c, the number of clusters in U) should not vary, but
the centers of gravity (that is, the prototypes V we use to track the
objects) will, if the objects and/or sensor platform have changing
positions in time.

CLASSIFIER DESIGN 457

There are at least as many methods for classifier fusion as there are
for designing classifiers, since the decision fusion mechanism D in
Figure 4.90 is a classifier. Voting strategies (Mazurov et al., 1987),
like majority choice or best "M of N" approaches, and order
statistics, like the maximum or median, are obvious simple non
trainable methods to fuse multiple classifier outputs.

Kittler (1998) discusses the problem of classifier fusion from a
statistical decision theoretic standpoint for two scenarios: fusion of
opinions based on identical representations, and opinions based on
distinct representations. Standard methods for combining distinct
opinions, such as the product rule, sum rule, min rule, max rule
majority voting, and weighted averaging are shown to be special
cases of compound classification, where all representations are used
jointly under suitable Bayesian hypotheses. Kittler (1998) also
contains many other statistical based fusion references.

Figure 4.90 looks like (and is, if we regard the L classifier outputs as
inputs to a single node) a standard FF neural network, and as such,
can be trained on the output of the L classifiers and thus act as a soft
fusion technique. We will discuss this method in some detail later in
this section, but refer you to Rowley et al. (1998) for a typical
example of using a NN as the fusion device.

Additionally, there are methods to choose the best classifier for a
particular sample (among say, an ensemble of neural networks, or
from different types of techniques) based on some measure of
"goodness" or "consistency" of the multiple outputs (Leon et al., 1996,
Woods et al., 1997). This is somewhat different in nature from the
situation depicted in Figure 4.90. The classifiers aren't combined
directly in this method; they are used to determine if classification
should be done at all. Refusing to decide (at least until more evidence
is forthcoming) can improve overall classification accuracy and is
consistent with the principle of least commitment.

Pick your favorite classifier, and you can turn it into a fusion
machine. We are being somewhat casual here, because the fact is that
fusing the results of classifiers/sensors/information sources is not
well understood. There is little theory of sensor fusion. Hence, the
"proof is in the pudding" right now, i.e., different approaches can
produce very different results on different data (that's a lot of
differences - just don't treat them with diffidence). What we will do
now is give a few examples of fuzzy set based classifier fusion
approaches that have been shown to work in certain domains.

The fuzzy integral (Section 4.5) is a very flexible approach for
classifier fusion. Tahani and Keller (1990) were the first to utilize
the Sugeno fuzzy integral to combine the results of multiple
classifiers. In that paper they established a framework for fuzzy
integral fusion in an automatic target recognition application that

458 FUZZY PATTERN RECOGNITION

used three first level classifiers: a Bayes decision theory classifier, a
feature based Sugeno fuzzy integral, and a soft prototype classifier
based on FCM. The fuzzy integral was able to compensate for two
extremely confident (but erroneous) classifications by one of these
three classifiers. Subsequently, several authors have used both the
Sugeno and Choquet fuzzy integrals to combine multiple
information sources (Keller et al., 1994a, Gader et al., 1995a, Gader
and Mohamed, 1995, Cho and Kim, 1995, Grabisch et al., 1995).

Example 4.28 In (Hocaoglu et al. 1997, Keller et al., 1998), a system
based on fuzzy set theoretic algorithms to perform automatic target
recognition from Laser Radar (LADAR) imagery was described.
Figure 4.91 shows the framework of this approach for an automatic
target recognition (ATR) system.

r LADAR Range l m a g e \

(DEVLINJJ (LODARK) J^ GEAR j

Fusion : Choquet
Fuzzy Integral

(3 Threshold and Detect

First Stage
Detector Scoring ^ Feature Extraction

c Neural Network

System
Scoring

d

J
Threshold and Detec^

Figure 4.91 A fuzzy logic ATR system

The details of the LADAR pixel target detection filters, called
LODARK, DEVLIN and GEAR in Figure 4.91, are in (Hocaoglu et al.
1997, Keller et al. 1998). Briefly: LODARK stands for LOw and DARK -
LADAR range image targets have more "action" in the low part of the

CLASSIFIER DESIGN 459

scanning window and correspond to darker pixels than the
background. DEVLIN stands for DEViation from LINear - the
background in range images tends to look like a plane (not airplane
of course), hence targets (and other objects) cause a deviation from
that flat or linear plane. CFAR stands for constant frdse alarm rate
and is usually a size-contrast filter, although this implementation
used robust estimators in the size contrast filter (Frigui et al.,
1998b).

What is important here is that all three classifiers produced a target
confidence at each pixel in the LADAR scene. The Choquet fuzzy
integral was used to combine the results of the three classifiers. For
one group of experiments, the set of LADAR images was divided into
a training set (52 images wrtth 89 targets) and a test set (45 images
v^ t̂h 86 targets). See Figures 4.20 and 4.21 for a typical image in this
data set. Each pixel level detector was run on the training images
and for each threshold value, the probability of detection vs. the
number of false alarms was computed (the graph of these points is
called a receiver operating characteristic (ROC) curve. From the ROC
curves on the training data, a threshold was picked for each
detector. Each detector was then run with its threshold on the test
set and scored. A Sugeno fuzzy measure (see equation (4.47)) was
generated from densities calculated as the relative number of
detections by each classifier on the training set. In this case, the
resultant measure was a probability measure (since the densities
summed to one).

The three detector confidences for each pixel in the training images
were fused with the Choquet integral, and once again the probability
of detection vs. the number of false alarms for all thresholds was
computed. An "optimal" threshold was selected (manually) from the
training results of the fusion. The results of the three individual and
the fused detectors are shown in Table 4.51. On the training data, the
Choquet Integral combination was able to slightly increase the
detection rate while reducing the number of false alarms. Many of
the false alarms were generated on just a few "poor" images, and no
effort was made to incorporate temporal aspects of the image
sequences into the processing.

Table 4.51 Target detection outputs for individual and fused
detectors on training data

False
Detector # Hits A l a r m s Densi ty

CFAR 75 (84.3%) 200 0.32

DEVLIN 80 (89.9%) 227 0.34

LODARK 81 (91.0%) 319 0.34

FUSED 83 (93.3%) 191 -na-

460 FUZZY PATTERN RECOGNITION

The test images were then submitted to the final configuration. The
Choquet fusion scheme for the detectors (using the threshold
selected from the training ROC curve) found 81 of the 86 targets in
the test images, with 183 false alarms. The second stage detector in
Figure 4.91 was added to further reduce the number of false alarms.

In Example 4.28 there were training images, but no "desired outputs"
at the pixel level. Hence, the densities for the fuzzy integral were
calculated from global statistics. Recently, the Choquet integral has
become the fuzzy Integral-of-choice for classifier fusion activities
where desired outcomes are available. This is because the entire
measure can be learned as the optimal solution to a quadratic
programming problem (Grabisch and Nicolas, 1994).

Even restricted classes of measures give rise to a wide variety of
combination schemes. As noted in Section 4.5, all linear
combinations of order statistics (LOS) operators (or OWA fuzzy
operators in some circles) are special cases of the Choquet fuzzy
integral. Tumer and Ghosh (1998) show that a LOS combination of
multiple neural networks provides excellent fusion of classifiers in
the presence of outliers, or when there is a high variance of
individual classifier performance. They performed an analysis of
decision boundaries and ran experiments on 6 standard data sets
from the University of California (Irvine) repository to support
their views. This study lends support to the Choquet fuzzy integral
combination as a very competitive fusion method.

An application where classifier fusion has received considerable
attention is handwriting recognition. This is because there are an
abundant number of classifier schemes for character and word
recognition, along with a huge amount of labeled training and
testing data. Classifier fusion methods in this domain include
intersection of decision regions, voting, prediction by top choice
combinations, Dempster-Shafer theory of evidence, fuzzy integrals,
neural networks and rule-based approaches (Ho et al., 1994; Huang &
Suen, 1995; Keller et al., 1994a, Suen et al., 1992, Xu et al., 1992, Chi
and Yan, 1996, Chi et al., 1996b).

Handwritten word recognition is problematic because of the large
variations in the shape of characters, the illegibility and ambiguity
present in many handwritten characters, and the overlapping and
interconnecting of neighboring characters. In most applications the
size of the lexicons (dictionaries) is large and the contents of the
lexicons (the classes) are changing. The problem is more complex
than traditional pattern recognition problems because the number
of classes is relatively large - easily on the order of thousands, and
moreover, changes from word image to another. This precludes the
use of some decision combination methods that depend on knowing
the number of classes and the identity of each class in advance.

CLASSIFIER DESIGN 461

One widely used fusion method In handwritten word recognition is
the Borda count, which is simple to implement and requires no
training. All classifiers rank all of the alternatives (classes), and
the Borda count is simply the sum of the ranks for each class. In this
method, however, all classifiers are treated equally, which may not
be preferable when certain classifiers are more likely to be correct
than others. Ultimately, more sophisticated techniques are
necessary for fusion in this domain because different word
recognizers do not contribute equally and do not place equivalent
restrictions on the recognition results. For example, a weighted
Borda count was shown to achieve better performance than the
unweighted Borda count in (Ho et al., 1994). The next example, taken
from (Gader et al., 1996b) demonstrates the ability of the fuzzy
Integral to effectively combine classifier outputs for handwritten
word recognition.

Example 4.29 In a test of classifier fusion for word recognition,
Gader et al. (1996b) considered three advanced recognition
algorithms: a dynamic programming algorithm that Is applied to
segmented characters, which we call the segmentation-based
method (SBM, see example 4.12), a hidden Markov model (HMM)
approach, and a Juzzy version of the hidden Markov model (FHMM)
method (Mohamed and Gader, 1994, Mohamed and Gader, 1995). The
decision fusion strategies all use the ranks of the strings provided by
each word recognizer. The HMM and FHMM schemes do not produce
output confidence values that can be compared to each other, or to
those produced by the SBM. Only the relative ranks of the HMM and
FHMM for various words in the lexicon are comparable. The SBM
approach used two MLP neural networks (one each for upper and
lower case letters) to generate character confidences for unions of
primitive segments. The neural networks were trained with
handwritten characters that were assigned posslbillstlc training
labels (Gader et al., 1995), which produced better results in word
recognition than those from neural networks trained with crisp
character labels. The use of ranks provides a measurement which is
comparable across recognizers. Gader et al. used only the top n (n= 5,
here) strings In the lexicon for each recognizer. For a given word
image and lexicon, each classifier produced an ordering of the
lexicon. The kth string in each ordering of the lexicon Is assigned
the rank confidence 1 - (k/n). If k > n, the rank confidence Is defined
tobeO.

Recall that the Borda count associated with a string in a lexicon Is
defined as the sum of the ranks, while the weighted Borda count is
the weighted sum of the ranks. The weights can be fixed for every
classifier, or they can be a function of the match confidence (degree
of match) between the Image and the lexicon string. Data dependent

462 FUZZY PATTERN RECOGNITION

or data Independent approaches can also be used to generate the
density values for the fuzzy integrals.

The fuzzy integrals used the rank confidences for the values of the
function h(x). The density values were generated using two methods.
In the first method, Gader et al. assigned each classifier a fixed
density value which was used for every string in every lexicon; this
value is considered to reflect the worth of each classifier. An
example of the non-data dependent method for combining word
classifiers are shown in Tables 4.52(a) and 4.52(b). This example is
difficult - can you figure out what the correct word should be from
this pair of tables? Did you guess the word "island" - before you read
the caption of Table 4.52(a)? This is the correct word.

Table 4.52 (a) Three classifier rankings
for an image of the word "island"

Rank HMM FHMM SBM
1.0 "grant" "stpaul" "island"
0.8 "island" "grant" "grant"
0.6 "granada" "island" "salem"
0.4 "burwell" "oneill" "nehawka"
0.2 "nehawka" "o'neill" "roseland"

The three classifiers were run on an image of the word "island" from
the SUNY (1989) postal database, and the five rows of Table 4.52(a)
correspond to the top five words as ranked by each of the three
classifiers. Note that the word "island" appears in the top three
choices of each classifier, but is the top choice of only one of them.
Actually, the word "grant" seems to be a better guess from the
information in Table 4.52(a). Table 4.52(b) shows the results of fixed
weight fusion for the top five classes (words) appearing in Table
4.52(a). The Borda count uses no weight factors. For the other three
schemes (weighted Borda count, Sugeno integral and Choquet
integral) the weights/densities were chosen as 0.65 for SBM, 0.25 for
HMM and 0.05 for FHMM. As seen in Table 4.52(b), the weighted
Borda count and the Choquet integral pick the correct class for this
example.

Table 4.52 (b) Results of classifier fusion
on the results in Table 4.52(a)

Weighted
Borda Borda Sugeno Choquet

String Count Count Integral Integral
"grant" 2.60 0.81 0.8 0.85
"island" 2.40 0.88 0.8 0.92

"nehawka" 0.60 0.31 0.4 0.32
"salem" 0.60 0.39 0.6 0.26

"granada" 0.60 0.15 0.25 0.15

CLASSIFIER DESIGN 463

The second method discussed in Gader et al. (1996b) used data
dependent densities. The confidence value produced by the SBM was
used to define a density value for it in the fusion scheme. The density
values for the HMM and the FHMM were then determined by a
heuristic formula involving the SBM confidence and the agreement
between the classifiers concerning the rank of each string. More
precisely, let:

Cg = confidence value from the segmentation-based classifier

g^ = density of the segmentation-based classifier
rs= rank of the string by the SBM

g" = density of the HMM classifier
rn = rank of the string by the HMM

g'̂ = density of the FHMM classifier
rp= rank of the string by the FHMM

If a string is in the top n choices of the segmentation-based system,
then define

g^ = m a x (e , a C s) ; (4.131a)

g " = | 3 y (l - C s) (l - | r H - r s |) ; and (4.131b)

g ^ = y - ^ (l - C s) - (l - | r F - r s |) . (4.131c)

Otherwise, define

g^ = max(e. a • Cg) (4.132a)

g" = P • V(l -Cs) - (l - | rH- rF |) (4.132b)

g ^ = T - y (l - C s) - (l - | r F - r H |) (4.132c)

Here a, p, and y are parameters that can be optimized and e > 0 is
very small. The expression max(e, a C g) was used to keep the
densities for the SBM non-negative in the case that an appropriate
segmentation cannot be found. The same method can be used to
define weights for the weighted Borda count.

For example, the data-dependent Choquet combination method
would assign confidence values shown in Table 4.53 for the strings
"island" and "grant" from Table 4.52(a). The values of the parameters
used for the computations shown in Table 4.53 were a = 0.9, P = 0.1,
and Y= 0.4.

464 FUZZY PATTERN RECOGNITION

Table 4.53 E^sample of data-dependent Choquet integral fusion

String

"island"
"grant"

g H Choquet
Integral

0.75
0.46

0.68
0.42

0.02
0.27

0.04
0.08

0.92
0.86

The experiments were performed on handwritten words from the
SUNY CDROM database. The "BD city" words were used (Hull, 1994).
The FHMM and HMM were trained using the standard traiining set
from that database. The SBM method was trained using a different
set of data. In the SBM experiment, 126 words from the training set
were used to "train" densities and weights. All of the 317 BD city
names from the test set were used for testing. Sets of lexicons that
had an average length 100 were used for both training and testing.
The results of the three individual classifiers are shown in Table
4.54.

Table 4.54 Recognition results for individual classifiers

Classifier Training Testing
HMM

FHMM
SBM

74.6%
74.6%
82.5%

71.6%
73.2%
83.9%

The "training" method for the weighted Borda count and the fixed
density fuzzy integral approaches was a "modified" exhaustive
search. Weights/densities were varied from 0.05 to 0.95 by
increments of 0.05. The training method that was used for the data-
dependent densities was a similarly modified exhaustive search on
a, p, and y. In each case, "optimal" values for the parameters were
found on the training set and then used on the test set. The top choice
results for the Gader et al. (1996b) experiments are shown in Table
4.55.

Table 4.55 Training and test results for fused classifiers

Optimal Testing
Combination Approach Training

Data-Dependent Choquet 89.7% 88.0%
Data-Dependent Sugeno 89.7% 86.4%
Data-Dependent Weighted Borda 88.9% 85.5%
Fixed Choquet 88.1% 82.0%
Fixed Sugeno 88.1% 85.2%
Fixed Weighted Borda 88.1% 86.4%
Borda 84.1% 83.3%

Gader et cd. (1996b) attempted to train several standard MLP neural
networks to fuse classifiers from the same data that was used by the
fuzzy integral. Each feature vector contained ten inputs: the

CLASSIFIER DESIGN 465

segmentation confidence (Cg), the word ranks for the three
classifiers (rg.rji.rp), the data dependent densities for the three

classifiers (g^,g",g^) , and the fuzzy measures of the three 2-
element subsets of classifiers. Recall that for a fuzzy measure
defined over the set of three Information sources (In this case, the
three classifiers), there are eight subsets to consider. Leaving off the
measure of the empty set, which Is 0, and that of the whole set, which
Is 1, the fuzzy measure is completely specified by the measures of the
three singleton sets (these are the densities above), and the measures
of the three subsets containing two of the three sources. Hence, the
neural networks had as input the segmentation confidence, the
classifier outputs, and the fuzzy measure. The target was set to 0.9 if
the string represented the correct choice for the current word image,
and 0.1 If It was Incorrect. Many architectures were Investigated.
Table 4.56 shows the best results obtained.

Table 4.56 Training and test results : neural nets with crisp outputs

Training Testing
Architecture # Iterations Results Results
10:5:1 1000 84.1% 80.4%
10:5:1 3000 84.9% 82.3%
10:5:1 6000 84.9% 81.4%
10:5:1 21000 86.5% 79.5%
10:10:1 2000 83.3% 81.4%
10:10:1 4000 83.3% 81.4%
10:10:1 10000 86.5% 81.7%
10:10:1 15000 88.1% 80.8%
10:10:5:1 5000 84.9% 82.0%
10:10:5:1 9000 86.5% 81.4%

It Is clear from Table 4.56 that the neural network architectures did
not match the performance of the fuzzy integral for fusing the three
classifiers on this data set. Gader et al. conjecture that this may be
true in handwritten word recognition because we are not learning a
nonlinear function In the same sense that s tandard pattern
recognizers do - i.e., we are not hacking through Dubois and Prade's
"Jungle of function approximation". Since strings need to be ranked,
there are a very large number of possible classes and hence, we
cannot use the standard class coding approach. This makes the task
for a neural network extremely difficult.

Sly and Chen (1974) wrote one of the first papers about the
application of fuzzy models to handwritten character recognition.
Like Chang and Pavlidls (1977), this paper contained precursors of
some elements of many papers to follow, including those of Chi et al.
(1996b) and Chi and Yan (1996). Although the language of syntactic
pattern recognition is not used in Siy and Chen, some of the

466 FUZZY PATTERN RECOGNITION

material on this topic that we will present in Section 4.10 is closely
related to ideas in this paper, so we take a little stroll down Siy and
Chen lane, as it were, to check out the sceneiy.

Siy and Chen argued that all handwritten characters were distorted
versions of printed characters , and that all alphanumeric
characters comprised essentially three basic "strokes": the line, a
portion of a circle, or a whole circle. They suggested the set of 15
"features" shown in Figure 4.92, made from one of the three basic
strokes, as a basis for decomposition and subsequently, recognition,
of the various characters in any alphabet. In Section 4.10 we will
call these 15 arcs the primitives of a grammar for syntactic
approaches to handwriting analysis. Shown directly beneath the
symbolic name of each primitive is a 2-digit number that will be
used to encode the prototypical description of each character.

Hline
01

/ \
Vline

02
Pline

03
N line

04

c 3wn s s
C curve D curve V curve A curve S curve Z curve

05 06 07 08 09 10

oo o o o
Circle L Circle R Circle A Circle B Circle O

11 12 13 14 15

1 2

^

Numeric code
Node pairs
Class label

Final code

0102060000
1213340000
5

0102060000121334005

Figure 4.92 The 15 branch features (primitives) of Siy and Chen

A character is represented by three strings of numbers; the first
string is made by concatenating digit pairs (e.g., 01=H line, 02 = V
line, etc.) in ascending order; the second string encodes the node
pairs needed to specify the stroke sequence, ordered to connect the
digit strings in the first pair; and the third string is a class label

CLASSIFIER DESIGN 467

(this is how training and test data are labeled). A functional
representation of the digit "5", using (•) to indicate concatenation, is
5 = H{1,2) • V(l, 3) • D(3,4), which indicates three things: the sequence
of strokes and type of strokes (H and then V and then D), and the sets
of node pairs ((1,2) and then (1,3) and then (3,4)). Using this scheme,
for example, the numeral "5" will be encoded as shown in the lowest
panel of Figure 4.92.

Siy and Chen skeletonize the binary character images by a thinning
algorithm (see examples 5.6 and 5.14, and also, e.g., Gonzalez and
Woods, 1992). Next, a set of nodes in the skeleton is found. Nodes can
be tips, corners, and junctions (strokes with 1, 2 or more than 2
edges incident to them, respectively). See Figure 5.17 for an
illustration of a comer and a junction (called a triple point in Figure
5.17 because there are 3 edges incident to the node).

A branch b is an arc (element of the skeleton) connecting a pair of
adjacent nodes. Branches are classified by two attributes; their
straightness and orientation. To illustrate, suppose a branch b is
extracted. At this point b might be a line, or it might be a curve.
Consequently, Siy and Chen determine the best fit (minimum least
squared error) line to the points along the skeleton b. Once this is
done, b is classified by computing its "straightness", which is
defined as its membership in the fuzzy set "nearly lines", defined as

where S is the fitting error of the best fit line and S is a threshold on
the fitting error. If S = 0, m, (S) = 1. Thus, when the fitting error is
zero, b is a line, and otherwise, b departs from linearity to some
extent. Branch b is classified as a curve if 0 < msL(b)< 0.5; and
otherwise, b is declared a line.

To handle the orientation of b, Siy and Chen define membership
functions for each of the four line segments (H, V, P and N) in Figure
4.92. For example, the membership function for the horizontal H
line in Figure 4.92 is mn (6) = 1 - mln{min{|e|, |180 - e|, |360 - e|}/45,1},

where 9 = tan"^ (m) is the angle of inclination in degrees of the best
fit line (whose slope is m) to the branch b under consideration. If the
branch b passes the straightness test in (4.133) so it is declared a
line, b is then assigned a crisp membership in the set whose branch
membership function maximizes this subgroup of 4 membership
functions. In our notation, each branch that is declared linear is
associated with a possibilistic label vector u(b) e Np4 whose entries
are computed with the four "line tjrpe" membership functions, and
then branch b is assigned to a crisp line type by hardening the

468 FUZZY PATTERN RECOGNITION

possibilistic label, b e line type 1 <=> H(u(b)) = Cj, where 1 takes values
1 to 4, as say, the line type runs through H, V. P and N.

Siy and Chen define 6 membership functions that are similar to the
ones used for orientation of lines for non-linear cases. If a branch b
is declared a curve by equation (4.133), these membership functions
are used to label b as one of the remaining 11 non-linear feature
types. Eventually, every branch in a character skeleton is crisply
labeled as one of the 15 primitives in Figure 4.92.

Aiming towards a 1-np classifier that has the flavor of equation
(4.2), Siy and Chen assign a crisp class label to each character in the
training data, and then run it through the above decomposition,
finally obtaining a 3 string prototype for each training character.
Since each training data produces a prototype, the prototypes will be
correctly labeled automatically. Moreover, as there will be many
variations of the same symbol, there may be several distinct
prototypes for a single character. The measure of "nearest" that was
chosen instead of the metric 5 in (4.2) was exact string matching, bit
by bit, against the strings derived to represent an input datum. Siy
and Chen use the relative frequencies of occurrence of each
prototype to make the search for a matching prototype during
testing and operation of the character recognizer a little more
efficient. Remember, this was 1974, and matching n prototypes to a
long string for a lot of test samples could be computationally
arduous.

As described, the 1-np classifier implemented by Siy and Chen has a
"reject" option - that is, the system has three output categories
during testing: correct if one prototype exactly matches the input
and the labels agree; incorrect, if one prototype exactly matches the
input and the labels disagree; and no decision when no prototype
matches the input. The training data discussed by Siy and Chen
consisted of 50 samples for each of the 10 integers 0, 1 9, so their
system produced n = 500 prototypes for the 10 characters. Then the
system was tested on a set of 500 unseen samples called the
"Honejrwell 500" data by Siy and Chen. On this test data, their
simple 1-np classifier obtained a success rate of 98.4% correct - that
is, 8 of the 500 test characters were labeled incorrectly - three 9's,
two O's and one each of the numbers 3, 4 and 5. As we pointed out at
the beginning of Section 4.3, nearest prototype classifiers are
simple, effective and cool. Granted that the data set used by Siy and
Chen is small, this example still seems to bear out our assertion. Siy
and Chen (1974) does not exemplify a fusion technique: we discussed
this paper here to prepare for the next group of papers, which
consider the same topic, and that do use classifier fusion. Now we
spin forward to 1996, and see how much better we can do with all the
latest neural gadgets and fusion techniques at our disposal.

CLASSIFIER DESIGN 469

Earlier in this section we mentioned that standard FF neural
networks can be used for classifier/sensor fusion. Next we discuss a
set of four papers by Chi and Yan (1995, 1996) and Chi et al. (1995,
1996b) that all use multilayered perceptrons (MLPs) as a principle
component of classifier design. The two 1995 papers discuss single
classifiers, while the two 1996 papers have two classifiers in the
first level, and an MLP is used as the fusion classifier at the second
level. One of the primary applications that we have been using to
illustrate fusion so far - handwritten digit recognition - is the focus
of all four papers, and all four use the same data set. After we discuss
the four papers, we will combine their results in a single example -
Example 4.30.

All four papers base their examples and discussion on the same
database, identified as the United States National Institute of
Standards and Technology (NlSTl special database number 3, which
consists of handwritten segmented characters. And all four papers
use the same data sets X and X for training and testing of the

tr te '^ °

classifiers developed in them. The cardinalities of X and X are
tr te

equal, both being 10,426 crisply labeled samples of the 10 digits 0, 1,
..., 9. The features that are derived from the NIST database differ in
the four papers: the 1995 papers are based on feature vectors in 9t^*,
while the two 1996 papers use feature vectors in 9t^^. We will not
report many details of the feature extraction and classifier design
methods for each of these papers, but we do want to convey the basic
flavor in each of them.

Chi et al. (1995) and Chi and Yan (1995) use functions of the pixel
counts from 8 x 8 subwindows in the 64 x 64 image of each digit in the
database to obtain 64 input features as the basis for the design of a
fuzzy rule based classifier. The fuzzy rules in both 1995 papers are
found by first running a self-organizing feature map (SOFM, see
Section 4.3.D) on X to generate prototypes from the training data;
in both papers, the SOFM display space is a square 2D grid of
various sizes. Then, the SOFM prototypes are used to generate
triangular premise membership functions (PMFs) using a variant of
a membership function generation method due to Dickerson and
Kosko (1993). Finally, fuzzy rules of the Takagi-Sugeno (TS) type are
extracted from the training data using a well known method due to
Wang and Mendel (1992). Both 1995 papers use product aggregation
(T = product) as in (4.72c) for aggregation of the LHS of each rule to

get its firing strength.

The major difference between the two 1995 papers is the inferencing
method used during defuzzification when an input is submitted to
the TS rule base. It is easier to describe the inferencing procedure
used in both papers by abandoning the formalism of label vectors,
so we will cast these classifiers in the notation of 4.6.D, i.e., using

470 FUZZY PATTERN RECOGNITION

S Instead our standard notation D, to denote classifier outputs,
and instead of crisp label vectors for the output functions, we use the
digits 0, 1, ..., 9, which correspond to crisp labels for each sample in
the training and test data.

Unlike Chiu (1994), Chi et al. (1995) do use the standard TS
defuzzification formula shown in (4.73). Since there are M rules,
with M » c = 10 classes, many rules will have the same crisp label -
one of the 10 digits from 0 to 9 - as their right hand sides. Since (4.73)
always makes a convex combination of the output functions by
combining them with the associated firing strengths, the result of
using this formula in the present instance is to produce a number in
the closed interval [0, 9] for each input datum. With the notation Just
established, (4.73) takes the form

M

Iai(z)Ji
S ^ (z) = ^^i = ue[0 ,9] , Jie{0,l,...9}Vi . (4.134)

l a j (z)
J=i

The real number in [0,9] is now converted into one of the 10 crisp
labels, and the TS system becomes a crisp classifier by computing

S ^ (z) = [s ^ (z) + 0.5j , (4.135)

where L*J again denotes the floor of its argument.

In Chi and Yan (1995), the same basic classifiers use sets of 64 input
features as given In Chi et al. (1995), but the method of Inference In
the fuzzy rule base Is changed. Chi and Yan (1995) use a 3 layer feed
forward network. The first layer generates the fuzzy membership
function values. The number of nodes in the hidden layer is equal to
the number of rules, and the output of the kth hidden node is equal
to the firing strength of the kth rule. The output layer has 10 nodes,
one for each of the 10 digits 0, 1 9. The ith output node combines
the output of the hidden layer nodes as follows:

uJz) = F, M

Ioc,(z)
1 = 0,1 9 , (4.136)

where F Is the logistic function at (4.97) with A, = 1 and P = 0. Unlike

(4.135), this network produces S^(z) = (uQ(z),...,Ug(z))'^, a vector
output. Chi and Yan learn the weights {w..: 1 = 0, 1, ..., 9; j = 1,2, ..., M}

CLASSIFIER DESIGN 471

by the usual back propagation method, so this is essentially a single
layer perceptron whose inputs are normalized firing strengths. Once
the weight vectors are found, (4.136) is used to classify test inputs.
Chi and Yan call this an optimized fuzzy rules (OFR) classifier; they
do not specify how S^(z) is hardened to produce crisp labels, so we
presume they use the same strategy as in (4.135).

In the 1996 papers the fuzzy rule base is obtained by a completely
new method, and, as we have mentioned, the features also change.
Both 1996 papers base their features on Siy and Chen's (1974) shape
features that are shown in Figure 4.92. Chi et al. (1995) modify this
set of features just a bit in that they use the 4 lines and 6 arcs that are
shown in the upper and middle panels of Figure 4.92, but the 5
circles in Figure 4.92 are replaced by 2 shapes. The eleventh shape
used in these two 1996 papers is circle O as shown in Figure 4.92, but
the four circles L, R, A and B in Figure 4.92 are replaced in these two
papers by a twelfth primitive that is simply called "curve", which is

shaped like this: ^-^- The same membership function, equation
(4.133), that Siy and Chen proposed in 1974 is used in both of these
papers to assess the extent to which a given segment is linear.

Working on the presumption that a given numeral can be well
characterized by its 6 longest segments, Chi et al. (1996b) extract a
total of 36 numerical features for each datum from its 6 longest
segments, and convert the training and test data in the NIST
database into these feature vectors; Chi and Yan (1996) use these
same 36 features, which are obtained as follows. The four basic
features are computed: type of segment (this is a symbolic feature
which is one of the 12 shape descriptors), normalized segment
length, and normalized coordinates of the center of gravity of the
segment relative to the center of gravity of the thinned skeleton of
the digit. For up to 6 segments per skeleton, this makes 24 features.
Added to this are 12 more features: number of segments in this digit,
numbers of end points in each of four quadrants whose axes lie at
the center of gravity of the thinned skeleton of the digit, normalized
total length, the center of gravity of the thinned skeleton of the digit,
numbers of lines, circles and curves, and aspect ratio of the image.
Notice that this list of 36 features has one symbolic feature, 8
integer-valued features, and 27 continuously valued features. A
typical crisp 1D3 decision tree rule extracted from the training data
using these features looks like this:

IF the type for longest segment is circle
AND the type for second longest segment is C curve
AND normalized y coord, of skeleton centroid is > 0.586
THEN digit = 6

Chi and Yan (1996) discuss a method for fuzzifylng the crisp ID3-
derived rules that is applicable to symbolic, discretely-valued, and

472 FUZZY PATTERN RECOGNITION

continuously-valued real data. They effectively quantize the n
distinct values of each of the p features in the training data using
trapezoidal membership functions, so that when IDS is applied to
the training data, the crisp IDS rules are well defined over continues
ranges of values that capture the training data. Figure 4.9S
illustrates their fuzzification of the kth internal node v after the

k
edges have been established with IDS using the n values of the i-th
feature in the training data.

Figure 4.93 Internal node k in Chi and Yan's fuzzy decision tree

Each edge leaving v is associated with one or more values of the i-th
feature. Chi and Yan span the values with a trapezoidal membership
function that is either single sided (one value moves along the exit
edge) or double sided (some range of training values flow through the
exit edge). This construction lies conceptually somewhere between
the approach of Umano et al. (1994), who defined discrete premise
membership functions, and that of Zeidler et al. (1996), who use
trapezoidal membership functions on the exit edges (i.e., as premise
membership functions for the fuzzy rules).

While Zeidler et al. (1996) make estimation of the trapezoidal
premise membership functions part of the training problem, Chi
and Yan (1996) simply define trapezoidal PMFs with one fixed, user
defined constant that adjusts the slope of the sides of each trapezoid
as a function of the examples passing through that node during tree
building with IDS. Chi and Yan state that the choice of the slope
(there is only one parameter for the whole tree) is problem
dependent. Since the training features flowing through each edge of
the tree have different values, the node functions {^y^A will not be
identical, but they all have the same functional form. Letting
tXkj.min'Xkj.maxl dcnotc the interval spanned by the training data
along edge kj and s be the user-defined "slope" of the trapezoid, the
PMFs all have the form

CLASSIFIER DESIGN 473

S-l̂)

f l
z - (1 - s) • X kj.inin

S • ^ k j . m t n

(1 + S) • X kj.max

S - X kj.max

' ^ k j . m i n *~ ^ < ^ k j . m a x

; (l - s) x • -^kj.mln ^ Z < X^j jjjjjj

•' ^ k j . m a x < Z < (1 + S) • X ^ j ,

; otherwise

(4.137)

Once the IDS tree has been fuzzified, Chi and Yan again compute
firing strengths along its paths using the T2 or product norm shown
in equation (4.72c). Now Chi and Yan's tree is in the structural form
of the Chang-Pavlidis tree shown in Figure 4.39, each leaf VL

possessing two pieces of information, a^lz), the firing strength or

decision value along the path from v to VL^ , and e. , one of the c

crisp label vectors for the classes in the training data.

The way this tree operates on an input z is interesting and novel.
Recalling that M is our notation for the number of leaves (or number
of rules) in such a tree, we let (x(z) = {ai(z),...,ayi{z))^ denote the M-
vector of firing strengths obtained by traversing the tree from its
node to the M leaves. Chi and Yan (1996) define the output vector of
their decision tree as

Sg^(z) = ((wi,<x(z)),...,(w„(x(z)))'' (4.138)

where the c weight vectors {wj c 5?"̂ are weight vectors of the output
nodes of a 2 layer feed forward neural network that has 10 output
nodes (for the 10 digits 0, 1, ...,9). Estimation of the {w,} by
backpropagation using the same training data as was used to
generate the crisp ID3 tree also involves a set of user defined fuzzy
relational matrices that are given in Chi and Yan (1996). The node
functions in the output layer are hyperplanes whose weight vectors
are the c vectors needed in (4.138) to make it operational.

The elements of the right hand side in (4.138) are not guaranteed to
lie in [0, 1]. To make S ^ classify inputs, Chi and Yan interpret the

j th element of the output vector, (Wj,a(z)), as the degree to which
input z belongs to class j , j = 0 9. Labeling decisions are then made
by simply hardening this vector, i.e., by selecting the class (index of
the vector S^) corresponding to the maximum value of (Wj,a(z)V
thereby obtaining a crisp decision. This fuzzy rule-based crisp
classifier is one of the two classifiers used in both Chi and Yan
(1996) and Chi et al. (1996b); we will call this classifier Ti^.

474 FUZZY PATTERN RECOGNITION

The second classifier used in Chi and Yan (1996) is a standard 1-nmp
design as in equation (4.7), based on prototypes obtained from the
training data using Yan's (1993) method called optimized prototypes
(OP) (see our discussion of this in Section 4.3.D). We will denote these
prototypes by V , and denote this classifier by our standard

notation, D £ ^ „ ^. The second classifier in Chi et al. (1996b) is based
on hidden Markov models (HMM). We don't want to stray too far
from classifier fusion, so we simply denote this classifier as D ^ ^ ,
the CSY standing for the authors, Chi, Suters £ind Yan, and refer you
to their paper for details about their HMM models.

Both 1996 papers then fuse the two classifiers in them by using a
standard MLP as the fusion classifier, say D^N . The input layer to

Dpjuj has 21 nodes (10 for the outputs from each of the first level
classifiers, plus one node to introduce the bias constant in all the
hidden layer nodes). Inputs from the fuzzy rule base classifier DQ^
lie in the range [0,1], while inputs from the other two classifiers
(D? ' „ s- and DS-fJ.,) are normalized to lie in the same range. The

hidden layer in D^N had standard node functions <I>LH = F'L ° f H ^^
in Section 4.7. Each unipolar sigmoid is fixed, with A, = 1 and |3 = 0.
The output node functions were not parametrized, and had unipolar

sigmoids with X= I and P = 0. The final output of Dp̂ ĵ was, we
presume, hardened in the same way as the "optimized fuzzy rules
neural network". D^^ was trained to acquire weight vectors for the
hjqjerplanes in the hidden layer nodes with the same training data
as used for all other classifiers, using the outputs from the first level
and their target labels as lO data, much in the manner of the hybrid
method of training RBF networks that we discussed in Section 4.8.
DpjN follows the standard scheme we called separately trained
fusion at the beginning of this section. Now we are ready to discuss
the results reported in the four papers.

Example 4.30 This example combines recognition rates from tables
in the four papers (Chi and Yan (1995, 1996) and Chi et al. (1995,
1996b). The Euclidean norm is used for both the 1-nn and 1-nmp
rules. Table 4.57 shows the % correct classifications in both
training (resubstitution) and testing (generalization) on the NIST
data described above for all the classifiers discussed in the four
papers. FR in this table stands for fuzzy rules. We repeat the
description of the data here for convenience. The database was the
National Institute of Standards and Technology (NIST) special
database number 3, which consists of handwritten segmented
characters. And all four papers use the same data sets X and X for

tr te
training and testing of the classifiers developed in them. The

CLASSIFIER DESIGN 475

cardinalities of X̂ ^ and X are equal, both being 10,426 crisply
labeled samples of the 10 digits 0, 1, ..., 9.

Table 4.57 is divided into 4 sections, corresponding to the classifiers
discussed in each of the four papers, and when a result was repeated
in one of the source papers, we do not repeat it here. The first three
rows of Table 4.57 concern results reported In Chi et al. (1995),
which used three one stage classifiers, viz., the crisp 1-nn rule at
(4.2), the crisp 1-nmp rule at (4.7) using 809 SOFM prototypes from a

30x30 2D display grid which had 91 inactive cells, and S ^ , the
fuzzy rule based classifier defined in (4.135). According to Chi et al.
(1995), the 10,401 rules generated by the method used to design S ^ ^
with 225 SOFM prototypes did not cover all of the inputs (there was
not a rule for every possible LHS of the TS system). Because of this, it
was possible for a test input to not match any rule, thereby making
all M firing strengths zero. This causes the denominator in (4.134) to
be zero. When this occurred, the test input was declared "unsure" by
S ^ ^ , and was forwarded to a backup 1-nmp classifier that used
SOFM prototypes. The backup classifier in the third row of Table
4.57 had a 15x 15 display grid, and apparently all 225 prototypes
were active.

We believe the reason that S ^ ^ produced so many rules is that there
is a problem with the use of (4.134) and (4.135). Suppose only two
rules fire : rule 1 has firing strength 0.8 for the output "7", while rule
2 fires with strength 0.8 and output label "4". Using (4.134) in this
case results in S ^ (z) = (0.8-7 + 0.8 •4)/(0.8 + 0.8) = 5.5, so the

output of (4.135) will be the integer "6 = [5.5 + 0.5j". This problem is
the result of using numerical proximity instead of structural
proximity as the underlying rationale for defuzzification, and can
result in needing a rule for almost every training datum.

TTie crisp 1-nn rule is perfect in resubstitution, as it must be, and can
be viewed as a benchmark of sorts for all the other classifiers shown
in Table 4.57. The TS based classifier S ^ nearly matches this
performance in resubstitution, but is 1.2% less in testing. The
second block of Table 4.57 shows the outputs of four single stage
classifiers. The first row in this set of four is a standard 1-nmp rule
classifier based on 395 active prototypes in a grid of 400. This is the
same design as in the second row of the first sub block, but it uses
many fewer prototypes, and the decrease in recognition rates is
ascribed to this. The second classifier is a TS system with 395 rules
derived by the three stage procedure reported above (SOFM, PMFs,
Wang-Mendel training) that uses the standard TS defuzzification in
equation (4.73). This row catches the eye, being some 30% less
accurate than any other classifier in this table. Following this is the
result of using a standard 65:30:10 multilayered perceptron, which

476 FUZZY PATTERN RECOGNITION

does pretty well on the training data, but falters a little on the test

set. The last classifier in this group is S ^ , based on 395 optimized
fuzzy rules that uses the defuzzification in (4.136). To their credit,
Chi and Yan graciously point out the standard MLP perceptron does
a little better than this design, and offer some possible explanations
for this in the 1995 paper.

Table 4.57 Training and test restilts for classifier designs firom four
papers : Chi et al. (1995, 1996b) and Chi and Yan (1995, 1996)

Reference Classifier
Train
Results

Test
Results

C h i e t a l . (1995)
(64 features)

1-nn
1-nmp/SOFM
(809 active in 900 prototypes)

8 ^ (1 0 , 4 0 1 FRs) with backup:
"unsure" with SOFM 1-nmp
using 225 prototypes

100
98.7

99.99

98.0
96.3

96.8

Chi &Yan (1995)
(64 features)

1-nmp/SOFM (395 prototypes)
FR (395 fuzzy rules with (4.73))
MLP (65:30:10) neural net

S ^ (395 OFRs)

97.4
67.9

99.98
99.0

95.0
64.7
97.1
96.3

C h i e t a l . (1996b)
(36 mixed
features)

ID3 (2163 leaves)
IDS (pruned, 828 leaves)
ID3 (simplified, 151 leaves)

D D T = fuzzy 1D3 (151 fuzzy rules)

DH?X, = h idden Markov models

HMM

"Vop.E,5
(1000 "optimal" prototypes)

98.8
97.1
94.6
97.7

93.6

98.4

91.4
91.9
90.7
95.0

92.8

97.8

FUSION A DNN =F(DDT'Dhmm)
F = MLP (21:20:10)

99.97 97.8

FUSIONS

DNN = F (DOT,DVQP,E ,5)

F = MLP (21:20:10) with backup:

"unsure" using 1-nmp DVQP,E,5

with 1000 optimized prototypes

98.8 98.6

Chi & Yan (1996)
(36 mixed
features)

1D3 (fuzzy, cont. feat, only)
ID3 (fuzzy, symbolic
and discrete, feat, only)

Dg^= fuzzy 1D3 (all features)

96.0
97.3

97.7

93.0
93.8

95.0

FUSION C
D = F(Dg}^,D^^„p,^,s)
F = MLP (21:20:10)

99.6 98.6

CLASSIFIER DESIGN 477

The third group of classifiers that appear in Table 4.57 are the ones
discussed in Chi et al. (1996b). The first two rows in this group
correspond to the crisp 1D3 decision tree of Section 4.6.C, with and
without pruning. Notice that the error rates of these two classifiers
bears out the general supposition that pruning crisp decision trees
increases generalization at the expense of training accuracy. The
third row reports the success of a two stage simplification of the
crisp IDS tree using a method due to Quinlan (1987). Rows 4-6 in this
block show the recognition rates of the fuzzy IDS tree described
above, the hidden Markov models classifier, and a 1-nmp rule
classifier that uses 1000 of Yan's (1993) optimized prototypes. Row 7
shows the results of using fusion method A, the 21:20:10 neural
network that we described earlier, which is used to fuse the hidden
Markov model and fuzzy IDS designs. Row 8 of this third group
shows fusion method B, which is fusion method A augmented by a
backup option for "unsure" results that is forwarded to a 1 -nmp rule

for resolution with Dy^p ^.g. the classifier of row 6. We see that this
method, fusion with backup, produces a test rate of 98.6% correct,
the best so far.

The final subset of four rows in Table 4.57 reports the results
discussed by Chi and Yan (1996). The first row in this group reports
the error of the fuzzified IDS tree developed in Chi et al. (1996b) on
Just the 27 continuously valued features of each training sample.
Performance on just these features is not so good, and the second
row shows that the same type of fuzzy tree built with only the 8
integer and 1 symbolic features is better - an interesting result, that
the classifier is more successful using these 9 non-continuos
features than 27 continuously valued numbers. The fuzzified IDS
tree using all S6 features displayed in the third row of this subset
shows a slight increase in performance from the use of either of the
feature subsets shown in the first two rows of this group. And
finally, the last row in Table 4.57 shows the performance of fusion

method C, which is a model that combines the classifier Dy^p gg

showrn in row 6 of the third subset of rows in Table 4.57 with B%\,
the classifier in row 3 of the fourth subset of rows. The fusion model
is again a 21:20:10 built and trained as described above. Chi and

Yan's (1996) fusion model D = F(Dg^,D^^p g.g) ties Chi et al.'s
(1996b) fusion with backup model, also achieving a recognition rate
of 98.6 % correct in testing.

To summarize, two fusion models do improve the performance of all
of the systems that depend on single stage classifiers reported in the
four papers on which this example is based. At 98.6% correct, they
both do a little better on test than the 1-nn rule at 98.0% correct.
About this we make two observations: first, a k-nn rule with k > 1
might do better; second, these results involve only one data set, and

478 FUZZY PATTERN RECOGNITION

one set of samples for training and testing, so take our usual caution
seriously - the data really control your results.

Lest you think we mean to degrade the results in Table 4.57, we point
out that an improvement of Just 0.6 % in this test set corresponds to
an improvement of 0.006*10,426 = 63 digits. If a zip code reader was
being used by the United States Social Security office, and your
social security check was being processed for automatic mailing by
an optical scanner based on Chi and Yan's model instead of the 1-nn
rule after the letter had been addressed by hand, this slight
improvement would mean that, on average, about 63 more checks in
each set of 10,000 would reach the correct destination. Everything is
relative - in the handwritten digit recognition business, every digit
counts.

As a final observation, return to 1974, and look at the test error
reported in Siy and Chen's paper for single character recognition -
98.4% correct, using parameters from their 15 shape features and a
standard 1-np classifier. Admittedly, the 500 test data of Siy and
Chen are a far cry from the 10,426 test data of Chi and Yan (1996),
and again, both are the results of just one training and testing cycle.
How far have the "intelligent" architectures we have developed in the
22 years between these two papers really taken us? You be the judge.

The last fusion method we discuss was introduced by Kuncheva et al.
(1995) under the original name of fuzzy templates. Various
improvements and changes during the evolution of this fusion
model can be traced through Kuncheva (1998) and Kuncheva et al.
(1998), and in the latest iteration of the model (Kuncheva et al.,
1999), it is called decision templates, so that is the name we will use
here.

As usual, we begin with the assumption that we have a set of crisply
labeled training data, Xfj. = {x̂ Xn}c9^P, and as in earlier
sections, we denote the crisp c x n partition matrix whose columns
are the label vectors of the points in X ĵ. by U^^. e Mhcn- This method
begins with the construction of a set of c (Lxc) prototype or template
matrices, say {DT*: i =l,...,c}. DT* is called the decision template for
class t The training data and the L first level classifiers (D} are used
non-iteratively in the construction of the decision templates, and
when we have these matrices, the second level fusion classifier is
trained. Let Dj^^(x.) denote the output of classifier k for class s on
training input x , so k = 1 to L, s = 1 to c and j = 1 to n. If we submit all
n training data to the L classifiers, we have a total of Lc • n values.
Imiagine a 3D array of these classifier output values that shows (Lc)
of them as a function of the index on the training data, as in Figure
4.94, which illustrates the fundamental construction pictorially.

CLASSIFIER DESIGN 479

crisp label matrix Utr

U tr,(i)

Ui(Xi)---Ui(Xj) Ui(Xn)

Ui (Xi])(Ui (Xjj)—<Ui^(XnJ^

u J x J - ' - u J X j) Uc(Xn)

DTU^
_(Utr,(i).Dks)

n,

Du(Xn)-;Dls(Xr,) Dlc(Xn)

• D L C K) DrifS„)-/^nfSr
Dii(Xj)--Di3(Xj) D i Jx j)

D k i (X j) " (D l ^ (^ - - D k , (X j)

DLC(^J) Dii(Xi)-;Dis(Xi) D i J x i)

Dki(Xi)-<I^J(xJ>-Dke(Xi)

D L I (X I) - > ^ ;) DLe(Xi)

"ks

Figure 4.94 Construction of the decision templates

Now we construct the (k,s)th element of the ith decision template by
taking the n-vector U ,,, the i-th row of U (recall our notation for

tr.(l) tr
rows of matrices as vectors, and that X^ J = n^ V i), dividing it by n ,
the number of elements in class i in the training data, and then
computing its Euclidean inner product with the n-vector
Dĵ s =(Dks(Xi),...,Di5.s(Xn))^. Do this Lc times - i.e., run k and s over
the n Lxc frames shown in Figure 4.94. This generates the Lxc
matrix DT ,̂ which is the decision template for class i. The vectors
{Dks}and the matrix DT* depend only on the training data X ,
indicated formally by

DTLlX^) ^^-^^—!^5—^, k = l L ; s = l c
n.

(4.139)

480 FUZZY PATTERN RECOGNITION

Suppose tha t z In SRP is a n input to the system Eind that Djlz) e Np^ is
the label vector produced by classifier D , i = 1 L. It is immaterial

w h a t k ind of label vector each classifier p roduces - some might be
c r i sp , some fuzzy, or probabi l i s t ic , or possibi l is t ic . T h u s , t h e
dec i s ion t e m p l a t e s s c h e m e a c c o m m o d a t e s "mixed" t y p e s of
classifiers automatically. To u s e the decision templates to fuse the
o u t p u t s of t he first level classifiers, we cons t ruc t one more L x c
matr ix , DP(z), the decision profile of the inpu t z, by arrajdng the L
label vectors {Djfz)} as the rows of the desired matrix.

DP(z) =

^ (Di(z))^ -»

^ (D k (z r ^

^ (D L (Z)) ' ->

(4.140)

Lxc

Equat ion (4.140) enables u s to describe the construct ion in Figure
4 .94 succinctly: t he decision templa te DT' for class i is j u s t t he

average of the decision profiles | DP(x e X^̂ . ^ > of the elements of the

t ra ining da t a t h a t have the i-th crisp label. While the const ruct ion
in (4.140) is clear, it does not show you the crucial idea t ha t makes
t he ma t r i x DP(z) useful for fusion, which is t ha t its c columns
cor respond to t he opinions of the L classifiers abou t each of t he
c lasses . Tha t is, the ij-th entry in DP(z) is the suppor t of classifier i
for c lass J. To emphasize th is we show (4.140) in a pictorial way in
Figure 4.95:

dp

DP(z) =

dp Ll

dpi

dp LJ

'iPic

dPi i •;;•• dpy ••§ dpie

3

dp

L {Dil's

Lc

- ^ D i (z) e N
pc

4- 'i

I Support: I
| f o r c l a s s j |
;l from the %.

JLXC

Figure 4.95 Construction of the decision profile

CLASSIFIER DESIGN 481

The important point made by Figure 4.95 is that it is the columns of
the decision profile matrix that carry information about the c
classes. Many fusion schemes (fuzzy integrals, Dempster-Shafer,
etc.) use the columns of DP(z), but most authors that use these
approaches do not frame their models in the language of matrices
because there is no advantage in doing so. The idea of bundling the
information used by decision templates and the decision profile
into matrix form so an entire Lxc matrix DT" can carry information
about support for class i began with Kuncheva et al. (1995); as we
shall see, tiiis leads to some new fusion models.

We have not discussed a fusion operator F that specifies D yet, and
interpretation of the decision profile as in Figure 4.95 allows us to
create many column-wise or class-conscious schemes that
accomplish fusion of the L first level classifiers. To get a feel for the
idea, we illustrate the use of DP(z) with five aggregation operators
which use the rows or columns of the decision profile directly to fuse
the outputs of the L first level classifiers. We illustrate the five
aggregation operators that appear in Example 4.31 below: majority
(MAJ), m.aximum (MAX), minimuTn (MIN), average (AVR) and
product (PRO). Here is an example of how these five operators work.
Suppose L = 6, c = 3 and the decision profile for a particular input is

D P (z) ••

0.5 0 .4 0.1
0 .9 0.1 0 .0
0 .3 0 .4 0 .3
0.7 0.1 0 .8
1.0 0 .0 0 .0
0.2 0 .3 0.5

(4.141)

From the rows of this matrix we see that D , D , D and D are fuzzy
classifiers, D is a possibilistic classifier, and D is a crisp classifier.
To compute the majority vote, we harden the 6 rows of DP(z) in
(4.141) with H at (1.15), obtaining 1 vote for class 2 (from row 3), 1
vote for class 3 (from row 6), and the remaining 4 votes for class 1,
yielding class 1 as the majority. This will be the fused output using
MAJ, and, as we shall see, the evidence supporting class 1 in this DP
is pretty strong.

The other four aggregation operators illustrated in Example 4.31
first operate on each column of the decision profile separately,
producing new label vectors in N across the three classes, which
are then hardened with H to get a crisp decision. The outputs of these
four operators on DP(z) in (4.141) are illustrated in Table 4.58, where
the final label for z is class 1 in all four cases.

482 FUZZY PATTERN RECOGNITION

Table 4.58 Using aggregation with the decision profile

0.5 0.4 0.1
0.9 0.1 0.0
0.3 0.4 0.3

DP(z) = 0.7 0.1 0.8
1.0 0.0 0.0
0.2 0.3 0.5
i i i

MAX (1.0. 0.4, 0.8) H - 4 1
MIN (0.2. 0.0, 0.0) H ^ 1
AVR (0.6, 0.22, 0.28) H ^ 1
PRO (.02, 0.00, 0.00) H - ^ 1

Kuncheva et al. (1999) give a three-way classification of fusion
operators based on: (i) the way the rows and/or columns of the
decision profile are used; (ii) the type of labels produced by the first
level classifiers; and (iii) the type of training employed by the second
level classifier. Class conscious (CC) operators use the information
in the decision profile DP(z) "class by class" - that is. column by
column - when making a decision about how to label z. Class
indifferent (CI) fusion operators use information in the decision
profile "indiscriminately" in the sense that the class by class
information is either ignored or integrated across all classes - that
is, all of the information in DP(z) is used by each decision template.
Thus, in this classification scheme the primary discriminant
between fusion methods is whether a fusion model does or does not
use all Lc entries of DP(z) when considering the evidence for a single
class label.

For example, the four aggregation operators in Table 4.58 use only
column i of DP(z) to construct an overall assessment (the
corresponding entry of the output label vector) of the support for
class i, so these four operators are class conscious, but the MAJ
operator, which uses only the rows of DP(z), is class indifferent.
Another distinction between some of these operators is that AVR
and PRO use all the values in each column of DP(z), while MIN and
MAX use only one, so these latter two aggregations are more
sensitive to outliers and noise than the AVR and PRO operators (cf.
the discussion following equation (2.93), where we pointed out that
Dunn's (1974a) separation index is too sensitive to outliers because
of its reliance on MIN and MAX). AVR is not much better, since it has
a zero breakdown point (one outlier can destroy the estimate, as
illustrated by Sketch B in Section 2.3.H).

When at least one of the L first level classifiers produces soft label
vectors, Kuncheva et al. (1999) classiiy D as follows:

CLASSIFIER DESIGN 483

CCl Class conscious (without second level training) for D.
Examples include MAX, MIN, AVR, PRO and OWA [ordered,
weighted aggregation operators, Yager and Kacprzyk, 1997
andKuncheva, 1997).

CC2 Class conscious (with second level training) for D. Examples
include the: probabilistic product PPR (Tax et al., 1997;
Kuncheva, 1998); Juzzi) integral (Fl) as discussed above; and
trained linear combinations (Hashem, 1997).

CI2 Class indifferent (with second level training) for D.
Examples include the: linear discriminant classifier (LDC),
quadratic discriminant classifier (QDC), and Fisher's linear
discriminant (FLD), all of which are discussed by Duda and
Hart (1973), the logistic classifier (LOG, Anderson, 1982),
Dempster-Shafer (DS) aggregation (Rogova, 1994), neural
networks (Jordan and Xu, 1995) and the decision templates
(dt) approach being discussed here.

If all L classifier outputs are crisp before aggregation (either because
the L classifiers are themselves crisp, or because soft outputs are
hardened before aggregation, the distinction between class
consciousness and class indifference disappears. Fusion methods
for exclusively crisp (denoted here as "C") first level classifiers are
classified by Kuncheva et al. (1999) according to the type of training
at the second level:

CI No second level training for D. An example is MAJ.

C2 Second level training for D. Examples include the : behavior
knowledge space (BKS) method (Huang and Suen, 1995) and
naive Bayes (NB) combination (Xu et al., 1992).

Example 4.31 will contain almost all of the fusion operators given
as examples in these categories. In the decision templates approach,
the action of the classifier D: N [-> N in Figure 4.90 is defined as

pc pc °

D(z) = (Di(z) D,(z))TeNp, , (4.142)

where each element Dj(z) in the fused soft label vector D(z) is
computed as some function s of the pair of matrices DP(z) and
DT' (XJ ,

Di(z) = s(DTHXtr).DP(z)), i = l c . (4.143)

484 FUZZY PATTERN RECOGNITION

Kuncheva et al. (1998) interpret the function s:3i^ x 9t^ h-> 9̂ * as a
general "similarity measure". Equation (4.143) makes it clear why
the decision templates model is class indifferent: all Lc entries of
both the decision profile of z and the i-th decision template derived
from X are used to produce an estimate of the single value in this
equation. This stands in contrast to class conscious fusion models
such as the Dempster-Shafer and (some) fuzzy integrals, which use
only the L entries in the i-th column of DP(z) to build an estimate of
a value for class i that is conceptually equivalent to Dj(z) - i.e., that
is the fused estimate of support for the i-th label. Keller and Osbom
(1996) discuss a method for training a classifier based on the Sugeno
fuzzy integral wherein all class information is used, and this is in
some sense a bridge between the categories listed above. Some
genetic algorithm approaches for training fuzzy integral measures
also utilize the classifier information across classes in a similar
way (Wang et al., 1998).

Included in Group CI2 are 11 decision template models that are
realized by making specific choices for s in (4.143). These measures
are discussed in Kuncheva et al. (1999) and appear in Example 4.31,
where they are all abbreviated by dt:s in Table 4.59. These 11
decision template fusion models can be divided into four
subcategories, depending on the specific function used for s: s i to s4
are proper similarity measures; 11 to 15 are inclusion indices; dt:c
uses a consistency index; and dt:np is the 1-np rule. We will not
discuss all 11 measures here, but will illustrate each of the four
subgroups with one example.

The most obvious way to use the (DT'} is to regard them as
prototypes in 9t^, the vector space of all decision profile matrices.
We might indicate this explicitly in the notation adhered to
throughout this book by renaming the matrices {DT*} as {vf^}, and

(conceptually) regarding them as vectors in 9?^. Then if we regard
any decision profile computed by (4.140) as a vector in this space, the
1-np classifier, equation (4.2) can be used to choose the best match
(nearest prototype) from among the c prototypes. In the context of
equation (4.2) "best" is defined by choosing any metric 6, here on

5R^, and when that is done, by defining V'̂ ^ = {v[*^:i = l,... ,c}, we
have all the elements of the standard 1-np classifier, but now
operating as a trained, second level fusion classifier, D = D pj .

Since there are two infinite families of metrics on any vector space
(induced by the inner product and Minkowski norms on 9^^)̂, this
produces two infinite families of fusion models, one for each such 5.
The structure of the decision templates fusion model for this choice
of matching is exactly that of the single layer competitive learning
network shown in Figure 4.11, and when the metric is an inner

CLASSIFIER DESIGN 485

product, the second level classifier D = D jyj- is piecewise linear

as in Figure 4.5. This choice for s in (4.143) using the Euclidean
norm for 5 in equation (4.2) is dt:np in Table 4.59.

The four similarity measures used by Kuncheva et al. (1999) that are
seen in Table 4.59 are based on regarding the Lc entries of the pairs
of matrices used in (4.143) as membership values of two fuzzy sets
(formally, this can be done, since all Lc entries in DP(z) and each DT*
(X.J lie in [0,1]). Thus, any measure of similarity between pairs of

discrete membership functions can be used in (4.143) - for example,
most of the measures discussed in Pal and Bezdek (1994). As an
example, s i in Table 4.59 is computed as

c L

I Imin{dt]i,,dpjk}
sl(DT'(Xtr), DP(z)) = ^ ^ . (4.144)

S Xmaxldt^k'dpjk}
k=i j=i

which is the ratio of the relative cardinalities of the intersection to
the union of the two "fuzzy sets". The five measures called II to 15 in
Table 4.59 are called indices of inclusion (Dubois and Prade, 1980).
For example, 11 is defined as

c L

I Imin{dt5k,dpji,}
ll(DT'(Xt,),DP(z)) = ^= 'J=\ ^ , (4.145)

I Idt*k
k=ij=i

which presumably measures the extent to which the 1-th decision
profile DT* is included in the intersection of DT* with DP(z) when the
entries of these matrices are regarded as fuzzy sets. And finally,
there is one consistency indexinTable 4.59,

c(DT'(Xt,),DP(z)) = max{min{dt]i,,dpjk}} • (4.146)

With a little thought, you will be able to supply many other plausible
choices for the fusion operator F = s. For example, the correlations
between DP(z) and the L DT's are easily computed as the cosine of the
angle between (each of) them (essentially the dot product of
matrices).

There are two more models in Table 4.59 that we have not
mentioned, the oracle (OR) model (Woods et al., 1997) and the single
best (SB) models. The error rate of the oracle is defined as follows:
during testing, if any of the hardened outputs of the L first level

486 FUZZY PATTERN RECOGNITION

classifiers is correct for a given input, count the oracle output as
correct for that input. Thus, oracle is (almost always) an empirical
upper bound on the possible improvement that can be realized by
fusing the outputs of more than one classifier. We say almost always
because it is not impossible to arrange the outputs so that the fused
error rate is less than oracle.

To see this, suppose that the decision profile from a set of two
possibilistic classifiers for some input z which is known to have a

ro.4 0.3"
0.6 0.5

hardened (that is, the outputs of both first level classifiers are
hardened), each produces the crisp label for class 1, so the oracle is
wrong. Suppose the decision templates for this case are the matrices

crisp class 2 label is DP(z) = If both rows of DP(z} are

DT' =
0.7
0.5

0.1
0.0 and DT^ = 0.3

0.4
0.4
0.5 Take for the similarity

measure (s in (4.143)) the function

s(DP(z),DPi)=:l-
| |DP(Z) -DTI | | ^

Lc

where the arguments of s are regarded as vectors in 9t^. Then
calculate

s(DP(z),DTM = 1-I M i M l M l M 1 = 0.725 ; and

s(DP(z), DT^) = 1 -1 M l O : i ± M ± M I = 0.9

Both decision templates produce the correct label when the output of
(4.143) is hardened, so it is possible to do better than the oracle
classifier - possible, but not often likely.

At the other extreme is the single best SB) result, which means that
the L classifiers are run independently (without fusion), and the best
performance of any one of them is recorded as SB. Thus, SB is not a
fused classifier, and is (almost always) an empirical lower bound on
the performance of fusion schemes, which presumably - but again,
this is not guciranteed by any theory - improves the performance of
the single best one (after all, this is really the only reason to
consider second level classifier fusion at all). The gap between the
single best and oracle classifiers might be taken as the "potential for
improvement" that can be realized by any fusion scheme.

Now we are ready to present Example 4.31, which compares 25
fusion models, including 11 decision template models, and one non-
fused classifier, to each other. Some of the results in Example 4.31

CLASSIFIER DESIGN 487

come from Kuncheva et al. (1998), and some are published here for
the first time.

Example 4.31 We briefly describe the two data sets used in Kuncheva
et al. (1998). Satimage is a set of n = 6,534 vectors in p = 36
dimensions with c = 6 crisp labels derived from multispectral
LANDSAT images. The labels and their percentage of samples in the
data are: red soil (23.82%), cotton (10.92%), gray soil (23.43%), damp
gray soil (9.73%), soil with vegetation (10.99%) and very damp gray
soil (23.43%). Kuncheva et al. (1998, 1999) used four features from
this set, #s 17-20, as recommended by the database designers.
Phoneme is a set of n = 5,404 vectors in p = 5 dimensions with c = 2
crisp labels. The two classes and their percentage of the total sample
were: nasals (70.65%) and orals (29.35%). In what follows we call
these two source data sets Satimage and Phoneme.

All 2D subsets that can be made by selecting pairs of features from
the 4D and 5D source data were extracted from Satimage and
Phoneme. The Satimage data with p = 4 features yields 6 pairs of 2D
features, so L for the Satimage experiments using 2D subsets is 6.
Similarly, using all 2D subsets of the 5D phoneme data yields L = 10
for the Phoneme experiments. Each of these sets of 2D data were the
basis for the design of a corresponding first level quadratic
discriminant classifier (6 first level classifiers for Satimage, 10
first level classifiers for Phoneme). We can assert with some
assurance that the (two sets of) classifiers for these experiments
were not independent because each feature from the original data
sets participated in the training of p-1 of them.

We discuss training and testing for the Satimage data, where L = 6
yields 6 2D training and test sets, say {X .X ,},...,(X ,̂ X J . Then,

tr,l te, 1 tr,6 te,6

6 first level QDC classifiers D ,...,D are trained with only the
corresponding 2D data sets. That is, D, is trained with X ,, and

k tr,k

during testing, only samples from X . a re submitted to D , k = 1 6.
Thus, row 1 of DP(z) is D (z) with z e 9̂ ^ having two of the four
features, row 2 of DP(z) is D (z) with z e 9t̂ having a different pair of
the four features, and so on. The decision template for the kth class,
DT^(X ,), is built according to (4.139) with the 2D data set X , k =

tr,k ^ tr.k
1,...,6. Table 4.59 lists the results of the experiments. Training and
testing for the Phoneme data was done similarly, but with L = 10
first level classifiers. Each of the two data sets was used to make 40
training and testing runs in 4 groups of 10 run averages as follows.
First, 100 training data are extracted randomly from either
Satimage or Phoneme.

488 FUZZY PATTERN RECOGNITION

Table 4.59 Cumulative rankings for 25 fusion schemes
and the sin^e best one stage classifier

Sa t lmage P h o n e m e S u m of ranks : Relative
Data L = 6 Data L = 1 0 both data sets efficiency

D i:p(D) b splb) b 5:p(b) rel.eff.{b)
OR 104 OR 104 OR 208 1.00
DS 82 d t l l 78 d t l l 159 0.76
MIN 86 d t s l 78 dt:I2 159 0.76
d t n p 90 dt:s3 85 d t s l 159 0.76
PRO 91 LOG 87 d t s 2 159 0.76
d t l l 81 dt:s2 78 PRO 158 0.75
d t s l 81 dt:I2 78 d t n p 158 0.75
dt:s2 81 DS 72 DS 154 0.73
dt:I2 81 MAJ 71 d t s 3 147 0.70
dt:I4 77 AVR 71 MIN 138 0.65
PPR 64 dt :np 68 AVR 131 0.62
dt:s3 62 PRO 67 d t I 4 126 0.59
AVR 60 BKS 63 MAJ 109 0.51
MAX 48 FI 61 FI 108 0.50
FI 47 MIN 52 LOG 102 0.47
NB 40 MAX 52 MAX 100 0.46
MAJ 38 SB 42 BKS 88 0.40
dt:I5 38 dt:I4 49 PPR 88 0.40
dt:I3 37 NB 31 NB 71 0.32
SB 26 d t I 3 30 SB 68 0.30
BKS 25 PPR 24 dt:I3 67 0.30
dt:c 25 dt:c 23 dt:I5 51 0.22
LOG 15 dt:s4 15 d t c 48 0.20
LCD 11 dt:I5 13 dt:s4 23 0.08
dt:s4 8 QDC 7 LCD 16 0.04
QDC 6 LCD 5 QDC 13 0.03

After training the first level classifiers (6 QDC classifiers for
Satimage, 10 for Phoneme) and, for fusion schemes that are
trainable, the second level fusion models, testing is done with the
remaining data. The 100 points are replaced, a new draw is made,
and training and testing are repeated. This cycle is repeated ten
times, and the error rates of the 25 fusion and SB one-stage schemes
are averaged, independently - that is, 10 runs of the oracle are
averaged, 10 runs of DS are averaged, etc. Then the performance of
the 25 fusion and single best 1- stage schemes are ranked 1-26, with
26 denoting the best (highest score), and 1 the worst (lowest score). In
this scheme the oracle is expected to rank first (score 26 each time),
and the single best (which is not a fusion classifier) last (score 1 each

time). Once the 10 runs with IX̂ Î = 100 were completed, another 10

runs were made with \X^\ = 200, then another 10 with |Xtj.| = 1000,

and finally 10 with |Xtj.| = 2000. Thus, at the end of the experiment.

CLASSIFIER DESIGN 489

we have 4 ranks for each of the 25 fusion and 1 non-fusion models
for each of two data sets. Consequently, the minimum possible
cumulative rank (2:p(D) in Table 4.59) over 8 averages of 10 runs is
8=4(1)+4(1), and the maximum is 208 = 4(26)+4(26). Notice that QDC
appears in Table 4.59 as a fusion model. These three entries in Table
4.59 correspond to using L QDC's in the first level, and one
additional QDC as the second level (fusion) classifier.

The last column in Table 4.59 shows the "efficiency" of each of the
fusion schemes relative to the efficiency of the oracle, which is
taken to be 1. The relative efficiency is computed by linearly
transforming the ranks with the formula eff = (0.005*rank)-0.04,
which lie in the interval [8, 208] into the unit interval [0, 1]. The
maximum is attained as expected, but the minimum is not attained
because different fusion models attained the minimum rank on
various runs during the experiment. From the last column of Table
4.59 we see that just below the oracle, 4 of the 11 decision template
fusion schemes are tied at a relative efficiency of 0.76, followed
closely by PRO (aggregation by the simple product). The Dempster-
Shafer (DS) model is very close to this, scoring a relative efficiency
of 0.73. The fuzzy integral (Fl) used in this particular example has a
relative efficiency of 0.50. Discounting the oracle, this FI is exactly
at the median relative efficiency of the 25 classifier fusion schemes,
with 12 schemes above it, and 12 below.

We hasten to point out that there is exactly one way to train decision
templates for a given choice of s (in some sense this corresponds to
the flexibility afforded other methods by vairious training schemes).
There are dozens of papers that address the question of how best to
train fuzzy integrals (i.e., how to generate fuzzy measures, see
Section 4.5) ; and, historically, perhaps even more that consider
methods for training DS models (i.e., how to get the bpa's, see
Section 5.7.A). Ju s t as our summary of the comparison between
ssfcm and ssFCM in Section 2.2.B pointed out that some choice of
supervising points would probably enable ssfcm-AO to produce the
same partition that ssFCM did in Example 2.3, we think that using
different training schemes for, say, several Fl or DS models would
produce ranks in Table 4.59 that would be spread out across the table
just like the decision templates do in this example.

In this example the fuzzy integral was trained using the method
given by Tahani and Keller (1990), while the Dempster-Shafer model
was trained with the approach outlined in Rogova (1994). This
emphasizes again an important point that we have made before:
most methods (here, fusion methods) will probably produce fairly
similar results if you have enough time to look for the solution you
want. In fact, and very analogous to fuzzy rule-based systems
"hiding" as fuzzy decision trees, some of the decision templates in
Table 4.59 can be realized as Choquet integrals : MAX, MIN, AVR, in

490 FUZZY PATTERN RECOGNITION

addition to all other linear combinations of order statistics
(Grabischetal., 1999).

There are also 4 relatively inefficient decision template schemes
very close to the bottom of the last column in Table 4.59 - even lower
than the single best classifier, and only the LDC and QDC are below
these four. This probably indicates that the choice of the similarity
measure used to match the decision profile to the decision templates
is very important. We cannot say from these results which of the
four subtypes mentioned above is better or worse on the basis of this
limited set of experiments, especially since there are similarity and
inclusion indices in both the top 5 decision templates and the
bottom 4 decision templates. However, Kuncheva et al. (1998, 1999)
distinguish between two types of similarity measures: integral
measures that are based on cardinality (si, s2, s3, 11, 12, 13); and
pointwise measures, which allow a single degree of membership to
determine their value {s4, 14, 15, C). The fact that 5 of the 6 integral
measures in Table 4.59 place well above 14, the most highly ranked
pointwise measure, strongly suggests that integral measures are
more reliable than pointwise ones. The dt:np scheme ranks well in
Table 4.59, being tied with the PRO scheme for third place in terms
of rank or relative efficiency, and once again illustrates that old
adage - nearest prototype classifiers are simple, effective and cool.
Further, we find it interesting that the simple PRO scheme, which is
class conscious, but which has no second level training, does so well.

To conclude, here are some differences between the decision
templates approach to classifier fusion and most of the other
separately trained fusion schemes we know of. First, when the i-th
decision template DT* is matched against the decision profile of an
input, the comparison is class indifferent (uses all of the columns in
the decision profile matrix), in contrast to many other popular
fusion schemes which are class conscious (use only the appropriate
column of the decision profile matrix for each class).

Second, decision templates are non-parametric in the sense that
there are no parameters to learn or thresholds to choose. The only
choices that must be made to implement them are the choice of F = s,
the fusion operator that matches the decision profile matrix DP(z) to
the c matrices {DT'}, and possibly, the method of hardening soft
label vectors whenever the need for crisp outputs arises. The choice
of a good F is certainly not trivial. As the results in Table 4.59 show,
decision templates with some F's worked fine, and with other F's,
the same fusion model applied to the same first level classifier
outputs were relatively terrible. Since there are infinitely many F's,
as always in pattern recognition, finding the right one Is what
makes the method successful for a particular data set - and you
know that don't come easy! On the other hand, once the function s is
chosen in equation (4.143), training the decision templates amounts
to performing the non-iterative calculations in (4.139), so from the

CLASSIFIER DESIGN 491

viewpoint of ease of training, the decision template approach is
much simpler than most of the other trainable second level fusion
models we know about.

Example 4.31 is abstracted from the most ambitious comparison of
different fusion models that we know of, accounting for 25 different
fusion D's that combine L = 6 (Satimage data) and L =10 (Phoneme
data) first level classifiers. Perhaps the most important thing to be
gained from this example is the insight it gives into some subtle
differences between the various strategies that can be used for
separately trained fusion classifiers. There are many, many other
approaches to classifier fusion besides the few that we have
discussed in this section. We will briefly discuss a few others in
Section 4.11.

4.10 Syntactic pattern recognition

Syntactic (or structural) pattern recognition has far fewer advocates
in the engineering community than numerical pattern recognition.
We aren't sure we can supply a reason for this, but offer several
possibilities. First, many syntactic approaches are couched In the
highly specialized jargon of formal language theory, which is less
accessible to many engineers than it (perhaps) should be. A much
more probable reason for the paucity of fuzzy models in this field is
that, quite simply, it is usually much harder to build a working,
fielded system based on syntactic models than numerical ones. Good
basic texts on syntactic pattern recognition include Gonzalez and
Thomason (1978), Pavlidis (1980) and Fu (1982). Bunke (1992) is a
collection of recent papers on advances in structural pattern
recognition.

The primitive is the basic element or building block in the syntactic
approach; it plays roughly the same role here that numerical
features play in the methods we have discussed prior to this section.
Another key concept in structural pattern recognition is the
grammar that can be built from primitives. The grammar can be
thought of as a "basis" for a set of objects. Jus t as Njjg = {Cj ê ,}

spans or generates every vector in S?*̂ as a unique linear
combination of its c elements, we can imagine the "span" of a
grammar as all of the objects that can be generated from the
primitives, using specified rules of combination called production

rules. The span of N is the vector space St"̂ ; the analogous concept
in the syntactic approach is called the language generated by the
grammar. We will formalize each of these concepts in Section
4.10.A.

492 FUZZY PATTERN RECOGNITION

The basic idea is to decompose objects, usually hierarchically, into
simpler structures, until the source object can be described in terms
of its primitives ("basis elements") and the structure that relates
them to each other. The paragraph you are reading right now is a
good example. If we regard the paragraph as the object, we can
decompose it into successively finer and finer elements- viz.,
sentences, then words, then characters, and finally, "strokes",
which are the primitives in the language being illustrated (written
English). Notice that the Icinguage provides us with two capabilities:
first, if we have its building blocks, we can generate objects from it;
and conversely, once we have the language, we can test and classify
given objects as belonging to it or not. In other words, we have the
same problems - representation and recognition of objects that
underlie almost all pattern recognition problems.

Usually primitives are physically recognizable elements of the
object. Because sensors don't provide data that is readily converted
to the form needed by sjnitactic methods, there is at least one extra,
very hard step - the extraction of sets of primitives from numerical
data - if the syntactic approach is to be based on sensor data.
Syntactic representation of objects by a set of concatenated or
otherwise connected primitives requires a level of sophistication
that implies more effort than the results often justify. Coffee cups
are simple enough to describe structurally, but a power plant, for
example, is not so easy to decompose into a manageable set of
primitives. Notable exceptions to this are applications in the fields
of shape analysis and character recognition, because data from
these two applications lend themselves well to simple sets of
primitives which effectively capture structural properties of the
objects of interest.

Numerical and structural techniques are often discussed as if they
are separate disciplines, bu t numerical pattern recognition
techniques are often very much in evidence in syntactic models,
where they can be used to extract structural primitives from sensor
data. For example, we might run any of the edge detectors discussed
in Chapter 5 on an input image, and then use edge fragments, or
groups of them, as segments of objects. Segmenting inputs refers to
the decomposition of objects into meaningful substructures. This
helps the designer recognize useful primitives from which to build
sentences.

Ju s t as numerical pattern recognition can be divided into several
main branches (e.g., statistical, graph-theoretic, fuzzy, etc.),
structural pattern recognition can be subdivided into two principal
approaches by the way the structure that connects primitives
together is represented. One group of methods depends on formal
language theory for quantification of structural relationships,
while the second group of methods use graphs (or relational data) to
carry the structural information that links primitives together to

CLASSIFIER DESIGN 493

build objects. We will explore some basic ideas of this second kind in
Section 5.8, where we discuss spatial relations between objects such
as "above" and "right of in connection with the decomposition of
complex objects as a means of scene description and object
recognition with image data.

As in numerical pattern recognition, successful syntactic designs
are an iterative and interactive procedure : trying new features
roughly corresponds to defining new primitives, grammars,
languages, etc.; and changing classifiers corresponds to using
different automata, matching procedures, and so on. Process
description again resides mainly in the hands of human designers,
who rely not only on sensor data (such as images of handwritten
characters), but on their innate ability to describe structural
relationships between elementary parts of complex objects. It is
beyond the intended scope of this book as well as our personal
interests and backgrounds to present a detailed discussion of either
the language or graph-theoretic approaches to structural pattern
recognition. However, there has been a steady trickle of papers that
use fuzzy models in both of these arenas since the early 1970's. Our
objective in this section is to present you with enough information
about this approach to pattern recognition so you can decide for
yourself whether a plunge into the stream (the literature we cite) is
worthwhile for the problems you want to solve.

A. Language-based methods

We ease into this topic with an intuitively reassuring example that
displays some of the elements of the formal language approach.
Wave form recognition is an application that is amenable to the
syntactic approach because one-dimensional signals, like
characters in alphabets, can be thought of as built from a sequence
of fairly simple "strokes". Thus, we have a conceptual basis for
decomposing signals into linked sets of strokes that approximate
wave shapes. String grammars are appropriate for wave form
decomposition, where the most fundamental operation is head to
tail connection (or one-dimensional concatenation) of the chosen
primitives.

"Nil*' VJlP''

Example 4.32 This example has its roots in the pioneering work of
Shaw (1969), who proposed a more extensive set of primitives and
production rules as the basis of a picture description language that
was sufficiently rich to build grammars whose objects included
blocks, "houses", and the 26 upper case characters A-Z used by the
English language.

Choose as primitives the four arcs shown in Figure 4.96(a); notice
that each one is directed in the sense that it has a tail and head. We
allow only head to tail connections from left to right in this

494 FUZZY PATTERN RECOGNITION

example - that is, there is but one rule for concatenation of
primitives, and we indicate left to right concatenation by left to
right juxtaposition. The primitives are the geometric entities, and
in order to efficiently describe manipulations of them, we choose an
alphabet of symbols, say A = {a, b, c, d} that correspond to the
strokes shown in Figure 4.96(a): a = local max (Cap), b = negative
slope, c = local min (Cup), and d = positive slope. With suitable
production rules that tell us how we may combine the symbols in the
alphabet, these primitives can be used to represent many regular
wave shapes.

(a) four primitives for waveform description

(b) the concatenation co = abed

(c) the concatenation C, = aaacac, KI = 6

Figure 4.96 Four primitives and waveshapes built from them

Figure 4.96(b) Is a nice approximation to one cycle of a sine wave
build by concatenating the four primitives into the sentence (or
string) CO = abed. The length of the string co, denoted by \(o\, is the
number of symbols from the alphabet needed to make it, so |co| = 4 in
Figure 4.96(b). Figure 4.96(c) shows a slightly more complicated
waveshape (which uses fewer primitives but more production rules)
that is represented by the sentence ^=aaacac, |C| = 6. These simple
figures show you Immediately why we might expect syntactic
pattern recognition methods to be useful for signal processing.

CLASSIFIER DESIGN 495

A second application where the syntactic approach often surfaces Is
character recognition, both handwritten and printed, and the
harder problems that it leads to such as word, sentence and
paragraph recognition. Why? Because the fundamental object (the
character), can be approximated pretty well by combinations of just
a few primitives, which are again "strokes". We have met this idea
already in the work of Sly and Chen (1974), Chi et al. (1996b) and Chi
and Yan (1996). Siy and Chen held that all alphanumeric characters
comprised essentially three "strokes": lines, curves, or circle and
they suggested the set of 15 primitives shown In Figure 4.92, made
from one of their three basic strokes. Sly and Chen did not use the
language or methods that we now associate with syntactic pattern
recognition in their work, but the most important elements of their
work can be identified with various facets of the structural
approach. Their "branch features" are primitives, their
representation of each character as a set of three bit maps
constitutes the selection of an alphabet and production rules, and
their classifier, essentially a nearest prototype machine, is roughly
analogous to parsing strings to assign each input to the best
matching class.

Figure 4.97 Four primitives for the letter "F' in Figure 4.64

Primitives for character recognition will be very similar to the ones
shown in Figure 4.92 in that every character in any alphabet will be
composed of a fairly small number of simple "strokes". For example,
the letter "F" in Figure 4.64 is (roughly) composed of four strokes, as
shown in Figure 4.97. This construction is a little more complicated
than the waveforms in Figure 4.96, since the letter F cannot be built
from a single concatenation of primitives. The "body" of the F is
composed of the string abc, and could be built by head to tail
concatenation, but the crossing arm of this character, represented
by the primitive d, cannot be adjoined correctly to abc by head to tail
attachment. Here the location of the crossing arm must be fixed by
an operation that is not available with simple head to tail
concatenation - in other words, we need a more extensive set of
production rules in order to build a good approximation to "F" with
these primitives.

Now we are ready to make a slightly more formal presentation of the
ideas in Example 4.32. A grammar G is defined as a 4-tuple G = (V ,̂
V^, P, S) where

496 FUZZY PATTERN RECOGNITION

(G1 I V is a finite set of terminals or primitive variables, such as the
four waveshape fragments "cup", "cap", "positive line" and
"negative line" in Example 4.32. When each primitive v e V j is
represented by a symbol, the set of symbols that represent V Is
called a vocabulary A. In Example 4.32 A= {a, b, c, d}, and once
a vocabulary Is chosen, it is customary to interchange V and
A. Thus, we might also say that V = {a, b, c, d} in Example 4.32.
We follow traditional notation for terminals, symbolizing
them with lower case letters such as a, b, etc.

CG2] V IS a finite set of nonterminals (also called constants or
N

nonterminal variables or subpatterns) that are used In
Intermediate stages during the construction of sentences. We
did not speciiy any non-terminals in Example 4.32. We follow
traditional notation for non-terminals, symbolizing them
with upper case letters such as A, B, etc.

(G3| P Is a finite set of syntax or production rules (or rewriting rules)
that are used in the generation and/or parsing of sentences.
Strings in G are traditionally symbolized by lower case Greek
letters like a and (3, and the production rule that maps string a
to string P is written as a -> [3. We did not specify any
production rules in Example 4.32.

(G4| S eV is a special member of V , called the starting (or root)
symbol of a sentence. This non-terminal Is used as the
beginning point of sentences that can be generated by the
grammar. We did not speciiy a starting symbol in Example
4.32.

We have used the traditional notation of syntactic pat tern
recognition for the terminals (V) and non-terminals (V) in a
grammar G, which are sometimes called the vocabularies of G. The
set V = V.J, u Vj^, with V.J, n Vĵ = 0 Is called the alphabet or total
vocabulary of G. We caution you that other authors use different
terminology for many of the Ideas given in the definitions below
(e.g., for meanings of the words adphabet, vocabulary, etc.).

When a Is a string, a" = a- • • a . The null string Is denoted by X. The
n times

set of all finite length strings of symbols. Including the null string X,
that can be built from a finite alphabet V is denoted by V*; in
particular, V^ is the set of all finite length strings of terminals in G.
If P contains the rewrite rule a ^ [3, r| = cojacoa and y = (»i(i(02, we say
that string TI directly generates a string y, and write r| => y.

G

CLASSIFIER DESIGN 497

There are many types of primitives, sentence structures, grammars
(strings, trees, webs, plexes, etc.) and production rules. Of these we
discuss and illustrate only the simplest (and possibly most
frequently encountered in pattern recognition) grammar - the string
grammar. A simple string grammar to represent "sine waves" using
the four primitives shown in Example 4.32 could be G =(V , V , S,
P) where

Yj, = {a, b, c, d}; V^ = {S}; P = { S -> abcdS, S -* abed}.

The set of all possible sentences L(G) which can be generated by a
grammar G is called a language over G,

L(G) = {a :aeV; ;S=^a} . (4.147)
' G

Grammars are used two ways. In the generation mode, we use G to
create sentences beginning with S, and ending with the string; when
represented by a tree, this mode of operation results in a derivation
tree - we derive the string from G using the symbols in V and the
rules in P. Since we always begin a derivation from S, derivation
trees are always generated top-down, ending up with the sentence at
the leaves of the tree.

Conversely, if we are given a sentence which might be a member of
L(G), finding out whether it is or is not a member of L(G) is called the
analytic (parsing) mode - this is the mode we will be in during
classifier operation. When represented by a tree, this mode of
operation results in a parse tree, which can be either top down, or
bottom up. You can imagine this process as beginning with an
"unfilled" rooted tree: you know S and the leaves, and try to fill in
the interior of the tree with valid productions. The issues that
demand attention during parsing are computational efficiency and
termination of the parse, and there are many schemes available to
accomplish this step. As grammars become more complex, so do
these two problems. A conflict occurs if a sentence parses in more
than one language (or tree), which is highly possible when general
grammars are constructed to represent actual shapes.

For example, we cannot generate the waveshape in Figure 4.96(c)
with G , because the production rules needed to generate the string
C = aaacac are not in P. Consider the grammar G „ with terminals as
^ ° db
in Example 4.32 and non-terminals and production rules as follows:

yj, = {a,b,c,d};
V^ = {S, A, B};
P ^ = { S -> dA, A ^ dA, A ^ d, A ̂ dB, B -> bB, B -> b }.

db

498 FUZZY PATTERN RECOGNITION

This set of production rules cannot generate the string ^ = aaacac
either, because the only terminals that are manipulated by the
production rules in P are d and b, even though a and c are in V . The

grammar G generates strings of the type {% = d̂ b™] n > 1, m > 0},
which are piecewise linear curves that start with n positively sloped
line segments followed by m negatively sloped line segments - that is

"A"-shaped objects. Figure 4.98 shows a few of the sentences that can
be built with this grammar. If it was necessary to balance the
number of b's and d's, different production rules would be needed.
Would the grammar G built by substituting a for d and c for b in the
production rule set P generate the string C, = aaacac? No, because
the grammars G^̂ and Ĝ ^̂ use the same terminals but have different
productions, and hence, generate different languages. This is a key
aspect of syntactic pattern recognition - finding production rules
that will generate the sentences (objects) we wish to represent and
recognize.

Figure 4.98 Some sentences in the grammar G

A grammar and language that can capture all the objects you want to
recognize must be inferred somehow. Once L(G) is in hand,
classification is often done with the aid of formal language theory
(Chomsky, 1965). A grammar is formed for each class, and sentences
are recognized as belonging to a given class if they can be parsed in
the grammar for that class. If several classes are possible, all of the
class grammars usually share the same primitive elements so that
all grammars have an opportunity to generate the sentence.
Recognition (of, e.g., a piece of an object) then reduces to parsing a
sentence to see if it can be generated by the grammar for that object
class. Starting with the symbol S, we look for a sequence of
production rules which produce the sentence. For example, in the
grammEir G , the sentence ^=dddbb would parse as

S -> dA ^ ddA ->• dddB -> dddbB -^ dddbb.

Many syntactic pattern recognition applications deal with shape
recognition. The first task is to convert real shape data into the
string or tree or plex that formally represents each shape. In
Example 4.32, the primitives are perfect semicircles and diagonal

CLASSIFIER DESIGN 499

lines. If you were to draw a curve like either of the ones shown in
Figures 4.96(b) or 4.96(c), you would be unlikely to make perfect
matches to the 4 primitive shapes. This problem is compounded by
automatic boundary extraction methods which are often used to
"outline" an object (Chapter 5). Hence, before the shape can be
analyzed via sjmtactic grammars, it must be encoded as a sentence
in the appropriate languages. Mistakes during primitive
classification can doom the parsing algorithms that follow. This is
an instance where the principle of least commitment plays a major
role.

Where do fuzzy sets, models and methods fit into syntactic pattern
recognition? They have been inserted into the primitive extraction
phase, into the collection of data from uncertain sources, into the
production rules, and into the parsing activities carried out during
classification. Fuzzy sets made early appearances in both the
fuzzification of primitives and the construction of fuzzy grammars
and fuzzy languages. Indeed, we have already seen how the 15
primitives in Figure 4.92 can be fuzzified (equation (4.133) and 10
others like it were used in Siy and Chen (1974), and are still in use
by, for example, Chi et al. (1996b) and Chi and Yan (1996)).

Fuzzy grammars were defined very early in the evolution of fuzzy
models, first appearing in the paper by Lee and Zadeh (1969).
Formally, ajuzzy grammar is a 5-tuple 0̂ ,= {V^, V^, S, P, m) where V ,̂
V , S, and P are as before, and m: P -> [0,1] represents the grade of
membership of each production rule in the grammar, i.e., some rules
are more typical of the grammar than others, and so, they will have
higher memberships. For a rule a -+ b in P, we can write

m(a ^ b) = p, or more simply, a ^ b . (4.148)

If a -^ b and y and 6 are arbitrary strings, then

yaS -S ybS . (4.149)

The membership of a string x in L(GJ is defined as

m(x) = m(S-4 x) = sup{min{m(S -^ a^) m(«n -^ x)}}, (4.150)

where the supremum is taken over all derivation chains such as the
chain a ,...,a from S to x. Instead of the min (T norm) in (4.150),

I n J
any T-norm could be used. This is similar to the way in which
stochastic grammars are defined, except that the interpretation of
uncertainty in stochastic grammars is that of likelihood of use of a
production rule, and the method for determining the probability of a

500 FUZZY PATTERN RECOGNITION

string X in L(Gp is usually the sum over all derivations of the product
of the rule probabilities. Tamura and Tanaka (1973) developed
several early techniques for learning fuzzy grammars.

Example 4.33 In the positive slope or "A" grammar G , suppose that
the production rules are modified to include memberships:

1.0 0.8 0.8 0.6 0.6 0.6

P = { S - > d A , A - > d A . A ^ d . A - > d B , B ^ b B , B ^ b } .

Then the membership of a string x=dddbb in the fuzzy language
L(G,^ J is m(x) = min {1.0, 0.8, 0.6, 0.6, 0.6} = 0.6 (note that there is
only one derivation of this sentence). The string y = ddddd would
have membership m(y) = min (1.0, 0.8, 0.8, 0.8, 0.8} = 0.8, i.e.,
positively sloped lines have higher membership than A'S in this
fuzzy grammar. If the memberships are thought of as probabilities
G „ , will become a stochastic grammar, and then the probability of x

db.f
would turn out to be p(x) = 1.0 • 0.8 • 0.6 • 0.6 • 0.6 = 0.173. Stochastic
grammars can have the property that sentences of small length are
favored over longer ones. This is due to the fact that product is a
much stricter intersection operator than minimum. If the product
(T norm) were used in (4.150) instead of the min (T norm), then m(x)
and p(x) would coincide.

Fuzzy automata are important in fuzzy syntactic pat tern
recognition. For example, E. T. Lee (1982) developed an approach to
represent approximate shapes by fuzzy tree automata and process
the shapes based on syntactic pattern recognition. Lee (1972a, b) had
earlier experimented with fuzzification of sets of shape primitives
which were similar in geometric content to the primitives being
used by Shaw (1972), with fuzzification quite like that used by Siy
and Chen (1974). In Lee (1982) a set of three primitives (isosceles
triangle, rectangle, and cross) are first fuzzified, and then used as the
basis for a fuzzy grammar. For example, Lee (1982) proposed that the
membership function for a "fuzzy isosceles" triangle with interior

base angles B ° and C °, in the set of crisp isosceles triangles be

mn-(B°,C°) = l - ' 90°

When a triangle is isosceles, B° =C°so mj.j,(B°,C°) = 1, and otherwise,

mj^(B°,C°) < 1. Similarly, the membership of a quadrangle with

CLASSIFIER DESIGN 501

interior angles A°, B °, C ° and D ° in the set of crisp rectangles was
defined as

mR(A°,B°,C°,D°) = l -
^'A° - 9 0 ° | + |B° - 9 0 ° | + |C° - 90°| + |D° - 90"'^

360°

Using these fuzzified primitives, Lee (1982) built syntactic
representat ions of "approximate houses" by concatenating
"approximate isosceles triangles" on top of "approximate
rectangles". His constructions (Figure 1 of Lee, 1982) for three
approximate houses named s , s and s are replicated in our Figure
4.99.

r

A B = 90° C = 60° 1 \
90° C = 45°

Si S2 S3

mH(Si) =] L mH(s2) = 2 / 3 m H(S3) = 1 / 2

Figure 4.99 Some approziniate houses, Lee (1982)

The three membership values shown below the approximate houses
in Figure 4.99 are computed in Lee (1982) using a well defined fuzzy
tree automaton. Lee also describes how to build "approximate
churches" and "houses with high roofs" using fuzzy grammars. We
remark that in order to perform a concatenation operation such as
"place the roof on top of the house", it is necessary to resolve the
question of how to define the spatial relationship "on top of, a topic
we discuss in Section 5.8. Another point worth emphasizing here is
that Lee's primitives, P={triangle, rectangle, cross}, are themselves
decomposable into strings of simpler primitives. For example, the
roof of house s in Figure 4.99 might correspond to the string d^b^ in
the grammar G^̂ discussed in connection with Figure 4.98. This is

'^ db

how we ultimately break down a complicated object in the formal
language approach to syntactic pattern recognition.

Now we can cast pattern recognition questions in terms of formal
languages. In order to build classifiers capable of identifying
different objects using this approach, we follow a procedure that

502 FUZZY PATTERN RECOGNITION

might go roughly like this. Assume that the basic objects are
handwritten sjmibols, and we want to read them automatically with
a computer vision system. First we acquire data by digitizing a
scene, perhaps run an threshold operator on them, thin them to get
their skeletons, and then decompose them into sentences in one or
more of the c languages {L(G)} over the grammars {G}. We will have
chosen a set of primitives, and once particular objects are acquired,
we will look for the production rules that generate correct
representations of the objects in at least one of the chosen (or
inferred) grammars. The same set of primitives may support many
useful grammars, and finding the primitives, the production rules,
and the grammars can all be part of the "training" procedure. Once
the languages {L(G.)} that capture the objects of interest are known,
we turn the process around during classifier operation. Now a new
object comes into the system. We convert it into a sentence using the
primitives at our disposal, and then try to parse it in one or more of
the grammars available. When we get a one or more matches, we
have (a) class label(s) for the object.

You might be surprised to discover how many of the algorithms we
have already discussed in this book can be converted into similar (if
not the same) techniques for use with strings and/or string
grammars. Fu (1982) discusses straightforward extensions to the
syntactic case (at least for string grammars) of the following crisp
algorithms that we have discussed for either the object or relational
data cases: hard c-means (our section 2.2); single linkage clustering
via the minimal spanning tree (our section 3.3); the crisp 1-np and 1-
nmp rules (our Section 4.2); and the k-nn rule (our Section 4.4).

One of most fundamental ideas underlying most of the algorithms
we have discussed prior to this section, including all of the
clustering and classifier designs mentioned in the previous

paragraph, is the distance 5(x, y) between vectors x and y in SR̂ .
There are several equivalent notions for strings. The most common
metric used in the setting of strings is the Levenshtein metric, which
is defined in terms of three string transformations - substitution,
deletion and insertion. For strings a, p in V^, Levenshtein (1966)

defined these for any coj, (JO2 e ^r as follows:

cOjacOg H->C0jb(02, Va,b e V.j,;a 7t b (substitution); (4.151a)

T
' D

C0jac02 f-̂ cOjCOg, V a e V^ (deletion) . (4.151b)

0)̂ (02 i-> cOjacOg, V a e V.J, (insertion) . (4.151c)

CLASSIFIER DESIGN 503

With the three string transformations in equations (4.151), the

Levenshtein distance 5LEV(<'^I>'02) between two strings C0i,c02 e V^ is
defined as the smallest number of transformations needed to derive
one string from the other (either way, since this distance will be
symmetric). For example, if K^ = bbdbabc and K2 = bdbbabbc, we
can produce K2 from KJ with 3 transformations: insert "b" between
the symbols a and b; substitute "d" for the second b; and finally,
substitute "b" for the (new) second d. Thus, 5LEV(KI,K2) = 3 . Two
things to notice: the sequence of transformations used in the
calculation is not unique (but the result is); and the distance between
strings of different lengths is well-defined. Fu (1982) gives a
weighted form of 8LEV which allows you to weight different types of
errors differently.

Having a way to measure distances between strings in different
string languages, opens many doors. For example, you can construct
a minimal spanning tree on sets of strings. The distance between
two languages L(G) and L(G), or as a special case, between a sentence

CO and a language L(G), can be defined directly by using any standard
measure of the distance between pairs of sets. For example, any of
the set distances shown in Figure 3.3 serve this purpose. J u s t

imagine that the points in Figure 3.3 are sentences, that 6 = 5LEV •
that X = L(G)̂ and that Y=UG^).

Now look back at the 1-np, 1-nmp and k-nn rules in equations (4.2),
(4.7) and (4.38), respectively. All of these classifiers, built for feature
vectors in 5RP , need only prototypes and a way to measure distance.
Suppose you cire lucky enough to have a set of c string grammars {G}

that generate c string languages {L(G)}, and for each language, you

have, say, n crisply labeled sentences {aj G V^^;j = l, . . . ,ni}, with
c
X n i = n . Then the n sentences {a,;i = l,...,c;j = l,...,nj} together
1=1

with the distance SLEV enable you to use the k-nn rule in (4.38)
directly to classify any input string.

To use the 1-np and 1-nmp rules, you need prototypes. Fu (1982) calls
the string Uq, selected from the n. strings (aji j = 1 n j in the i-th
class whose indices satisfy

q = arg minj c' = X
8 fa' a''"^

" i

(4.152)

504 FUZZY PATTERN RECOGNITION

the "representation" or cluster center of the H; strings {ttj}. Notice

that the "cluster center" ttq is not built from, the sentences already
labeled class i; it is one of the sentences in this class. Once we have a
way to find prototypes, the crisp 1-np rule at (4.2) and the crisp 1-
nmp rule at (4.7) can be implemented directly in the syntactic
domain.

Could you fuzzily any of these designs in the syntactic string
grammar domain? Some of them are already done. For example, the
soft k-nn rules in Table 4.19 translate directly into soft k-nn rules
for sentences in string grammars. The c-means clustering
algorithms can all be imitated using prototype calculations similar
to the one at (4.152) and the necessary conditions for U shown in
Table 2.2. Doing this leads to c-means type clustering algorithms
that can be used to find clusters in an unlabeled set of n strings
which (presumably) come from one of c languages.

Table 4.60 shows how to implement a syntactic relative of the hard
c-means (HCM) clustering algorithm, which we will call string
grammar hard c-means (sgHCM), the prefix "sg" standing for string
grammar. This is not an alternating optimization algorithm,
because the update equations used at each half-iterate do not satisfy
any criterion of optimality. A more accurate term is alternating
cluster estimation (ACE), and it means exactly the same thing here
that it does in the numerical case (Runkler and Bezdek, 1998b,
1998c, 1999): update functions for each half of the cycle are simply
picked from a set of logical choices, and iteration proceeds to
termination, either by small successive changes in the estimates of
U or by exceeding a maximum iterate limit. We won't have a very
good idea of where this type of clustering leads in terms of the
formal languages that underlie the strings it groups together, but it
does provide a way to design a syntactic nearest prototype (1-snp)
classifier.

The SgHCM algorithm in Table 4.60 appears in Fu (1982) as
Algorithm 9.4 in a different notation. Scalar multiplication of
strings by real numbers is undefined, so the quantities u a and

Ujg ̂ a^ in SgHCM appear to be incorrect. However, the memberships
here are crisp, so the multipliers are either O's or I's. If we define
Oa = 'K, the null string, and l a = a, the notation in Table 4.60
makes sense.

CLASSIFIER DESIGN 505

Store

Table 4.60 The s^CM clustering algorithm

n unlabeled finite strings X = {a^; k = 1,..., n}
number of clusters: 1 < c < n
maximum number of iterations: T

Pick termination measure: E = V^ - V̂^ J = big value

termination threshold: 0 < e = small value

Guess
initial string prototypes:

Iterate

t<r-0
REPEAT

t<r-t+l
For k = 1 to n

For i = 1 to c
I^ik,t =5LEv(0Ck'"l,t-l)

Next i
Next k
For i = 1 to c

ni,t <r- 0
For k = 1 to n

"̂ •* [0; otherwise]

Next k
Next i
For i = 1 to c

q = arg min-{ c
i.J

l<J<n,^

I -

Next i
TIL (t=1

(U.V)^(Ut.Vt)

s=l

\Ev("lJ.t«J'^is,t«s)

n i.t

ai,t = «q

UNTIL(t=TorE^<8)

Fu illustrates sgHCM with a set of 51 unlabeled samples of one of the
9 upper case characters {D, F, H, K, P, U, V, X, Y}. Fu notes that of the
nine possible classes, there are four shape-similar pairs, namely (D,
P), (H, K), (U, V) and (X, Y), and one "odd" shape, the letter F. Each
sample begins as a continuous line pattern on a 20x20 grid. This
image is digitized, and then a string representing it is generated by
traversing the chain encoding (Gonzalez and Woods, 1992) of the
letter cell by cell. A primitive from a set of 4 is then generated from
the chain code for each three consecutive cells, and the set of
primitives needed to traverse the sample becomes the string for that

506 FUZZY PATTERN RECOGNITION

letter. The four primitives are lines that look roughly like this:
a = / ; b = \ ; c = \ ; d = —. For example, the fourth sample
resembles a "U", but is distorted so that it is rather too tall for its

width, and has uneven sides, looking roughly like this: (j . The
string representing this sample is cbbbxdabbbb, where the symbol
X is one of three concatenation operators taken from Shaw (1962).
See Fu (1982) for a more detailed account of how the string
representation for a character is generated. The shortest string in
the data set had just 5 primitives (a nice, well behaved 'Y"), while the
longest string had 13 (a not so unruly, but very curvy "D").

Applying the sgHCM algorithm to this data with c = 9 fixed (using
prior knowledge as to the number of clusters avoided the question of
how many to look for) resulted in 9 crisp clusters of strings (and,
therefore, of the objects that the strings represented). The relabeling
error (that is, number of mislabeled characters when the data are
subsequently labeled by visual inspection) of the hard 9-partition of
this data is 11 mistakes in 51 tries - an "error rate" of about 22%.
Since the sgHCM algorithm is unsupervised, this may not be such a
bad result, and what's more, at this point you have labeled
prototypes (which here are labeled strings in some language) of the
nine letters, and so, a complete set of parameters to implement the
1-np rule in equation (4.2) using the Levenshtein distance. In a
realistic application domain, you may need to be careful about the
computational complexity associated with computing 8 , which
is a combinatorial optimization problem.

What about versions of string grammar fuzzy and possibilistic c-
means (sgFCM and sgPCM)? We believe that both of these edgorithms
can be developed to cluster strings, although the generalizations in
these cases may not be as straightforward as that of sgHCM in Table
4.60. A modified version of FCM has been used for preprocessing in a
syntactic model that uses string grammars for the recognition of
handwritten Chinese characters (Cheung and Chan, 1986), but to our
knowledge, sgFCM and sgPCM algorithms per se have yet to be
developed. The point is not that string grammar versions of the c-
means models are better or worse than any other clustering
algorithms for string grammars. The point is that you can often
transform pattern recognition methods that are familiar in the
numerical data domain into methods in the syntactic domain that
bear at least some resemblance to their numerical relatives, and
there is as much opportunity to soften models in this domain as
there is in the numerical arena. The theory underlying syntactic
classifier algorithms developed in this mold, however, may
challenge the best theoretical computer scientist you know (who is
none of us, that's for sure).

CLASSIFIER DESIGN 507

B. Relation-based methods

This approach to syntactic pattern recognition uses graphs to
represent structural relationships between the primitives and
nonterminals. The nodes represent elements of V and V , and the
edges carry relational information about the structure between
elements that comprise an object. One of the most important
changes that is made by using graphs instead of grammars to
represent structural relationships is that the style of object
recognition changes. To classify sentences in formal languages, you
need a good parser; to classify objects that are represented by graphs,
you need measures of graph similarity. Thus, the relational
approach often has a style that is very much like nearest prototype
classifier design, but the prototypes are digraphs, relational graphs
or attributed graphs, and measures of distance used with numerical
data are replaced by graph-matching techniques based on measures
of graph similarity. Advocates of the relational approach argue that
it should be used when each structure can be represented by a crisp
prototype, or when there are not enough training data to accurately
infer useful grammars for each of the c classes.

Like all graph theory, the use of relational graphs for syntactic
pattern recognition is 9 parts definitional to 1 part operational. We
are not going to give you sufficient technical information that
enable you to build syntactic pattern classifiers using the relational
approach directly. Again, as in the previous subsection, we want
instead to show you how fuzzy models have been inserted into this
field. When you are interested, you will again have to dive into the
cited literature. There you will find the details (and in them, perhaps
the devil as well).

The basic structure of the relational model begins with the idea of a
semantic net (sometimes called a relational graph). We start with a
digraph G = (V, E) where V={v} are the vertices of G ; and E is the set of

edges in G, (v;, Vj) e E <=> r^ = 1 (don't confuse this G with the G we used
from grammars in the previous subsection). Terminal nodes in V
"contain" primitives of strings, and non-terminal nodes in V will
contain intermediate strings that are non-terminal strings. When
we add semantics to the edges in E, we obtain a semantic net.

For example, consider the top part of Figure 4.100, which shows
three boxes, X, Y and Z, on a supporting surface which is not part of
the structure being described. There are six obvious relations
between the three boxes X, Y and Z : is above, is below, left of, right
of, larger than and smaller than. The bottom half of Figure 4.100
shows the relationships (position and relative size) between these
three objects as a semantic net, which, as you can see, is a digraph on
three nodes with semantic information added to the directed edges.

508 FUZZY PATTERN RECOGNITION

Figure 4.100 Structural representation by a semantic net

If you wanted to build a classifier based on this approach, first you
would develop one or more relational graphs for each class of
objects (in essence, multiple prototype graphs), and then to label an
input object, you would represent it the same way, and match it to
each of the class prototypes, using a rule just like equation (4.2) or
(4.7) with the appropriate changes in V and 5. Figure 4.101 illustrates
this idea.

The only relation represented by the graphs in Figure 4.101 is the
structural relation "is on top of T". The objects on the left and right
in this figure, two sets of stacked blocks, represent crisp classes 1
and 2, and the object z between them is to be classified. First, all
three objects are represented by the relational graphs shown just
below the objects. Then a measure of graph similarity, shown as S in
Figure 4.101, is used to compare the similarity of each of the graph
prototypes to the unlabeled input graph. There are many measures
of similarity for pairs of graphs based on concepts such as counts of
in-degrees, out-degrees, numbers of nodes and/or edges, differences
in the minimal spanning tree, etc. For example, using either the
counts of outdegrees or numbers of nodes for the graphs in Figure
4.101, we find that G is more similar to G than G is (in fact, G and

CLASSIFIER DESIGN 509

G match exactly in these two measures], so z is labeled class 2 as
depicted in Figure 4.101.

1 4

2 5

3 6

llllll T lilllii
Class 1

l) {4

V
Gi

^

Input z

S(Gi .GJ<S(G2,GJ

z € class 2

^

Figure 4.101 Prototype classification with relational graphs

Please compare Figure 4.101 to Figure 4.5; from this you will see that
we are again doing nearest prototype classification, but the data
used to implement the 1-np design originate through structural
relationships instead of numerical measurements. Since the fuzzy
models we want to discuss develop their own (fuzzy) measures of
similarity, we will not stop here to discuss crisp measures, but
instead, will refer you to Shapiro and Haralick (1985) for a
representative discussion of this topic.

Relational graphs are limited by several things. First, it can be
computationally expensive to match them. Second, they
concentrate entirely on structural properties. As defined, relational
graphs cannot represent possibly important and measurable
quantitative and qualitative properties such as weight, length,
color, and so on. One approach to enriching the representational
structure of semantic nets is the attributed graph (Tsai and Fu,

510 FUZZY PATTERN RECOGNITION

1979), which enables you to include both numerical and symbolic
attributes of primitives at nodes in the semantic net. Thus, object
representation becomes a combination of structural, numerical and
symbolic attributes. An attributed graph is a graph in which both
the node set V and the edge set E can have attributes associated with
them. In general then, each node v € V can take attributes
(numerical or linguistic variables) from a set of node attributes, say
A(v) = {Ai Aj}. The i-th node attribute may take, say, J values

(numerical or linguistic) values, Sj = (ay: j = 1,..., Jj}. The set

L(V) = ((lj ,ay):i-l I ; j = l J,} , (4.153)

is the set of all possible node attribute-attribute value pairs. A
primitive is said to be valid if it is a subset of L(V) in which each
attribute appears just once, and we follow Chan and Cheung (1992)
in calling the set of all valid vertex primitives IT. The edge set E of G =
(V, E) is treated similarly. Edges e e E are associated with a set of I'
attributes, say E(e) = {Ê Ej,}. The i-th edge attribute may take j j

values, Ti = {Cy: j = 1 J ,}. The set

L(E) = {(Ej,ey):i = l, . . . ,l ' ;j = l,...,j;} , (4.154)

is the set of possible relational attribute-edge value pairs. A relation
is said to be valid if it is a subset of L(E) in which each attribute
appears jus t once. Suppose 0 is the set of all valid edge primitives.
With these attribute-values sets for the nodes and vertices of a graph
we are ready to define an attributed graph (Chan and Cheung, 1992).

G = ((V,o), (E,5)) is an attributed graph over (L(V), L(E)) o
(i) V is associated with a: V i-> n = vertex interpreter, and (4.155)
(ii) E is associated with 5: E h^ 0 = edge interpreter.

The vertex and edge interpreter functions map nodes and edges of the
graph G into attributed nodes and edges; (V, o) is called em attributed
vertex set; and (E, 6) is an attributed edge set. This enables us to
associate structural, numerical and symbolic information with
each element of the graph. We illustrate the idea of attributed graphs
using part of an example from Chan and Cheung (1992). These
au thors argue that attr ibuted graphs are more useful for
handwrit ten character recognition than the formal language
approach because the strokes that comprise a character must be
correctly ordered in a string grammar model, and they do not need
to be in an attributed graph. Their work is based on the set of stroke
primitives shown in the upper half of Figure 4.102, which they take
as the basic strokes needed to make Chinese characters: H (line), V
(line), P (curve) and N (curve).

CLASSIFIER DESIGN 511

H line V line P curve N curve
(- P45Iine) (= N135 line)

H h H +
Tee from Tee into HTee Cross Parallel

Figure 4.102 Primitive strolce types and joint tjrpes
for Chinese characters (Chan and Cheung, 1992)

Chan and Cheung assert that a natural way to represent each of the
four strokes in Figure 4.102 is by an ordered pair, viz., the vertex of
the stroke and the relationship between strokes, interpreted as edges
in an attributed graph. First idealizing the ill-defined P and N
curves in Figure 4.102 as P and N lines (see Figure 4.92) vidth angles
of 45° and 135° measured counterclockwise from the positive x axis,
Chan and Cheung set up the following attributed graph, which is
based on four linear stroke types (H, V, P45 and N135), two stroke
lengths (long and short), five joint types (Tee from. Tee into, HTee,
Cross, Parallel as shown in the lower half of Figure 4.102), three
vertical structural relationships (on top of, below, no vertical
relation) and three horizontal structural relations (left of, right of,
no horizontal relation). We summarize this construction in Table
4.61.

The bottom third of Table 4.61 shows a sample pair of valid vertex
and relational attribute-value pairs, each selected by applying the
uniqueness constraint required by the definitions of valid
primitive. Chan and Cheung argue that, while crisp attributed
graphs could be built and matched for handwritten character
recognition using this structure, the second coordinate of each 2-
tuple in LfV) and L(E) is really fuzzy in the application domain of
interest. For example, strokes are not always vertical, horizontal,
etc., and spatial relations such as above and below are often only
partially fulfilled (see Figure 5.50). Using this rationale, Chan and
Cheung introduce fuzziness into the attributed graph by adding
membership functions for the attribute-values in both the vertex
and edge domains of the definition in (4.155).

512 FUZZY PATTERN RECOGNITION

Table 4.61 Attributes for Chinese character recognition

^ 1 \ ^ 1 ^2 ^ 3

stroke stroke Joint vertical horiz.
type length type relation relation

a^^=V a^^= long e = Tee from e„ = above
21

egj= left of

a,,= H ^2= ^ ^ ° ^ e = Tee Into e = below
22

632= right of

^13= P^^ ej3=HTee e„„= none 633= none

a =N135
14

e, = Cross
14

e,^= Parallel
15

L(V) L(E)
(stroke type, V) (Joint type. Tee from)
(stroke type, H) (joint type. Tee into)
(stroke type, P45) Uoint type, HTee)
(stroke type, N135) Qoint type, cross)

(joint type, parallel)
(length, short) (vert, rel, above)

(vert, rel, below)
(vert, rel, none)
(horiz. rel, left)
(horiz rel, right)
(horiz. rel, none)

ne.g. 0e.g.
(stroke type, V) (joint type, cross)
(length, long) (vert, rel, above)

(horiz. rel, none)

Chan and Cheung define a fuzzy attributed graph as:

G = ((V, a), (E, 5)) is ajuzzy attributed graph over (L(V), L(E)) <=»
(i) V is associated with a: V h^ n = vertex interpreter, (4.156)

(ii) E is associated with 5: E f-> 0 = edge interpreter.

where n and 0 are the sets of valid primitives and relations on
edges, validity again meaning each attribute appearing jus t once,

and (V,CT), (E ,5) are (fuzzily) attributed vertex and edge sets,
respectively. The sets L(V) and L(E) still represent all of the
possible 2-tuples with first coordinate a vertex or edge attribute,
respectively; but the second coordinate becomes a set of values (one
for each attribute value) of a membership function on the attribute
in question. Thus, instead of attribute value a for the jth value of
vertex attribute 1, we now have m(a), where m is a membership
function on the i-th attribute, 1 = 1,...,I. Similarly, membership

CLASSIFIER DESIGN 513

functions {m^,... ,m .} are defined on the relational edge attributes.
The fuzzy attribute graph of an object as defined in (4.156) reduces to
a crisp attribute graph as in (4.155) when all the membership

functions {mj mj} and {m^ m .} are crisp.

The advantage of using the fuzzy graph model in (4.156) is that
attributes can have memberships in each of the attribute values to
which they apply. For example, using the ordering in Table 4.61, the
pair (stroke type, *) in L(V) can assume a form in L(V) such as (stroke
type, (mil (stroke) = 0.7, mi2(stroke) = 0.1. mi3(stroke) = 0.9,
mi4(stroke) = 0)), which indicates memberships of the stroke being
evaluated in each of the vertical, horizontal, P45 and N135
directions.

The fuzzy attributed graph adds an intuitively satisfying element to
its crisp counterpart for this application. But the use of membership

functions for the elements of the valid primitive and relation sets n
cind 0 complicates the use of similarity measures that assess the
extent to which graph representations of objects are similar. Chan
and Cheung (1992) introduce three measures for assessing the extent
to which a pair of fuzzy attributed graphs agree. The three

definitions require Gi and G2 to be Tnonomorphic. Two fuzzy

attributed graphs Gi and 63 are said to be monomorphic if they are
connected by a 1-1 mapping that preserves incidence relations
(determination of the mapping is known to be np-complete, Aho et

al., 1974). In equations (4.157), we assume that Gi and 62 are
monomorphic. Now we can state definitions for the three measures.

Feasibility : a measure of similarity between primitives Vi e Gi and

V2 6 62 in two fuzzy attributed graphs,

a(Vj,V2) = ̂ A| vjmJ(ay(Vj))Amf(ay(v2))U . (4.157a)

In (4.157) m| and mf are membership functions for the i-th vertex
attribute in the two fuzzy graphs.

Compatibility: a measure of similarity between edges Ci e Gi and

62 6 G2 in two fuzzy attributed graphs.

|3(ej.e2)= AJ v{mi'(ey(ej))Amf'(ey(e2))} . (4.157b)

514 FUZZY PATTERN RECOGNITION

where m} and m f are membership functions for the i-th relational
attribute in the two fuzzy graphs.

Degree of match: a measure of similarity between two fuzzy

attributed graphs Gj and 62 ,

Y(Gi.G2) = A
leV,

a(i,h(i)). ^̂ Â̂ [p(ej(i,j),(e2(h(i),h(J))|^^. {4.157c)

where h(i) is the vertex in G2 that matches vertex i in Gj, and e (i,J)

is the edge joining nodes i and j in G^̂ , k = 1,2.

Using the concept of graph matching embodied in (4.157c), Chan and

Cheung say that Gj and 62 are X-monomorphic when Ĝ and 62

are monomorphic and the degree of match Y(GI , 63) > X. Computing
(4.157c) requires a method for establishing matched pairs of vertices
and edges; Chan and Cheung use a tree search algorithm due to
Aklnnija et al. (1986) to establish the needed monomorphisms.

After proving some properties of fuzzy attributed graphs, Chan and
Cheung provide an example of their use in representing one Chinese
character in terms of a set of simpler primitives called radicals,
each of which is itself decomposed into the four stroke primitives
shown in the upper panel of Figure 4.102. A key point is that each of
the radicals is a crisp, human-derived template that is thought of a
one of the const i tuents of more complex templates, and
subsequently, characters. The crisp templates (radicals) illustrated
in the paper are

± contained in B and contained in (4.158)

For example, values for representation of the crisp attributed graph
for the template ± , shown as Table 111 in Chan and Cheung (1992),
are reproduced in our Table 4.62.

Table 4.62 Attribute values for the template ±.

2

length stroke type
S t r o k e long sho r t H line V l i n e P curve N curve

1
2
3*

0.00 0.00
0.00 0.00
0.00 0.00

1.00
0.00
1.00*

0.00
1.00
0.00

0.00
0.00
1.00*

0.00
0.00
0.00

CLASSIFIER DESIGN 515

The values marked by * in Table 4.62 are the ones shown in Table III
of Chan and Cheung (1992) for the third stroke. It makes more sense
to us to retain the value 1.00 in the H line column for stroke 3 as
shown, and a have a value of 0.00 for the P curve column, but our
rendering in Figure 4.102 is by hand and eye, and none of us know
enough about Chinese characters to make a call on this - it may be
that the combination of H line and P curve really produces the
required stroke. Either the P curve (not P line!) value is a
typographical error, or we don't appreciate fine differences in the
strokes well enough. Chan (1996) extracts the stroke sequence (H, V,
H) for this prototype using the four primitives (H, V, P45, N135) with
a learning method to be discussed shortly, so we suspect our
supposition is correct: stroke 3 should have the four memberships
(1, 0, 0, 0) for the strokes (H, V, P, N). It also seems strange to us that
all of the length memberships in Table 4.62 are 0.00; perhaps there
are some incorrect values here as well.

Chan and Cheung (1992) develop a table of fuzzy attribute values for
the character ^ by first thinning its image, segmenting it, and then
defining membership functions for each of the vertex and relational
attribute values needed to represent $; as a fuzzy attributed graph.
Then they match this character to the attributed graph of the radical
shown in Table 4.62. The two graphs are reproduced in Figure 4.103.

• 1

- 3

Figure 4.103 Graphs of the characters ^ and ±.

When ^ is matched against ± . , the radical is extracted twice, once
from a monomorphism between vertices {1,2,3} of ± and {6,2,4} of
$;; and vertices {1,2,3} of ± and {6,2,5} of i . Using equation
(4.157c), these two subgraph matches produce the following degrees
of match: 7 =0.97 for the vertex pairs {(1,6), (2,2), (3. 4)}; andY= 1-00
for the vertex pairs {(1,6), (2,2), (3, 5)}. Certainly the strokes {6, 2, 5}
in the character i in Figure 4.103 are a better match to {1,2,3} for

516 FUZZY PATTERN RECOGNITION

±. t h a n the s t rokes {6,2,4}, so the degree of ma tch agrees with a
v isual a s s e s s m e n t of the complex cha rac te r (don't place all your
evaluat ion faith on our reproduct ion in Figure 4 .103 , which w a s
done "by eye", no t by obta in ing the exact c h a r a c t e r s from the
au thors) .

Finally, C h a n a n d Cheung (1992) give some stat is t ics for a r u n of
their sys tem (which, incidentally, used a modified version of fuzzy
c -means d iscussed in Cheung and Chan (1986) for preclassification)
on 8 ,980 s a m p l e s of t h e 2 4 0 m o s t f requent ly u s e d Ch inese
characters . They do not specify the source of the data, nor how many
cr i sp , h u m a n - t r a i n e d t empla te s (represented a s cr isp a t t r i bu t e
g raphs) were used . Wi thout FCM preclassification, 8 ,086 of t he
labeled t e s t s amp le s were correctly labeled, 140 s amp le s were
incorrectly labeled, and the remainder were "rejects" = undecided, so
the t es t error ra te wi thout preclassification w a s abou t 9 .95% (we
coun t undecided as mistakes). With FCM preclassification, the error
ra te dropped to 9.2%. This system was not compared to any other
method, nor w a s the da ta set shared by other s tudies we know of, so
it 's pret ty h a r d to place the accuracy of these resul ts in the overall
context of handwri t ten charac ter recognition. On the other hand , it
is one of t he few examples we can offer of a complete, working
syntact ic app roach to pa t t e rn recognition t h a t incorporates fuzzy
models .

± d̂ >
X i - ^ G j X2 ^ G g X3 ^ 0 3 X4 ->G4

X S ^ G B Xg ->G6

^

X7 -4 G7 ^8 ~^ Gg

Figure 4 .104 Inferring ± = x <-G <-{Gi,. .,G8} from training data

CLASSIFIER DESIGN 517

In a sequel, Chan (1996) states that a deficiency of the work of Chan
and Cheung (1992) is that crisp template graphs such as the one
shown in Table 4.62 are derived by humans. Chan asserts that this
is tedious, time-consuming and error prone, and in the 1996 paper
he presents an interesting algorithm that learns crisp templates
from a set of training data. The training data are (crisply labeled)
fuzzy attributed graphs of handwritten characters. Figure 4.104
shows the set of 8 samples of the character ± that (roughly)
correspond to Figure 1 in Chan (1996). Which of these 8 characters
do you think best matches the character ±. ?

In Figure 4.104 the sample characters are all crisply labeled as ±

and are denoted by {x, x J . Fuzzy attribute graphs {G, Go} of
1 O

{x, X J are derived using fuzzy membership values in each of the
1 8

four strokes H, V, P45 and N135 shown in the upper half of Figure
4.102 for each of the three strokes sequenced and numbered as
(1,2,3} in Figure 4.103. The unknown character that is to be inferred
is X = ± , whose crisp attribute graph is denoted by G at the very top
of Figure 4.104. Chan (1996) exhibits tables of memberships of each
of the 8 training data strokes {1,2,3} in each of the four primitives H,
V, P45 and N135. For example, the memberships of the 8 training
data strokes for the first stroke (the upper of the two horizontal
strokes needed to make ± as shown in Figure 4.103) are listed in
Table 4.63.

Table 4.63 Memberships for {x,z). Stroke 1, in H, V, P45, N135

X H V P45 N135
1 0.85 0.00 0.22 0.00
2 0.83 0.00 0.19 0.00
3 0.37 0.00 0.00 0.49
4 0.91 0.00 0.13 0.00
5 0.84 0.00 0.21 0.00
6 0.98 0.00 0.39 0.00
7 1.00 0.00 0.03 0.00
8 0.94 0.00 0.31 0.00

Take a look at the 8 training data in Figure 4.104: do you agree with
the membership values shown in Table 4.63 for stroke 1 of these
eight characters? The horizontal component (column H in the table)
seems to agree with a visual assessment: sample x has the "most
horizontal" stroke, and its memberships reflect this; only character
X has a negative slope in stroke 1, and again, the memberships do
reflect this, assigning stroke 1 of x. a membership of 0.49 in the

fuzzy primitive N135 = negatively sloped line segment at 135°; and
so on.

518 FUZZY PATTERN RECOGNITION

C h a n (1996) develops a t ra ining algorithm t h a t guaran tees t h a t the
c r i sp a t t r i b u t e g r a p h G inferred from t h e t ra in ing d a t a is X-
monomorph ic . First, each pair of t ra ining g r a p h s are ma tched to
each o the r to es tab l i sh vertex cor respondence . Then each of the
strokes needed to make u p the character being inferred is expressed
a s a "polynomial" in var iables t h a t correspond to t he primitives
u sed to comprise the s troke (here, the four variables are H, V, P45
a n d N135). C h a n (1996) devotes several pages to definitions a n d
resu l t s concerning these polynomial forms. This theory, along with
t he informat ion shown in Table 4 .63 a n d two tab les like it for
s t rokes 2 a n d 3 (that a re in Chan 's paper which are not reproduced
here) a re used to create the poljniomials (in the four variables H, V, P
a n d N) shown in (4.159a). We let P=P45 a n d N=N135 to shor ten the
expressions in (4.159):

Pi (H. V, P, N) = 0.37H + 0.49HN + 0.37HP + 0.39HPN. (4.159a)

P2(H,V,P,N) = 0.3V + 0.39VP ; and (4.159b)

p3(H.V,P,N) = 0.31H + 0.61HN + 0.31HP + 0.61HPN. (4.159c)

C h a n t h e n t akes the t e rm from each of the polynomials in (4.159)
with t he m i n i m u m n u m b e r of s t rokes a s the correct s t roke for the
crisp charac te r being inferred. Thus , from the first t e rms in each of
the polynomials in (4.159) we have the three ordered s t rokes {1,2,3}
= {H, V, H}, so the method correctly infers from the t ra ining d a t a
t ha t ± = x <- G. Finally, Chan (1996) gives the following va lues for
the degree of m a t c h y in (4.157c) between G a n d each of the fuzzy

a t t r ibute g raphs (Gi Ggl of the charac ters shown in Figure 4.104

as Y(G, G J) = 0.85, 0.83, 0.37, 0.43, 0.31, 0.84, 0.81, 0.30 as J r uns from
1 to 8. Looking back a t Figure 4 .104 , t he se va lues a s se r t t h a t
character x a t 0.85 is the best match to ± , very closely followed by
X a n d then x ; a n d tha t charac ter x is the worst match , b u t only
very slightly worse t h a n x . Do you agree with this a s ses smen t of the
matches between i t and the training da ta?

C h a n (1996) s t a t e s t h a t t he overall complexity of h i s t r a in ing
a lgor i thm is "essentially" l inear or 0 (n) , n being the n u m b e r of
t ra in ing da ta . No example is given to i l lustrate the resu l t s of th i s
method on a set of test data . Nonetheless, these two papers provide
you wi th a nice example of a re lat ional app roach to s t r u c t u r a l
pa t t e rn recognition with fuzzy models.

The l a s t m e t h o d we d i s c u s s in t h i s subsec t i on , r epor t ed in
Sr in ivasan a n d Kinser (1998), also u s e s a relat ional app roach to
s t ruc tu ra l decomposition of objects in images (and again, images of

agghhh handwri t ten characters!). The s t ruc tura l information

CLASSIFIER DESIGN 519

that relates primitives to each other is not carried by a relational
graph. Instead, each primitive is associated with a membership
function that aggregates s t ructura l relationships to other
primitives, and then the structural information is integrated with
spatial location data (coordinates of other primitives) to produce
scores for various possibilities submitted to the system.

Srinivasan and Kinser assert that one key to mammalian image
recognition is the process of foveation, defined by them as the
ability to perceive and then rapidly change focal points (regions of
interest) in an input image. Foveation points are thought to be
comers, and to a lesser extent, line segments of objects in the image,
so these are chosen as the primitives for structural descriptions of
objects in images. This idea stands in sharp contrast to our previous
examples of sets of primitives, at least for character recognition,
which have taken various strokes (segments of arcs) as the building
blocks of structural decomposition. Figure 4.105 illustrates the five
primitives {ai,a2,a3,a4,a5} that Srinivasan and Kinser (1998)
nominate for the letter "A".

ODDLI^

A

h -\

/ \

Figure 4.105 Five primitives for the crisp, prototypical letter "A"

In Srinivasan and Kinser's model, each letter in an alphabet may
require a different set of primitives. Thus, the 26 upper case letters
used in the English language might require, say, 100 primitives for
prototypical representation. This notion of primitives is in some
sense less primitive (!) than previous schemes that rely on many
fewer primitives. In fairness to these authors, we point out that this
method has a much more general objective (automatic target
recognition) than the papers we have discussed that focus on the
specific application of handwrit ten character recognition.
Srinivasan and Kinser use character recognition as a nice way to
illustrate various points of their model, and do not claim that it will
compete well in this particular application domain.

520 FUZZY PATTERN RECOGNITION

How are the prototypes for various characters found? Much hke
Chan and Cheung (1992), an earlier effort discussed in Srinivasan et
al. (1996) depended on human derived crisp prototypes for each
letter. And in a manner very like Chan (1996), Srinivasan and
Kinser (1998) then turned to a trainable learning model that could be
used to derive primitives from training data. The learning model
discussed in Srinivasan and Kinser has several elements. First,
foveation points are detected by a pulse coupled neural network
(PCNN), which essentially functions like a combined edge and
corner detector. The PCNN (Johnson, 1994) is a biologically
motivated computational structure that attempts to model the
visual cortex of the cat. Srinivasan and ICinser assert that a by
product of the PCNN's inherent ability to segment images is that it
collects foveation points (edges and comers).

Once the foveation points are found, each foveation point from the
PCNN image is transformed into a new image by applying a "barrel"
transformation which is centered at the detected foveation point.
The purpose of the barrel transformation is to distort the image,
thereby placing more emphasis on intensities in a neighborhood of
the foveation point. The functional form of the barrel
transformation is given in polar coordinates. For example, the r
(radius) component of each point is transformed as r^^^ = foij/d*^"^,
where d is half of the frame width and the parameter b controls the
amount of distortion introduced at this location. Srinivasan and
Kinser show the five new images that result from applying this
barrel transformation to each point in {ai,a2,33,34,as) for the
letter "A" in Figure 4.105.

Once primitives are extracted, each prototype (such as the set of five
in Figure 4.105) is used to develop a set of fractional power filters
(Kumar, 1992) based on Fourier coefficients gotten from the image.
This set of filters provide one part of the classification strategy,
because they are used to compute the correlation between the trained
filter (of a particular primitive) and a detected primitive in an image
that is to be classified. For example, the set of primitives in Figure
4.105 would result in a set of five correlation filters which act as
peak detectors for each foveation point produced by the PCNN.

Structural information about the relationships of primitives to
each other is imbedded in a set of membership functions as follows.
For each foveation point in a primitive, a "fuzzy fan" is constructed
that looks for each of the other primitives that are expected for the
template being used. The fuzzy fan acts jus t like an angle - limited
sweep searchlight whose intensity falls off as the angle from the
center of the search increases on either side of the expected location
of the target (which here is another primitive in this particular
template). Figure 4.106 (Figure 8 of Srinivasan and Kinser, 1998)

CLASSIFIER DESIGN 521

shows the four fuzzy fans (not to be confused with the FANs = fuzzy
aggregation networks in Section 4.7) that are centered at the
primitive a that search for the other four primitives in the letter

"A" that are shown in Figure 4.106.

Figure 4.106 Fuzzy £EUIS from a to: a , a , a and a

In each of the four views in Figure 4.106 Imagine yourself positioned
at the center of primitive a . Suppose that you sight directly towards
the known center of the prototypical primitive a as shown in the
upper left panel of Figure 4.106. Since a is directly in your line of
sight, the membership of this sighted crisp primitive will be 1 in the
fuzzy set of locations near the expected (angular) location for a . On
the other hand, if instead of a , the foveation point that you see is

either left or right of the center of search by an angle 0̂ or 0j., the

522 FUZZY PATTERN RECOGNITION

membership of the sighted point will decrease as the angle from
center increases. Srinivasan and Kinser (1998) specify limits on
each set of sweep angles. For a searchlight centered at a , the four
sets of limit angles depicted in Figure 4.106 starting at the upper left
panel and working clockwise, i.e., a , a , a and then a , are:

e, ={30M0°,25°,30°}, er={15M5°,20M5°}. The membership

function m^g ̂ a^ • l^- ̂ ^° 1 '"̂ l^' 1̂ decreases linearly with 6 from 1 at
0 = 0 to 0 at the left and right limits of each search pattern. Thus,
the structural relationship (here angular information) between a
and the four other foveation points that can be related to just this
primitive for the letter "A" is captured by the values of the four
membership functions m^^-^ak . k = 1, 3, 4, 5.

For the letter "A" each of the 5 primitives shown in Figure 4.105 will
produce 4 membership values, so application of the structural
template for this letter to any test input results in a set of 20
membership values. In operation then, each character will have a
crisp template which consists of: a set of primitives such as the ones
in Figure 4.105; a set of correlation filters, one for each primitive;
and a set of (angle measuring) membership functions, one for each
primitive. When an input image is submitted to the recognition
system the PCNN detects all foveation points in it. Each foveation
point is expanded into a set of images for each possible template.
Next, a given point is compared to all templates by computing its
"fuzzy score". Srinivasan and Kinser (1998) use any one of four
scoring indices. Finally, the input character with the highest fuzzy
score is declared the winner, and the input character receives this
crisp label.

Srinivasan and Kinser (1998) give some very limited results based
on training and testing with a few dozen samples of the letters "A"
and "M". Error rates are not discussed at length, so the general
utility of this model as a character recognition system is very hard
to assess (and, as we have already mentioned, these authors really
have other fish to fry an5rway). However, this is a nice example of
how fuzziness can be used to incorporate structural information
into classifier design that is not dependent on either the formal
language or relational graph approach, so we think it has a lot of
pedagogical value in the context of this section.

CLASSIFIER DESIGN 523

4.11 Comments and bibliography

Feature analysis

We first stated and illustrated the importance of feature analysis in
Section 2.5, and have iterated this point many times over in this
chapter, and will do so again in Chapter 5. Using many features
increases the time and space complexity of classifier design. More
surprisingly, increasing the number of independent features used
during supervised learning beyond some (theoretically unknown)
optimal number can actually degrade classifier performance!
Hughes (1968) demonstrated that when the number n of samples
available for design is fixed, increasing the number of features p
beyond a certain size is counterproductive - that is, the apparent
error rate of D will increase as p increases. Another point worth
repeating is that the quality of a set of features depends importantly
on the algorithm that uses them. Thus, features liiat endow a k-nn
classifier with a low error rate might not be useful for training good
1-np designs.

In some cases, mapping the original features into a new set can
actually improve performance in classification problems. This is
effectively what is done by multilayered neural networks, where we
can regard in outputs of any hidden layer as new features derived
from the input values to the layer in question (Haykin, 1994).
Chiang and Gader (1997), and Gader et al. (1997b) demonstrate this
quite effectively in the omnipresent handwritten word recognition
domain. The problem is the same as that discussed in Example
4.12, where dynamic programming is used to combine groups of
primitives (pieces of characters resulting from an oversegmentation
of a word) to generate the match confidence between that actual
image and a string from a lexicon. The key to improved
performance is in generating "good" upper and lower case character
confidences for the various unions of primitives. The baseline
system used was a pair of MLP's (one for upper case and one for lower
case) which had standard input feature sets and 27 output nodes: one
for each character and one node for "non-character". It is this last
situation that is problematic: how do you characterize "non-
characters"?

The approach taken in (Chiang and Gader 1997, and Gader et al.
1997b) was to train a 15 x 15 Self-Organizing Feature Map (SOFM) on
the original feature data only for valid characters. After training,
the activation levels of the 225 SOFM nodes for a given input were
used as features to train a MLP. In a test (using standard US Postal
Service data sets), the baseline MLP's did considerably better than
those trained with SOFM activations at doing isolated character
recognition (77.5% vs. 73.9% correct in testing). However, the goal
is not isolated character recognition, bu t handwritten word
recognition. Hence, this is again a situation that calls for the

524 FUZZY PATTERN RECOGNITION

principle of least commitment. In fact, valid characters produced
well-defined activation regions, while non-characters generally had
uniformly low activation values across the SOFM. Putting both
neural network confidence generation devices into the dynamic
programming module demonstrated the advantage of the feature
mapping. Using the SUNY "BD" city data set (317 words), the
transformed feature networks produced a 10% increase in word
recognition over the baseline on lexicons of average size 100 (89.6%
vs. 79.8% correct in testing). The paper in IEEE Computer (Gader et
al., 1997b) contains a very hip picture - reproduced here as Figure
4.107 - which demonstrates the topological properties of the SOFM
in a digit recognition problem - the node prototypes(weight vectors)
for a lOx 10 SOFM trained on the raw digit images are displayed as
images. Note how the "prototype images" blend into each other in the
topological display space.

il
I
I
ii

*

Figure 4.107 A SOFM represents fiizziness of the character classes

CLASSIFIER DESIGN 525

Any and all numerical features that can be extracted from objects
can be used as a basis for fuzzy clustering and classifier design.
However, not much work has been done on extracting fuzzy
numerical features or features from fuzzy subsets of objects. We will
discuss some of the topics mentioned in this paragraph in more
detail in Chapter 5, but we include a few sentences on them here
because you might expect to find this discussion at the end of
Chapter 4. For two dimensional fuzzy subsets Rosenfeld (1979, 1984,
1992) and Rosenfeld and Haber (1985) extended many concepts from
crisp geometry to fuzzy geometry, and generalized many terms that
are traditionally used in the analysis of spatial properties of objects
in binary images to the fuzzy case.

Some of the spatial properties that were defined by Rosenfeld that
will be discussed in Chapter 5 include fuzzy area, fuzzy perimeter,
fuzzy height, fuzzy extrinsic diameter, fuzzy intrinsic diameter, and
fuzzy elongatedness. Pal and Rosenfeld (1988), Pal and Ghosh (1990)
and Pal (1992b) have defined similar geometric attributes such as
index of area coverage, degree of adjacency, length and breadth, and
have developed low- and intermediate-level vision algorithms based
on such attributes. Dubois and Jaulent (1987) showed that some of
Rosenfeld's definitions of the geometric properties of fuzzy regions
namely area, height and perimeter correspond to expected values in
evidence theory. Krishnapuram et al. (1993a), Krishnapuram and
Medasani (1995), and Medasani et al. (1999) consider the
computation of fuzzy features from real images.

Apart from the fact that the definitions for properties of fuzzy
regions reduce to the corresponding crisp definitions when the
images are binary, no other theoretical justification has been
provided in the literature for the use of fuzzy set theory to measure
geometric and non-geometric properties of image regions (Medasani
et al., 1999). In addition to our discussion on spatial relations in
Section 4.10.B, several other authors have developed methods of
defining fuzzy spatial relationships among regions in the plane
(Keller and Sztandera, 1991, Keller and Wang, 1996, Krishnapuram
et al., 1993a, Miyajima and Ralescu, 1994, Wang and Keller, 1999a).
In Chapter 5 fuzzy spatial relations will be defined and used in
image processing applications.

Gitman and Levine (1970) augment the measured features with the
"importance" of each feature, and cluster with this added
information as part of the data. Bezdek and Castelaz (1977) report
that a fuzzy 1-np classifier (the prototypes being the cluster centers
generated by FCM) increases by about 10% the apparent probability
of correct classification above (an estimate of) the asymptotic error
rate of all k-nn classifiers for a set of n=300 stomach disease patients
each represented by 11 binary-valued features. (Bear in mind that the
apparent error rate is a finite sample based statistic - the asymptotic
optimality of k-nn rules via Cover and Hart's famous theorem (1967)

526 FUZZY PATTERN RECOGNITION

is well known.) Dl Gesu and Maccarone (1986) used cluster analysis
together with possibility theory for selecting the most significant
variables from electron spin resonance spectroscopy measurements
on patients with a brain injury. Bezdek and Chiou (1988) use FCM
clustering of labeled data followed by feature extraction with
principal components, Sammon's algorithm or triangulation to
produce visual displays of high dimensional data. Petersen et. al
(1997) study the use of fuzzy decision trees (Cios and Sztandera, 1992)
to select subsets of features from biosignals collected to assess the
depth of anesthesia of medical patients.

Pal and Chakraborty (1986) use fuzziness measures such as the
index of fuzziness and entropy to compute interset and intraset
ambiguities for feature evaluation. Pal (1992a) extended this idea to
evaluate the importance of any subset of features, to provide an
average quantitative index of goodness and a comparison of the
algorithm with statistical measures like divergence, J-M distance,
and Mahalanobis distance. The application of Pal's algorithm has
also been demonstrated on six class, three feature vowel data, four
class five feature consonant data, and three class fifteen feature
mango leaf data. One drawback of this approach is that it can be
used only to assess features for a pair of classes (c=2).

When c > 2, it may happen that feature f is good for discriminating
between class i and j , while feature f may be a better discriminator
between classes k and q. Further, some other feature f may be, on
average, a better discriminator for the classes i, j , k, and q taken
together. Thus, Pal and Chakraborty's feature evaluation index is
not particularly useful for assessing the goodness of a feature with
respect to all c classes taken Jointly. To get around this problem Pal
(1992b) extended his earlier work by defining the average/eature
evaluatton index (AFEl) as the weighted sum of the FEl's for all pair-
wise classes, where the weights are sample-based estimates of the
prior probabilities of the classes used to compute the FEI. Thus, the
AFEI depends on the cardinalities of the different classes - an
undesirable dependency. De et al. (1997) further modified the AFEl
by defining an overall feature evaluation index, which is not
directly influenced by the size of the classes, and which considers all
possible pairs of classes. They compare these fuzzy indices to several
non-fuzzy methods for feature selection based on multilayer
perceptron neural networks.

Recently Thawonmas and Abe (1997) proposed a feature selection
method based on class regions generated by the fuzzy classifier
discussed in Abe and Lan (1995). Their (Thawonmas and Abe, 1997)
feature selection algorithm eliminates irrelevant features based on
an index they call the exception ratio, which is computed using the
degree of overlap between class regions. The exception ratio is
defined so that given two feature subsets of the same cardinality, the

CLASSIFIER DESIGN 527

feature set with the lowest sum of exception ratios is expected to
contain the most relevant features. Based on this idea their
algorithm uses a backward selection search (Fukunaga, 1991) which
starts with all the given features and eliminates irrelevant features
one by one. Thawonmas and Abe evaluate the quality of the selected
features using the fuzzy classifier described in Abe and Lan (1995)
and a FFBP neural network. The reported performance is quite
satisfactory.

Among the many non-fuzzy techniques that have been employed for
feature selection, methods based on the k-nearest neighbor rules
have been particularly effective. See Devijver and Kittler (1982) or
Dasarathy (1990) for good introductions to this vast (non-fuzzy)
literature. A simple but effective method to reduce the number of
subsets considered is called forward sequential search. In this
method all subse ts of 1 feature are used. In a s tandard
training/testing paradigm such as "leave-one-out" or n-fold cross
validation (jackknifing) as discussed in Section 4.1, these subsets
are scored for overall recognition. Leave-one-out requires that the
classifier is trained on all but one sample, that sample is applied as
a test, the result is noted, and the process is repeated until all
training samples have been left out for testing. The recognition rates
are compiled from the tests. This technique is resource consuming,
but is good, particularly if the size of the training set is limited. The
idea is that most (all but one vector) of the data is used to build the
classifier, so it should behave like the final version using all the
data. But each time, an unused data point is shown to the algorithm
for testing. N-fold cross validation is just a less exhaustive version
of leave-one-out. Here, all but one nth of the data is used to train the
system, the left out portion is scored, and the process is repeated n
times.

After the best single feature is chosen, subsets of two features are
considered. However, instead of looking at all such sets, only the
sets which contain the single best feature are used. Scoring rates for
the two feature subsets should increase over those for one feature.
This process is repeated always adding one feature to the winner of
the previous step. Clearly, it is possible that the best two features do
not contain the best one feature, but this approach is a reasonable
compromise to having to try all subsets. What should happen is that
after a while, the increase in scoring rate upon adding features will
level-off. That's when you can stop the process.

Genetic algorithms have also been used for feature selection and
extraction (Kuncheva and Bezdek, 1998, Pal et al., 1998). See
Velthuizen et al. (1996) for a study of the effectiveness of using GAs for
feature selection when various fitness functions (including FCM
functional J) are used to evaluate linear combinations of the

m
original features.

528 FUZZY PATTERN RECOGNITION

Prototypes and prototype classifiers

Multiple prototype classifier design is not heavily represented in the
literature. Chang (1974) discussed one of the earliest (non-fuzzy)
methods for generating multiple prototypes from labeled data, and
illustrated it by finding 14 prototypes in the Iris data that were
consistent (zero resubstitution errors). A modified version of Chang's
algorithm given in Bezdek et al. (1998a) achieves consistency for Iris
with 11 prototypes. Dasarathy (1994a) discusses a technique for
finding what he calls a minimal consistent subset of the training
data (recall that a set of labeled prototypes is consistent if they
produce zero resubstitution errors). This technique selects points
from the labeled data (cf. Figure 4.1) as opposed to extracting points
from it (cf. Figure 4.2), and finds 15 vectors in the Iris data that
provide a consistent 1-nearest neighbor (Section 4.4) design for Iris.
Kuncheva and Bezdek (1998) show that Dasarathy's method is not
minimal by finding 11 consistent points in Iris using a genetic
algorithm technique. Yen and Chang (1994) develop a nearest
multiple prototype classifier by modifying FCM, resulting in a
method they call MFCM. The best results they report for Iris are 8
errors using 7 relabeled MFCM prototypes. Yan (1993) uses a two
layer feed forward neural network to construct prototypes from the
training data.

We offer a conjecture about the efficacy of using sequential versus
batch models to generate multiple prototypes for the 1-nmp
classifier. Sequential updating of the prototypes in CL models such
as LVQ, SOFM, GLVQ-F, FOSART and SCS encourages "localized"
prototypes which are able, when there is more than one per class, to
position themselves better with respect to subclusters that may be
present within the same class. This leads us to conjecture that
batch algorithms are at their best when used to erect 1-np designs;
and that sequential models are more effective for 1-nmp classifiers.
When c is small relative to n (e.g., c = 5 regions in an image with n =
65,536 pixel vectors), batch models (Chapter 2) probably produce
more effective protot3rpes, because they take a global look at the data
before deciding what to do; but if c = 256 (e.g., when using a VQ
algorithm for image compression), sequential updating may hold an
advantage, as it localizes the update neighborhood, and that
objective is more in line with sequential models. Karayiannis (1997c)
discusses a general methodology for constructing fuzzy LVQ-type
competitive learning algorithms.

Another factor that must be weighed here is the number of
parameters, say np, that an algorithm is asked to learn. The integers
c (number of classes) and p (number of features), along with n
(number of samples) determine np in almost all of these models.

CLASSIFIER DESIGN 529

Usually p and n are fixed, so n increases with c (not necessarily
linearly). There is very little theory that relates to the adequacy of
the four parameters c, p, n and n as functions of each other, and
whatever you believe about this, your decision about what prototype
generator to use should also reflect the difference between the type of
optimization done by sequential (local) and batch (global) methods.

We pointed out in section 4.4 that one way to regard the k-nn rule is
as an extreme form of the multiple prototype classifier (or vice
versa), where every point in the training data is regarded as a
prototype for its class. In this case the 1-nn and 1-np rules coincide.
We have not devoted much space to algorithms that select a subset

X c Xtj- of "high quality" points from the training data X (as
illustrated in Figure 4.1), because there have not been many fuzzy
models developed towards this end. This is an important and viable
option for both crisp and soft classifier design, and we want to
devote a paragraph or two to this topic for system designers, who,
after all, just want the best possible classifier.

Kuncheva and Bezdek (1999) develop a setting for generalized
nearest prototype classifier design that provides a common
framework for a number of prototype generators discussed in
Chapter 4. These authors discuss prototype classifiers based on
clustering and relabeling (Section 4.23.B); radial basis function
networks (Section 4.8.C); learning vector quantization (Section
4.3.D); nearest neighbor rules (Section 4.4); and Parzen windows
(Duda and Hart, 1973). Five questions are discussed by Kuncheva
and Bezdek: (i) how many prototypes to look for? (ii) how to look for
the prototypes? (iii) how to label the prototypes? (iv) how to define
similarity between the training data and prototypes? and (v) how to
combine the label information with the similarities?

Numerical examples based on the (real) Iris data and the 2-spirals
data lead Kuncheva and Bezdek (1999) to conclude that methods
which don't use the labels during the extraction or selection of the
prototypes (such as clustering and relabeling) cannot generally be
expected to compete with supervised learning methods that use the
labels actively during acquisition of the prototypes. Their best
result for the Iris data is 2 resubstitution errors using c = 3 selected
prototypes (points in Iris) found by an edited 1-nn rule. Compare
this with the results in Table 4.10, where LVQ needs c = 7 extracted
prototypes (points built from Iris) to achieve 3 resubstitution errors
on Iris. Of course, we have seen in Example 4.21 that a standard
multilayered perceptron can achieve 0 resubstitution errors on Iris
without using prototypes. This may leave you wondering - why
bother with prototype classifiers at all? Well, it's certainly a point
worth thinking about. Perhaps the best answer we can make is to
reiterate that they are simple, cool, and effective in many problems,
and beyond this, they are pleasingly intuitive. Why? We remind you

530 FUZZY PATTERN RECOGNITION

of our quote by Pavlidis (1977, p. 1): "the word pattern is derived
from the same root as the word patron and, in its original use,
mccins something which is set up as a perfect example to be imitated.
Thus pattern recognition means the identification of the ideal
which a given object was made after.".

k-nn rules

Apparently Jozwik (1983) wrote the first paper on the fuzzy k-nn
rules. Keller et al. 's (1985) version of fuzzy k-nn rules was discussed
at length in Section 4.4. Bezdek et al. (1986c) gave a somewhat
different presentation of fuzzy k-nn rules, and made a comparison
between their approach and that of Jozwik. Kuncheva and Bezdek
(1999) discuss a very general framework for generalized nearest
prototype classifiers that includes soft k-nn rules as one instance of
their model.

There are many other interesting variations of the k-nn rule. For
example, Dudani (1976) weighted the i-th nearest neighbor x.̂ , of the

point z to be classified as follows. Let {8,̂ , = 5(x.j., z): i = 1 k) be the
ascendingly ordered set of nn distances to z, and define

^ (1) = ^ °(k) "(1)
1 :S(k)=S,i)

,i = l,...,k

Then vector z is assigned to the class for which the sum of the
weights is the maximum among the k-nearest neighbors.

Denoeux (1995) recently proposed a classification scheme which
integrates the evidence aggregation characteristic of Dempster-
Shafer theory and the voting feature of k-nn rules. Let
X„ J ={x.j •i = l k}be the k-nearest neighbors of z, and suppose

that x,j. comes from class q. The point x.̂ . increases our belief that z
could be a member of class q but it does not provide evidence that
ensures 100% confidence in this belief. This evidence can be
represented by a basic probability assignment (bpa). Let C = (1, ..., c}
be the index set on the c classes, P(C) be the power set of C, and put:
mj({q}) = a,; and m^(C) = 1 - a^ , where mj(A) = OVAe{P(C)-{C.(q}}}
and 0 < ttj < 1. A bpa like this can be written for each x.j, e X,j^., and

the k bpa's can then be combined using Dempster's rule to get a
composite bpa. If the composite bpa provides the maximum support
for class q, tiien z is assigned to class q. The success of this scheme
depends on the choice of the {a^}. Denoeux suggested using

CLASSIFIER DESIGN 531

aj=aQe ^i*'"""!'̂ ' , p 6{1,2 , . . .} .Y, >OVi,andO<aQ <1 . According to

Denoeux (1995), a good choice for a^ is a^ =0 .95 , and he asserts
that this algorithm often performs better than the standard crisp li
nn classifier.

There is another family of nn classification algorithms for
univariate data that uses ranks instead of distances. The rank
nearest neighbor (rnn) classifier was first proposed by Anderson
(1966) for c = 2 classes. Instead of using the distance to z from the
training samples the ranks of the training samples are used.
Anderson's work was further investigated by Das Gupta and Lin
(1980) and later extended by Bagui (1993) to more than two classes.
Bagui's algorithm sorts (ranks) the training data along with z and
classifies z as follows : (1) if both the immediate left hand (LH) and
right hand (RH) neighbors belong to the same class, then classify z to
that class; (2) if z is either the smallest or the largest element then
classify z to the class of its immediate mn; (3) if the immediate LH
and RH mn's belong to two different classes then classify z to either
class arbitrarily. This algorithm is known as the 1-stage univariate
rank nearest neighbor (1-Urnn) rule. The 1-Urnn rule can be
generalized in two ways (Bagui and Pal, 1995) : (1) like the k-nn rule,
the 1-Urnn is extended to consider m rnns on either side of z
resulting in the m-stage univariate rank nearest neighbor (m-Urnn)
rule; (2) extension of the m-Umn rule to multivariate data, i.e., the
m-stage multivariate rank nearest neighbor (m-Mmn) rule.

The m-Umn rule, like the 1-Umn rule, has three steps. The first two
steps of 1-Umn remain the same for m-Urnn. Step (3) is changed to :
(3') If the immediate LH and RH mn's belong to two different classes
check the second LH and RH mn's. If they belong to the same class
assign z to that class; else check the 3rd LH and RH mn's and so on.
The process is continued until we get both qth LH and RH mn's , q <
m are from the same class; otherwise z is arbitrarily assigned to
either class of the mth LH or RH mn.

Although the m-Umn scheme has interesting theoretical properties,
classification rules for univariate data are not very useful for
practical applications as we hardly ever encounter real problems for
univariate data. To overcome this limitation Bagui and Pal (1995)
generalized the m-Umn rule to multivariate data. The m-Mmn rule
applies the m-Umn rule to each of the p features. For every feature j ,
m-Umn can produce two types of outcomes which can be represented

as either (1) u „ = j Q ! J I O r (here the m-Umn rule for the jth feature

[0.5 ;i = s l
unambiguously suggests class s); or (2) u =] 0.5 ; i = r I (here the

[O.O ;i ;^s,r j
m-Umn rule at the mth stage for the jth feature suggests either of

532 FUZZY PATTERN RECOGNITION

p
classes s or r). Tlien compute Uj = X u . If u = max{u.} is unique,

then z is assigned to class q; otherwise, z is arbitrarily assigned to
any class among the set of labels that attains the maximum value.

Fuzzy integrals

We have often used the term "the fuzzy integral". This is a bit
misleading because "the fuzzy integral" is a general term that
identifies a wide family of functionals which comprise two basic
subgroups - the Sugeno and Choquet integrals. There are many
variations of fuzzy integrals in each of these subgroups. Keller et al.
(1994a) summarize a few of the many variants that have been used
in pattern recognition. A new book on fuzzy integrals contains
extended discussions about many tools based on this technology
that are germane to our field (Grabisch et al., 1999).

Rule-based classifiers

Safavian and Landgrebe (1991) provide a nice survey of many topics
connected with decision trees (with the curious and notable
exception that they completely ignore the Important interacttue IDS
and C4.5 methodologies of Quinlan (1983, 1986, 1993)), and we have
borrowed heavily from their paper for some of the descriptive
material in Section 4.6. Jang (1994) and Jang et al. (1997) give a nice
account of the use of CART in connection with s tructural
identification in fuzzy systems. We have not been able to find any
work on the fuzzification of CART itself, or the use of CART in fuzzy
classifier tree design. Some of the fuzzy decision trees discussed in
Section 4.6 can be regarded as fuzzifications of C4.5 trees, even
though the authors refer to IDS as the tree building principle used,
because C4.5 adds the idea of outpoints for continuous variables to
the basic structure of IDS.

The work of Tani and Sakoda (1992) is often mistakenly cited as
having a "fuzzy IDS" method in it, but these authors apply crisp IDS
as we have given it in Section 4.6.C to the system identification
problem for a TS system. In this respect Tani and Sakoda is very
similar to Jang (1994), which is often quoted as describing a "fuzzy
CART" method, but which uses crisp CART to initialize some of the
parameters of TS systems.

Lee (1992) gives a straightforward application of Wang and Suen's
(1987) fuzzy decision tree classifier to Chinese character recognition
data. Lee's example uses 64 apparently different (from Wang and
Suen's) features extracted from each character, including mesh
counts, crossing counts, contour line lengths, peripheral areas,
connective pixels and Fourier descriptors. Lee also provides a
comparison of error rates using the 1-nn rule, Chang and Pavlidis's
fuzzy decision tree with branch-and-bound-backtracking search.

CLASSIFIER DESIGN 533

and Wang and Suen's fuzzy decision tree method with pruning and
probabihstic similarity matching. In his study the two fuzzy
decision trees had recognition rates that were roughly twice as good
as the 1-nn rule, with the Wang-Suen design being slightly better
than the Chang-Pavlidis classifier.

Yuan and Shaw (1995) discuss a modification of ID3 for categorical
data that uses the fuzzy entropy of Deluca and Termini (1972) to
measure the vagueness of each linguistic term in a set of given
memberships associated with each attribute value in categorical
data. They assess the ambiguity of each attribute by averaging a
measure built from normalized possibility distr ibutions of
memberships for each object due to Hagashi and Klir (1983). This
can be done for each attribute value, and for the given possibilistic
label vectors attached to the training data. Tree induction follows
the standard ID3 design, except that the impurity function for node
splitt ing is based on classification ambiguity instead of
probabilistic entropy.

Yuan and Shaw give one example of their technique using a set of n =
16 examples with 4 linguistic variables that collectively possess 8
linguistic values. Their data supposedly have c = 3 crisp target
classes, but each training datum is labeled by a possibilistic
Uj e N ^. The data also come mysteriously equipped with a complete
set of fuzzy label vectors attached to each of the four attributes for
each of the 16 cases. Yang and Shaw apply their method to this data
to find a fuzzy decision tree with three levels and 6 pure leaves with
crisp labels. They allude to computing path firing strengths for test
inputs, but are not specific, sajdng only that the consequent of rule i
is set equal to its premise membership. Running the tree on the
training data produces 3 errors in 16 tries - the resubstitution error
is nearly 19% on 16 inputs. It's hard to imagine that this version of
fuzzy decision tree classification will be useful for real data.

Weber (1992) reports on a version of fuzzy IDS that can be used with
numerical or categorical feature data. Tree induction again follows
the standard ID3 design, except that Weber's impurity function for
node splitting is based on Deluca and Termini's (1972) fuzzy entropy.
Weber conditions the training data by fuzzifying it with
probabilities of fuzzy events. In a very similar spirit, Cios and
Sztandera (1992) investigate the use of four measures of fuzziness as
impurity functions to accelerate the tree building process in their
version of IDS for ordinal data. They report that the best one of the
four tried was Kosko's (1992) fuzzy entropy combined with Dombi's
generalized fuzzy set operations (see Klir and Yuan, 1995 for a nice
discussion of various intersection and union operators, including
those of Dombi).

Hall (1996) describes the use of the crisp C4.5 decision tree classifier
(Quinlan, 1993) for detecting microcalcifications in mammograms.

534 FUZZY PATTERN RECOGNITION

His work used 40 images from the Nijmegen data base (see Bezdek
and Sutton, 1998). The images were paired views of breasts of 21
patients, each of whom had microcalcifications in at least one
breast. Each image was 2048x2048 in size with 12 bit intensity
values. One or more clusters of microcalcifications in each of the 40
images were marked (circled) by two radiologists (type GTl ground
truth) . Thus , each circled area ("cluster") contains pixels
corresponding to both microcalcified and normal tissue. He alludes
to generalizing this to a fuzzy decision tree, but we are unaware of a
follow-up study.

Bensaid et al. (1998) present a straightforward application of Chi
and Yan's (1996) fuz2y IDS method that we discussed in Section 4.9 to
the classification of electrocardiogram data. The one new wrinkle
added to Chi and Yan's method by these authors is that they use a
feed forward cascade correlation neural network (Fahlman and
Lebiere, 1990) instead of a multilayered perceptron to perform the
"optimized defuzzification" as done by Chi and Yan. Bensaid et al.
report that with 53 training data, 53 test data, and 48 validation
data, they achieved zero error rates on both the test and validation
data sets. They also state that with the same data, a feed forward
cascade correlation network commits 7.5% errors on the test set,
and 14.6% errors on the validation set. Finally, they state that crisp
rules from a decision tree built with ID3 commit 27% errors on the
validation data. Bensaid et al. opine that pruning the crisp IDS
decision tree before fuzzification of its rules would likely lead to a
smaller tree.

Another decision tree based classifier for real data (crisply labeled,
with c classes) is called real IDS (RIDS) by its creators (Pal et al. 1997,
Pal and Chakraborty, 1997). RIDS is a p-level decision tree, where p
is the number of features, that uses a ranking of the features.
Features are used in the order of their importance. Every internal
node has exactly c children. A node in level k is associated with a
threshold value and a prototype with the top-ranked k feature
values of the prototypes. Of the k components, the first k-1
components are inherited from the parent node. The prototypes are
computed as the centroids of the respective classes. Each leaf node
represents a crisp class uniquely - that is, RIDS builds pure decision
trees.

An unlabeled data point z starts at the root of the tree, and at each
level RIDS tests the similarity of z to some prototype. This is done by
computing membership values using the fuzzy c-means formula in
(2.7a), and then assigning the input datum to the clan of the node
with the highest membership value, provided the highest
membership value is greater than the associated node threshold.
Otherwise, input z traverses but one path in the tree, ending up at a
pure, crisply labeled leaf with a high level of agreement. RIDS has an
"adaptive" feature in that during the initial tree creation process, all

CLASSIFIER DESIGN 535

thresholds are set to 0.5, and they are further refined using a genetic
algorithm.

When X e 9tP has continuously valued real features, learning the
rules of a crisp BDT amounts to finding the constants along each
coordinate axes that define hyperplanes that give tree T its crisp rule
patches. For example, the hyperplanes in Figure 4.24 have 8
parameters that we could write as a parameter vector w =
(a,b,c,d,e,f,g,h)^. When T is interpreted as a network, w is a network
weight vector as in Section 4.9. These are the parameters we need to
acquire by training with the lO data. The goal is to find a w so that
the resultant tree classifier is consistent, E_, (X. IX.) = 0.

°DT,w t t

Cast in these terms, it is not surprising to learn that many authors
have given methods for transforming decision trees into various
types of neural network classifiers (Cios and Liu, 1992, Sankar and
Mammone, 1993, Sethi, 1990, 1995). Sethi (1995) gives a nice
introduction to the conversion of soft decision trees into various
neural networks. Sethi regards a decision tree that has internal
node functions which compute probabilities for the outcome of a
test, and inferencing based on Bayes rule at each leaf, as a soft
decision tree, and so his results are directly applicable to many
types of fuzzy decision trees. In particular, the fuzzy decision tree of
Chang and Pavlidis (1997) is a special case of the mathematical
structure used by Sethi, so the tree at Figure 4.32 and many of its
descendants can be implemented as neural network classifiers.

Sethi argues that the search problem attacked by Chang and
Pavlidis and others- vi, that all paths in a soft decision tree must be
traversed to their leaves before an input can be labeled - is handily
solved by mapping the soft decision tree onto a feed forward neural
network. At the very least this seems computationally attractive,
since (at least conceptually) all M paths from the root to the leaves
can be traversed in parallel in the NN implementation. After this
conceptual hurdle is cleared, an additional advantage of this scheme
is that the node decision functions [<^^} at internal vertices in the
tree representation become node functions {^^} in the hidden layer
neurons of the neural network. This paves the way for any of the
node functions discussed in Section 4.7.C or elsewhere to become
candidates for decision functions in soft decision trees. For
example, the hyperplane/sigmoidal combination that is so heavily
favored at computing nodes in FFBP networks and many of the
methods for training NNs that you know and love become ways to
implicitly construct soft decision trees. We say implicitly, because
soft decision trees can be converted to multilayered neural
networks, but to our knowledge there is no general procedure for the
converse operation of finding a soft decision tree that corresponds
to a given multilayered network.

536 FUZZY PATTERN RECOGNITION

Given the equivalence of some types of soft decision trees and
certain neural networks, it should come as no surprise that many
authors have compared these two styles of classifier design (Weiss
and Kapouleas, 1989, Atlas et al., 1990, Shavlik et al., 1991, Chi and
Jabri , 1991, Sethi, 1995). For example. Atlas et al. compare
classification and regression trees built with CART to multilayered
perceptrons. Their opinion is that theoretical evidence to favor trees
or NNS is inconclusive, but their computational experiments
indicate that multilayered perceptrons are always at least as good as
CART built decision trees. We conjecture that this is because CART is
at its best in regression analysis, and that C4.5 might have done a
lot better. Sethi (1995) shows more: he transforms decision trees
into NNs and compares various features of the two styles. Cios and
Liu (1992) give an 1D3 algorithm for ordinal data that converts
decision trees into hidden layers in FFBP neural networks. The
slant in this paper is a little different - these authors propose using
1D3 to determine the structure of the NN. In some of these studies,
the neural implementation is identified as a better choice for one
reason or another; but in others, the decision tree seems to be the
preferred structure. From our knothole, this aspect of classifier
design is still to close to call.

With the exception of the work on character recognition (Chang and
Pavlidis, 1977, Wang and Suen, 1983, 1984, 1987, Chi and Yan, 1996,
Chi et al., 1996a, b) and perhaps, the electrocardiogram data used by
Bensaid et al. (1998), none of the papers we are aware of apply fuzzy
decision tree classifiers to real or challenging data. Examples with 8
or 12 or 16 cases are nice in a paper, since they are manageable for
writing, and useful pedagogically. But we need classifiers to do real
work, and tree classifiers have a lot of strikes against them. For one
thing, it's hard to postulate a real situation where data of the type
used by, say. Yuan and Shaw (1995) or Janikow (1998) provides a
natural and easily obtainable representation of a real problem.
Then there is the matter of complexity. Trees usually have a lot of
leaves (the tree in Figure 4.39 has 5 leaves for n = 8 training
examples). For large data sets, the number of leaves (and hence, the
number of rules obtained using decision trees to extract them) can be
staggering - recall that Wang and Suen (1987) used several thousand
leaves in pruned decision trees for classification of handwritten
characters, and we know of applications of crisp decision trees that
discuss leaves on the order of 10 . Evaluating all paths to the leaves
in soft decision trees of this size can take time, compared to, say,
computing distances to c nearest prototypes.

You might argue that the conversion of a decision tree to a neural
network shows that decision trees are useful, but we would counter
that in this case, why not jus t start with a neural network? Well,
maybe there are some good answers to our hypothetical question.
First, it's hard to see what the rules are when they are imbedded in a
neural network, and the tree structure may provide a useful

CLASSIFIER DESIGN 537

explanation device for computations made by the neural network
(provided the number of rules is pretty small). Second, crisp decision
trees don't usually require the excessive training times that are
often needed in say, back-propagation style training schemes for
neural networks (Section 4.7). Perhaps most importantly, trees
provide us with an alternate way to look at a very useful
computational structure, and this is always good, because different
views can only increase our understanding of the underlying models
we choose and use.

Our overall impression of fuzzy decision trees for classification is
that they are not really competitive with some of the other
techniques discussed in this chapter, and they are not better than
their crisp counterparts (especially C4.5) that have evolved within
the machine learning community. It is curious, in light of the heavy
emphasis placed on pruning trees after building them in the
machine learning community, that so little effort has been
expended towards this end in the fuzzy decision tree literature.

Function approximation

We have covered four methods for building MA and TS systems from
data: decision trees, rule extraction by clustering, neural networks,
and heuristic methods. And we have ignored many more methods
than we have discussed! Superficially, this field seems important
for pattern recognition only if the fuzzy system is a rule-based
classification system. Although this criterion would seem to rule
out 95% or so of all the papers published about "system
identification", the fact is that many of the methods developed to
find, for example, a set of rules for a fuzzy controller, can also be
used to find a rule-based classifier. This is not always true of course,
because of the special nature of the output training data, which in
classifier design are almost always crisp label vectors, not
observations of (usually) smooth system variables. Moreover, as we
have seen in subsection 4.6.F, pattern recognition methods (in this
case clustering) are being used as tools to build fuzzy systems for
function approximation, and in this respect our interest in this area
is entirely appropriate.

Hall and Lande (1998) discuss two methods for extracting fuzzy rules
for function approximation with crisp decision trees based on
modifications of the strategy developed by Sugeno and Yasukawa
(1993). They assume the training data XY has continuously valued
Inputs and outputs. The output training data set Y set is fuzzified by
partitioning it with fuzzy c-means clustering, which provides a
fuzzy label vector for each target output. Cluster validation during
this step is guided by the validity function of Fukuyama and Sugeno
(1989). Unpruned decision trees are generated with Quinlan's C4.5
(Section 4.6.B), and combined Avith the fuzzified outputs using two
strategies: a fuzzy controller generator model that generates fuzzy

538 FUZZY PATTERN RECOGNITION

CLIPS rules; and a model that uses fuzzy entropy. Two numerical
examples are given that compare these two models to each other.
One example is based on approximation of the SISO quadratic
function S(x) = x^ + x + 168; the authors report a generalization
MSE of 2.71% on test sets with 122 samples from the interval [50,
111], and state that a typical design used either 18 or 22 rules. Hall
and Lande also discuss rule extraction with the well-known Box-
Jenkins (1970) gas furnace data, a perennial favorite for function
approximators.

Nie and Lee (1996) extract rules for function approximation from
labeled lO data by generating point prototypes in the product set XY
(Section 4.6.G). They develop three variations of LVQ (Section 4.3.D),
several of which use fuzzy sets, that produce prototypes suitable for
implementing rules based on the strategy illustrated in Figure 4.56.
The set of prototype vectors V^^ shown in Figure 4.56 are replaced
by a set V^" of "rule center vectors" that are found using any of the
three variations of LVQ. The prototypes have radii (user-specified in
two algorithms, learned in the third) associated with them that
allow Nie and Lee to define spherical neighborhoods as shown in
Figure 4.56. These authors define five different measures of
similarity between an input x and prototype v ^ , and use these
measures as a basis for several thresholds (sum of similarities,
maximum similarity) that control the number of prototypes (and
hence, number of rules) discovered in XY by their algorithms.

Once an initial rule base is established, Nie and Lee (1996) refine it
by merging rules i and j if two rule centers are "close enough",

determined by comparing „ X Y _ XY
1 J

to the radius of the j th

neighborhood. Three numerical examples are given to demonstrate
the effectiveness of their techniques for function approximation.
One example is based on approximation of the SISO function
S(x) = 3e~^ • sin(7tx). Nie and Lee construct XY by dividing [-3, 3] into
399 equal length subintervals, and computing S(x) at each of the 400
subinterval endpoints. Then 300 of the 400 points are drawn
randomly for training, and the remaining 100 are reserved for
testing. In this example all three methods determined 30 rules, with
MSE test errors ranging from 0.0068 to 0.0114.

Setnes et al. (1998) use the Gustafson-Kessel (GK, Section 2.2.A)
clustering algorithm to identify parameters for a first order Takagi-
Sugeno fuzzy system. This work is very similar in spirit to our
example 4.17, the main difference being the type of clustering
employed. The numerical example given in Setnes et al. is based on

2

approximation of the SISO function S(x) = 3e"'' • sin(7tx) + r\, with a
Gaussian noise term T] = «(0,0.15) added to the function used by Nie
and Lee (1996). Setnes et al. use c = 7 clusters chosen by

CLASSIFIER DESIGN 539

Krishnapuram and Freg's (1992) average within cluster distance
validity measure. These authors report a resubstitution MSE of
0.0028 on n = 300 training data computed with S(x) for x e [-3,3]
using only 7 TS rules. This supports our assertion that higher order
systems have better approximation capabilities than lower order
ones do. And it also shows, in conjunction with our previous
discussions of Kim et al. (1997) and Runkler and Bezdek (1998) that
the clustering algorithm you choose for rule extraction in 1-st order
TS systems need satisiy jus t one main criterion: it should produce
prototypes tha t naturally generate linear approximations to
clusters.

We pointed out in Section 4.6.G that one of the advantages of using
clustering algorithms for parametric estimation in fuzzy systems
was that non-point prototype clustering algorithms often provide
direct estimates of the output functions of low order TS systems
(here we include point prototype algorithms such as the GK (Section
2.3.A) and FCE (Section 2.3.B), whose covariance matrices afford
estimates of linear clusters). Many rule extraction studies exemplify
various ways for using point prototypes obtained by clustering
algorithms such as the c-means models, especially when designing
MA fuzzy systems. We are not aware of any study that uses selected
prototypes in the training data (from, for example, edited 1-nn rules
or genetic algorithms) as opposed to extracted prototypes from the
data. However, considering the success of selection in prototype
classifier design, we think that this is probably a viable alternative
to finding point prototypes by clustering for use in rule extraction
problems. Of course, selection can be used this way only for rule
extraction methods that use points in the given 10 spaces; when you
seek lines, planes, curves, etc., extracting non-point prototypes
cannot be done by selection.

We want to conclude our comments on this topic by referring you to
pages 8-10 in Dubois et al. (1998), titled "Fuzzy Systems: Modeling
versus Explaining". These three pages contain the most intelligent
and thought provoking critique of the use of fuzzy systems for
function approximation you will ever read. Dubois et al. point out
the inherent conflict between the use of fuzzy sets for function
approximation, which aims to mimic and reproduce data
accurately, with building an "intelligent" system with fuzzy sets
whose intent is to articulate knowledge from data. They argue that
fuzzy systems have lost some of their original appeal because they
are prized more now as universal approximators to functions, and
less valued as a means to build numerical functions from heuristic
knowledge, nor as a tool for the linguistic summarization of data.
From this viewpoint it might be argued that the only method we
have discussed for designing rule based classifiers that fits into the
original framework of fuzzy models envisioned by Zadeh is our
subsection 4.6.G on heuristic methods of classifier design.

540 FUZZY PATTERN RECOGNITION

Dubois et al. point out that in the general scheme of things, fuzzy
systems are not equipped to compete with well developed methods of
function approximation (e.g., Powell, 1990) because they: may not be
general enough to capture a wide class of functions, are not very
simple because many rules will be needed, are not particularly
efficient computationally, and do not generally extrapolate as well
as more standard methods. They ask : "why should we bother about
if-then rules, and about the 'readability' of fuzzy rules as knowledge
chunks if the aim is to build a numerical function that best fits a
data set?" And they answer their own question a little later in the
same paragraph this way: "It is questionable whether the present
trend in fuzzy engineering, that immerses fuzzy logic inside the

1^jungle offunction approximation rl methods will produce path-
breaking results that put fuzzy rule-based systems well over already
existing tools". It's hard to add anything to this that is either more
elegantly stated, or, in our opinion, more accurate - so we won't try.
Instead, we advise you to enter the jungle at your own risk.

Fuzzy neurons and neural networks

It's hard to know what to write here. There are probably 5,000 papers
about fuzzy-neuro, neuro-fuzzy, neuro-soft, pseudo genetic - neuro,
evolutionary-neuro, quasi adaptive fuzzy neuro, computationally
Intelllgent-generallzed-soft-evolutionary-neural-self organizing-
vadaptlve, ... well, you get the Idea. The list of classifiers based on
some combination of all these technologies just goes on and on.
Where will It stop? We don't know. Will it stop at an optimal
solution? Perhaps, but only for a veiy limited class of problems.
When will it stop? When the funding dries up. Has the addition of
fuzzlness to the standard neurons and neural models such as LVQ,
ART, FFBP made any of them better classifiers? We are tempted to
say "perhaps not", because we believe that, given enough time,
almost any of the classifiers discussed In this chapter, and most of
those that weren't, will produce pretty similar results on "run-of-
the-mill" data sets.

We chose not to enter the terminology fray on this topic in the main
body of this chapter because sometimes buzz-wordology distracts
you from the main point - does it work? From an engineering point
of view, it is foolish to dlsccird a model simply because there may be
another one out there that does just as well. If you have a problem to
solve, and you find a scheme that solves it that falls within your
envelope of development criteria (cost, time, size, etc.) - well, that's
good enough. Published papers, in the main, provide system
designers with a rich supply of potentially useful tools, and the
plethora of "fuzzy NN" architectures are among them.

OK, having devalued the terms "neuro-fuzzy" and "fuzzy neural
networks" a bit, and vented our cjoiicism about the buzzwords of the
day, we will make an attempt to at least align you with what some of

CLASSIFIER DESIGN 541

US perceive to be the main tracks related to these two terms. Then it
will be up to you to decide where to get off the train. Neuro-fuzzy
hybridization is done broadly in two ways : neural networks can be
equipped with the capability to handle fuzzy information; or fuzzy
systems can be augmented by neural networks to enhance their
flexibility, speed and adaptability of the fuzzy system. The first set
of models may be called/uzzy-neural-netujorfcs (FNN); whereas the
second set may be called neural-Juzzy-systems (NFS).

FNNs and NFSs are grouped together in the literature under the
popular name neuro-fuzzy computing. A neural network may be
called fuzzy when either the input signals and /or connection
weights and/or the outputs are fuzzy subsets or membership values
of fuzzy sets (Lee and Lee, 1975, Buckley and Hayashi, 1994). Usually,
fuzzy numbers (represented by triangular functions for ease of
computation) are used to model fuzzy signals. The fuzzy neuron of
Lee and Lee (1975) allows the excitatory and inhibitory inputs, and
the outputs to be fuzzy. In other words, it entertains graded inputs
and outputs. Following this, many models of fuzzy neurons besides
the ones discussed in Section 4.7 have been proposed (e.g., Gupta and
Qi, 1991) and developed (Yamakawa, 1990). Neural networks with
fuzzy neurons fall in the category of FNNs as they are capable of
processing fuzzy information.

Another kind of FNN does not enhance or change the capability of
the NN but makes its implementation more efficient. It is well
known that back-propagation learning is very slow and the choice
of learning parameters such as the learning rates and momentum
factors is an important factor in determining rate of convergence of
iterate sequences. If the learning rate is high, the network may
oscillate; if it is low, then convergence may be slow. Neuro-fuzzy
hybridization can accelerate back-propagation training by an
adaptive choice of the learning rate using the fuzzy control
paradigm. Let 5E be the change in error E and A be the change in

5E. We can use fuzzy rules like the following to adapt the learning
rate and the momentum factor (Choi et al., 1992). Haykin (1994)
summarizes this procedure in greater detail.

IF 8E is small
AND A_is small
AND sign(E) = constant for several iterations
THEN increase learning rate and momentum a little.

In a neural-fuzzy system designed to realize the process of fuzzy
reasoning the connection weights of the network correspond to the
parameters of fuzzy reasoning (Keller and Tahani, 1992a, b, Keller et
al., 1992, Pal et al., 1998). Using back-propagation type learning
algorithms, the NFS can identify fuzzy rules and learn membership
functions of the fuzzy reasoning system. Usually it is easy to

542 FUZZY PATTERN RECOGNITION

establish a one-to-one correspondence between the network and the
fuzzy system. In other words, the NFS architecture has distinct
nodes for antecedent clauses, conjunction operators and consequent
clauses. There can be, of course, another black-box type NFS where a
multi-layer network is used to learn the input-output relation
represented by a fuzzy system. For such a system the network
structure has no relation to the architecture of the fuzzy reasoning
system.

There are many variations of ART and fuzzy ART. Serrano-
Gotarredona et al. (1998) discuss hardware implementations of four
such architectures : ARTl and ARTMAP are used for clustering and
classifier design of binary input data, respectively, while Fuzzy ART
(FART) and Fuzzy ARTMAP are used, respectively, for clustering and
classifier design with continuously valued input data.

Like any sequential competitive learning model, ART outputs are
dependent on the sequence of data feed. Shih et al. (1992) report that
in their experiments with optical character recognition, the number
of categories identified when the characters E, F and L are fed in
different sequences are different. For example, when the sequence is
E,L,F then L belongs to the category of E, and F forms a new category,
but when the sequence is F,L, and E, three different categories are
recognized. Even with adjustment of the vigilance parameter such
differences found to continue. For each training pattern, ARTl
performs the vigilance test for the winning neuron and if the test
fails the next winning neuron is tried. Thus when a quite different
pattern comes, ARTl checks the vigilance for all exemplars and
finally creates a new node or exemplar. This is time consuming, as
correctly pointed out by Shih et al. (1992), who remarked that a
threshold may be set up on the activation response so that neurons
with lower activation need not be considered. Thus, Shih et al.
(1992) proposed an improved ART (lART), more specifically an
improved version of ARTl which essentially modifies the vigilance
testing.

Recall from Section 4.8 that in ARTl the vigilance test assesses the
similarity between an input x and a chosen exemplar v as follows,

V is the exemplar vector associated with the winner Lg j .

fcO>
ll̂ lli

Pi . (4.160)

In the context of image processing, for example, equation (4.160)
represents the percentage of pixels of the input pattern that are
present in the exemplar pattern. In addition to (4.160), Shih et al.
(1992) suggested using a second criterion for vigilance testing,
namely

CLASSIFIER DESIGN 543

fcl4>, >P2 . (4.161)

where Vj is the exemplar vector associated with the winner node
Lgj in the output layer. Resonance is assumed to occur only if both
(4.160) and (4.161) are satisfied, and then new input is associated
with the exemplar and the weights are updated. Thresholds pj and
P2 in (4.160) and (4.161) need not be equal. Except for this additional
vigilance test, the rest of lART remains edmost the same as ARTl.

Shih et al. (1992) used lART for optical character recognition based
on square 16x16 input images. With Pj=p2 = 0.8, two pairs of
characters, (G, O} and {P, R}, were grouped into the same category.
Making the vigilance test more strict by choosing p̂ = Pg = 0.9, they
obtained a higher rate of correct classification. Shih et al. also used
LART to design a neural architecture for image enhancement.

Newton et al. (1992) proposed an "adaptive" clustering algorithm
that combines elements of simple leader clustering, fuzzy c-means,
and ARTl. Kim and Mitra (1994) discuss a second, improved version
of this algorithm which purports to be more precise because it
incorporates a different vigilance criterion and a new distance
measure. These two algorithms have been used in applications such
as vector quantization for low bit rate image coding (Mitra and
Yang, 1999) and image segmentation (Mitra et al., 1999).

Training radial basis function (RBF) networks has become a topic de
rigeur in the last few years. Many writers that are knowledgeable in
the field of approximation theory seem to concede that "the right"
RBF network affords wonderful approximations to arbitrarily
complex functions. A quick web search against "RBF training" will
produce 50-100 papers on this topic, and as we mentioned in Section
4.8.C, this topic could easily consume a chapter of its own. To avoid
the embarrassment of not discussing the many fine papers that are
available on this topic, we want to mention Just one method for
training RBF networks that is related to other material in this book.

Medasani and Krishnapuram (1997) offer a modification of the
GMD-AO algorithm (Section 2.2.C) that is accomplished by adding a
second term to the likelihood function which is similar to that in
the competitive agglomeration (CA) algorithm (see equation (2.75)).
The role of the second term is to assess the number of components in
the Gaussian mixture, so it is essentially a "built-in" cluster validity
functional for the GMD model. This algorithm can be used with
labeled data to determine the mixture parameters for each class.
When the RBFs to be determined are Gaussian as in (4.124),

544 FUZZY PATTERN RECOGNITION

Medasani and Krishnapuram suggest pooling the parameters
obtained from clustering each class to initialize the hidden RBF
layer (the output layer of the left-half net). The number of RBF nodes
is determined automatically via the hidden validity function. These
authors then fine tune the RBF parameters of both layers
simultaneously using standard gradient descent on the squared
error between the observed and target outputs. This approach seems
to result in less susceptibility to local trap states than tuning an RBF
network that has been randomly initialized.

Classifier Fusion

Keller et al. (1987) provide examples of both temporal fusion and
sensor fusion in automatic target recognition utilizing linguistic
averaging (Dong et al., 1985). Linguistic averaging is an application
of the extension principle to arithmetic functions. They combined
the outputs of two classifiers with fuzzy estimates of motion, and
fused the results of two classifiers on each of two sensors together in
a hierarchical network. The individual estimates of class
confidence and consistent motion confidence were represented by
triangular fuzzy numbers. Examples included in Keller et al. (1987)
demonstrate how such a fusion methodology can (re)acquire objects
when they move behind other objects, and that this method also
reduces random clutter due to sensor motion. For the sensor fusion
examples, it was shown that a human (or some Al-type agent) which
was supplying classifier/sensor reliabilities in a non-numeric, i.e.,
linguistic, sense could be incorporated into the fusion mechanism.

Fuzzy neural networks, such as those presented in Section 4.7, have
been used for classifier fusion. Krishnapuram and Lee (1992b)
demonstrate how a multilayer network of Type I fuzzy neurons
(FANS with multiplicative hybrid operators, <5ĵ) can be trained to
perform target recognition by combining evidence from FLIR and TV
sensor data. These authors show how the trained FANs not only do
an excellent Job of fusing the information, but the interpretation of
the nodes provides added insight into the strength of the sensors and
features.

Bloch and Maitre (1995) describe various properties of fuzzy
morphology, and show how morphological tools can be used for data
fusion and decision making in fuzzy set frameworks. Families of
fuzzy mathematical morphology operators for erosion, dilation,
opening, and closing are investigated. A thorough comparison of six
definitions of morphology and fuzzy sets is presented in terms of
logic and decision theory. In Bloch (1996c), a classification scheme
is developed for the main operators used in numerical data fusion to
combine information from multiple sensors. Three classes of
operators based on properties such as decisiveness and ability to
handle conflicting information are discussed. Context independent,
constant behavior operators do not consider external information

CLASSIFIER DESIGN 545

because they exhibit the same behavior for any values of the
Information to be combined, whereas context Independent variable
behavior operators do depend on the values of the variables to be
combined (e.g., behaving one way if both values are low). Finally,
context dependent operators depend on global knowledge or
measures (e.g., reliability) of the sources to be combined. Synthetic
examples are provided to demonstrate how probability and
Bayesian Inference, fuzzy sets, possibility theory, MYCIN-like
systems, and Dempster-Shafer evidence theory fit into the proposed
classification. Criteria for determining the choice of operator are
also described.

Syntactic pattern recognition

Decision tree classifiers and rule-based systems often deal with
structural properties of data. Sometimes the connection to data
substructure is implicit, as for example in most of the clustering
algorithms and classifiers we have discussed. On the other hand,
some trees and rule-based systems contain information which
allows classification based on specific and explicit s tructural
properties of objects. Examples of this type of classification include
chromosome and sometimes character recognition. We will meet
other examples of this type in Chapter 5. If you expand the concept of
syntactic pattern recognition to include "structural and syntactic"
classifiers, for example, (Goos et al., 1996), then both decision trees
and rule-based classifiers (Section 4.6) fit in this category. Hall (1973)
demonstrated the equivalence of And/Or graphs and context-free
grammars. Hence, fuzzy variations of these models arguably belong
to the category of fuzzy structural and syntactic systems.

There was a flurry of papers that used fuzzy models in syntactic
pattern recognition in the first ten years following Zadeh's 1965
paper - that is, the '70s. This trend mirrored a fairly widespread
interest in crisp structural approaches that was evident in the late
1960s and 1970s. After a period of relative quiet in the 1980s and
early 1990s, there has been a resurgence of sorts for (crisp and soft)
syntactic methods in the late 1990s.

We mentioned in Section 2.1 that the first Ph.D. thesis on fuzzy sets
was written by Bill Wee (1967) at Purdue University. His work was
directed towards the use of fuzzy automata for applications in
syntactic pattern recognition (Wee and Fu, 1969). Another early
Ph.D. thesis on fuzzy sets, titled Fuzzy Languages and their relation
to Automata, was written by E. T. Lee (1972a) at the University of
California, Berkeley. Lee produced a number of papers on the use of
fuzzy tree automata for classifying chromosomes, leukocytes
(cancer cells), handwritten numerals and even applied his method to
an early attempt at cataloging images in pictorial databases using
fuzzy query languages (Lee and Zadeh, 1969; Lee, 1972b, Lee, 1975,
Lee, 1976a, b, Lee, 1977a, b). In view of Lee and Lee (1970), probably

546 FUZZY PATTERN RECOGNITION

the first paper on fuzzy neurons, it is clear that E. T. Lee was another
real pioneer in several areas that have enjoyed a lot of growth in the
last few decades. Other very early work in this area includes
Thomason (1973), Tamura and Tanaka (1973) and DePalma and Yau
(1975).

In Pal et al. (1983b), algorithms were developed to define fuzzy
memberships of curves in the classes "vertical", "horizontal" and
"oblique". These definitions were used in Pal and Bhattacharyya,
(1990) to assist the shape encoding process for cell abnormalities.
Crisp syntactic pattern recognition was then used to classify the
abnormalities. Pathak and Pal (1986) use fuzzy feature extraction
for primitive shapes and develop detailed fuzzy grammars and fuzzy
fractional grammars (DePalma and Yau, 1975) to recognize eight
different levels of skeletal maturity of the wrist from x-ray images.

Parizeau and Plamondon (1995) demonstrate an excellent use of
fuzzy syntactic approaches in modeling and classifying allographs
for cursive script recognition. They use attribute memberships for
primitive encoding, and utilize fuz^ shape grammars (Parizeau et
al., 1993) to assist in the recognition of highly uncertain objects
(handwritten script). What is impressive about this work is that: (1)
the authors have addressed a difficult problem; (2) fuzzy set theory is
embedded throughout the model, and (3) they tested the approach on
a fairly large database with excellent results. This paper exemplifies
the power of the principle of least commitment in complex system
design (which, as you have noticed by now, some of us really believe
in a lot - others of us prefer the principle of least remitment, but
that's another story).

In another interesting application, Senay (1992) used fuzzy
grammars to build a command language for an "intelligent" user
interface. The concept is that the flexibility of fuzzy sets provides
better opportunity to accommodate human variability in command
syntax. Kaufmann and Rousseeuw (1990) discuss an algorithm
called PAM (partitioning around medoids) - a refinement of their k-
medoids algorithm, that is similar to Fu's sgHCM algorithm (Table
4.60).

And finally, if you enjoy reading theorems and proofs in the context
of formal language theory, with a just a hint of a relationship to fuzzy
syntactic pattern recognition, papers that might interest you include
Peeva (1991) and Hwang et al. (1998).

5 Image Processing and
Computer Vision

5.1 Introduction

Digital image processing is the study of theories, models and
algorithms for the manipulation of images (usually by computer). It
spans a wide variety of topics such as digitization, histogram
manipulation, warping, filtering, segmentation, restoration and
compression. Computer vision deals with theories and algorithms
for automating the process of visual perception, and involves tasks
such as noise removal, smoothing, and sharpening of edges (low-
level vision); segmentation of images to isolate object regions, and
description of the segmented regions (intermediate-level vision);
and finally, interpretation of the scene (high-level vision). Thus,
there is much overlap between these two fields. In this chapter, we
concentrate on some of the aspects of image processing and
computer vision in which a fuzzy approach has had an impact. We
begin with some notation and definitions used throughout the
chapter.

Let f:5RPh^9t^ denote a function from 9tP to Si^^. The domain and

range of f are subsets of Si^ and 5R'', Df and /€f = f [Df] respectively.

The graph of f is ^j = {(x,f(x)):x e Dj } c Df x /€f. For example, let

f:9ti->5R"*̂ be f(x) = x^. Suppose we restrict f to [-1, 1], then

Df = [-1,1];i€f = [0,1]; and Q^ = {(x,x^):xe[-1,1]}. Plotting the graph

^ c 91X 9t̂ yields the familiar parabolic segment above the interval
[-1,1]. When q = 1, f is not boldface type.

The constructions made next are for images with two spatial
dimensions, but most of what we say generalizes to images with N
spatial dimensions, and to non-spatial dimensions such as time. Let
IJ = {(i, j): i = 1 m; j = 1,..., n} c 9t̂ be a rectangular array or lattice
of integers that specify (mn) spatial locations (pixel addresses). In
what follows, ij may be used as a short form for (i,j). Next let
Q = {q:q = 0,L.. . ,G-1} c 5t be the integers from 0 to G -1 . G is the set

of quantization (or gray) levels of some picture function p: SR̂ f-̂ '^^.
It is commonly assumed that p is continuously differentiable at
least once. Confinement of p to the lattice IJ (which is done
automatically by the digitizing scanner that realizes samples of p)
creates the m x n digital image denoted by P .

548 FUZZY PATTERN RECOGNITION

Integer N is the number of bands collocated in time that are
measured by a sensor. When N=l, P is a unispectral image, denoted
by P ; otherwise, it is multispectral, denoted as P . For example,
N= 1 for gray level images, N = 3 for most Magnetic Resonance (MR)
and color images; N = 6 for Coastal Zone Color Scanner (CZCS)
images, and so on. For 6 bit images G = 2^= 64; for 12 bit images G =
2^^= 4096, and so on. There are databases with 16 and 24 bit images
nowadays, bu t our presentation and examples are generally
confined to 8 bit images, which have 256 intensity levels in them.

We often define a function over the spatial extent of an image that is
continuous, differentiable, integrable, etc., and we may want to
integrate it, differentiate it, or otherwise manipulate it as if its
domain had continuously valued variables. For example, the
membership function m^ of a fuzzy region in an image is defined
only at each pixel of a spatial region in IJ, so its domain is discrete.
However, when we deal with integrals, derivatives, etc., the domain
of m^ needs to be a contiguous plane subregion S within IJ. How

should we write the sum and integral of m ,̂ over S? When S is
discrete, we can legitimately write S c IJ and use exact notation for
sums such as XXinp,(i,j). To avoid notational complication, when S

i J

is a region within the boundaries of IJ and we want S to support
integration, etc., we will simply write integrals, for example, as
JI mp (u, v)dudv, with the understanding that integration over all of

9t̂ will be zeroed except on S, the domain of positive support for the
integrand.

It is worth noting that Pjj c IJ x Q"^ c ^p. In words, the digital image
is a discrete subset of the graph of the picture function composed of
the lattice IJ and the values of p on this lattice. More generally, it is
advantageous to regard several images derived from P as subsets of
the graph of some function defined on the lattice I J.

A window Wy related to pixel ij in any image is a subset of the lattice
IJ. Thus, a window is a collection of addresses with dimensions
m X n , and when ni and ri are odd integers, we will assume that
Wy is centered at pixel ij. If the spatial location (i, J) of Wy is clear, we
may use a single subscript (W) for a window centered at (i, J). Rule
based systems for image processing often extract feature vectors
from W. For consistency with previous chapters, we will in this
chapter only differentiate the spatial locations of a set of pixels
centered at (i, j) by calling them {X}, and as in previous chapters, x =
{x } will denote features extracted from the intensities {I(Xp} at these
locations.

IMAGE PROCESSING AND COMPUTER VISION 549

There is uncertainty in many aspects of image processing and
computer vision. Visual patterns are inherently ambiguous, image
features are corrupted and distorted by the acquisition process,
object definitions are not always crisp, knowledge about the objects
in the scene can be described only in vague terms, and the outputs of
low level processes provide vague, conflicting, or erroneous inputs to
higher level algorithms. Fuz2y set theory and fuz2y logic are ideally
suited for dealing with such uncertainty. For example, consider the
following rule of thumb in image filtering (or low-level vision) for
smoothing:

IF a region is very noisy
THEN apply a large window-based smoothing operator.

Here, the antecedent clause is vague, and the consequent clause is a
fuzzy action that can be described only in imprecise terms. By
constructing fuzzy rules in terms of condition-action relations, we
can easily represent this type of knowledge.

As another example, consider the task of segmenting an image into
object regions. Typically, object boundaries and surfaces need to be
described in compact terms for further processing. However, object
boundaries are often blurred and distorted due to the imaging
process. Moreover, in some cases, object boundaries are truly fuzzy.
For example, if we are trjang to segment the image of a face, how do
we decide where the nose ends and the cheek begins? Crisp
segmentation does not preserve uncertainty of this type. An
alternative approach is to preserve the uncertainty inherent in the
image as long as possible until actual decisions have to be made. In
this approach, each object in the image is treated as a fuzzy region
represented by a fuzzy set. Such an approach would be consistent
with Marr's (1982) principle of least commitment.

To perform high-level vision tasks such as image understanding, we
need to represent properties and attributes of image regions and
spatial relations among regions. Fuzzy rule-based systems are
ideally suited for this purpose. For example, in a rule-based outdoor
scene understanding system, a typical rule may be:

IF a region is rather green and highly textured
AND the region is somewhat below a sky region
THEN the region contains trees with high confidence

Terms such as rather green and high confidence are vague. A similar
comment applies to spatial relations such as somewhat below.
Fuzzy set theory provides a natural mechanism to represent such
uncertainty and vagueness effectively. The flexibility and power
provided by fuzzy set theory for knowledge representation makes
fuzzy rule-based systems very attractive for high-level vision when
compared with traditional rule-based systems. Furthermore, rule-
based approaches must address the problem of conflict resolution
when the preconditions for several (partially) conflicting rules are

550 FUZZY PATTERN RECOGNITION

simultaneously satisfied. There are sophisticated control strategies
to solve this problem in traditional systems. In contrast, we have
already seen several examples of fuzzy rule-based classifier systems
in Chapter 4, where problems such as these are attacked by
manipulating certainty factors and/or firing strengths to combine
the rules. We will see several new examples of this in Chapter 5.

This chapter is not a comprehensive survey of all literature that
deals with fuzzy approaches to various aspects of image processing
and computer vision. We don't consider, but will try to point you
towards, fuzzy approaches to important topics such as compression,
restoration and coding. Our goal is to introduce you to several basic
and instructive techniques that use fuzzy models to address
representative problems in image processing and computer vision.
This chapter touches upon: image enhancement, edge detection, edge
following, thresholding, segmentation, region labeling, boundary
and surface description, fuzzy geometry and properties of fuzzy
regions, spatial relations between image regions, perceptual
grouping and high-level vision.

5.2 Image E^nhancement

The earliest paper on image enhancement with fuzzy sets is due to
Pal and King (1981), who discuss extraction of fuzzy properties from
gray tone images to be used for contrast intensification. Image
enhancement is usually one of the first procedures applied to an
image in a computer vision task. According to Gonzalez and Woods
(1992), the principal objective of enhancement techniques is to
process a given image so that the result is more suitable than the
original image for a specific application. Typically, we want the
enhancement process to be capable of removing noise, smoothing
regions where gray levels do not change significantly, and
emphasizing (sharpening) abrupt gray level changes. It is, however,
hard to incorporate all these requirements into a single framework,
since smoothing a region might destroy a line or an edge, and
sharpening might lead to unnecessary noise. A good enhancement
process is, therefore, required to be adaptive so that it can process
each region differently based on the region properties.

Since fuzzy logic can easily incorporate heuristic knowledge about a
specific application in the form of rules, it is ideally suited for
building an image enhancement system. This has led to the
development of a variety of image enhancement methods based on
fuzzy logic. Here we briefly review some of them.

Russo and Ramponi (1992) present an image sharpening method
which amplifies large gray level differences and diminishes small
gray level differences. Russo (1993), and Russo and Ramponi (1994a,
1994b) propose fuzzy rule-based operators for smoothing,
sharpening, and edge detection. They use heuristic knowledge to

IMAGE PROCESSING AND COMPUTER VISION 551

build rules for each of the operations. For example, the original
smoothing operator is based on the following heuristic rules:

IF a pixel is darker than its neighboring pixels
THEN make it brighter
ELSE IF a pixel is brighter than its neighboring pixels
THEN make it darker
ELSE leave it unchanged

In this basic approach, the gray level differences between a given
pixel and its neighbors are inputs, and "gray level increment" is the
output variable. Assuming that the gray level range is [0, G-1],
simple triangular fuzzy sets, medium positive and medium negative
are defined over the interval (-G+1, G-l] to represent brighter and
darker for the input variables, and triangular numbers small
positive, zero, and small negative are defined over the same domain
for the increment specified by the consequents of the rules. The
inferred output value is added to the original gray level of the pixel.

The general fuzzy inference ruled by else-action (FIRE) paradigm
introduced by Russo (1993) will be discussed later in this section.
Mancuso et al. (1994) propose a fuzzy filter for dynamic range
reduction and contrast enhancement using a fuzzy rule based
approach. The method is based on Peli and Lim's (1982) algorithm.
Peng and Lucke (1994) propose a nonlinear fuzzy filter for image
processing. Additive Gaussian noise and non-additive impulse noise
are considered. Averaging filters can effectively remove Gaussian
noise, and order statistics filters such as the median filter can
effectively remove impulse noise. Peng and Lucke use fuzzy logic to
combine these two methods.

Law et al. (1996) present a fuzzy-logic-based method for image
filtering which controls the orientation and size of a Gaussian
kernel. They use the local gradient and straightness as the input
variables for the fuzzy rules that control the kernel. Gradient and
straightness are computed based on the gray levels and gray level
differences in a local window. We first describe the computation of
the gradient and straightness and then discuss image filtering.

Figure 5.1 depicts the computation of the gradient and straightness
for a given center pixel. For each possible direction in the window, a
dividing line through a pair of opposing pixels as shown in Figure
5.1 is used to evaluate steepness. The steepness is computed as the
difference between the average gray level of two regions, one on
either side of a dividing line. To settle the issue of several directions
having the same steepness, they also measure the reflective
symmetry of the gray level pattern in the window with respect to a
line which is perpendicular to the dividing line that is used for the
steepness computation. The value of the gradient is then computed
using the fuzzy rules in Table 5.1.

552 FUZZY PATTERN RECOGNITION

Direction with highest degree
of magnitude ai i d svi i m i e i i \' ^•^- .4.."^

Plane in direction of
evaluated gradient

^

\
/ • \ CenU-i

. .f-. Dividing line
\ ^ for steepness

\

A
/ V.

\
\

\

- ^

\ j
L-v; . ' • "

> '
- " - ; ; •

j

Dividing line
ibr symmetry

Evaluate for all \
pairs of opposing \ _
pixels in window *"'

Figure 5.1 Computation of Law et al.'s gradient

Table 5.1 lists the fuzzy rules used by Law et al. (1996) for
determining the gradient. Conceptually, symmetry plays no role
when the steepness is small, so an alternative to the first two rules is
the simpler rule : IF steepness is small THEN gradient is low. The
outputs of the pair of rules in Table 5.1 and this single rule may not
be exactly the same, but they will be close. On the other hand, there
may be some conceptual and implementatlonal advantages to
retaining the rules in their original form, because this form has the
same number of input variables for each rule.

Table 5.1 Fuzzy rules for determining the gradient

steepness symmetry gradient
small low low
small high low
large low medium
large high high

The gradient is computed by defuzzifying the output of the fuzzy
rules in Table 5.1, and the direction for which it is maximum is
taken as the true gradient direction. Straightness is determined by
comparing pixels translated along the direction of the edge (i. e.,
perpendicular to the gradient direction). If the edge is straight, the
translated pixel should line up with a pixel having a similar value.
Evaluating all pixels in the window yields a value for straightness.

IMAGE PROCESSING AND COMPUTER VISION 553

Smoothing is done by convolving the image with the Gaussian
kernel

W(s,t) = ^ J_ • e x p
2a^

1
— exp
a.. 2c'

(5.1)

where u is the edge direction and v is the gradient direction. Since we
do not want to smooth out edges and details, the values of a^^ and a^
are controlled by the fuzzy rules shown in Table 5.2. Membership
functions for linguistic labels such as small and large in Table 5.2
can be found in Law et al. (1996). Again, the first two rules have an
easier conceptualization : IF gradient is small THEN Ou and Oy are
large. Our remarks about the equivalence of the single rule
replacement of the pair of rules in Table 5.1 apply to this case too.

Table 5.2 Fuzzy rules for controlling a^ and a,

gradient straightness a^ Ov
small low large large
small high large large
large low small small
large high small large

Example 5.1 Figure 5.2(a) shows the original 256x256 Lena image, ;
Figure 5.2(b) shows the Gaussian filtered image using variances Ou
and Ov of the Gaussian controlled by the fuzzy rules in Table 5.2. The
filter size was 7x7 and the range for a^ and o^ was 0.1 to 5.25.

(a) Original image (b) Gaussian kernel

Figure 5.2 Lena filtered vdth a Gaussian kernel

554 FUZZY PATTERN RECOGNITION

Image enhancement almost always means replacing the gray-level
value of every pixel in an image with a new value depending on some
type of local information. If the intensities In the vicinity of a pixel
are relatively smooth, then the new value may be taken as a
(possibly weighted) average of the local values. On the other hand, if
the local region contains edge or noise points, a different type of
filtering should be used. This gives rise to a conditional and
adaptive smoothing technique. In other words, we could create a
bank of filters, and one of them could be selected at each pixel
depending on the local information. However, if a different
enhancement algorithm is selected at each pixel, the result may not
be pleasing or useful. Moreover, in many cases the selection criteria
for the filter can be expressed only in imprecise or vague terms. To
overcome these problems, Choi and Krishnapuram (1995, 1997) use
a fuzzy logic approach. The filter selection criteria constitute the
antecedent clauses of the fuzzy rules, and the corresponding filters
constitute the consequent clauses of the fuzzy rules.

Choi and Krishnapuram adopt the FIRE paradigm of Russo (1993)
for image enhancement. The rule base /? = (R R„ ,} consists of

1 M+l

M+1 fuzzy rules. This system is specialized to image enhancement,
and is set up as follows. Let X = (Xj X^) denote the spatial
locations of N pixels in a window W within an image that has odd
side lengths with center at pixel X, and let I(X)= (l(Xi),..., I(XN))^ be the
vector of gray levels at these spatial locations. The gray level I(Xi) is
to be replaced. The LHS of rule R has for its input a vector x e 5R̂ J of
features such as gradient, steepness, smoothness, symmetry, etc.
which is extracted from W., and in the general case, different rules
can have different numbers of input variables. The rule base,
written in the form of equation (4.74), is:

Rj: IF aj (Xp_) THEN 1̂ (X)̂ = F^ (I(X))

R^:IFaj(Xp) THEN y x ^) = Fj(I(X))
(5.2)

RM = I F a ^ (X p J THEN1^(X,) = F^(I(X))

RM.rELSEI„^^(X,) = F^^,(I(X))

Fj is the output function of the J-th filter and pj is the number of
input variables in the J-th rule. Equations (5.2) have the appearance
of a TS system, but there are two major differences. First, the

dimension of the input vector x e 9?''̂ for rule j is not necessarily

fixed across the rules - instead, there might be a different number of

IMAGE PROCESSING AND COMPUTER VISION 555

Inputs for different rules in /€. Second, the argument of each RHS
output function is not the same as the argument of the LHS, although
both arguments are functions of the intensities in W.

As in Chapter 4, oc (x) denotes the firing strength of rule j . The
defuzzified output of (5.2) is computed using either the TS or MA
style defuzzification. MA outputs are some function of the firing
strengths, consequent values, rule composition and defuzzification
operator (see Figure 4.29),

I(Xj) = 0(a(x),{Ij(Xj)},u,Dp) .where (5.3)

the else clause firing strength satisfies the constraint

a = 1 - max j a (x)| . (5.4)
^^+1 Js(l,..,M}l J J

For a particular set of choices in (5.3) we can get the standard TS
output form, now used for image enhancement:

M+l /M+1
I(X,)= I[a j^(Xj^)I^(Xj)] / la^(x^) . (5.5)

k=l / k=l

As pointed out in Chapter 4, (5.5) can be interpreted either as the
output of a 0-th order TS model; or as the output of an MA model
using the height defuzzification method with I. (X) = F as the peak
value of the consequent membership function.

Choi and Krlshnapuram (1997) discuss a form of enhancement that
is based on the estimation of a prototypical intensity for a given set
of gray levels. Again let X = (Xj,...,Xjj) denote the spatial locations
of N pixels In a window W within an Image that has odd side lengths

with center at pixel X, and let I(X)= (I(Xi) UX)̂)̂ be the vector of
their gray levels. The gray level l(Xi) is to be replaced.

First we consider replacement of I(X,) by an estimate obtained by
minimizing the objective function

JA(Ui,X;l(X,))=Iuj,(l(X,)-I(Xj)f . (5.6)

In (5.6) Uj = (Ujj Ujjj)^eN j^ is specified by the user, and
minimization is done with respect to I(X). Here we interpret Uji as the

556 FUZZY PATTERN RECOGNITION

degree (or possibility) to which intensity I(X) represents I(X). If we
assume that the membership function underlying the values {u } is
bell-shaped and centered at I(X), and that the membership values
depend on gray level differences and spatial distances between the X
and its neighbors, then a possible choice for the membership
function that generates the {u } is

Ujj=(Ojjexp - ^ (l (X j) - I (x p n , l < j < N .where (5.7)
Pi

« j i = e x p j - i | | x , - X j (5.8)

In (5.8) IIXi - Xj represents the Euclidean distance between (centers
of) the pixel locations Xj and Xj. The authors state that for small
windows, the effect of co on u in (5.8) is negligible, and recommend
setting it equal to 1 for all j . In this case, the selection of a value for a
is moot, but more generally, this parameter would deserve some
attention. The parameter Pi is a scale parameter which can be
determined on the basis of the variations in pixel intensity values
in a given spatial window. This is discussed later.

Differentiating J in (5.6) with respect to I(Xi) and setting the result
equal to zero leads to filter A, an update rule for the intensity of
pixel XJ :

lA(Xi)= iu j j
J=l

4'
Pi

KXJ / X u „ 1 - - ^ , (5.9)

where d ĵ = (l(Xj) - I(X)| . If d^ is larger than Pj, then the weight for

pixel Xj will be negative. If d̂ ^ is equal to pi, then the weight for pixel
XJ will be zero. Otherwise, the weight for pixel Xj will be positive. The
negative weight has the effect of sharpening an edge.

Filter A in (5.9) assumes that 1(X) is a prototype for its neighboring
pixels. If I(X) is noisy (that is, if I(X) is quite different from the
intensities in W), this assumption fails, and we need a different
updating scheme. When I(X) is noisy, we can update the gray level of
the center pixel in such a way that the new value maximizes the
degrees of membership to which its neighbors represent the center
pixel. In other words, we would like to maximize u^.®-^Uj^j, where

IMAGE PROCESSING AND COMPUTER VISION 557

(8)="and" is an aggregation operator, i.e., any T-norm or weighted
mean.

Different objective functions arise from different choices for (8).
Here we illustrate two methods: multiplication (the standard T
norm) and arithmetic averaging (the unweighted mean). Choosing
multiplication and continuing to use (5.7) and (5.8), we have

J„(u,,X;l(X,))= n u , , = nco„ exp :4
j=i J' M J' [Pj

(5.10)

Setting the first derivative of J with respect to I(Xi) equal to zero
leads to Jitter B, an update rule for noisy center pixel XJ:

I«(XJ= I
ri(Xj)^

- g V ' - j
J=1.J>1

V j

]_
(5.11)

If we choose the averaging operator for <8), the objective function
becomes

1 N 1 N - d |
J,(u,,X;I(X^)) = ^ l u j , = ^ Scoj, e x p j - ^ (5.12)

and the corresponding update rule defining JiJter C is

Ic(XJ= I
^UjJ(X.)^

Pj
(5.13)

Since Pi is a scale parameter, it should reflect the variance of the
gray level differences between the center pixel and its neighboring
pixels. We can simply take the mean of d^ in the neighborhood as (ij,
i. e..

P,=
1 i df,

N - 1 j=i,j^i
(5.14)

The examples shown in this chapter use the estimate at (5.14) for p..
However, the mean value is sensitive to outliers (impulse noise). A
more robust estimate, such as the median of absolute deviations, or
MAD (Rousseeuw and Leroy, 1987), can also be used.

558 FUZZY PATTERN RECOGNITION

We need conditions under which each of the update equations (5.9),
(5.11), and (5.13) should be used. If a given center pixel is an impulse
noise pixel, the degree to which its neighboring pixels can represent
this center pixel will be small. If the center pixel is in a
homogeneous region, the degree to which its neighboring pixels
represent the center pixel will be large. Again using (5.7) and (5.8) as
a basis for the filter design, we define the total compatibility of X

with its neighbors in X as

^_(X,I(X))= I u , , / I CO.. . (5.15)

The value of \i^^ in (5.15) is a measure of the homogeneity of the
intensities of the pixels in X, or the degree to which the neighboring
pixels represent a center pixel. The smoothest case occurs when all
the intensities in X are equal, and then |a,.j,g(X,I(X)) = 1. The most
impulsive case is when I(X) is 0 or Q-1 and the remaining N-1
intensities are Q-1 or 0, respectively. Then \i^^ takes its minimum
value for any choice of a and p ; and for the small window choice
advocated by Choi and Krishnapuram (with p given by (5.14) and
(Oj. =1VJ), |a.j,^=e-^

We can use (5.15) to build the following set of fuzzy rules for image
enhancement:

R : IF|J,.j,p is small, then Fj(I(X)) = Ig(Xj) (Impulse noise removal)

R^ :IF]x^^ is large, then F2(I(X)) = 1^{X^) (smoothing) (5.16)

Rg : ELSE F3(I(X)) = I^(X.) (edge sharpening)

Membership functions for the linguistic values sm.all and large are
defined on the range of ^..j,^, which is a subset of (0, 1]. The final
value for the intensity of each pixel is computed using (5.5).

Example 5.2 We show some examples of Choi and Krishnapuram's
approach to image enhancement with fuzzy rules. For small
windows, the effect of coji in (5.8) is negligible. To reduce
computation time, all of the coji's were set equal to 1 in (5.15). Figure
5.4(a) shows the original Lena image. Membership functions for the
linguistic values small and large are shown in Figure 5.3.

IMAGE PROCESSING AND COMPUTER VISION 559

I

0.0 0.5 1.0
Total compatibility M̂xc

Figure 5.3 Total compatibility of center pixel with neighbors

To create the noisy image shown in Figure 5.4(b), samples from the
mixture distribution 0.95«(0, 25) + 0.05^(0, 10000) were added to the
original intensities (see equations (2.17) and (2.18)). Values < 0 and >
255 can easily occur, and were set to 0 and 255, respectively. The
first noise component represents a zero-mean Gaussian with a=5,
and the second component represents a zero-mean Gaussian with
a=100. The second component approximates impulse noise because
values from this component will almost always saturate the affected
pixel intensity.

(a) Original Lena (b) Noisy Lena

Figure 5.4 Lena and her noisy derivative for Example 5.2

Figures 5.5(a)-(c) show the images produced by applying filters A, B
and C to noisy Lena. Using any of these filters alone on the entire
image is not particularly effective at noise removal. Figure 5.5(d)

560 FUZZY PATTERN RECOGNITION

shows the result of applying a crisp version of the filtering system in
(5.16) to noisy Lena, whereby only one of the filters A, B or C was
used at each pixel, whichever had the largest firing strength a of the
antecedent clause (see (5.4)). Certainly it's the best image in this set
of four views.

(a) fitter A (b)fiUjerB

(c)filtierC (^dttierAorBorC

Figure 5.5 E^nhancement of noisy Lena by various filters

Figure 5.6(a) shows the result of applying the fuzzy rule-based
filtering system to noisy Lena, which does a better job of removing
noise without smoothing out the details.

IMAGE PROCESSING AND COMPUTER VISION 561

• ' . J

(a) fuzzy rule base filter (b) intensity is a„ <-> I,

LftS- .̂ *•;

• . • ^ 'V ' . t ' " -* : I ' i

(c) intensity is â <̂ Ig (^ intensity is ttg <-> Î ,

Figure 5.6 Fuzzy rule-based filtering of noisy Lena

Figures 5.6(b)-(d) are images whose intensities are proportional to
the firing strengths of the three rules : a^ <^ l^, a^ <r^ l^, a^ <-4 I^ for
filters A, B, and C in the fuzzy rule-based filtering system. The
weights are scaled by 255 and therefore, a brighter value indicates a
larger weight. Filter A has a small weight in most of the image
except in edge regions. Filter B has a large weight in locations
contaminated by impulse noise. Filter C has a large weight in most
regions and a small weight in edge regions.

For comparison, Figure 5.7(a) shows the result of the 5x5 median
filter and Figure 5.7(b) shows the result of the Saint Marc filter
(Saint Marc et al. 1991) applied to noisy Lena. The parameters of the
Saint Marc filter are chosen adaptively during execution.

562 FUZZY PATTERN RECOGNITION

(a) Median FUter (b) Saint Marc Filter

Figure 5.7 Two otiier well known filters applied to noisy Lena

Table 5.3 shows that the overall root-mean-squared (RMS) error
between the intensities of the original Lena and the intensities
enhanced by the fuzzy filtering system is smaller than that of the
crisp version rule-based enhancement in Figure 5.5(d).

Table 5.3 RMS errors produced by various filtering schemes

Filter A Filter B Filter C Crisp RB Fuzzy KB
Size
Error

5x5 5x5 5x5 5x5 5x5
14.71 12.44 11.05 7.93 6.94

The problem with enhancement is that, like many other forms of
image processing, quantitative assessment of an individual filter is
unavailable. Performance analysis of these schemes is ultimately
subjective. Which filter does the best job? You make the call.

5.3 Edge Detection and Edge E^nhancement

Edge detection is a critical part of many computer vision systems.
Ideally, edges correspond to object boundaries, and therefore edge
detection provides a means of segmenting the image into
meaningful regions. However, the definition of what constitutes an
edge is rather vague, heuristic, and even subjective. Jain et al. (1995)
say this: an edge point locates a pixel where there is "significant
local intensity change"; an edge fragment is a collection of edge
points; and an edge detector produces either a set of edge points or
edge fragments.

IMAGE PROCESSING AND COMPUTER VISION 563

What is implicitly crisp in these definitions of edges? That either a
pixel is an edge point, or is not [and therefore, the intensity is either
black or white]? Regardless of what you read into these definitions,
it is clear that there are several opportunities to fuzzify the notion of
an edge, because two variables are involved : spatial location and
intensity. Our view is flexible: some edge detectors crisply locate
pixels that are edge points; others use fuzzy sets to describe spatial
locations of edges - sometimes these are called fuzzy edge points.
Independently, we can regard the strength of an edge point (spatially
located crisply) as crisp (black or white) or fuzzy (shades of gray); in
the latter case, the interpretation of the non-crisp intensity is
usually referred to as fuzzy edge strength. Some writers describe
crisp pixel locations with fuzzy (or otherwise non-two-tone)
intensities at "edges" as edge enhancement, reserving the term edge
detection for crisp edge points with one of two intensities. In any
case, there are many fuzzy models that attempt to locate regions in
images that are related to edges, and this section discusses a very few
of them.

Russo and Ramponi (1994b) describe an edge detector that is
relatively immune to noise, based on the if-then-else FIRE paradigm
discussed in Section 5.2. They use the gray level differences in a 3x3
neighborhood as inputs to the fuzzy rules. Let X denote the center
pixel in the window, and let Xj = I(X)-I(Xj), for j=l, . . .8. Figure 5.8
depicts Russo and Ramponi's numbering scheme for X =1,...,8.

[7]|6][5]

Figure 5.8 The window at center pixel X used by Russo and Ramponi

Russo and Ramponi use x , j=:l 8, as the variables in the
antecedent clauses of the rule base in (5.2). As usual, firing strength
a for rule i is given by (remember that in (5.2) p is the number of
inputs to rule i)

Ri: ai(x) = (8)(m*(x))-mlki(xi)(8)--<H)m|,jkp,(Xp,) . (5.17)

Russo and Ramponi use the mean operator for (8>, which gives.

at(x) = —
Pi

^ P i
Xm5p((Xj) (5.18)

Let a (x) denote the overall firing strength of the first M rules and

a (x) = a (x) be the firing strength of the ELSE rule. From (5.4),

564 FUZZY PATTERN RECOGNITION

a {x)= max (a (x)) ; a (x) = a (x) = l - a „ (x) .
' m€{l M) ™ "̂ ^^+1 ~

(5.19)

The output I(Xj) is obtained by adding the effects of the THEN and
ELSE actions and then performing a suitable defuzzification - for
example, the one shown in (5.5).

Example 5.3 R is shown graphically in Figure 5.9. Russo and
Ramponi's edge detector uses 4 rules; for k = 2, 4, 6 and 8 rule R is:

IF Xk is zero
AND Xkmod 8+2 is zero
THEN I(X) is white
ELSE I(X) is black.

I^D
KEY=(^=ZEn=VHH=BL)

ELSE

Figure 5.9 Representation of Russo-Ramponi rule R

The membership functions for zero, white and black are shown in
Figure 5.10 for an image with intensity values between 0 and G - 1.

zero

0.0
-G+1 Intensity differences G-1

1-^ '̂ •**«- black white

0.0
0 Intensity G-1

Figure 5.10 FMFs and CMFs for Russo and Ramponi's edge operator

IMAGE PROCESSING AND COMPUTER VISION 565

(a) Lena image (b) Russo-Ramponi output

(c) Result after thresholding

Figure 5.11 Fuzzy rule-based edge detection (Russo and Ramponi)

Figure 5.11 shows a typical result obtained by this edge detector.
View (a) is the original input image. View (b) shows the output of the
Russo-Ramponi edge detector, and view (c) is a thresholded version
of the image in panel (b).

Bezdek et al. (1998a} also use a 4 rule fuzzy system for edge detection
and enhancement, but their approach is based on the TS model.
They describe edge detection as a composition of four operations.
Specifically, they denote the edge image as E = e[P, 1 so that

e = s o b o f o c . The function e: Pjj h^ IJ x Q is the edge operator. The
four functions comprising e are :

566 FUZZY PATTERN RECOGNITION

c: IJ X Q i-> IJ X 9̂ : c[Pjj] = Cjj which conditions (enhances) the
raw data in P ;

u

f:IJx9^ i-> IJx9tP : f[Cjj] = Fj j , which extracts geometrically

relevant feature vectors in 3i^ from C ;

b: IJ x 9tP i-> IJ X 5R : b[F,j] = B^which blends or aggregates the
components of feature vectors in F,,; and

s: IJ X 9̂ i-> IJ X Q : s[B,,] = E,,, which scales blended image B., to
IJ IJ U

get gray levels in Q.

Figure 5.12 defines the correspondence used in Bezdek et al. between
a 3 X 3 window Wj centered at spatial location X and a sequentially

labeled window vector w^ = (I(Xj),..., I(Xg))^ of the intensities at the
locations in it. The center address in this window is X (instead of X..)
for simplicity, and it occupies position 5.

[I][2][3]
SDIl]

Figure 5.12 The neighborhood of center pisel X used by Bezdek et al.

Feature extraction functions (f) estimate indicators of geometric
behavior at edges. The most common choice is an f that
approximates the gradient of the picture function. The Sobel
features (Gonzalez and Woods, 1992) do this for 3 x 3 window vectors
Wj. Letting h, v stand for the horizontal and vertical spatial
directions, the (absolute value) of the Sobel features are :

f|s|(^i) = (|fsh(''i)|'|fsv('^i)|) ; where (5.20a)

fsh(Wi) = (KXg) + 2I(Xg) + KX^)) - (I(X^) + 2I(X2) + KXg)); (5.20b)

fg^(w,) = (I(X3) + 21(Xg) + I(Xg)) - (I(Xj) + 2I(X J + KX^)). (5.20c)

The range (r) and standard deviation (s) of the intensities in w^ are
surprisingly good edge features. The geometric relationship of r to
edges is clear : it is an order statistic that measures the maximum
distortion among the intensities in Wj. The standard deviation

IMAGE PROCESSINCx AND COMPUTER VISION 567

measures how much variation occurs in intensities in Wj. The
formulae for (r, s) on a 3 x 3 window are:

f,JWj) = {f^(Wj),fJWj)) ; where (5.21a)

f^(Wj)= max{I(X^)}- mln{I(Xj)}
1=1 9 1=1 9

{,{w^) = ^\\ lliX^r / 9 1 -1 IKX,) / 9

and (5.21b)

(5.21c)

Equation (5.21c) is a biased estimate of the variance because n is
used in the denominator. Readers who prefer an unbiased estimate
should use n-1 instead. Nice things about these features are that
their functional forms are known for any size window, that they are
invariant to changes in window indexing, and they are not
orthogonal (like the Sobel features), so they are not biased towards
finding only edges parallel to the axes of the spatial grid. Bezdek et
al. give some examples of processing images for edges using all four
of the features in (5.20) and (5.21).

Blending functions (b) aggregate information about edges possessed
by the features. There are many types of blending functions. Of
these, Bezdek et al. discuss three parametric families: (i) norms, of
which the two most common families are the inner product and
Minkowski norms; (ii) generalized logistic functions; and (iii)
computational learning models such as neural networks and fuzzy
systems. For convenience, let z = f(Wj) and b.. ,.(x) = |z{|, where ||*|| is

any norm on 9t^. The Euclidean norm of f(w.) is often regarded as the
standard blending function, but there is no reason a priori to prefer
the Euclidean norm of, for example, the Sobel features fs(Wj) as the
best way to make Sobel edge images. ANY norm can be used to
combine the components of f(w).

X (or y)

Figure 5.13 Membership functions for bjs4 (same for x and y)

The blending function discussed here is an analytic realization of a
two input, one output TS model which Bezdek et al. defined
subjectively (as opposed to training with lO data). Figure 5.13 shows

568 FUZZY PATTERN RECOGNITION

membership functions for low {m^) and high (mj^) for a 4-ruIe TS
blending function they call bxs4.

The numerical domain of the chosen features Is normalized to [0, 4]
here. This bizarre choice was a historical artifact of the evolution of
this detector, and there Is certainly no preternatural reason to
prefer this scaling. The input features to the blending function are

named (x) = (x,y)^. In example 5.4 x = (Ifsh^'^^l'ksv^'^^l)' ^^* there Is
no reason for the features to be limited to these, and Bezdek et al.
show many edge images made with f̂ (̂Wj) = (f^(Wj),f (w^)) that are

(visually) better than the absolute Sobel features. The output
functions for bTS4 â re specified to make it a four parameter family of

models. Let X,%,y,(0e3i and define the rules (see Bezdek et al.,
1995 for more information about the choices for the consequent
output functions) as :

Rl. If x = Landy = L ^ Uj(x) = x^+y^

R2. Ifx = Landy = H^U2(x) = x

R3. Ifx = Handy = L^U3(x) = Y

(5.22a)
(5.22b)
(5.22c)

R4. Ifx = Handy = H=>U4(x) = CO . (5.22d)

Bezdek et al. chose the T norm for aggregation of values of the
premise membership functions, i.e., T (a, b) = ab. The functions in

Figure 5.13 satisfy mj^(x) +mj^(x) = 1, so mj^(x) = l-mj^(x) for x in
[0, 4], and similarly for y. Since m and m^ are the same for x and y,

Li H

the rules in (5.22) can be written In terms of a single membership
function m(z) = l - | z | / 4 , where z can be x or y In [0, 4]. The firing
strengths {a^ (x) = T(m(x),m(y))} for the four rules in (5.22) are

(5.23a)
(5.23b)
(5.23c)
(5.23d)

Substituting the right sides of (5.22) and (5.23) into equation (4.73)
jaelds an explicit formula for l>rs4:

hjs^{x;x,x,j,cd) = m{x)m[y)[x^ + y^ +(i)-x-y] ^̂ 24)
+m(x)[x - 0)] + m(y)[Y - co] + co

This is a particularly simple fuzzy system as Its output can be
computed directly with (5.24). Since m(0)=l and m(4)=0, boundary
conditions can be computed from (5.24) at the four comers of the
domain [0,4]x[0,4],

R r ttj (x) = m(x) • m(y)
R,: ttg (x) = m(x) • (1 - m(y))
R3: ag (x) = (1 - m(x)) • m(y)

R4: a4(x) = (I -m(x)) (l -m(y))

IMAGE PROCESSING AND COMPUTER VISION 569

b™,((0,0);T.A,.p.co} = 0

b^4((0,4);t.x.Y.«) = X

b^4((4,0);x.x,Y,co) = Y

b^4((4,4):x,?L,p,co) = co

(5.25a)

(5.25b)

(5.25c)

(5.25d)

This shows that the constants on the right sides of R , R and R in
(5.22) simply fix the values of bTS4 at the corresponding comers of its
domain. It would be unusual not to specify % = y, as this would
destroy symmetry of the surface with respect to the plane {x = y} in
9t for features such as f„, (w) and f„ (w).

Sn Sv
Rule R is the critical rule

for brs4 because Uj (x) = x^ + y^ controls the shape of its graph in the
neighborhood of 0. Since m(x) and m(y) will both be close to 1 near 0,
the value x^ +y^, which is Just the x-th power of the Minkowski x-
norm of x, will dominate (5.24) near 0.

Example 5.4 The blending function b.j^^ was applied to the Lena
image in Figure 5.4(a) with the following protocols: input features to

the blending function were x = (|fgj^(w)Ufg^(w)|j, scaled to the

interval [0, 4]; x = 4, % = Y= 2 and o) = 3. The output image was
dynamically scaled (Bezdek et al., 1998a). Figure 5.14, right view, is
the graph of the surface bi34 over the input domain [0, 4] x [0, 4]. For
this X the blending function is locally convex near 0, resulting in
suppression of all but the brightest edges in the input image. The
output is shown on the left side of Figure 5.14.

•i

r/^^ C I)

Figure 5.14 TS4 edge image and graph of b__. for x = 4
TS4

570 FUZZY PATTERN RECOGNITION

The left side of Figure 5.15 shows the output of the TS4 edge detector
made with exactly the same computations as those discussed for
Figure 5.14, except that for the right side of rule 1, x = 1. At this
setting the blending function is locally linear near the origin (see
the right view in Figure 5.15), resulting in an edge image that
enhances structural details such as the feathers along the tail of the
hat.

r F
r.>

Figure 5.15 TS4 edge image and graph of the b.^^ for x = 1
TS4

As X decreases, the shape of the blending surface defined by the
function b^^continues to sharpen. The effect of this is seen in the
left view of Figure 5.16, which depicts the TS4 edge image at x = 0.25.

(~rT2i7T~2TT)

Figure 5.16 TS4 edge image and graph of the b,j,_, for x = 0.25

IMAGE PROCESSING AND COMPUTER VISION 571

These three views of Lena show that a very wide range of edge-
enhanced images can be reahzed by simply adjusting a single
parameter (x) in the TS4 blending function. Bezdek et al. {1998a)
discuss the utility of this feature for digital mammography, where
an on-line viewing facility might enable practicing radiologists to
view and tune enhanced edge images for optimal visual assessment
in near real time.

Compare Figures 5.14-5.16 to previous and subsequent edge images
of Lena. You will notice that the TS4 Images have a "3D" like sheen
to the edges. This is due in part to the fact that these three images are
not thresholded. Instead, the pixel intensities are dynamically
rescaled so that there is a full, 8 bit output range available for each
pixel in these images. Applying any thresholding techniques
discussed in Section 5.5.A to these three images would result in
black and white edge images that have a more conventional
appearance, such as those in Figure 5.20.

Summarizing, the key points made in Bezdek et al. are: (i) statistical
features such as the range and standard deviation of window
intensities can be as effective as more traditional features such as
estimates of digital gradients; (ii) blending functions that are
roughly concave near the origin of feature space can provide
visually appealing edge images; (iii) geometric considerations can be
used to specify the parameters of generalized logistic functions and
TS systems that yield a rich variety of edge images; and (iv),
understanding the geometry of the feature extraction and blending
functions is the key to using models based on computational
learning algorithms such as neural networks and fuzzy systems for
edge detection.

gradient
direction

comer triple
point

uniformity
evaluation

regions

Figure 5.17 Comer and triple points in Law et al.'s edge detector

572 FUZZY PATTERN RECOGNITION

Law et al. (1996) propose a fuzzy logic based edge detector in which
local features such as gradient, symmetry and straightness (see
Section 5.2) are combined to determine edgeness, comerness, and
tripleness. They argue that the traditional definition for an edge
point as the point of high gradient between two uniformly flat
regions is not valid at corners (where a uniform region has a sharp
corner) and Junctions (where three regions meet). Figure 5.17 shows
these situations.

The fuzzy rules used to compute memberships in the fuzzy sets
edgeness, comerness, and tripleness are summarized in Table 5.4.
As in Tables 5.1 and 5.2, some compactiflcation of these rules can be
realized. For example, the first four rules can be replaced by the
single rule : IF gradient is low THEN edgeness, comerness and
tripleness are low (and similarly for rules 5 and 6).

Table 5.4 Fuzzy rules for edgeness, comerness and tripleness

gradient symmetry straight- edge- corner- triple-
ness ness ness ness

low low low low low low
low low high low low low
low high low low low low
low high high low low low
high low low low low high
high low high low low high
high high low low high low
high high high high low low

The memberships for gradient, symmetry and straightness are
determined using gray-level values within the window, as explained
in Section 5.2. The memberships in edgeness, comerness, and
tripleness are used to trace edges and Join edge segments, as will be
described in the next section.

5.4 Edge Unking

Section 5.3 discussed several fuzzy algorithms that identify pixels
that may belong to an edge in an image. Many "edges" are (visually)
fragments of larger edge structures. Edge linking techniques attempt
to bind edge fragments, forming an image with better visual acuity
than images made by edge detection.

Law et al. (1996) use edgeness, comerness, and tripleness along with
the edge direction perpendicular to the gradient direction to Join
edge fragments. They consider the four possible pairs of pixel
neighbors (1,9), (2,8), (3,7) and (4,6) to a center pixel X as shown in
Figure 5.18. If the edgeness of the central pixel exceeds that of the
neighboring pixels, then the central pixel is marked as a crisp edge
point. Then the edgeness image is thresholded to remove weak edge

IMAGE PROCESSING AND COMPUTER VISION 573

points, and T-, Y-, and X-shaped patterns are removed to simplify
tracing. Law et al. do not specify how these patterns are detected.
This removes junction points, but such points are taken into
account by using comemess and tripleness features.

1

1—4.
7

2 3
- —^-*y'

Y- -*—

1

1—4.
7 8 LlJ

Figure 5.18 Four possible pairs of neighbors to X

To trace and join edge segments. Law et aL consider the four cases
shown in Figure 5.19: joins between aligned edge segments (two end
points), between two segments at a comer (two end points), between
three segments that represent a "Y" junction (three end points), and
between two segments at a triple point (one end point, one mid
point).

comer point

(a) between two
aligned fragments

• <

(c) between three
fragments at a Y

• <

(b) between two
comer fragments

triple points

(d) between two fragments
at a triple point

Figure 5.19 Types of joins considered by Law et al. (1996)

In addition to edgeness, comemess and tripleness, fuzzy rules that
govern the joining process are based on alignment and proximity.
Alignment is the difference in angle between two edge fragments
containing the end points, and proximity is the Euclidean distance
between two end points. The fuzzy rules to compute joinness are

574 FUZZY PATTERN RECOGNITION

listed in Tables 5.5-5.8. In Table 5.5, interim edgeness is computed
by using the rules for edgeness in Table 5.4. The first rule from Table
5.5 reads:

IF alignment is low
AND proximity is low
AND interim edgeness is low
THEN joinness is low.

Table 5.5 Fuzzy ndes for aligned-edge join (Figure 5.19(a))

alignment proximity interim
edgeness

Joinness

low low low low
low low high low
low high low low
low high high medium
high low low low
high low high medium
high high low medium
high high high high

Table 5.6 Fuzzy rules for comer join (Figure 5.19(b))

comemess at proximity joinness
intersection

low low low
low high low
high low low
high high high

Table 5.7 Fuzzy rules for 3-edge triple join (Figure 5.19(c))

tripleness at proximity Joinness
intersection

low low low
low high low
high low low
high high high

Table 5.8 Fuzzy rules for 2-edge triple join (Figure 5.19(d))

tripleness near proximity Joinness
intersection

low low low
low high low
high low low
high high high

IMAGE PROCESSING AND COMPUTER VISION 575

Membership functions for linguistic values such as low and high
can be found in Law et al. (1996). As in several previous examples,
the first two rows in each of Tables 5.6-5.8 can be combined into
single rules, but Law et al. (1996) show them as above.

Example 5.5 Figure 5.20 illustrates the edge joining process
proposed by Law et al. (1996). Figure 5.20(a) shows the basic skeleton
of edge fragments. Figure 5.20(b) shows the result after short lines
with less than three pixels are removed. Figure 5.20(c) is the result
after the joins are completed. Figure 5.20(d) is the final result after
unconnected lines are removed.

„ mm f
(a) ba^c edge skeletcm (b) short lines are removed

(c) joins are completed d) unconnected lines are removed

Figure 5.20 Edge joining as given in Law et al. (1996)

576 FUZZY PATTERN RECOGNITION

Figure 5.21(a) shows the original "camera man" image, and view
5.21(b) shows the result of Law et al.'s procedure after the steps of
fuzzy filtering, edge detection, tracing and Joining.

(a) "camera man" image tb) final result

Figure 5.21 Law et al.'s procedure illustrated on the camera man

Kim and Cho also (1994) describe a fuzzy reasoning method to
perform edge linking. Their algorithm is based on the relaxation
labeling approach proposed by Hanson and Riseman (1978). The
basic idea is to increase or decrease the edge strength associated with
a crack edge depending on its compatibility with the crack edge
strengths in the neighborhood. Figure 5.22 illustrates the idea of a
crack edge.

DIDID
, + -e-+
DIDID

g

I I pixel

— crack edge

+ vertex

Figure 5.22 A neighborhood of crack edges

A crack edge occurs between a pair of adjacent pixels. A
neighborhood consisting of the center crack edge e and six other
crack edges labeled a, b, c, f, g, and h are shown in Figure 5.22. Kim
and Cho heuristically select 10 compatibility relationships between
an edge and its neighboring edges based on considerations such as
linearity of edges. The edge strength associated with a compatible
crack edge is increased, and the edge strength associated with an

IMAGE PROCESSING AND COMPUTER VISION 577

incompatible crack edge is decreased. This relaxation process is
repeated until convergence. Figures 5.23(a)-(c) show examples where
the edge strength of the central crack edge (denoted by a blank
rectangle) should be decreased. Here, filled rectangles indicate
strong crack edges and dotted lines indicate weak edges. Similarly,
Figures 5.23(d)-(f) show examples where the strength of the central
crack edge should be increased. Kim and Cho associate one fuzzy rule
with each of 10 cases (6 of the 10 rules are shown).

I 1

(a)

I 1

(b)
I ' 1

(c)
I

(d)

I I

(e)

I
I

(f)

J,
I

Figure 5.23 Incompatible (a-c) and compatible (d-f) crack edges

For example, the rule corresponding to Figure 5.23(d) is

IF a is small
AND b is big
AND c is small
AND f is small
AND g is big
AND h is small)
THEN e is increased by positive large.

Kim and Cho use Gaussian-shaped membership functions for the
antecedents big and sm.all and tune the parameters of the
membership functions by training a neural network with a set of
synthetically generated crack edge data . The consequent
membership functions that represent positive large and negative
large are modeled by crisp singletons (±1 respectively), so this is
another instance of the 0-th order TS model. Kim and Cho show that
fuzzy edge relaxation is faster and gives better results when
compared with traditional techniques.

Example 5.6 Figure 5.24(a) shows the 128x128 noisy image of a ring
used by Kim and Cho (1994). Figure 5.24(b) shows the corresponding

578 FUZZY PATTERN RECOGNITION

edge image obtained by applying the crack edge operator (see
Rosenfeld and Kak, 1982) and then thinning the result by non-
maximal suppression.

(a) Original noisy image (b) Initial edge image

Figure 5.24 Raw data for edge linking examples

(a) 1 iteration (b] 5 iterations

.25 Kim and Cho's edge linking method

(a) 1 iteration tb) 40 iterations

Figure 5.26 Hanson-Riseman's edge linking method

The result after one iteration of applying Kim and Cho's fuzzy
relaxation algorithm to the image in 5.24(b) is shown in Figure
5.25(a). The result after five iterations is shown in Figure 5.25(b).

IMAGE PROCESSING AND COMPUTER VISION 579

The results of applying the Hanson-Rlseman method to the edge
image in Figure 5.24(b) after 1 and 40 iterations are shown in
Figures 5.26(a) and (b) respectively. Visually, the Kim and Cho output
at 5 iterations is quite superior to the Hanson-Riseman output after
40 iterations.

5.5 Segmentation

Image segmentation is an important step in many computer vision
algorithms. The objective of segmentation is to divide an image into
(meaningful) regions. Errors made in this stage will impact all
higher level activities. Therefore, methods which incorporate the
uncertainty of object and region definition and the faithfulness of
the features to represent various objects (regions) are desirable. Pal
and Pal (1993) and Bezdek and Sutton (1999) have contributed to the
plethora of surveys on this topic.

In a segmented image, ideally each region should be homogenous
with respect to some characteristics or features such as gray level or
texture, and adjacent regions should have significantly different
characteristics or features (Haralick and Shapiro, 1992). As in
Section 5.1, let IJ denote the two-dimensional domain of the image
P „ . More formally (Fu, 1982), segmentation is the process of
partitioning the entire image P into c crisp and maximally
connected subregions such that each region R is homogeneous with
respect to some predicate P, i. e.,

R j n R j = 0 Vi, j , i , i j

R , 1,..., c are connected . (5.26)

^(Rp = TRUE Vi

p[K^ u R.) = FALSE if i ?t j and R̂ is adjacent to R

The crisp membership function mj^ : IJ -^ {0,1} of a region Rj is

" - H , n . J) = { i : i ; :] ! : H ; } • (5.2^

In many situations it is not easy to determine if a pixel should
belong to a region or not. This is because the features used to
determine homogeneity may not have sharp transitions at region
boundaries. This is especially true when features are computed

580 FUZZY PATTERN RECOGNITION

using, say, a local 3x3 or 5x5 window. To alleviate this situation, we
can insert fuzzy sets concepts into the segmentation process. The
first reference to fuzzy segmentation was made by Prewitt (1970),
who suggested that the results of image segmentation should be fuzzy
subsets rather than crisp subsets of the image plane. In a fuzzy
segmentation, each pixel is assigned a membership value in each of
the regions. If the memberships are taken into account while
computing properties of regions, we often obtain more accurate
estimates of region properties. This will be discussed further in
Section 5.7.

The result of a fuzzy segmentation is a partition of P into c fuzzy

subsets {RJ. Each R is represented by its membership function

mj^ :IJ->[0,1], which replaces the membership function in (5.27).

For (i, j) 6 Pjj, mj^ (i, j) represents the degree to which (i,j) belongs to

R. A fuzzy segmentation of an image into c regions is a fuzzy cxn

partition matrix U = [u], where u = m (i, j). This construction

loses the connectivity among regions that is presumably enforced by
construction of the predicate P in (5.26).

A. Segmentation via thresholding

Thresholding is one of the simplest methods to obtain a crisp
segmentation a unispectral image. Thresholding generates a binary
image in which the pixels belonging to objects have the value 1 and
pixels belonging to the background have the value 0. Binary images
are popular, but images are normally acquired as gray-scale images.
Ideally, objects in the image should appear consistently brighter (or
darker) than the background. Under such conditions, a binary
image of the object can be obtained by thresholding the gray level
image. Using Xj for location (i, j), the thresholded image is given by

There are several traditional thresholding techniques in the
literature to determine the "correct" threshold t (Sahoo et al. 1988,
Pal and Pal, 1993). Two broad categories of fuzzy techniques are: (1)
methods that search for a threshold x which maximizes or
minimizes an index of fuzziness based on the membership values
assigned to pixels in the image; and (2) methods that cluster the gray
values into two classes. Methods based on clustering will be
discussed in the next section.

Typically it is assumed that the gray-level of a pixel is related to the
degree of membership of the pixel in the object. If the object is

IMAGE PROCESSING AND COMPUTER VISION 581

lighter than the background, then it is reasonable to suppose that
the higher the gray-level value, the higher the membership value of
the pixel in the object region. Therefore, the membership function
mj^ (Xj) is obtained by mapping gray levels into the interval [0,1].

This mapping is generally monotone increasing. Let I{X) e [0, G -1]
denote the gray level of a pixel. Here we present two of the most
frequently used mappings for generating membership functions. Let

m„ (I(X)) =
0
al{X) + b
1

I(X) < aj
a^ < 1(X) <
I(X) > a^

a^ < 1(X) < a^ , where (5.29)

B.n — a i
and b = (5.30)

If a^ is the minimum gray level in the image and a^ is the maximum
gray level, then we have a simple linear mapping. Equation (5.30)
has the following advantages: it provides a reasonably smooth
transition between background and object regions, it can be easily
manipulated by fuzzy operators, and it lends itself to hardware
implementations if speed is crucial. Another popular mapping is the
so-called S-function

m^^(l(X)) = S(I(X)) =

fo
i r i (X) - a
2!, b - a

l . l f M l ^ f ;b<I(X)<C

;I(X)<a

; a < I(X) < b

1
2V c - b

;I(X)>c

(5.31)

In (5.29) (ai+a2)/2 is the cross-over point; in (5.31), b is the cross-over
point. Gray values above the cross-over point have memberships
greater than 0.5, and gray values below the cross-over point have
memberships less than 0.5. Therefore, a thresholded image can be
obtained by choosing x to be the cross-over point.

To find the optimum cross-over point or threshold, we can compute
measures such as the linear/quadratic index of fuzziness (Pal et al.
1983a, Murthy and Pal 1990), fuzzy compactness (Pal and Rosenfeld
1988), or index of area coverage (Pal and Ghosh 1990). Usually a and
c in (5.31) are fixed, and b is varied. For each b, the index of fuzziness
is computed, and for any of the three indices just mentioned, we pick
X = b in (5.31), corresponding to either the global minimum or
maximum, depending on which measure is used, as the threshold.
The linear index of fuzziness (Kaufmann 1975) is

582 FUZZY PATTERN RECOGNITION

y,(P„) = ^l^^l^n^(X^).l-m^^(X)] . (5.32)

The quadratic index of fuzziness (Kaufmann 1975) is

'^''^^' = ^ ^ min\m^JX^U-m^^[XJ (5.33)

Definitions of compactness and index of area coverage are given in
Section 5.7. We mention that any measure of fuzziness can be used
for thresholding; see Pal and Bezdek (1994) for an extensive list of
other indices. Fuzzy divergence and probability measures can also
be used for object-background segmentation of images (Bhandari et
al., 1992).

Object boundaries in gray-scale images are often blurred and
distorted due to the imaging process. The thresholding operation
does not preserve the uncertainty in the image, and could distort the
shape and size of the object. An alternative approach is to preserve
the uncertainty inherent in the image as long as possible until
actual decisions have to be made. This will be discussed further in
Section 5.7.

B. Segmentation via clustering

In general, pixel intensity is not directly related to membership
degrees of the pixel in the objects/regions (for example, a textured
region). Therefore, we need to generate membership functions for
regions in the image. If we extract p features at pixel X., then X can be

represented by a feature vector x in 3{^. The components of x. may be
jus t intensities (in the case of multispectral images), or jus t
functions of the intensities, or both. Moreover, If we select the
features judiciously, then the feature vectors corresponding to each
meaningful region may form clusters in 9^^. Presumably, the object
data X = {x ,x ,...,x } corresponding to the n pixels in the image
can be clustered into a required number c of clusters using a suitable
hard/fuzzy/possibilistic/probabilistic clustering algorithm.

Clustering algorithms generate a cxn partition matrix U = [u],
where Uj^ is the membership of the k-th pixel X^ in the i-th region R.
The i-th row of U contains values of the membership function
mj^ of R. Hardening the columns of U with (1.15) then gives us a

crisp segmentation of the image. However, since clustering is
unsupervised, it is not possible to predict what clusters will emerge

IMAGE PROCESSING AND COMPUTER VISION 583

from a perceptual standpoint. Moreover, there is no guarantee that
the {RJ generated by hardening U will be connected regions in the
image, or regions satisfying a predicate like those in (5.26). And as
usual, you have to worry about how to specify or identify the number
of classes c.

In terms of generating membership functions for later processing,
the c-means clustering models have several advantages. They are
unsupervised; they can be used with any number of features and
classes; and they distribute membership values across the classes
based on "natural" groupings in feature space.

When n is large, (e.g. n=65,536 for a 512x512 image) clustering
methods are time consuming. However, some simplifications are
possible if features have quantized values. For example, if the gray
level of a pixel is a feature, then typically there are only 256 possible
values for the feature. In a given image, there will usually be many
pixels with identical feature vectors. Therefore, X can be stored in a
more compact form as X = {(hj,Xj^),--,(h,^,Xj^),•••,(h ,x)}, where the
feature vectors x are all distinct, h is the frequency of occurrence of
X , and q is the total number of distinct feature vectors. The values
{h} can be obtained from the p-dimensional histogram of the

feature vectors. Since the membership of a feature vector in a cluster
depends only on the values of the features, (2.7b) or (2.8b) can be
written as

J<Vk
^ = k 3 i _ J L J L J L , i = i c . (5.34)

^ " i k • ^ k k=l "" ^

If q « n , then (5.34) is considerably more efficient than the original
formulation. Since an array of size cxq (rather than cxn) can be
used to store all the memberships, there will be considerable savings
in memory as well.

The segmentation obtained depends very much on the distance
measure used in the c-means algorithm. Euclidean distance is
effective only when the clusters are well separated, when they are
expected to be hyperspherlcal, and when they are approximately
equal in size. When this is not the case, other algorithms such as the
Gustafson-Kessel (1978) algorithm (see Section 2.4) or the Gaussian
mixture decomposition (GMD) algorithm (see Section 2.3) can be
used.

584 FUZZY PATTERN RECOGNITION

Example 5-7 As an illustration we compare the performance of FCM
with the Euclidean norm with that of the GK and GMD algorithms
on a simple segmentation problem. In all cases the number of
clusters specified was c = 3. FCM used the first three feature vectors
as the initial prototypes. GK and GMD use the fuzzy partition
generated by 5 iterations of FCM for their initializations.
Termination in all cases occurred when the absolute change in every
membership Uy (or posterior probability py) was less than 0.001.

That is, the termination norm was U. - U
t-ill

< 0.001.

Figure 5.27(a) shows the original 256x256 image of an outdoor scene.
The original image is a color image with red (r), green (g) and blue (b)
components. We used two Ohta (1985) features, intensity =(r+g+b)/3
and excess green =(2g-r-b). For convenience we call this 9t^(0hta).
Since the sky is very uniform, the sky feature vectors form a highly
compact cluster (bottom left in Figures 5.27(b-d). Figures 5.27(b-d)
show the clustering results in 9t^(Ohta). The black dots are the
estimated centers and the ellipses enclose points within a
Mahalanobis distance of 2 of each center point. The third ellipse in
Figure 5.27(d) - the sky - is really tiny, but it's there - see if you can
find it. Equation (2.27) is used to compute the covariance matrix in
the Mahalanobis distance after the algorithms terminate. We have
repeated the original image, panel (a) on this page, in the lower right
panel of the next page so you can compare the segmentations shown
there to the input image without flipping back and forth to this page.

(a) An outdoor scene we've all seen (b) FCM clusters in "^ (Ohta)

Figure 5.27 Segmentation via clustering

IMAGE PROCESSING AND COMPUTER VISION 585

(c)CaC dusters in 3t^(Ohta)

• '1 i-'

J i

. . , ! ? !

(cQCfflflD clusters in 9t^(Ohta]

;i

V,V-.K.
J

'A

' f.

(e) FCM s^mentation ICaKs^mentation

(^CSVlDs^mentation Raw image {rqieated)

Figure 5.27 (con't.) Segmentation via clustering

586 FUZZY PATTERN RECOGNITION

Figures 5.27(e) and (f) show the segmentation results achieved by the
FCM and GK algorithms respectively, where the feature points from
the sky and road regions are lumped into one cluster and the feature
points from the tree region are divided into two clusters. The
segmentation result from the GMD algorithm in Figure 5.27(g) is
quite good, giving a clear distinction between the road and sky.

In many segmentation applications (e.g., outdoor scenes), the
number of clusters is not known in advance. In such cases, the
methods discussed above cannot be applied without using, for
example, an ancillary validity measure to determine the number of
clusters (see Section 2.6). This approach can be computationally
expensive. An alternative is to use an algorithm such as RCA (see
Section 2.5), which determines the number of clusters d5Tiamically
during execution of the algorithm.

Example 5.8 Figure 5.28(a) shows the intensity representation of a
color image of a house. The color image has red (r), green (g) and blue
(b) components. The outputs shown are based on a reduced image
that was made by using only every third pixel in the image in both
the horizontal and vertical directions to reduce computation time.
Figure 5.28(b) shows the five clusters identified by RCA in the 2D
feature space extracted from the 3 intensities, where x = red-blue
difference (r-b) and x = excess green (2g-r-b).

(a) Original image (b) Clusters in feature space

Figure 5.28 Segmentation by the RCA algorithm

IMAGE PROCESSING AND COMPUTER VISION 587

(c) Segmented image

Figure 5.28 (con't.) Segmentation by the RCA algorithm

The GK distance at (2.28) was used in this example. The ellipses
enclose points within a Mahalanobis distance of 4. RCA was
terminated when the prototypes did not change significantly
between two successive iterations. Since each "prototype" consists of
a point prototype v and a covariance matrix C the termination
condition was jointly applied to both sets of parameters, viz.,

J B ^ { l K t - V - i | | J < 0 - 0 1 and max{||c,^-C^^^_J|}<0.1, where t
1<1<C 1<1<C ^ '

represents the iteration number.

Outlier points (i.e., points for which the possibilistic weights are
equal or nearly equal to zero in all clusters) are shown as small
squares in Figure 5.28(b). Figure 5.28(c) shows the segmentation
corresponding to Figure 5.28(b), where each point is assigned to the
cluster with the largest membership. Outlier points are shown in
white in this figure, and they correspond to small and narrow
classes such as the edge of the roof and the trees on the left and right
sides of the house. The vertical region to the left of the house is
segmented incorrectly in several places. This is probably due to
small differences in color which are visible in the original image
that are differenced out during feature extraction. An alternative
explanation is that the sampling used made these classes have too
few points in the 2D feature space to be Identified as legitimate
clusters.

Boujemaa et al. (1992a) present a segmentation algorithm that
models the uncertainty in pixel information based on fuzzy
clustering (e.g., FCM). They use the idea of a "gradually focusing
decision". The algorithm proceeds in two steps. The first global step

588 FUZZY PATTERN RECOGNITION

selects (in a non-sequential way) the most "ambiguous" pixels,
which are close to regions boundaries. The ambiguity is measured by
fuzzy memberships. The "strongest" (or least ambiguous) pixels
represent the coarse information of the scene and locate the inner
parts of regions. The second step performs fine segmentation of
boundaries. It focuses exclusively on the ambiguous pixels and
ignores all the others already classified in the previous global stage.
Each ambiguous pixel is merged with one of the neighboring regions
in the local neighborhood of the pixel. This way, "weak" and "vague"
pixels, representing transition zones, are disambiguated by strong,
contextual region membership information. This coarse to fine
segmentation strategy provides finer boundary localization and
smooth edge detection. Boujemaa et al. (1992b) apply this technique
to images in several medical domains, including ventricular
endocardium detection.

C. Supervised segmentation

If segmentation is unsupervised (the input data is not labeled), then
either humans or an additional level of post-processing is needed to
assign meaningful physical labels to algorithmically determined
regions. Each object or region in the segmented image is labeled
based on one or more properties of the region. (See Section 5.7 for a
discussion of properties of fuzzy regions.)

However, in many situations, unsupervised methods do not give
good segmentation results, because feature vectors belonging to
different objects in the image may not be well separated (for
example, see Figure 5.27(b)). To overcome this problem,
segmentation and labeling can be performed simultaneously, by
using the labels of some pixels extracted from the input data prior to
the training phase of the segmentation process. The semi-supervised
FCM algorithm discussed in Section 2.3 is one example of this
approach (Bensaid et al. 1996a), and our Example 4.7 is an another
illustration of supervised segmentation that uses the crisp k-nn rule
as the classifier. We will comment on other supervised approaches
to segmentation with fuzzy models in Section 5.11. In this
subsection, we consider an approach based on fuzzy aggregation
networks (FAN's) (Section 4.7.D). In this approach, labeled feature
vectors are used to train a FAN, and the output of the FAN is used to
segment and label the image simultaneously.

Example 5.9 Figure 5.30(a) shows a 256x256 image of a guy checking
out the neighborhood - an outdoor scene we've all seen. The original
image was in color, and from it we extracted feature vectors
consisting of the three Ohta (1985) color features and a position
feature. The color features are computed from the r, g and b (red,
green and blue) components of the image as: excess green = (2g-r-b),
red-blue difference = (r-b), and intensity = (r+b+g)/3. The position

IMAGE PROCESSING AND COMPUTER VISION 589

feature is simply the row number. Here we describe a situation where
about 0.5% of the image data was used for training and the whole
image was used in testing. Krishnapuram and Lee (1992a, 1992b) and
Keller and Chen (1992a) show examples where the training and
testing scenes are different. These experiments were conducted with
several information fusion structures.

The features were normalized so that all values fell between 0 and
255. The training data consisted of 60 feature vectors for each type of
object. In this example, 6 objects (classes) were chosen: sky, tree,
roof, wall, grass and road. In the fuzzy aggregation network
approach, we need to compute the membership of each feature in
each of the classes. Therefore, we need to estimate the membership
function for each feature for each object. The smoothed and
normalized histogram of the values of feature i of pixels from class
k was used as the membership function mj^, k=l,. . . ,6, i=l 4.
Smoothing was achieved by averaging the histograms twice using a
window of length 11. The overall training data consisted of 60x6
entries of 6x4=24 memberships. The training method adjusts the
parameters of the aggregation operator used at the top nodes by a
gradient descent technique.

We present the results of three kinds of aggregation operators: the
multiplicative y-model (O neurons), the additive y-model (<&
neurons) and the additive y-model with Yager's union and
intersection operators (<I> neurons). These operators behave like
intersection operators when y is close to 0 and like union operators
when yis close to 1. In addition, they all have parameters Wi that
reflect the relative importances of the features (see Section 4.7). The
O model has an additional parameter TI that regulates the severity
of the union/intersection operators. This parameter may be chosen,
or can be learned, as was done In this example, using the gradient
descent procedure.

Figure 5.29 shows the FAN used. While training, the desired output
of node k in the top layer was 0.99 if the 24-dimensional
membership vector came from class k, and 0.01 otherwise. After
training, the resulting network was used for segmentation of the
image. The features corresponding to each pixel in the image were
fed to the network and the memberships in the 6 classes generated
by the top nodes were recorded. For display purposes, the fuzzy
segmentation was hardened in the usual way, i.e., each pixel is given
the label of the node that has the highest membership. Since the
memberships generated by the network need not sum to 1, they can
be considered as possibilistic memberships.

590 FUZZY PATTERN RECOGNITION

"136 i ni4i

intensi ty blue-red
difference

excess green [position

Figure 5.29 The FAN structure used for image segmentation

Table 5.9 The parameter values of FAN using the O model
M

Node w s
s k y 0.83 1.50 0.46 0.38 1.66
tree 0.68 2.35 0.21 0.52 0.93
roof 0.82 1.36 0.85 0.33 1.46
w a l l 0.84 1.57 0.00 0.00 2.42
grass 0.99 0.01 0.02 0.30 3.67
road 0.95 0.09 0.73 1.17 2.00

Table 5.10 The parameter values of FAN using the O model

Node w s
s k y 0.05
tree 0.15
roof 0.10
wa l l 0.09
grass 0.83
road 0.79

0.31 0.02 3.41 0.26
3.35 0.10 0.10 0.45
0.31 3.49 0.03 0.17
0.32 0.00 3.14 0.54
0.01 0.01 0.16 3.83
0.01 0.76 0.97 2.25

Table 5.11 The parameter values of FAN using the 4> model

Node w s
s k y 0.02 2.93
tree 0.02 3.12
roof 0.02 2.99
wa l l 0.01 0.79
grass 0.50 3.24
road 0.75 2.08

0.36 0.38 0.57 0.30
0.94 0.28 0.32 0.43
0.30 0.42 0.27 0.33
0.13 0.00 0.04 0.41
1.26 1.00 0.93 0.39
2.79 0.94 0.80 0.73

IMAGE PROCESSING AND COMPUTER VISION 591

The final parameters of each node after training are displayed in
Tables 5.9, 5.10, and 5.11 respectively. For all models, the w's of the
nodes for grass and road are union-like since they are close to 1. We
can also conclude that the second feature "b-r" is redundant for the
class wall since all models produce a value of w that is almost 0 for
this feature.

y I
H mfw

,t,- ± • 1

L^^^^^^^:>iio£^^k
(a) original image (b) labeling by O model

(c) labeling by O model (4)labelingby O model

Figure 5.30 Image segmentation and labeling using a FAN

The segmented images corresponding to the O , O , and O models
M'

M ^ " ^ * Y are shown in Figures 5.30(b)-5.30(d) respectively. The O
neuron model results are similar to each other, and somewhat better
than <& , which is similar to other published segmentations of this
scene. For those pixels belonging to the six defined classes, the
segmentation results are quite good. Most misclassified pixels
belong to the objects which are not defined as a class, i.e., the
human, bushes and windows, or at the boundaries between regions.

592 FUZZY PATTERN RECOGNITION

D. Rule-Based Segmentation

The most difficult aspect of automated segmentation is that no
matter how good the training data are, unseen images will contain
new objects, or objects that are sufficiently different from those in
the training data, that the new image falls well outside the
"experience" of the system. For example, different abnormal
patients (with, say, brain tumors), simply have very different
pathologies and anatomical structures from each other, so it is very
hard to find a classifier that generalizes well across many abnormal
patients. Most vision-aided assistance systems are aimed more
towards separating images into normal and abnormal groups
(perhaps with an additional "don't know" class), and then calling for
help. In the context of automatic target recognition, for example,
much progress has been made in the detection of targets in their
background (where is an object?), but much less progress is evident
in recognition (what is the object?). In this subsection we show how
rules that attempt to capture human expertise can be used to
augment low level segmentation - a step, we think, on the way
towards truly automatic scene interpretation systems.

Bezdek et al. (1997a) summarize an ongoing body of work (Hall et al.,
1992, Li et al., 1993, Clark et al., 1994, Vaidyanathan et al., 1995,
Cheng et al., 1995, Bensaid et al., 1996b, Clark et al., 1998)) by
comparing the results of unsupervised, supervised and rule-based
segmentations of images in the medical domain obtained with a
knowledge-based (KB) system. We repeat part of an example given in
Bezdek et al. which ties together several algorithms discussed in
Chapters 2, 4 and 5. In this discussion a true positive (true negative)
is a correctly identified tumor (non-tumor) pixel; while false
positives and false negatives correspond, respectively, to "false
alarms" (pixels which are called tumor that are not), and "missed
targets" (pixels classified as not tumor which are tumor pixels).

The image shown in Figure 5.31(a) is the Tl data of an MR image
from a (Tl, p, T2) MR slice of a patient with a tumor in the middle left
section of the brain. The numerical features extracted from this
image are the intensities of the pixels in these three dimensions. In
this example we denote the 3D pixel data as X. The tumor is the white
area that appears as an outline or boundary of a darker region
within it. The white pixels are the tumor, and possibly blood vessels
feeding it. The darker region within the tumor is (possibly) a
combination of white matter, gray matter, and dead tissue.

Views (b)-(h) in Figure 5.31 are a set of black and white images made
from the original (3D) image data by various techniques, each of
which is an estimate of the tumor pixels in X. In these views "Seg"
stands for "segmentation of. Figure 5.31(b) shows the ground trutii
image for the tumor, hand-labeled by an expert radiologist.

IMAGE PROCESSING AND COMPUTER VISION 593

Black pixels in this view
(which are white in the LHS of
panel (a)) are the tumor pixels

(a) original Tl MR image

y

\

(c) tumor estimate from
a k-nn segmentation

^

[b) Radiologist ground truth
obtained by hand labeling

• i i j ' 1

L' ^
r r ' •. — •

''̂ ^m^L^H î
'J

N

(d) X° s pathology mask
created with crisp rules

€i
(e) X̂ =Seg(X°)byFCM (f) X^ =Seg(X^)withVGC/FCM

m m m m

Figure 5.31 Several approaches to image segmentation compared

594 FUZZY PATTERN RECOGNITION

Acquisition of the training data for the computational schemes was
done as follows. First, the operator selected a subset of training
pixels from each tissue class (approximately 50 pixels per class, by
eye). These training data were used by the k-nn classifier to label the
remaining unlabeled pixels in the source image. If visual evaluation
of the result was accepted, the training data were fixed. If the
segmentation was judged unsatisfactory, the procedure was repeated
with new training data until an "optimized" k-nn segmentation was
found, and the training data that produced it were taken as the
training data for this image. Figure 5.31(c) shows the tumor region
estimated by segmenting X into c = 7 regions (tissue classes) by this
supervised, operator-optimized scheme using a crisp k-nn rule of the
type given in Section 4.4.

Most of the remaining views in Figure 5.31 are based on the
following steps. First, an initial segmentation of X is made by
clustering it into c=7 classes with unsupervised FCM. In this, as well
as all successive views that utilize the FCM algorithm, the basic
parameters are m = 2, the Euclidean norm for both J and
(successive prototypes termination norm) E , and e = 0.001. The KB
system (which has itself been trained with other input image data)
removes the skull tissue and air classes using crisp rules. The rule
base is divided into sub-blocks that have different rules for different
parts of the human brain. Structure in the upper slices is
represented by 40 rules, and 83 rules are used for the lower slices.
Stage 5 is the final thresholding on the Tl image, and has 31
additional rules that pertain to all slices. Rules in this system are
not fuzzy; they are crisp rules implemented in the CLIPS rule-based
expert system shell (Giarratano and Riley, 1994). Rules for the intra
cranial mask (Figure 5.31(d)), for example, use histograms of the MR
bands for pixels in the mask in crisp rules of the following form:

IF Tl(i,j) > Tl histogram peak
AND p(i,j) > p histogram peak
THEN keep (i,J) as possible tumor
ELSE mark (i,j) as non-tumor

For another example, given an 8-connected component image of
candidate tumor pixels and a known tumor region, a tj^Dical crisp
rule looks like

IFTl mean value of region i is within one standard
deviation of the mean of the known Tl tumor region
in the Tl feature spectrum

THEN keep region i as tumor
ELSE remove region i from tumor list

Rules of this type provide an initial segmentation of the tumor
pixels from remaining tissue classes that have already been isolated
in previous stages.

IMAGE PROCESSING AND COMPUTER VISION 595

At this stage the KB system identifies the patient as abnormal and
removes what it believes to be the CSF, white matter and gray matter
and extracranial pixels. This leaves the KB mask X° shown in

m
Figure 5.31(d), which is the set of (mostly) pathological pixels in the
image. The vectors associated with X° are a reduced image which is
believed to contain the suspicious region which is now reclustered
into c = 5 classes using various techniques.

View 5.31(e) shows the results of segmenting X using unsupervised
FCM at c = 5, followed by hand labeling of the pixels in the resultant
segmentation by a human operator. You can see a number of Islands
in the southeastern quadrant of this output that are mistakes. Let
X^ denote the pixel vectors associated with the spatial locations in

5.31(e). View 5.31(f) shows the results of reclustering X^ using
validity guided (re)-clustering (VGC, see Bensaid et al., 1996b). It is
pretty hard to see any improvement, but the number of false
positives in 5.31(f) - as measured against the ground truth in 5.31(b) -
is reduced slightly by VGC. However, the island mistakes persist.

Training data set X° is processed by the ssFCM algorithm to create

view 5.31(g), the pixels of which we call X^ . Figure 5.31(h) is the

output obtained by appljdng the KB to X^ . This view compares well
with the ground truth in view 5.31(b). Most of the southeastern error
Islands are eliminated, but there are few new islands sprinkled
around emd in closer to the tumor mainland.

@ X^ = Seg(X^) by ssFCM (h) Seg(X^) by the KB system

Figure 5.31 (con't.) Several approaches to image segmentation

Clark et al.'s (1998) system comprises 6 stages. The first step is still
unsupervised segmentation of MR slices with FCM. Initial FCM
segmentations are used two ways. First, brain tissue regions are
separated from extracranial clusters, and crisp morphological

596 FUZZY PATTERN RECOGNITION

operations are used to clean up the initial tumor segmentation. The
FCM output is also used to create the intracranial mask (Figure
5.31(d)). The remaining stages apply to the mask, and can be broadly
lumped together as tumor recovery through region analysis of the
tissues that have been retained, which consist of tumor and other
tissue classes. Very roughly, initial tumor segmentation is done
with adaptive histogram thresholding, which is then refined by
"density screening", and then removal of the regions that do not
contain tumor.

The system described by Clark et al. (1998) is completely automatic -
no human intervention is needed on a per volume basis. The system,
trained on 3 sets of MR slices, and tested on 13 new sets of unseen
slices, almost replicates the radiologist ground truth in many of the
test cases. Next we provide an example of simple fuzzy rule
generation by returning to the fuzzy aggregation network discussed
in Section 4.7. The following example using the FAN is adapted from
Krishnapuram and Rhee (1993a, 1993b).

Example 5.10 We return to a 200 x 200 subset of the image shown in
Figure 5.27(a), an outdoor scene consisting of three regions, "road",
"sky", and "vegetation". Two texture features computed from 15x 15
windows over the input image, homogeneity and entropy (Haralick
et al., 1973), along with intensity (gray level) were used in this
experiment. One hundred samples from each of the three regions
were used to represent the classes in the training data.

Entropy

1.0--

0.8

0.4..

0.2..

0.0

4 4
^+.

^^^ J= ^.+..:t. *=*=!+ *= t^
4 t+lik-*,-^^"^ ^-^

X

A Road
OSky
-j- Vegetation

0 Og

-£—> Intensity
0.0 0.2 0.4 0.6 0.8 1.0

Figure 5.32 Views of pairwise features for the outdoor scene

IMAGE PROCESSING AND COMPUTER VISION 597

Entropy
A

1.0

0.8

0.6

0.4

0.2

0.0

4P^

fe
%

\ ' T

flL

A Road
OSky
+ Vegetation

I % ^ Homo-
0.0 0.2 0.4 0.6 0.8 1.0 8^"^^^

Figure 5.32 (con't.) '̂ ^ews of pairwise features for the outdoor scene

Figure 5.32 scatterplots two of the three sets of 2D features from the
original 3 features for the outdoor scene. The top view in Figure 5.32
plots intensity against entropy, and in this view the three classes
are fairly well separated (visually, perhaps even linearly). The
bottom view in Figure 5.32 shows that the vegetation is still fairly
separate from the other two classes, which seem somewhat more
mixed in this pair of features. Bear in mind that these plots are for
the training data, so good separability is not too surprising.

1.0 r

0.0 0.2 0.4 0.6 0.8 1.0
Homogeneity

Figure 5.33 Smoothed histograms of the three features

598 FUZZY PATTERN RECOGNITION

0.4 0.6
Entropy

0.4 0.6
Intensity

Figure 5.33 (con't.) Smoothed histograms of the three features

Figure 5.33 shows the smoothed histograms of the three features for
the training data. These graphs certainly resemble mixtures of
Gaussians with well separated means. The sky is the region of high
brightness and homogeneity with low entropy, and in this example
it is not hard to simply postulate reasonable rules without further
processing.

0.0
0.0 0.2 0.4 0.6

Homogeneity
0.8 1.0

Figure 5.34 Linguistic labels for homogeneity

IMAGE PROCESSING AND COMPUTER VISION 599

0.4 0.6
Entropy

1.0

1.0 r
M H

a
CO

I 0.5
<u

0.0

/
y

/
/

/
/

0.0 0.2 0.4
Intensity

0.6 0.8 1.0

Figure 5.34 (con't.) Linguistic labels for entropy and intensity

Figure 5.34 shows the membership functions obtained by fitting
each composite histogram (obtained by adding the individual
histograms corresponding to road, sky and vegetation) in Figure
5.33 by a mixture of normal distributions for the linguistic labels
tha t describe the three features. First, the histogram was
approximated by a polynomial to determine the number of
Gaussians: then, gradient descent was used to approximate the
histogram by a Gaussian mixture. See Krishnapuram and Rhee
(1993a) for more details on the fitting procedure.

Figure 5.35 shows the results of rule generation and redundancy
detection using the method described in Section 4.7.E. View (a)
shows the initial network, and note that it is not fully connected.
This is due to the small a-cut criterion discussed in Section 4.7.
Here, as there, a was 0.05. View (b) shows the network at the
termination of training, where three of the initial connections
between the input layer and the hidden layer have been pruned from
the network because their connection weights were small (less than
0.01).

600 FUZZY PATTERN RECOGNITION

Road Vegetation

homogeneity

Top
Layer
Rules

Hidden
Layer

O PMF
Clauses

"O Bottom
M H Layer

Ling.
Values

Input
entropy intensity Layer

(a) initial network

Road

L M H
homogeneity

homogeneity

Vegetation

L M H
entropy

entropy

Rules

PMF
Clauses

L M H Ung.
intensity Values

Input
Layer intensity

(b) pruned network at termination

Figure 5.35 Rule generation and redundancy detection using a FAN

In this case the generalized mean in equation (4.103a) was used as
the aggregation operator at the top and hidden layers. Values for the
exponent q at nodes 1, 5 and 7 were -0.17, 7.52 and 7.51, respectively.
Interpreting node 1 as conjunctive, and nodes 5 and 7 as disjunctive

IMAGE PROCESSING AND COMPUTER VISION 601

leads to the rule Rroad below. The other two rules are inferred from
values of the network parameters in a like manner. The rules
obtained from the final network are similar to those an expert
might elaborate. Here they are:

R^d : IF entropy is (L OR M) AND intensity is (L OR M)
THEN the class is road

Rsiq,: IF intensity is H
THEN the class is sky

Rveg : IF homogeneity is L OR entropy is H
THEN the class is vegetation

As will be discussed in Section 5.8, spatial relations between objects
play an important role in computer vision. Krishnapuram and Rhee
(1993b) show how rules involving the relations LEFT-OF, RIGHT-OF,
ABOVE and BELOW can be generated using a similar approach.

5.6 Boundary Description and Smface Approximation

Boundary description can be viewed as an alternative approach to
intensity image segmentation. In this approach, an edge operator
(including those described in this chapter) is applied to the image to
detect edge elements. The edge elements are considered to be parts of
boundaries between various objects or regions in the image. The
boundaries are then compactly described in terms of analytical
curves such as straight lines, second-degree curves, and other more
complex curves. For segmentation of range images, the edge
detection step can be bypassed, and parametrized surfaces can be
fitted directly to the raw range data. This process, known as surface
approximation, generates a compact description of the objects
present in the range image in terms of parametrized surfaces. The
parametrized description of object boundaries or surfaces can be
used at a higher level for view-independent object recognition and
image understanding. There are many non-fuzzy methods that
exploit the ideas of range image segmentation and surface
approximation (cf. Hoffman and Jain, 1987, Besl and Jain, 1988,
Yokoya and Levlne, 1989).

The boundary and surface description problem can be stated as
follows: fit parametrized curves/surfaces to an unsegmented data
set. This problem is exacerbated by the following facts: (i) the
number of segments (i. e., curves/surfaces) Is usually unknown, and
(ii) the edge or range data may be noisy and sparse. There is a
plethora of techniques to fit parametrized curves such as conies to
segmented edge pixels and to fit parametrized surfaces to segmented
range data. However, segmentation of edge and range data is difficult
in the case of jagged edges and noisy or sparse range data, since

602 FUZZY PATTERN RECOGNITION

features such as gradients and curvatures cannot be computed
reliably. A better approach in such situations would be to perform
segmentation and boundary/surface fitting simultaneously on the
data, without making use of features that assume continuity and
smoothness of the edges and surfaces. Clustering based on non-point
prototypes as discussed in Section 2.4 (lines, planes, hyperplanes,
quadric shells, rectangles, etc.) is ideally suited to this approach,
since it can perform segmentation and fitting simultaneously.

The shell clustering approach to boundary description and surface
approximation has several advantages over traditional methods. It
requires far less computation and memory compared to algorithms
such as the generalized Hough transform (Hough, 1962, Ballard,
1981). Since it looks for global structures and does not use edge
following or region growing, it is insensitive to local aberrations
and deviations in shape. It does not use features such as gradients
and curvatures and hence is not sensitive to noise and sharp
discontinuities at the boundaries. Moreover, it is possible to
robustify shell clustering algorithms by using a possibilistic
approach, as discussed in Section 2.4.

Shell clustering algorithms have the drawback that the number of
clusters present in a data set needs to be determined. Traditionally,
the number of clusters is determined by evaluating a global validity
measure of the c-partition for a range of c values, and then picking
the value of c that optimizes the validity measure in some sense
(Section 2.5). However, this is a very tedious and computationally
expensive process, since the data must be clustered for each value of
c. Moreover, in the case of shell clustering, the algorithms
frequently converge to local minima, particularly when the data is
complex. When the c-partition corresponds to a local minimum
rather than a global one, the computed validity measure for the
given value of c will not be correct. This can lead to a wrong choice of
c. Sometimes these problems can be avoided with dynamic validity
methods such as "compatible cluster merging" or "progressive
clustering". However, even these methods have an internal measure
of cluster validity that can be fooled, so don't expect validity
miracles; instead, temper your judgment with suspicion and always
look for satisfactory performance.

The compatible cluster merging approach begins clustering with a
(presumably) overspecified number of clusters and then merges
clusters that meet certain compatibility conditions. In the
progressive clustering approach, after convergence of the clustering
algorithm with an overspecified number of clusters, "spurious"
clusters are eliminated, compatible clusters are merged, "good"
clusters are identified, and points belonging to the good clusters are
temporarily removed from the data set. Then clustering is
performed again with the reduced number of clusters and data
points. This procedure is repeated until no good clusters can be

IMAGE PROCESSING AND COMPUTER VISION 603

removed or until no data points are left. Unlike the traditional
cluster validity approach which uses a global validity measure to
evaluate the overall c-partition of the data set, the progressive
approach uses individual cluster validity measures that evaluates
the goodness or spuriousness of a particular cluster. In the
remainder of this section we discuss boundary/surface description
techniques based on these ideas.

A. Linear Boundaries and Surfaces

The early work in the area of linear/planar cluster detection was
done by Bezdek et al. (1981a, 1981b, 1985). Anderson et al. (1982) and
Dave (1989) extended this work. Krishnapuram and Freg (1992)
showed that the Gustafson-Kessel (1978) algorithm can also be used
to find linear and planar structures in data sets. They proposed a
compatible cluster merging (CCM) algorithm to find the "optimal"
number of line/plane segments in a data set. The CCM algorithm is
applied after the GK algorithm (see Section 2.4) is run on the data set
with a (hopefully) overspecified number c of clusters. The CCM
algorithm merges compatible clusters among the c clusters to
obtain the final result. This algorithm can be summarized as
follows. Let V £ind v in 9tP be the point prototj^je centers of clusters i
and i; let {?i X } and {X ,..., X } be the eigenvalues of the fuzzy

11 ip j l jP

covariance matrices C. and C at (2.27) of clusters i and j , arranged in
descending order; and let {e ,..., eip} and (eCjp} be their
corresponding eigenvectors. Clusters i and j are said to be
compatible if the following three conditions are all satisfied.

\ ip J p /
>c. (5.35a)

e, + e , V, - V .
ip Jp 1 J

V — V
i J

<C„ ; and (5.35b)

V — V < C ^1 + (5.35c)

Equation (5.35a) ensures that the hyperplanes are parallel, and the
constant c should be chosen close to 1; (5.35b) ensures that the line
joining the cluster centers is approximately orthogonal to the
normals of the two lines (planes), and the positive constant c
should be chosen close to zero; and finally, (5.35c) verifies that the
cluster centers touch each other if they are uniformly distributed.
Krishnapuram and Freg suggest that the appropriate range for c is
[2, 4]. The three constants in (5.35) are user defined, and the utility of

604 FUZZY PATTERN RECOGNITION

CCM as a dynamic clustering algorithm - that is, its ability to
terminate at a satisfactory number of clusters - is largely dependent
on good choices for these parameters. Clustering and merging can be
done either in one pass or iteratively. The iterative merging
algorithm consists of running the GK algorithm followed by the
CCM algorithm repeatedly, and stopping when no more clusters can
be merged. A value of 1.5 is recommended for the fuzzifier m while
running the GK algorithm.

Figure 5.36 illustrates the geometric conditions for merging two
clusters that equations (5.35) attempt to enforce. Clusters A and A
do not satisfy condition (5.35a). Clusters A and A do satisfy
condition (5.35a), but not condition (5.35b). Clusters A and A
satisfy conditions (5.35a) and (5.35b), but not condition (5.35c). A
and A are the only clusters that can be merged in this case.

'12 A

A,

42

e.^9.4 A '52

Figure 5.36 Conditions for merging two clusters

An approximate value for c in (5.35c) can be derived for the 2-D
case. Assume that the projections of points in two touching
compatible linear clusters are uniformly distributed along intervals
L and L that contain the projected points. Variances of the projected

2 ho_ = x j^, and the distance between clusters are L^/l2

their cluster centers is

X,j and L y i 2 = :

V — V :(L̂ + Lj)/2 = V3[V^^ + ^

Hence c should be at least Vs , and preferably, a little larger.

Example 5.11 Figure 5.37 shows the results of using the GK
algorithm with the CCM method on a data set containing samples
from the characters "UMC". The GK algorithm was started with
Cinax=14. There are 14 clusters in Figure 5.37(a) before merging. In a

IMAGE PROCESSING AND COMPUTER VISION 605

color display, it is very easy to see the 14 clusters, but in this black
and white display it is difficult to see them, so we have manually
added hand-drawn ellipses that roughly capture the 14 clusters
(after hardening). These are not the ellipses you could draw using the
eigenstructure of the fuzzy GK covariance matrices.

(a) linear GK clusters

(b) after merging with CCM

Figure 5.37 Description of linear clusters by CCM

The results for the letters "UMC" after merging with CCM are shown
in Figure 5.37(b). Again, we have enhanced the c =10 clusters in this
final result by bounding them with manually inserted ellipses so
you can see them. As you can see, CCM merges the two coUinear
clusters in the left vertical stroke of the "U", the two coUinear
clusters in the left vertical stroke of the "M", and the three coUinear
clusters in the vertical stroke of the "C". The values of c , c and c

used for the outputs shown in Figure 5.37(b) are 0.95, 0.05 and 3.0
respectively; these values were chosen by trial and error. Results
similar to those shown in Figure 5.37 can also be obtained with
linkage-type clustering algorithms (Section 3.3); and by the
boundary-hunter algorithm discussed in Bezdek and Anderson
(1985).

606 FUZZY PATTERN RECOGNITION

Figure 5.38 shows the results of using the GK algorithm with the
CCM method on a range image of a block obtained from the
Environmental Research Institute of Michigan (ERIM). In this case,
c =9 , c =0.9. c„=0.1 and c =4.0.

max 1 2 3

(a) ariginal range image (b) result of CCM meigiiig

Figure 5.38 Approzimation of linear surfaces by CCM

Comparing the processing described for Figures 5.37 and 5.38, we see
that like most algorithms, judicious selection of {ĉ }, the pcirameters
of CCM, is needed to obtain satisfactory results for a peirticular data
set. In both of these examples, all three parameters do satisfy the
general recommendations that c be close to 1, c be close to zero, and
c be in [2, 4], but their individual values in these two examples are
all different. There is a short dark line on the front face of the block
in panel 5.38(b): this is a small cluster, that appears here due to
many "noise" points in this region in the range image.

Hoeppner (1997) proposed a fuzzy c-rectangular shells (FCRS)
algorithm to detect rectangles and lines in digital images that is
very similar to the NISP clustering algorithm in Section 2.4. Since
the history of shell clustering algorithms has shown that Euclidean
distance is useful in many instances, Hoeppner's FCRS model uses a
(nearly) Euclidean distance measure that still allows the direct
computation of prototypes for use in an AO algorithm.

The contour of a rectangle can be assembled by four lines, each
described by a normal equation (x - p, n) = 0, in which p is a point

on the considered line in 9t^and n is a vector perpendicular to the
line. If n is a unit normal vector, the expression | (x -p ,n) | yields the

IMAGE PROCESSING AND COMPUTER VISION 607

Euclidean distance of a point x to the line (see Figure 4.4). This is
illustrated in Figure 5.39 for the line L through the point p with
unit normal n . Let the center of the rectangle be v and let r = (r , r),
where the edge lengths of the rectangle are 2r and 2r as in Figure
5.39. You should compare Figure 5.39 to Figure 2.12; for the
appropriate choices of parameters, these two figures depict the same
rectangle.

Figure 5.39 Hoeppner's rectangular shell prototype

Let (j) be the angle between the positive x-axis and the first side of the
rectangle encountered by counterclockwise rotation of the positive x
axis (see Figure 5.39). The triple (v, r, (j)) characterizes the rectangle
completely; points on the rectangle will be denoted by rect(v, r, <[)).
The lines that form the edges of the rectangle are enumerated
counterclockwise, beginning with zero at the right line ((|) = 0
assumed). The points {p} and normal vectors {n} of the lines are
numbered in the same way. For the unit normal n = (-cos((|)+k7i/2),

-sin((t)+kjt/2))^, we require (v-p^,n^j>0. In this way, all four
normal vectors are directed towards the center of the rectangle.
The point p can be replaced by p =v-r , „ n , where r = r or r . Since

^ •^l ^ •' -^ i 1 m o d 2 1 1 0 1

the normal vectors point towards the center of the rectangle v, the
orthogonal distance from any point x to side i of the rectangle is

A (x, rect(v, r, (b)) s (x - p)̂ n = (x-(v-r ^ „ n))̂ n = (x-v)^ n + r
1 ^ I . . T/J V *^l' 1 ^ ^ 1 mod 2 r ' i ^ ' i 1 mod 2

608 FUZZY PATTERN RECOGNITION

A yields a positive value for 1 = 0, 1, 2, 3 only if the vector x lies
within the rectangle. Outside the rectangle A is negative for at least
one i.

Given a vector x, the minimum of the four orthogonal distances
{{A,(x; rect(v, r, 9))} is positive/zero/negative according as x lies
inside/on/outside the rectangle. The absolute value of the minimum
of these four distances is the Euclidean distance between x and the
nearest edge of the rectangle. Therefore, Hoeppner defines the FCRS

jnin |Aj{x,rect(v,r,(p)j distance measure as 6p(,j^(x,rect(v,r,(p)) =
1=0,1,2,3

Note that the lines are clipped (to the true edges) by the min-
function, so they do not have infinite extents like they do in the FCV
model (see Section 2.4). This distance is substituted for D, in
equation (2.24a), and the weight vector w in (2.24a) is the zero vector.
Thus, Hoeppner seeks minima of the function

J^CRS(u.B)= i i u™52,^^(x,rect(v^,r,.(p^)).
l = l k = l

where p = (v , r , (j)) are the parameters of the i-th rectangular

prototype. The use of the minimum function by Ŝ ĵ̂ g prevents us
from finding the prototype parameters explicitly because they are
arguments of the minimum function. In the case of rectangles it is
insufficient to identify only the rectangle (cluster) to which a point x
belongs with a certain membership degree. We also need to associate
one of the four edges of the identified rectangle with x. An initial
fuzzy partition of the data can be arbitrarily defined. The second
(possibly hard) partition is produced by associating each x in the
data with the line that is responsible for the minimum value of
Aj(x,rect(v,r,(p)). By generating the second partition in this way, we
actually rewrite the minimum function in another form. Using the
Kronecker delta function j^5 (^5 =1 if i=j, ĵ 5 =0 otherwise) we

define for 1=0, ..., 3 four functions called minhj:9t^ i-> {0,1}. The
action of minh^ is

minhj(ag,aj,a2,a3)Sj^5j^ 3 a^ = min{aQ,aj,a2,a3}.

For example minh2(7,8,4,6) = 1 and minhJ7,8,4,6) = 0 for s = 0, 1,3,
because the minimum of a , a , a and a is a in this example. If
multiple a are minimal, we can randomly choose only one s in {j :
a=min{a0, a l , a2, a3}}, i.e., the minimum function must satisfy the

IMAGE PROCESSING AND COMPUTER VISION 609

3
constraint X mlnh (a ,a ,a ,a) = 1. This constraint leads to the

s=0 s 0 1 2 J
3

equal i ty minla^.a^.a^.a^} = lajHiinh^la^.a^.a^.a^). Hoeppner

interprets minh (aO, a l , a2, a3) as the grade of minimality of a with respect to a , a , a and a .

For s = 0, 1, 2, 3 let A (x, p) be the (directed) distemce of the j - th data
s j i

point X to the s-th side of the i-th FCRS prototype (3 = (v, r , (p), and
define,

u J ^ = minhj A^(x, (3)̂. A^{x^, p^), A^{x^, p^), A^{x^, p^)). (5.36)

Then u denotes the crisp membership of Xj in edge s of cluster i.
The matrices U = [u], s = 0, 1, 2, 3, are four crisp c - partitions of

s i,J,s '• ^

the data that assign data vectors to the four rectangle edges.

With this notation, we can find closed-form equations for use in an
AO algorithm to minimize j"^^^®. Unfortunately the use of crisp
grades of minimality leads to a convergence problem, as a data
vector might be assigned to different edges in an alternating
fashion. To overcome this problem, Hoeppner (1997) replaces the
crisp minimum functions {minh,} by fuzzy membership functions

. 3
minf,: 3i —> (0,1], which still satisfy X minfg(aQ,aj,a2,ag) = 1.

s=0
(This constraint is required to avoid the trivial solution.) Hoeppner
proposes two possible fuzzy minimum functions, and shows that the
modified distance measures lead to only slight changes in the
objective function. Therefore, the same protot3q3e update rules as for
the hard case can be used.

The chance of terminating at a local minimum with an algorithm to
detect rectangles is quite large because if a depicted rectangle
consists only of some of its edges, there are many possible rectangles
that approximate the data vectors. Furthermore, if some edges are
parallel they can easily be exchanged between different rectangle
clusters, which leads to strong local minima (i.e., deep local minima
that cannot be easUy escaped).

Example 5.12 Figure 5.40 shows an example of FCRS clustering of a
data set with 5 rectangles. The number of clusters c was specified to
be 5. Although the data set in Figure 5.40 is pretty complicated, the
FCRS algorithm discovers all five rectangles (of course, it is told to
look for five). The fact that edges of different rectangles never lie
parallel to each other makes the detection easier.

610 FUZZY PATTERN RECOGNITION

Figure 5.40 FCRS detects rectangles at different angles of rotation

Figure 5.41 FC2RS approximates rectangles and complex shapes

In most applications images don't have a nice sequence of equal area
rectangles such as those used in Figure 5.40. So, the ability to detect
more complex shapes is useful, and often necessary. FCRS can be

IMAGE PROCESSING AND COMPUTER VISION 611

easily generalized to polygons other than rectangles. In the
derivation of the FCRS algorithm, the normal vectors of the edges
vary in steps of 90 degrees. By using another angle that is a divisor of
360, more complex shapes can be realized. This is illustrated in the
inset of Figure 5.41, which shows an octagonal shell as the
superposition of two rectangular shells. Hoeppner calls this the
fuzzy c two rectangular shapes (FC2RS) model. (The name FC2RS
originates from the visualization of the cluster's shape with the help
of two rectangles.)

Complex polygons are appropriate for approximating circles or
ellipses, so FC2RS might handle complicated scenes with rectangles,
circles and ellipses correctly, as shown in Figure 5.41. Here an angle
of 45 degrees is used to obtain a polygonal approximation of a data
set containing a rectangle, a circle, and an ellipse.

Compare the data in Figure 5.40 to the data in Figure 2.13, which has
a pair of overlapping rectangles. The difference between the two data
sets shows you the main difference between the NISP and FCRS
clustering algorithms. Once the norm is chosen for NISP, all c of the
rectangles (diamonds for the 1-norm in Figure 2.13) have the same
fixed orientation and side lengths; but in FCRS, each rectangle can
have different orientations and side lengths. In this sense
Hoeppner's FCRS clustering scheme stands to NISP as the GK
clustering model stands to FCM; FCRS and GK are, at least in
principle, able to adjust their prototypes to individual cluster
structures, whereas NISP and FCM impose the topological structure
of the norm used on all c clusters.

B. Circular Boundaries

Description of circular boundaries based on the Fuzzy c-Shells (FCS)
and Fuzzy c-Spherical Shells (FCSS) algorithms (Section 2.4) can be
found in (Dave, 1990b) and (Krishnapuram et al. 1992). Man and
Gath (1994) contains examples involving the detection of ring-
shaped clusters mixed with regular (cloud) clusters. Section 2.6
discusses validity issues related to circular as well as more general
shell clusters. Here we present a technique called the divide and
conquer (D&C) algorithm proposed by Dave and Fu (1994) for the
detection of circular boundaries. The overall technique of which
this is a part, called the divide and conquer NFCS (D&C-NFCS)
algorithm, is summarized in Table 5.12. The D&C technique
combines good features of the Hough transform with fuzzy shell
clustering.

612 FUZZY PATTERN RECOGNITION

Table 5.12 The divide and conquer NFCS algorithm

Store Unlabeled object data X c 9^P

Pick
«•• Maximuin number of clusters Cmax

Merger thresholds e, and e„
° 1 2

ACCjuin = smallest Hough transform accumulator
array value acceptable as a peak

Do

Set peak_parameters[i], i=l,...Cmax. to zero
Set DS_array[il, i=l,...Cn,ax. to zero
Fill accumulator array, ACC, using the Hough transform
Set peak counter c = 0,
Set PV = highest peak in ACC
REPEAT UNTIL (PV < ACCn^ or c =Ci„ax)

increment c
Record peak_parameters{c)
Zero out the peak location in ACC and a small

neighborhood of it
Put points belonging to a small neighborhood of

circle corresponding to peak c in DS_array[c]
Assign value of the highest peak in ACC to PV

END UNTIL
FOR (i = 1 to c)

Run NFCS (with # of clusters = 1) on DS_array[i] with
peak_parameters(i) as init. prototypes

Record center Vj and radius r, of cluster i
Compute a set of validity criteria, val(i)

END FOR
Initialize removal counter, Crem = 0;
FOR (i = 1 to c)

if (val(i) not acceptable) remove cluster 1, and
increment Crem

END FOR
C = C - Crem: Rc-init ial ize Crem = 0
FOR (each pair (i, j) of clusters)

if I h- < e, and r, - r . < e

Remove the cluster with lesser number of points;
increment Crem

END FOR
C — C - Cjigfn

The Hough transform approach is popular in computer vision
because of its implementational simplicity and robustness in the
presence of noise. However, if the objective is to find the location
and size of circles with high accuracy, then the cost of the Hough
transform is very high due to increased memory requirements and
computations. It also suffers from other disadvantages such as bin
splitting and occurrence of false peaks (Dave and Bhaswan, 1992;
Dave and Fu, 1994). On the other hand, shell clustering methods (see

IMAGE PROCESSING AND COMPUTER VISION 613

Section 2.4) provide fast and accurate parameter estimates with less
memory, provided a good initialization for the prototypes is
available. Hence, it is advantageous to apply the Hough transform
Avith a coarse resolution to obtain rough estimates of the prototype
parameters, and then apply a shell clustering algorithm such as FCS
based on the initialization provided by the Hough transform to find
more accurate parameter estimates.

In the shell clustering stage, the data points in the image can be
divided into subsets such that each subset contains only those
points that are in a small neighborhood of the circle corresponding
to each peak in the Hough transform. A robust version of FCS is
applied with c= 1 to each subset. A robust version is required because
each data subset can contain many extraneous noise points. Dave
and Fu use the Noise Clustering (NC) approach (see Section 2.5) to
robustify FCS. They call the resulting algorithm NFCS. Circle
detection by NFCS is fast due to (1) the use of a good initialization,
and (2) the use of only a small fraction of the whole data set. After
the NFCS stage, clusters with similar parameters are merged and
spurious clusters are removed to produce the final results.

Example 5.13 Dave and Fu (1994) applied the above algorithm to a
problem of detecting spheres in a random packing. Figure 5.42(a)
shows an Image of spheres in a random packing. The edge map, after
clean-up, is shown in Figure 5.42 (b). In Figure 5.42(b) there are 2596
points, and it is noisy due to shadow artifacts and poor image
quality. There are also partial shapes due to hidden geometry. The
final result of the above algorithm after applying cluster merging
and renioval is shown in Figure 5.42(c), where the found circles are
superimposed on the original data set. It can be seen that all the
spheres which are in the front (i.e. not hidden) are detected by this
approach. Figure 5.42 (d) illustrates an individual cluster detection
step. The dashed circle is the initialization from Hough transform,
and the solid circle is the final result of NFCS. It's hard to see these
two circles in Figure 5.42(d); the dashed circle is the one that is
northeast (above and to the right) of the solid circle. The points
plotted are the points in the subset used by NFCS. Small open circles
are points classified as good points, and small filled circles are
points classified as noise points. As can be observed in the cases
shown, the visible fit obtained by NFCS is very good. Although the
fit obtained by the Hough transform alone is not accurate, it is close
enough to each correct circle so that the its neighborhood contains
most of the good boundary points.

614 FUZZY PATTERN RECOGNITION

(a) original image (b) edge image

/ ..t t
• • " . r . ,: .'.;v '

1 t * "̂'~ iiMi^'-' ' • ~ ' T •f' 1
^ . . ; - ^ :

_ • ' '? '; :j

',V :> [^^ ^ i' ':S \
' *̂ .̂ -

* , .̂ ''̂ A.'
* i \ > ^

b "/. * f ^ <

" ' N \ > j ^ r ^ '

1«' '•%
',

i O ' t *;*-''
i \ ^ : ;^ '"!

~ • : '

'• S s ^ r<
' : ! • # • ' • ' • • "

; ' # > • • • "N". ! "
,y

*> "''/ -̂ , i ' • » • . ; * i'v

! .̂ ? 4 :•'•'

;f

"*•, y
1 b 't'- • •>-v

(c) circle superposition (d) Hough (initialization
and final result)

Figure 5.42 Detection of circular boundaries using D&C-NFCS

NFCS does have the ability to handle noisy data, and its breakdown
point is comparable to that of a robust M-estimator (Dave and
Krishnapuram, 1997). D&C-NFCS may be modified for ellipses as
well, by roughly estimating the parameters of the ellipses by a circle
detecting Hough transform, and then using a robust version of an
elliptical shell clustering algorithm such as AFCS or FCQS (see
Section 2.4). Thus, this technique, which is computationally

IMAGE PROCESSING AND COMPUTER VISION 615

efficient and handles the problem of unknown clusters, has good
potential for solving practical problems.

C. Quadiic Boundaries/Surfaces

Examples of boundary description in terms of elliptical shell
clusters based on the AFCS algorithm (see Section 2.4) can be found
in (Dave and Bhaswan, 1992). However, the issue of unknown
number of clusters is not addressed in that paper.

Krishnapuram et al. (1995a, b) describe an unsupervised clustering
algorithm called unsupervised boundary description (UBD) for
describing edges with quadric curves. This algorithm is based on the
fuzzy c-quadric shells (FCQS) and possibilistic c-quadric shells
(PCQS) algorithms described in Section 2.4. Before we describe the
UBD algorithm, we briefly summarize a line detection algorithm
which is part of the UBD algorithm.

Images often contain linear boundaries in addition to quadric ones,
and this can pose a problem. However, the FCQS (or PCQS)
algorithm can be used to find linear clusters, even though the
constraint in (2.48) forces all prototypes to be of second degree. This
is because FCQS can fit a pair of coincident lines for a single line, a
hyperbola for two intersecting lines, and a very "flat " hyperbola, or
an elongated ellipse, or a pair of lines, for two parallel lines.
Hyperbolas and extremely elongated ellipses occur rarely in
practice.

When the data set contains many linear clusters, the FCQS
algorithm characterizes them variously as hyperbolas, extremely
elongated ellipses, etc. In this case, we can group all the points
belonging to such pathological clusters into a data set and then run a
line finding algorithm such as the GK algorithm (see previous
subsection) on this data set with an appropriate initialization. The
parameters of the lines can be determined from the centers and the
covarlance matrices of the GK clusters.

The various conditions that need to be checked to determine the
nature of p i as well as the initialization procedures required by the
line detection algorithm can be found in Krishnapuram et al.
(1995a, b). Since the initialization is usually good, the GK algorithm
often terminates in a couple of iterations and yields the parameters
of the lines. The line detection algorithm is summarized in Table
5.13.

616 FUZZY PATTERN RECOGNITION

Store

Table 5.13 The line detection algorithm

Unlabeled Object Data X c 9tP

Init.
Set X, the set of data points in linear clusters to 0
Set number of lines c = 0
Start with FCQS or PCQS output as Initialization

Do

FOR each cluster i with prototype parameters p j
IF pi is a pair of coincident lines THEN

Add aU points assigned to cluster i to %
c=c+l
Initialize new linear prototype as the one of

two coincident lines
IF Pi is a non-flat hyperbola OR a pair of intersecting

lines OR a pair of parallel lines THEN
Add all points assigned to p^ to %
c=c+2
Initialize new linear prototypes as asymptotes
of the hyperbola or as individual lines meiking
up the pair of lines;

IF Pi is an ellipse with large major to minor axis ratio
THEN

Add all points assigned to p to %
c=c+2
Initialize new linear prototypes as two
tangents to the ellipse at the two ends of the
minor axis

IF Pi is a hyperbola with a very large conjugate axis to
transverse axis ratio THEN

Add all points assigned to p to x
c=c+2
Initialize new linear prototypes as tangents to
the hyperbola at its two vertices

END FOR
Run the GK algorithm on x with c clusters using the
above initializations for the prototypes

The UBD algorithm automatically determines the number of curves
to be used in the description by progressively clustering the data
starting with an overspecified number c^ax of clusters. Initially, a
possibilistic version of the FCQS algorithm, known as PCQS (see
Section 2.4) is run with c = Cmax- The weights Wj in the objective
function (see (2.24a)) are all set to the square of the estimated
thickness of the curves. In boundary description applications, this
value is typically equal to 2. At this stage, spurious clusters are
eliminated, compatible clusters are merged, good clusters are

IMAGE PROCESSING AND COMPUTER VISION 617

identified, and points with high memberships in good clusters are
temporarily removed from the data set to reduce the complexity of
the remaining data set. The PCQS algorithm is invoked again with
the remaining feature points. This procedure is repeated until no
more elimination, merging, or removing occurs.

Shell cluster validity measures such as shell thickness V^[U,pj,
shell hypervolume VgHvC^s). and surface density VggD (U,Ci) are
used to determine candidates for elimination, merger, or removal.
These are validity measures for individual shell clusters rather
than for the partition. Surface density measure T/ggQ (U,Ci) is
defined at (2.124) in Section 2.6. The definition of shell thickness
Vg.j,(U,Pj) is

^n iin^llf II
^ S T (U . P ,) = '^^^n' '""-" . (5.37)

where Pi represents the prototype parameters of shell cluster i, and
t is the vector from x to the closest point on the shell prototype.

Recall that the shell hypervolume Vgnv (^s,) for shell cluster i is

VsHv(Cs,) = Vdet(Cs,) . (5.38)

where Cg is defined in (2.117). The conditions for elimination,
merger, or removal are described below.

Cluster i is considered spurious if the sum of the memberships of all
feature points in that cluster (cardinality) is very low or if the sum is
low and the surface density is also low, i.e..

Xuu ,<nvL. or X^ik < HL AND VSSD„(U.CI) < S D L . (5.39)
k = l k= l

The suggested values for the constants are: ri = 2% of the total
number of data points n, UL ~ 4% of the total number of points, SDL =
0.15. To determine if two clusters are compatible so that they can be
merged, the error of fit and the validity for the merged cluster are
computed. To do this, all points having a membership greater than
an a-cut in either of the two clusters i and j are collected. Let this
data set be denoted by Xy. In practice, a value of about a = 0.25 works
best, independent of the data set. Then the PCQS algorithm is run
Avith c=l on this data set. If the fit and surface density for the
resulting cluster is good, the two clusters are merged. In other words,
the condition for merging is

618 FUZZY PATTERN RECOGNITION

VsT^U.P.) < ST, AND V33„̂ ^ (U,C,) > SD„ . (5.40)

where V^[U,p^) and VSSD (U.CJ) are the shell thickness and the
surface density respectively of the cluster formed by X . Suitable
values for STL and SDH for this application are about 2.0 and 0.7.

Cluster i is characterized as "good" if

VssDi2 (U.Ci) > SDvH . or (5.41a)

VssDi2 (U.Ci) > SDH AND VsHv(Csi) < SHVL , (5.41b)

where SDVH is a very high threshold for surface density, SDH is the
same value that was used for merging, and SHVL is a low value for
the fuzzy hypervolume. The second condition is designed to handle
cases in which the surface density has borderline values. Suitable
values for SDVH and SHVL are about 0.85 and 0.5 in this application.
Points are temporarily removed from the data set if their
membership in one of the "good" clusters is greater than UH = 0.5.

In addition to the above steps, we need to identify noise points and
temporarily remove them from the data set. Noise points are
identified as those which have low memberships in all clusters, i.e.,
feature point Xk is removed if

max{u }<u . (5.42)
1<1<C "^ "̂

Noise points have to be removed at the end of each run of the PCQS
algorithm, because as the number of clusters decreases and points
assigned to good clusters are removed, the number of noise points
relative to the good points becomes high, making it difficult to detect
the few good clusters that are left. A good choice for UL is about 0.1.
The condition for noise point removal applies only when
possibilistic memberships are used, and not when fuzzy
memberships are used. In the case of fuzzy memberships, (5.42) can
be true even for good points if they are shared among many clusters.
A similar comment applies to the removal of good points.

Several comments about the UBD algorithm are in order. First,
spurious clusters are clusters that have a low validity measure, but
not necessarily low cardinality. Next, the second pass in Table 5.14
is needed to improve the reliability of UBD - using one pass often
terminates at an unattractive solution. Finally, there are a lot of
thresholds to choose when you implement this algorithm.
Conditions (5.39), (5.40) and (5.41) are used to decide whether to
eliminate, merge or temporarily remove a cluster. All of these
conditions are based on multiple validity measures. Although a
single validity measure could be used to design each condition, the

IMAGE PROCESSING AND COMPUTER VISION 619

resultant algorithm would not be as reliable as it is when more than
one measure is used (see Section 2.6 for a discussion on the
reliability of a single validity measure). The UBD algorithm is
summarized in Table 5.14.

Table 5.14 The unsupervised boundary detection (UBD) algorithm

Store Unlabeled Object Data XczSJP

Pick Maximum number of clusters, Cj,
REPEAT UNTIL (No elimination, merging or removal

takes place)
Perform clustering using the PCQS algorithm

(use FCQS for initialization)
Run the Line Detection algorithm (Table 5.13)
Eliminate spurious clusters and update c
Merge compatible prototypes and update c
Detect good clusters, save their prototypes in a list,

remove points with high memberships in them
and update c;

Remove noise points
END UNTIL

Do Add removed feature points to X
Append remaining clusters' prototypes from the last

iteration in the above repeat loop to the list of
removed clusters' prototypes and update c

Second Pass

REPEAT UNTIL (No more merging or elimination takes
place)
Perform the PCQS algorithm using the prototype

list as initialization;
Merge compatible prototypes and update c

accordingly;
Eliminate clusters with small cardinality, and

update c accordingly
END UNTIL

The use of multiple validity measures imposes a higher burden on
the user when picking thresholds. However, in the boundary
description case, most of the thresholds are (more or less) fixed by
the nature of the edge images. For example, ST and SH are
determined by the expected thickness of the edges. Also, since the
surface density Vgg^ is always between 0 and 1 it is fairly easy to

pick SD,, SD„ and SD„„. In the experiments we know of, the UBD
L H VH

algorithm seems pretty insensitive to changes in these thresholds;
most of them can tolerate as much as a 20% change without adverse
effects on the results. Although changes in these thresholds may

620 FUZZY PATTERN RECOGNITION

affect the sequence in which clusters are eliminated, merged, or
temporarily removed, the final results are usually the same.

Example 5.14 Figure 5.43 (a) shows a 200x200 image of objects whose
boundaries can be described by linear and second-degree curves.

(a) original image (b) edge image

(c) prototypes superposed on (a) (d) cleaned edge image

Figure 5.43 Description of quadric boimdaries in edge images

Uniformly distributed noise on the interval [-15, 15] was added to
the image intensity values. The object edges were then obtained by
applying the Sobel operator and thresholding. The edge images were
then thinned using a neural net thinning algorithm (Krishnapuram
and Chen 1993). The thinning procedure is important because it
makes all edges one-pixel thick, making it easier to pick the various
validity thresholds in UBD. It also reduces the number of pixels to be
processed. Figure 5.43 (b) shows the thinned image which is used as
input to UBD. It can be seen that the boundaries are not always clean

IMAGE PROCESSING AND COMPUTER VISION 621

and there are many noise points. The image has about 2,000 edge
points.

The boundary description algorithm was applied with the initial
number of clusters Cmax = 25. Figure 5.43(c) shows the final
prototypes superimposed on the original image. The prototypes are
shown three-pixels thick for emphasis. The "cleaned edge image" in
Figure 5.43(d) is obtained by plotting the prototypes only in those
regions where there were at least 2 edge pixels within a 3x3
neighborhood.

D. Quadric surface approjdmation in range images

Krishnapuram et al. (1995a, b) describe a quadric compatible cluster
merging (QCCM) algorithm for surface approximation in range
images. This algorithm s t a r t s with the initial p l ana r
approximation of a range image obtained by applying the CCM
algorithm (see (5.35)). At this point, the following condition is
checked for each pair of clusters.

V — V
1 J <a (« i i ' ^)

+...+JX
jp ' jp ' ^) (5.43)

In (5.43) Vy=(Vj-Vj)/ is the unit vector in the direction of

Vj - V . A suitable value for C3 is Vs . A pair of clusters satisfying

(5.43) is considered "close".

The points belonging to each pair of "close" clusters are used as the
input data set to the possibilistic c-plano-quadric shells (PCPQS)
algorithm (see Section 2.4) with c=l. If the fit of the resulting
quadric cluster is "good", then the two clusters are merged. The fit is
considered "good" if the shell thickness measure 1/g.j,(U,Pj) in (5.37)

is less than a threshold ST A suitable value for ST in this
application is 0.1. Since the exact distance from a feature point to a
surface is difficult to compute in the 3D case, the approximate
distance at (2.55) is used to compute ||tii,|| in (5.37). The QCCM
algorithm is summarized in Table 5.15.

622 FUZZY PATTERN RECOGNITION

Table 5.15 The quadratic compatible cluster merging
(gCCM) algorithm

Store I Unlabeled Object Data X e 9^P
Pick Max. # of clusters, Cn,ax; oc-cut level a
Init. Use the CCM algorithm

Do

merge = TRUE
WHILE (merge = TRUE) DO

merge = FALSE ;
FOR each pair of clusters i and J DO

IF clusters i and j satisfy condition (5.43) THEN

Run the PCPQS algorithm on Xy with c=l
Estimate error of fit Vg^(U,p.) using (5.37)

1 F (V S ^ (U , P ,) < S T L) T H E N

Ujk =max(uik,Ujk) Vk
Eliminate cluster j and replace parameters of
cluster i with parameters of combined cluster
c<—c-1
merge = TRUE

END IF
END IF

END FOR
END WHILE

Example 5.15 Figure 5.44 (a) shows a 200x200 synthetic range image
consisting of 2 planes, a right circular cone, and an ellipsoid.

({Qariigbial image (b)CXM (c)gcCM

Figure 5.44 Approximation of quadric surfaces by QCCM

Every third pixel was chosen from the original image in both the
horizontal and vertical directions to reduce the computational
burden. This also makes the data sparse, illustrating the fact that

IMAGE PROCESSING AND COMPUTER VISION 623

the QCCM algorithm can work for sparse data. The number of
feature points after sampling is about 3,000.

In the CCM algorithm, the GK algorithm was applied with fuzzifier
m=1.5. The initial number of clusters c was 15. Figure 5.44 (b)

max ="
displays the CCM planar approximation for this image. The final
results of the QCCM algorithm consisting of the correctly identified
surfaces is shown in Figure 5.44 (c). It is very difficult to see the
surface of the cone in view (c) of Figure 5.44 correctly because all
pixels on both sides of the surface belong to the same segment, so no
matter what color is chosen for this segment, the visually apparent
ellipse in view (a) which tells you the cone is not solid cannot be
seen. But it's there.

Frigui and Krishnapuram (1996a) propose an algorithm for quadric
surface approximation based on the RCA algorithm (see Section 2.5).
The algorithm starts by dividing the image into a large number of
non-overlapping windows. Then RCA is applied on each window
with c=l . This generates a large number (say c^^x) of initial
prototypes. The approximate distance in (2.55) is used in RCA. At
this point RCA is applied on the whole data set with c=Cn,ax- Due to
the competitive and agglomerative nature of RCA, when the
algorithm converges, only the clusters corresponding to legitimate
surfaces survive. Since RCA is robust, it can also handle noisy range
data. Unlike QCCM, this approach does not require an initial planar
approximation.

Example 5.16 Figure 5.45(a) shows a 240x240 synthetically created
range image that presumably mimics the range image that would be
obtained by illuminating a real plastic pipe. Every third pixel in the
horizontal and vertical directions was used to reduce computation.
The image was divided into non-overlapping windows of size 30x30,
and initial prototypes for each patch were generated using only the
points in the window. Figure 5.45(b) shows the initial surface
patches, where each point in the entire image is assigned to the
nearest prototype.

Figure 5.45(c) shows the final result, after RCA is applied with the
initialization shown in Figure 5.45(b). Each surface is shown in a
different gray value and the boundaries are black. The termination

condition used for RCA was max < 0.1, where the

subscript t represents the iteration number. If the distance criterion
was not met, the algorithm was terminated at the maximum number
of iterations, which was set at 50 in this example.

624 FUZZY PATTERN RECOGNITION

(a) "range image" of pipe junction (b) initial approximation

(c) result of CA metiiod

Figure 5.45 Boundary description by RCA

5.7 Representation of Image Objects as Fuzzy Regions

Geometric and non-geometric properties of objects from images play
an important role in image understanding. Properties computed
from regions are typically used for object description and shape
analysis. By geometric properties, we mean those properties that
deal with the shape of the silhouette of the object. Some of the
commonly-encountered geometric properties of objects are area,
perimeter, height, length, extrinsic diameter, intrinsic diameter,
elongatedness, and roundness. By non-geometric properties, we
mean properties that depend on the actual gray-level patterns
within the object boundary. Examples of non-geometric properties
are intensity, color and texture. Properties of objects are useful for
object description, discrimination and shape einalysis.

If objects in the image appear consistently brighter (or darker) than
the background, a binary image of the objects can be obtained by

IMAGE PROCESSING AND COMPUTER VISION 625

thresholding the gray level image (see Section 5.5). However, object
boundaries in gray-scale Images are often blurred and distorted due
to the imaging process. The thresholding operation does not
preserve the uncertainty in the image, and could distort the shape
and size of the object. Hence, the computed geometric properties may
not be accurate. An alternative approach is to preserve the
uncertainty inherent in the image as long as possible until actual
decisions have to be made. In this approach, each object in the image
is treated as a fuzzy region represented by a fuzzy set. A fuzzy
approach would assign lower weights (memberships) to property
values near the boundaries, thus leading to more accurate estimates.
The methods discussed in Section 5.5 can be used to generate the
membership function for the object regions in the image. In this
section, we discuss various methods to compute properties of fuzzy
regions.

A. Fuzzy Geometiy and Properties of Fuzzy Regions

It is possible to define properties such as perimeter, height, etc. for
multispectral images, but most of the work we are aware of is for the
unispectral case. Consequently, in this section images are
understood to be unispectral. Ideally, each region in a segmented
image corresponds to an object or object class. In a fuzzy
representation, fuzzy region F is represented by a membership
function mp:IJ-4[0,ll. When F is finite we use the variables (i,j) as
arguments for m ; otherwise, we use the variables (u, v), and remind
you of our convention about the domain of support for integrals and
derivatives of functions of (u, v). This notation is designed for
images with two spatial dimensions, but many of the ideas in this
section generalize to higher dimensions.

In gray-scale images it is convenient to represent the object or
region in terms of crisp a-cuts of m , where ae [0,1] and

F^={(i,j)eIJ:mj,(i,j)>a} . (5.44)

Since the gray values of images are quantized in practice, if the a-cut
values are ordered as 1= aj > a2 >•••> a^ > a^^^ = 0, the level sets
from (5.44) are nested, i.e., F c F for a. > a,.

aj a^ I j

Rosenfeld (1979, 1984, 1992) defined many terms in fuzzy geometry
that c£in be used in the analysis of fuzzy regions of objects. Pal and
Rosenfeld (1988), Pal and Ghosh (1990) have defined similar
geometric attributes. Pal's (1992a) book chapter contains a review of
this topic. Dubois and Jaulent (1987) generalized Rosenfeld's
definitions using both fuzzy set and evidence theories. Here we
briefly summarize the definitions of some geometric properties of
fuzzy regions.

626 FUZZY PATTERN RECOGNITION

The area of a fuzzy region F is defined as the volume under m^,
r

a(F) = Jjmp(u.v)dudv . (5.45)

In the discrete case, the area of fuzzy region F is

a(F)= I I m (i.j) . (5.46)
(i.J)e IJ

Assuming that m^is piece-wise constant, and that the finite number
of constant values that m^ takes are given by a^.tta-'-OCn' the
perimeter per(F) of F defined by (Rosenfeld and Haber 1985) is

per(F)= I I S
Kje IJ V k

« 1 - « J IJk (5.47)

where {6^^] are the lengths of the arcs along which the discontinuity

between regions F and F occurs. Assuming that m is smooth,
a, Oj V

Krishnapuram and Medasani (1995) define the perimeter of a fuzzy
region with respect to the Euclidean norm as

perf2(F) = JJ
^3m^(u.v)>2

du

1/2

dudv. (5.48)

The perimeter of a fuzzy region can be defined with respect to any

norm on 9t , and Krishnapuram and Medasani also consider the 1-
norm distance to measure the lengths of the arcs.

perfi(F) = JJ
3m^,(u,v)

au +
9m^,(u,v)

dv
dudv (5.49)

The height of a fuzzy region F along the direction u may be defined as

h, (F) = /max {m„(u,v)}dv , (5.50)

where v denotes a direction orthogonal to u. In the discrete case, we
have (Rosenfeld 1979)

h,(F) = Imax{mj,(i,j)} (5.51)
J

The length ^ of a fuzzy region F along the direction u is defined as

IMAGE PROCESSING AND COMPUTER VISION 627

I (F) = max{|m (u,v)dv} , (5.52)
u V

where the integration is performed over the region of the image P
inside which m^(u, v) > 0. In the discrete case, we have

F

(!{F) = max{Im (i,j)}

i j

(5.53)

In a digital picture where (u, v) takes only discrete values (i, j), since
m (i, j) = 0 outside a bounded region, the max operation is performed
over a finite set. By default, the height of an object or region F in a
digital image is taken as the sum of the maximum memberships
among the rows of positive memberships. This corresponds to using
the horizontal direction for u in (5.50) and for i in (5.51).

The width w(F) of a fuz2y region F is the sum of the maximum
membership values of the columns of positive memberships. This
corresponds to using the vertical direction for u in (5.50) and for i in
(5.51). Similarly, the length ([F] and breadth b(F) of a fuzzy region F
correspond to using only the horizontal (vertical) direction for u in
(5.52) and for i (5.53). Thus, the length of a fuzzy region F in an image
gives its largest expansion in the column direction, while the
breadth gives its largest expansion in the row direction.

• IS-W.: '-Y-^;£X .•f-fiimi-

Example 5.17 The non-zero values of a membership function m of a
region F are shown in Figure 5.46(a). The corresponding crisp
membership function of the same region, obtained by thresholding
m at 0.5, is shown in Figure 5.46 (b). Pixels that are not zeroed by

hardening are shown with bold values and shaded cells in view (b).

Table 5.16 Fuzzy and crisp properties of the region F

(a) ni for fiiz^ r^ion F (b) nfU of crisp r^km

0.1

0 .1

0.2

0 .1

0 .1

O.I

0.2

0 .5

O.I

0 .1

0^2

0 .5

0 .6

0 .6

0^5

0.1

0 .1

0 .5

0.8

1.0

0 .1

0 .2

0.6

0.6

0.4 10.5

0.2 0.2

0.1

O.I

0 .5

0_2

0.1

0 .1

0 .1

0^

0.1

0 .1

1.0 1.0

1.0 1.0 1.0 1.0

1.0 1.0 1.0 1.0

1.0 1.0

628 FUZZY PATTERN RECOGNITION

The crisp and fuzzy areas, heights, lengths, widths and breadths of F
computed from the membership functions in Figure 5.46 are shown
in Table 5.16.

Figure ! 5.46 Fuzzy and crisp geometry of image regions

property crisp geometry fuzzy geometry

area 12 10.9

height 1+1+1+1=4 0.1+0.2+0.5+0.8+1.0+
0.5+0.2+0.1 =3.4

length max (1,4,3,3,1) = 4 max (0.1, 0.4. 1.0,2.6,
3.0,2.3, 1.0, 0.4,0.1) = 3.0

width 1+1+1+1+1 = 5 0.1+0.2+0.5+0.6+1.0+0.6
+0.5+0.2+0.1 = 3.8

breadth max (2,4,4,2) = 4 max (0.1, 0.5, 1.5,3.1,
3.3, 1.7, 0.6, 0.1) = 3.3

Rosenfeld (1984) defined the extrinsic diameter of a fuzzy region F as

e(F) = max{h (F)} , (5.54)
u "

where hu is defined in (5.50). The geometric property elongatedness
is defined in terms of the ratio of the minor extrinsic diameter and
the major extrinsic diameter, i.e.,

min{h,(F)}
mEL(F) = l - ^

e(F)
(5.55)

The compactness of a fuzzy region is defined by (Rosenfeld 1984) as

a(F)
comp(F) = • (5.56)

(P(F))'

The index of area coverage (lOAC) defined by Pal and Ghosh (1990) is

a(F)
lOAC(F) =

^(F)b(F)
(5.57)

It is possible to give unified definitions for both geometric and non-
geometric properties of fuzzy regions (Dubois and Jaulent, 1987,
Krishnapuram et al. 1993a). In general, each non-geometric

IMAGE PROCESSING AND COMPUTER VISION 629

property has a feature associated with it. For example, associated
with the greenness property is the green component of an RGB
image. If we let P(F) denote the value of a property in the crisp

region F , then we may compute the expected value P(F) of the

property for a fuzay region with n a-cuts as

P (F) = i b p (F ^) P { F ^) . (5.58)
1=1 ' '

In (5.58), bp(F) denotes a weighting function associated with F .

which is sometimes called a basic probability assignment (bpa)
(Shafer, 1976, Dubois and Jaulent, 1987), and it must satisfy the
conditions

i bp(F^) = 1 ; bp(F„) > 0 V i . (5.59)
1 = 1 " ' I

Dubois and Jaulent (1987) suggested the following definition of the
bpa,

bp(F„) = a j -a j^ j , (5.60)

where it is assumed that 1 = ttj > a2 >•••> a^ > a^+i = 0. Since F^ is a

crisp set, traditional techniques can be used to compute P(F).

Using the definition of bp(F) in (5.60), Dubois and Jaulent (1987)

proved that: the expected area a(F) is equal to a(F); the expected
height h(F) along the v-axis (i.e., in the default direction) of F is
equal to the height h(F) of F along the v-axis; and the expected
perimeter p(F) is equal to p(F). For the expected extrinsic diameter,
the following inequality is true:

e(F)>e(F) . (5.61)

Other definitions for the basic probability assignment (bpa) are
possible. For example, we can define

F

SF
1=1 «'

630 FUZZY PATTERN RECOGNITION

This is the normalized a-cut cardinality. Using (5.62) for bp(F) we

can compute the expected value of the property as

n
I

P(F) = i^
1 it', » '

i=l

(5.63)

where P^ denotes the property value of pixels in F and N. is the

cardinality of F . I n (5.63) the property values of each crisp region

F are weighted by the cardinalities of the corresponding a-cut

regions. Alternatively, we can use weighted a-cut cardinalities as
thebpa, i.e.,

a,
bp(F„) = -

l a
1=1

« i ^ i

1=1

(5.64)

When (5.64) is used in (5.58), the properties of each of the a-cut
regions are weighted by the cardinalities of the a-cut as well as the
a-values.

B. Geometric properties of original and blurred objects

Krishnapuram and Medasani (1995) show that the definitions given
in the previous section for properties of fuzzy regions can be used
directly on a blurred binary image to obtain accurate estimates of
the geometric properties of the original object. This is important
because thresholding can change the size and shape of the object,
and hence the property values computed from a thresholded image
can be misleading. Here we only consider the properties area,
perimeter, height, and length, and show the relations between the
values of these properties computed from a blurred image and the
values of the same properties computed from the original binary
image. Similar relations can be derived for other commonly-used
properties.

Objects may appear blurred in images either due to the imaging
process or due to diffuse boundaries. In most instcinces, the blurring
can be modeled by a convolution operation. In this section we will be
integrating and differentiating several functions of two real
variables, so we let x and y denote the horizontal and vertical
directions in a unispectral image; let f(x, y) denote the original
picture function of an object in a binary image; and let g(x, y) denote
the blurred image of the object. We write

IMAGE PROCESSING AND COMPUTER VISION 631

g{x, y) = IJ f (u, v) • b(x - u, y - v)dudv , (5.65)

where b(x, y) is the blurring function, and integration extends over
the object region on which f(x, y) is greater than zero. In practice, f
and b have finite supports, and if the image is sufficiently large,
aliasing does not occur. If the membership function mp of the object
region F is obtained by appljang a linear mapping to pixels in the
image such as the one in (5.29), ignoring the scale factor, we can treat
the picture function f(x, y) as the membership function of the
original object and g(x, y) as the membership function of the blurred
object.

Let a{f) denote the original area of an object in the image. From the
definition in (5.45), the area of the blurred object represented by g(x,
y) is given by

a(g) = Jlg(x,y)dxdy

= jN jj f (u, v) • b(x - u, y - v)dudv [dxdy

^ . (5.66)

= jJ j IJ b(x - u, y - v)dxdy [f (u, v)dudv

= |J a(b)f(u,v)dudv

This shows that

a (g) -a (f)a (b) = a(f) . (5.67)

The last equality follows from the fact that we assume that the area
of the blurring object b(x, y) is unity. In other words, the fuzzy area of
the blurred function is equal to the original area. This result is quite
general in that the original object need not be binary. If the area of
5ie blurring function b(x, y) is not unity, we need to normalize a(g) by
the area of the blurring function. This can be roughly achieved by
calibrating the imaging system by imaging an object with a known
area (while the actual object area may be known, we cannot know its
area in the digital image, since it is blurred). In what follows, we
assume that the area of the blurring function b(x, y) is unity, in
which case, we have the general result, where "*" stands for the
convolution operator.

Ij f (x, y)dxdy = jj {f (u, v)* b(u, v)}dxdy . (5.68)

632 FUZZY PATTERN RECOGNITION

Let per (f) denote the fuzzy perimeter of the original binary object
with respect to the 2-norm, and let per (g) denote the same fuzzy
perimeter of the blurred object. From (5.48) we have

Per.olg) = j |
fdg(x,y)?fdg{x,y)

,2ni/2

dxdy

I!

— I / O

f3(f*b](x,y)f ^ f9(f*b)(x,y)^^
1, dx ay

dxdy-

Since

a(f*b}(x,y) 3f(x.y) , , ,
-5̂ iL_LJ_L. = —L_Lii*b{x,y) , and

dx dx
8(f*b)(x,y) 8f(x.y) . , ,
— ' ^ = \ ^ *b(x,y)

ay dy

we may write

Perf2(g) = 11

^l!

af(x.y)
ax

^af(x.y)

ax

*b(x,y) | +

* b{x, y)

(af(x,y) , , /
'•^^*b(x.y)

V

+

ay

af(x,y)

1/2

dxdy

ay
* b(x, y)

1/2

dxdy-

It can be shown that

1/2
([a(x.y)*c(x,y)f+ [b(x,y)*c(x.yf) <(a2(x,y} + b2(x.y))^ ^*c(x,y)

when a(x, y), b(x, y) and c{x, y) are always positive. Therefore, we
have

per„(g)< 11 af(x.y)
ax

af(x.y)^^
. ay)

\I1

= b(x,y) dxdy.

Using the general result in (5.68) we write the fuzzy perimeter as

P^rj{) = jl

Hence

IMAGE PROCESSING AND COMPUTER VISION 633

9f(x,y)
ax

3f (x, y)

ay

1/2

*b(x,y) dxdy.

per„(g) < per (f)
f2

(5.69)

In practice, if the object does not have narrow intrusions or
protrusions, and if the support of the blurring function is small
compared to the size of the object, per(g) is a good approximation to
per(f). A similar result can be shown for the case of the fuzzy
perimeter in the city-block norm, i.e., p (g) < p,.(0-

In general, the original height and the fuzzy height of the blurred
object are not equal. However, the fuzzy height of the blurred object
is a good approximation of the original height, provided that the
support of the blurring function is small compared to the support of
the original function. To give an intuitive idea as to why this is so,
we now derive a result assuming that the original object is
rectangular.

y
A

-^1
b(u,v) ^ ^

f(u,v)

0 X ,
> x

Figure 5.47 A rectangular object convolved with a blurring function

Let f(x, y) denote the image of the original (unblurred) object. It
follows that fix, y) can be treated as a binary function whose value is
either 0 or 1 for all (x, y). Let g(x, y) denote the blurred image. Let h(f)
denote the height of the original object in the direction of Qie x-axis,
and let h(g) denote the height of the blurred object. If the object
extends from x to x in the x-direction and y to y in the y direction,
as shown in Figure 5.47, we can write

L L
h(g) = j max g(x, y)dx = J max

0 y 0 y
I J f (u, v)b(x - u, y - v)dudv dx.

634 FUZZY PATTERN RECOGNITION

If the support of the blurring function is smaller than the support of
the rectangle, then there exists at least one y = yo such that all the
maximum values of g(x, y) occur at y = yo (see Figure 5.47). Therefore,

h(g) = j
0

/
J J f(u, v)b(x - u, y^ - vjdudv dx

X . (

= I
L y2
j |f(u,v)b(x-u,yQ - v)dxdv

x=Ov=y; y
du

If we assume that the object is rectangular, then we can write f(x, y) =
f (x)f (y), where f (x) and f (y) are one-dimensional square waves.
Since f (v) = 1 within the limits of integration.

h(g)^
^2

U=Xj

^2

= J fi(u)

\ Jf2(v)b(x-u,yQ-v)dxdv
x=0 v=yj

du

I Jb(x-u,yo-v)dxdv
x=0 v=yj

du

The value of the double integral is always 1 for all values of u within
the limits of integration because it is the area of a reflected version
of the blurring function. Hence,

X 2

h(g)= j f i (u)du = X2 - Xi, from which there follows,
U=Xi

h(g) = h(f) (5.70)

A similar result holds for the length, i.e., assuming that f(x, y) is
rectangular.

4g) = 4fl (5.71)

We conjecture that the above result is true for non-rectangular
objects as well as long as the support of the blurring function is
small compared with the intrusions and protrusions in the contour
of the object. Formalization and proof of this conjecture (or a
counterexample that shows the conjecture is false) would be very
interesting.

Let the extrinsic diameter of the blurred object be denoted by e(g),
and let e(f) denote the extrinsic diameter of the original object. Since
the extrinsic diameter is defined as the maximum value of the
height measured in all possible directions (see (5.54)), if the height of

IMAGE PROCESSING AND COMPUTER VISION 635

the blurred object is the same as the height of the original object in
all directions, then the extrinsic diameters of the original and
blurred objects will also be the same, i.e.,

e(f) = max{h (f)} , and (5.72a)
u "

e(g) = max{h {g)} = e(f) , (5.72b)
u "

where the max is performed over all possible directions u.

Example 5.18 Figure 5.48 shows a 200x200 S5Tithetic image of the
character (+). The image was blurred by convolving it with a
truncated two-dimensional Gaussian, b(x, y) = n(0, al), notation as
in (2.18). Different degrees of blurring were produced by varying the
standard deviation of the Gaussian function. Here we show the
results for a = 2, 3, and 4 pixels. The size of the Gaussian mask was
33x33 pixels. The Otsu (1979) algorithm, which finds an optimal
threshold by minimizing the intra-class variance, was used to
threshold the image in all cases.

(a) original (+) image

(b) (+) blurred with b(x, y) = it(0,21) (c) image (b) tliresliolded

Figure 5.48 Images for fuzzy geometric properties

636 FUZZY PATTERN RECOGNITION

(d) (+) blurred with b(x. y) = n[0,31) (e) image (d) threshcdded

(f) (+) blurred with b(x, y) = n{0.41) (g) image (f) thresholded

Figure 5.48 (con't.) Images for fuzzy geometric properties

Table 5.17 summarizes the values of the geometric properties: area,
perimeter (using the city-block or 1-norm distance), height and
length for the synthetic binary image (+). The table shows that the
fuzzy area is always equal to the area of the original binary image.
The value of the area computed by thresholding the image usually
becomes progressively worse as the variance of the blurring
function increases, but this is not the case with the fuzzy area. In
accordance with (5.69), the fuzzy perimeter is always less than or
equal to the perimeter of the original binary image. The fuzzy
method gives a better estimate than the thresholding method in
each case. In the case of height and length, both methods give
similar results, although the fuzzy method is slightly better.

Table 5.17 Crisp and fuzzy geometric properties

a = 2 a = 3 G--= 4
Orig. Fuzzy Thresh. Fuzzy Thresh. Fuzzy Thresh.

Area 8241 8241 8012 8241 7988 8241 7992
Perim. 484 484 480 484 480 484 480
Height 121 121 120 121 120 121 120
Length 121 121 120 121 120 121 120

IMAGE PROCESSING AND COMPUTER VISION 637

Next we give an example that Illustrates the measurement of a non-
geometric property - average gray level - of regions within an image.
An alternative formulation of the PCM algorithm (Krlshnapuram
and Keller 1996, Dave and Krlshnapuram 1997) is used in this
application. In this formulation the objective function is

min | j^ (U.B:w) = I i u-D^,(x,,p^) + I w I (u^ logu^ - u ^) | .
(U, B) L l=lk=l i=l k=l J

(5.73)
and the membership update equation is

u ^ = e x p | - : 5 i ^ ^ | . (5.74)

The center v is updated as usual. Since the exponential membership
function in (5.74) decays faster than the one In (2.8a), this
formulation exhibits better characteristics when the clusters are
expected to be close to one another. In Example 5.19 we use the

Euclidean norm Djĵ (Xĵ ,Pj) = ||xĵ - vJI , and w, =2af, where of is
the variance of the cluster estimated after initially running the FCM
algorithm until termination. After the PCM algorithm terminates
with this initial estimate of Wj, the variance of each cluster is re-
estlmated by considering only liie most typical points i.e., those that
have a membership value greater than 0.5. With these updated Wj, the
PCM algorithm is run once again on each cluster separately In order
to fine-tune the centers and memberships.

Example 5.19 We compare estimates of the property P(F) = average
gray level of a region measured by crisp, fuzzy and possibilistic c-
means. The gray level feature values of pixels are clustered to
generate membership functions for regions. These membership
functions are then used to compute P(F) of the regions using two
different methods. The first method uses the Dubois-Jaulent bpa in
(5.60), and the second method employs the normalized a -cu t
cardinalities in (5.62). In both cases the membership values are first
quantized to 10 levels. The property P(F|jj) is generated for each of

the ten a-cuts. P(F) is then computed by equation (5.58), which
combines the crisp estimates with the bpa.

There are two regions in the original 256x256 Image shown in
Figure 5.49(a) with intensities I(i,j) having one of two uniform gray
levels. The original image was corrupted by adding two kinds of
Gaussiam noise, one with a small standard deviation ag (to simulate

638 FUZZY PATTERN RECOGNITION

non-impulse noise) and the other with a large standard deviation a^
(to simulate impulse noise).

(a) origjnal image I(i. j) WI^(i , j) : Cg =7,(7^=100

. . V . . • . ' - . ' • •'.'

i

' • • : • : . ' ' . ' ' • : • ' • •

(c) Ij,(i, j) : (jg = lO.aj^ = 100 (d) I^(i. j) : o^ = 15. ff^ = 100

Figure 5.49 Computing non-geometric properties of fuzzy regions

Gray levels I^ (i, j) of pixels in the noisy image can be represented as
Iĵ j(i, j)= l(i,j) + 0.95>i{0, Og) + 0.05n(0, a^). Here we show the results

for Og = 7,10,andl5 with CTJ^=100. The original image and the
images resulting after adding the three degrees of noise are shown in
Figure 5.49.

Table 5.18 summarizes the values of the average gray level of the two
regions: object = O and background = B. Membership functions were
generated by running the HCM, FCM and PCM clustering algorithms
on the noisy images with c = 2 using the unlabeled sets of corrupted
intensities, Xĵ ={Ij^(i,j)}, as inputs. From Table 5.18 the average
intensity value for the object measured using the membership
function generated by the PCM algorithm is slightly more accurate
than the other two methods. This might be because in the PCM
algorithm the membership values represent typicalities.

IMAGE PROCESSING AND COMPUTER VISION 639

Table 5.18 Crisp and soft computation of average region intensity

Image in
Figure
(5,49)

Class Orig. HCM FCM
w i t h
(5.60)

FCM
w i t h
(5.62)

PCM
w i t h
(5.60)

PCM
w i t h
(5.62)

5.49 (b) O
B

180
120

176
120

173
120

175
121

180
120

180
120

5.49 (c)
0^=10

O
B

180
120

176
120

170
121

173
121

179
120

179
120

5.49 (d)
a3=15

O
B

180
120

172
121

164
122

168
121

178
120

178
120

The measured value of P(F) for the object region deviates more from
the actual value as the variance o^ is increased. As expected, the
same trend applies to the value of the average intensity property of
the background region. The two methods for computing bpa, i.e.,
Dubois-Jaulent bpa and normalized a-cut cardinalities, gave
similar results; Table 5.18 is based on the Dubois-Jaulent bpa.

In Examples 5.18 and 5.19 membership functions for the object
regions were generated using a feature (gray level) that is related to
the property we are trying to measure. Our recommendation is to
adhere to this as a general rule - generate membership functions
with features that are related to the property you want to measure.
This seems obvious, but it is worth saying - if you don't follow this
rule of thumb, the results can be very disappointing (Medasani et al.,
1999).

5.8 Spatial Relations

As explained in Section 5.1, properties of objects and spatial
relations between objects play an important role in rule-based
approaches for high-level vision. The partial presence or absence of
such properties and relationships can supply both positive and
negative evidence for region labeling hypotheses. In this section, we
briefly review some fuzzy methods to represent spatial relations
between image regions.

In some situations, spatial relations between objects are quite crisp.
For example, in Figure 5.50 (a), "A is ABOVE B", and in panel 5.50(b),
"A is to the LEFT OF B". Humans are able to describe spatial
relationships between objects even when the relations are not so
crisp. For example, in Figure 5.50(c) "A is somewhat above B" and in
Figure 5.50(d) "A is somewhat left of B". However, this task has
turned out to be a rather elusive for automation. When the objects in
a scene are represented by fuzzy sets, rather than crisp sets, the

640 FUZZY PATTERN RECOGNITION

problem of generating such relational descriptions becomes even
more complex.

(a) crisp " A above B" (b) crisp "Aleft of F'

(c)" A somewhat oboueB' d) "A somewhat left ofB'

Figure 5.50 Spatial relations between objects

Approximate spatial relation analysis has also attracted the
attention of many researchers in the past several years. In many
situations, precise description of relations among objects may be
too complex and computationally too expensive. Approximate
spatial relation analysis provides a natural way to solve real world
problems Avith a reasonable cost.

Freeman (1975) was among the first to recognize that the nature of
spatial relations among objects requires that they be described in an
approximate (fuzzy) framework. Rosenfeld and Klette (1985) defined
the relations "adjacency" and "surroundedness" between image
regions. Retz (1988) examined the intrinsic, deictic, and extrinsic
use of spatial prepositions and designed a system called CITYTOUR
that answers natural language questions about spatial relations
between objects in a scene and about the movement of objects. Dutta
(1991) applied fuzzy inference and used a generalization of
Warshall's algorithm to reason about object spatial positions and
motion. However, modeling spatial relations among image objects
is not addressed in the last two papers.

IMAGE PROCESSING AND COMPUTER VISION 641

Cultural aside "Deictic" is a term from logic that means "proving by
direct argument" as opposed to elenctic, which means "refuting an
argument by proving the falsehood of its conclusion". In grammar,
"deictic" represents a word whose reference is determined by the
context of its utterance. Examples are "here" and "I". Basically,
deictic refers to the "relative nature" of the term. Spatial relations
are relative as well.

Keller and Sztandera (1990) considered the problem of defining
spatial relationships between fuzzy subsets of an image using
dominance relations of projections of the regions onto coordinate
axes. Krishnapuram et at (1993a) presented three methods that can
be used to characterize both properties and spatial relationships of
object regions in a digital image. These methods are referred to as (1)
the centroid method, (2) the aggregation method, and (3) the average-
angle method. Other older versions of the centroid method can be
found in Winston (1975) and Rosenfeld and Kak (1982). Miyajima
and Ralescu (1993, 1994) proposed a method to evaluate spatial
relations, which we will refer to as the compatibility method. Keller
and Wang (1995) present a comparison of these methods.

Kundu (1995) defined the fuzzy spatial relation LEFT(A, B) between
two objects A and B based on a set of seemingly desirable postulates
such as object independence, translation Invariance, etc. Bloch
(1996a, 1996b) and Gader (1997) both present definitions based on
mathematical morphology which are computationally efficient and
give reasonable results.

Ideally, the automated system should yield spatial relation
measures that are consistent with human intuition. However, most
researchers have not paid attention to this issue. Marks and
Egenhofer (1994) discuss how people think about spatial relations in
an attempt to find a realistic basis for defining spatial relations.
More recently, Keller and Wang (1996) have proposed a method based
on multilayer perceptrons to mimic spatial relation values
indicated by human subjects.

The primitive spatial relations between two objects are (Freeman
1975): (1) LEFT OF, (2) RIGHT OF, (3) ABOVE, (4) BELOW, (5) BEHIND,
(6) IN FRONT OF, (7) NEAR, (8) FAR, (9) INSIDE, (10) OUTSIDE, and
(11) SURROUND. Both Winston (1975) and Rosenfeld and Kak (1982)
have discussed the difficulties in defining such relations for crisp
subsets of the plane.

The first aggregation method we discuss is actually defined for fuzzy
regions of the plane (Krishnapuram et al. 1993b). We first consider
the case of a crisp region, which is equivalent to looking at a specific
level set of a fuzzy region. This method is based on the observation
tha t human perception of spatial positions between objects is
closely related to angular information. Consider two points a and b.

642 FUZZY PATTERN RECOGNITION

in 9?^. Let aB denote the line connecting a and b, and let 9^^ be the

counterclockwise angle between iB and the horizontal axis as
shown in Figure 5.51.

Figure 5.51 Using 6 to define the spatial relation RIGHT OF

The membership function for RIGHT OF is defined as

"BRIGHT (^ab^-

1

(Tt/2He abl

(7t/2)(l-k)

0

71

2 ' abl 2

I abl 2

(5.75)

The value k > 0 in (5.75) is a constant such that kn /2 is the half
width of the top (where it takes the value 1) of the trapezoidal
membership function defined by (5.75). Figure 5.52 shows similar
membership functions for LEFT OF, ABOVE, and BELOW.

m(e)

1

0

m LEFT m BELOW m RIGHT m ABOVE m LEFT

> e
-71 -7C/2 0 k7t/2 7l/2 71

Figure 5.52 Membership functions for five spatial relations

IMAGE PROCESSING AND COMPUTER VISION 643

If A and B are two image regions, to compute the membership for "A
RELATION B" (e.g. "A is LEFT OF B"), Krishnapuram et al. compute
the angle 9 . for each pair of elements a e A and b e B, a n d

evaluate the memberships {m„,^„^(0„ .)}. Finally, the membership
RIGHT " i ** 1 . , U J

m A REL B ^°^ ""̂ RELATION B" is computed by aggregating the

memberships {n̂ j,=n̂ RiGHT^®a b '̂" Several fuzzy aggregation

operators may be used for aggregation (Krishnapuram and Lee
1992a, 1992b). One choice is the weighted mean of order q,

Mq(m,w} = a
I I w m^

Vj=ii=i J \

, where (5.76a)

rp rp n III

m = (mjj m ^) ;w = (w^^ w^^) ; a n d I I W y = l . (5.76b)

The weight w denotes the relative importance of the corresponding
membership value m . The weights {w } may be (usually are) chosen

to be equal to (l / (nm)) , and then M^(m,ll/(nm)l)oc ||m|q. The
parameter q is chosen to suit the required (or desired) degree of
optimism or pessimism.

Krishnapuram et al. (1993a) also define membership functions for
relations NEAR, FAR. INSIDE, OUTSIDE, and SURROUND. Figure
5.53 illustrates how the relation "A SURROUNDS B" can be handled.

Figure 5.53 The angle that defines the spatial relation SURROUND

For each point b e B two lines Lj and Lj that touch A are found. Then
the clockwise angle 9^ between the lines is measured, as shown in

Figure 5.53 (if no tangents exist, then 9^ =2n). Rosenfeld and Klette

644 FUZZY PATTERN RECOGNITION

(1985) discuss one membership function for "A SURROUNDS b", and
Krishnapuram et al. (1993a) suggested a similar one, namely

™ A SURROUND.b*^ b^
9 b - "

7i(l - k)
0

e^>(2-k)7t

n < e^ < (2 - k)n (5.77)

where the constant k in (5.77) has the same meaning as in (5.75). To
find m^suRROUND.B-we find memberships mj.svBRomu.b^^^'^^^ fo'"
all b 6 B and aggregate them with, for example, equation (5.76).

Now we consider the case when A and B are fuz2y regions. Let the a-
cuts of the two regions be denoted by A ,A .•••,A and

B ,B ,--,B . The membership value for A RELATION B ,

denoted by m^ ^^^ B^"I^' ®̂ ^^^^ computed for each corresponding

pair of a-cuts A and B . The overall membership value for "A

RELATION B" is then computed using an equation similar to (5.58),

where bp(ai) is the probability mass associated with level cq.

(5.78)

In the centroid method used by Krishnapuram et al. (1993a) for fuzzy
regions, the centroids of the two crisp regions A and B are first

computed. Then the membership of the spatial relations in terms of
the angular measurement of the centroids are generated from the
same functions as in the aggregation method. Equation (5.78) is used
to obtain the final memberships. The centroid method is
computationally simple, but the resul ts are not generally
satisfactory.

Miyajima and Ralescu (1993, 1994) also present a method for
computing spatial relations between pairs of points a and b based on
the angle Q^ as shown in Figure 5.51. In their definition, however,
positive angles are measured clockwise. The membership function
they use for "a is RIGHT OF b" is given by

^ -Q , Jcos^e.
2 ^ 2\

; otherwise
(5.79)

IMAGE PROCESSING AND COMPUTER VISION 645

The membership functions for the remaining relationships are
defined similarly. As with the aggregation method, the case when A
and B are both crisp regions which are sets of points, i. e., A = {a ,...,
a } and B = fb^ b^}, is reduced to considering nm pairs of points
(â , b), i= l,...,n;J = l,...,m.

Let 0 denote the collection of angles {9 . } where a e A and b e B.
ajDj i J

Since different pairs of points may result in the same angle, 0 is a

multiset. For each 9 ^ 6 0 , let n .
&i D j f)

:card^(a,.bj):9^^^^=9 Let

HgtA.B) = |(9,ng)| denote the histogram associated with 0. The

frequency n^ is divided by the largest frequency to get the
normalized frequency. The histogram H is treated as an unlabeled
fuzay set that captures the spatial relations between A and B. Given
the membership functions for the fuzzy sets RIGHT OF, LEFT OF,
ABOVE, and BELOW, the degree to which H matches these spatial
relations is obtained by measuring the compatibility between the H
distribution and the fuzzy set that represents the relation. The
compatibility of a distribution F to a fuzzy set G is a fuzzy set CP(F;G)
with membership function

m CP(F;G)

, sup {m„(s)} •,m'Mv)^0

0 ; mpi(v) = 0
(5.80)

In our context F is the histogram H and G is a fuzzy set for the
relation, such as the one in (5.79). After the compatibility is
computed, the final degree to which a spatial relation holds is
obtained as the center of gravity of the compatibility fuzzy set.

mpgls)

1 2

(a)MF^offi]Z2ysetsGandF (b) compatibility set CP (P, G)

Figure 5.54 Compatibility between fuzzy sets

646 FUZZY PATTERN RECOGNITION

For the fuzzy sets m^ and m^ shoAvn in Figure 5.54(a), given v , we
F G ^̂ 0

have V = m (s) = m (s) for two points s and s . We find m„(s,) = a,

and mglSg) = oc^. The compatibihty value at v is then

m^p(vQ) = max{aj,a2}. By considering all values of v, we generate
the compatibility fuzzy set shown in Figure 5.54(b). The center of
gravity of m is the degree to which a spatial relation holds.

Ihwill

Example 5.20 Figure 5.55 shows two images containing crisp regions
named A and B. These images will be used to discuss "ABOVE",
"BELOW", "RIGHT' and "LEFT'.

Illlllllllllll HHHHnnillll! 1 • 1
•

i

(a) Test image (a) (b) Test image Cb)

Figure 5.55 Images of crisp regions used in E ŝample 5.20

Table 5.19 summarizes the results for the spatial relations "A
RELATION B" using the aggregation, centroid, and compatibility
methods. From Table 5.19, we see that for Figure 5.55(a), the
centroid method tends to give results which are very close to crisp
values. We think the results are slightly better for the aggregation
method than for the compatibility method.

Table 5.19 Spatial relation results for images in Figure 5.55

Figure 5.55(a) Figure 5.55(b)
Method Left Above Right Below Left Above Right Below
aggreg.

centroid
compat.

0.77 0.08 0.24 0.30
0.94 0.00 0.00 0.07
0.81 0.07 0.68 0.22

0.00
0.00
0.00

0.46 0.46 0.46
0.00 1.00 0.00
0.66 0.36 0.66

Compatibility gives an unreasonably high membership value (0.68)
for "A is RIGHT of B" in Figure 5.55(a) because of the shape of the
histogram of angles shown in Figure 5.56(a). Continuing with the
processing associated with Figure 5.55(a), the compatibility fuzzy set
of the membership function for "RIGHT", as well as the histogram
computed in the region 1-^/2, jt/2] are shown in Figure 5.56.

IMAGE PROCESSING AND COMPUTER VISION 647

(a) histogram of angles between objects for Figure 5.55(a)

nipp(v)
1

0.8

0.6

0.4

0.2

0 AA, Aonat.v
0.2 0.4 0.6 0.8 1

(b) compatibility fuzzy set for "A is RIGHT OF B" for Figure 5.55(a)

Figure 5.56 Histogram and compatibility fuzzy set for Figure 5.55(a)

When the compatlbiUty fuzzy set has low membership for most
values, the centroid is usually fairly large. For the image in Figure
5.55(b), the histogram of angles is shown in Figure 5.57(a}, and its
graph is much more regular with respect to 9 than the graph of
histogram angles in Figure 5.56(a). This agrees with a visual
assessment of the relationship between A and B in right hand image
in Figure 5.55(b).

The compatibility fuzzy sets for "A is ABOVE B", "A is RIGHT of B",
and "A is BELX)W B" are shown in Figure 5.57(b)-(d). After computing
the centers of gravity of these sets, we can see that the degrees for
"ABOVE" and "BELOW are much higher than those for "RIGHT'. The
aggregation method gives almost the same value for "ABOVE",
"BELOW", and "RIGHT". In the centroid method, the value for
"RIGHT" Is dominant (Table 5.19).

648 FUZZY PATTERN RECOGNITION

- JC/2 0 7t/2

(a) histogram of angles between objects for Figure 5.55(b)

m(,p(v)

0 0.2 0.4 0.6 0.8 1
(b) compatibility fuzzy set for "A is ABOVE B" for Figure 5.55(b)

Figure 5.57 Histogram and compatibility fuzzy sets for Figure 5.55(b)

Humans probably would not assign the same degree to the three
relations that was found by the aggregation method. However, it also
is not reasonable to have "ABOVE" and "BELOW" dominate "RIGHT"
as in the compatibility approach. In this case, the centroid method
appears to be more consistent with intuitive perception.

IMAGE PROCESSING AND COMPUTER VISION 649

m(,p(v)

0.2 0.4 0.6 0.8 1
(c) compatibiUty fuzzy set for "A is RIGHT OF B" for Figure 5.55(b)

m^p(v)

0.8

0.6

0.4

/"~S\

0 4-̂ "q \— > V

0 0.2 0.4 0.6 0.8 1
(d) compatibility fuzzy set for "A is BELOW B" for Figure 5.55(b)

Figure 5.57 (con't.) Histogram and compatibility
fiizzy sets for Figure 5.55(b)

Keller and Wang (1995, 1996) proposed a method to learn spatial
relations by training one or more multilayer perceptrons (Section
4.7). Target output values were assigned by human perception of
images obtained from 62 participants with different genders,
nationalities, ages, working fields, and educational levels.

The inputs to (multiple) neural networks were: (i) 181 feature values

representing the angle histogram HQ(A,B) = |(6,ng)} (one value for

650 FUZZY PATTERN RECOGNITION

every 2 degrees in the range of [-jt, jtl), (11) the projected extents of the
two objects on the x-axis, (Hi) the projected extents of the two objects
on the y-axls, (iv) the square roots of the areas of the two objects, (v)
the distance between the centers of gravity of the two objects, (vi) the
ratios of the overlap projected extent on the x-axis to each of the
projected extents of the two objects on the x-axls, and (vli) the ratios
of the overlap projected extent on the y-axis to each of the projected
extents of the two objects on the y-axis. This gave 192 input features
for training. Various neural networks were tested on a large variety
of images. The results were found to be better than those obtained by
the aggregation, centroid, and compatibility methods, perhaps
because the networks were interpolating relationships similar to
ones given by human subjects. Keller and Wang (1996) also suggest
another approach in which the outputs of multiple neural networks
are combined using the Choquet integral (see Section 4.5). Example
5.21 is adapted from Keller and Wang (1996).

Example 5.21 Figure 5.58 shows two typical test Images used by
Keller and Wang (1996). Note that the image in Figure 5.58(b) is
similar to the one in Figure 5.55(b).

. 1
••/•./

(a) Test image (a) (b) 'Dest image (b)

Figure 5.58 Images for testing spatial relationship definitions

Table 5.20 Spatial relations for images in Figure 5.58

Figure 5.58(a) Figure 5.58(b)
Method Left Above Right Below Left Above Right Below

compatibility
aggregation

MLP
human value

0.00
0.00
0.00
0.00

0.63 0.28 0.74
0.26 0.44 0.63
0.04 0.87 0.25
0.03 0.85 0.31

0.00
0.00
0.00
0.00

0.66 0.36 0.66
0.46 0.46 0.46
0.23 0.94 0.32
0.24 0.86 0.25

Table 5.20 gives the results of the neural network method, as well as
the values provided by humans and the values generated by the
compatibility and aggregation methods. As can be seen from the

IMAGE PROCESSING AND COMPUTER VISION 651

table, the memberships produced by the neural network method are
closer to the human ones. This might be expected because of the
training method used. MLP in Table 5.20 stands for multilayered
perceptron as we have defined it in Section 4.7.

With all these definitions, how do we decide the "correct" method to
calculate spatial relations? Intuition is useful (everyone's method
has some sort of intuitive appeal), but intuition is biased by
personal judgments. The real question is (as usual) - which spatial
relationship provides features that are useful in a particular
application?. Wang et al. (1997) used memberships from three
spatial relation definitions together with a few other features in a
digit recognition application. They report that memberships do
provide powerful discriminating capability. More interestingly, the
three definitions used for the spatial relations all provide about the
same results. This offers some evidence that the most important
point about spatial relationships may not be which one you use, but
that you use one at all, based on some reasonable set of definitions
for spatial relationships. Computational complexity is also an
important consideration, and may be a way to choose among
equally useful alternate definitions.

Work in this area is important because scene interpretation often
improves if relationships between objects can be inferred
computationally. A related area in computer vision is to group
together similar structures (e.g. all the guitar players, all the pickup
trucks, all the redfish, etc.) at higher levels. This is the subject of
Section 5.9. Later in this chapter we give an example where spatial
relationships are used to describe a scene.

5.9 Perceptual Grouping

Perceptual grouping involves joining higher level structures (or
"tokens") from a lower level of representation to build more complex
entities. Perceptual grouping provides a natural interface between
top-down and bottom-up reasoning in computer vision systems. The
lower-level grouping is typically data oriented (bottom-up), whereas
the higher-level grouping is typically model-driven (top-down). For
example, lower level grouping might involve merging short line
segments (edge fragments) based on constraints such as collinearity.
In contrast, higher-level grouping might involve searching for line
segments that form the projection of a building modeled as a
parallelepiped. In either case, the grouping is usually based on
geometric relations and constraints between tokens to be grouped.
Since geometric relationships between objects in images are
typically ill-defined, fuzzy methods are well suited for determining
to what degree the tokens satisfy geometric constraints.

652 FUZZY PATTERN RECOGNITION

Kang and Walker (1994) discuss several aspects of perceptual
grouping. At the lower level, they discuss fuzzy strategies for
grouping based on collinearity, parallelism, symmetry, and
Junction. At the higher level, they consider strategies for
recognition tasks such as extraction of curves, natural branching
structures, and polyhedral objects. Ralescu and Shanahan (1995)
also discuss fuzzy methods for perceptual organization of lines and
junct ions. To Illustrate how fuzzy methods can be used for
perceptual grouping, we discuss the Kang-Walker model for line
segment grouping based on collinearity in more detail.

To group line segments into higher-level tokens (longer line
segments) based on collinearity, Kang and Walker (1994) use three
constraints related to proximity and similarity. These are: (1) an
angle constraint, (ii) a perpendicular distance constraint, and (iii)
an end point constraint. The extent to which the angle constraint is
satisfied is based on the angle 0^^ (in degrees) between (if needed,
extensions of) the line segments A and B in question. The angle is
illustrated in Figure 5.59(a), and the membership function m^(9^^)
associated with this constraint is shown in Figure 5.59(b).

(a) angle between A and B (b) MF for angle constraint

Figure 5.59 Angle constraint of Kang and Walker

The end point (Euclidean) distance ED^^, which is proportional to
the empty gap distance between the segments A and B, is defined as:

ED AB

min{6^ [a^,h^), Ŝ (a^, b^), 5^ (b^, a^), 8^ (a^, b^)}

min{52 (aj, ag), §2 (b^, b2)}
(5.81)

where a and a are the end points of segment A, and b and b are the
end points of segment B. Figure 5.60(a) illustrates the normal case,
for which ED^^ > 0. When one of the segments is at least partially
inside a projected envelope orthogonal to and containing the other.

IMAGE PROCESSING AND COMPUTER VISION 653

as shown in Figure 5.60(b), then equation (5.81) is not used. Instead,
ED is defined to be zero, ED^^ = 0 (Basically, you find the nearest
point on the (infinite) extension of B to a or a , and if this point lies
between b and b , then ED^^ = 0.) A trapezoidal membership
function similar to the one in Figure 5.59(b) is used with the end
point (EP) distance constraint, j^elding m x_ (ED^

EP5o AB'

(a) normal case (b) oveilapping case

Figure 5.60 Endpoint distance constraint

The third constraint, perpendicular distance, measures how well the
extension of one segment is supported by the other. When A and B
are primitive (i.e., ungrouped, single line segments), the longer
segment is called the dominant one of the pair. As illustrated in
Figure 5.61, the perpendicular distance PD is the orthogonal

distance from the mid point (^)of the non-dominant segment to the
extension of the dominant segment, which is labeled A in the Figure
5.61.

Figure 5.61 Perpendicular distance constraint

Like the end point distance constraint ED , we need a membership
function for PD^^. Kang and Walker assert that m^g(PD^^) can be
increasing or decreasing, and they used a trapezoidal membership
function for mj^g(PD^^) in their paper. The membership function
m (A, B) for colltnearity of two line segments A and B is obtained

654 FUZZY PATTERN RECOGNITION

by aggregating the values of the three membership functions

AB) ^ d " l x 5 (P D A B) .

™COLL(A.B) = T m^(e^) ,m (ED
AB- •^U^P^AB (5.82)

Equation (5.82) uses any T-norm such as the min operator. When the
value of nifjQLL ^̂ "̂ ^ ^^^^ °^ segments is high enough, a merged
segment is created by extending the dominant segment to span the
projection of the non-dominant segment. Other ways to create the
merged segment may also be used. Kang and Walker defined the
certainty value CV (A) for a line A with endpoints a and b that results
from grouping a set of smaller line segments {A } with endpoints {(a,
b }̂ as

CV(A) = [I CV(Aj)mcoLL(Ai'A)-52(a,,bj)]/82(a,b). (5.83)
{A,)

At the lowest level, if the edge detector provides information about
the certainty CV(A) of an edge fragment A, this can be used in (5.83)
when determining CV(A). Otherwise, all edge fragments are
considered to have equal certainty. For groups of segments, the
segment with the greatest product of certainty and length is
considered to be the dominant one.

Store

Table 5.21 The collinear grouping algorithm

Line segments X = {Aj,..., A^} - (e.g., via an edge detector)

Certainty values CV = {CV(A)̂ CV(A^)}

Pick a cut value : a e [0,1]
REPEAT UNTIL (no merger takes place)

Choose dominant segment Aseed â s seed
Compute COLL„ = {A,: m^^^L ̂ ^^eed. Aj) > a, i = 1,..., n}

£)Q Sequentially merge A^ E C O L L ^

(in decreasing order of (length x certainty)
Add grouped segments from previous step to the data
Eliminate the seed segment and all merged segments

included in grouped segments from the data
% When you merge several segments, what results is a

grouped segment
END UNTIL

Kang and Walker's (1994) algorithm for collinear grouping is
summarized in Table 5.21. Although it may appear that the value of
a used in the algorithm acts like a threshold, since the system

IMAGE PROCESSING AND COMPUTER VISION 655

retains the membership values for all the collinear groups, the
uncertainty can be propagated, and the actual decision-making can
be deferred.

ItwftI

Example 5.22 This example is adapted from Kang and Walker (1994),
and they supplied the images shown. Figure 5.62(a) shows the image
of a block and Figure 5.62(b) shows an edge image made from the
image in view (a). Kang and Walker do not specify the edge detector
used. Figure 5.62(c), shows the initial set of edge fragments extracted
from the edge image in view (b).

(a) Image of a block

t ,

t *•*

,tH;-';

(b) Corresponding edge image of block

Figure 5.62 Raw data for collinear grouping

656 FUZZY PATTERN RECOGNITION

(c) Initial tokens from edge image

Figure 5.62 (con't.) Raw data for collinear grouping

Figure 5.63 shows a set of five membership functions for the
hnguistic values {not, slightly, roughly, almost, exact}. Kang and
Walker (1994) use this termset, with the domain of the membership
functions normalized to [0, 1] if necessary, to fuzzily several
numerical variables in different parts of their overall system for
perceptual grouping. For example, when doing collinear grouping of
objects A and B at the rough level, the horizontal x axis as shown in
Figure 5.63 is interpreted as x = m^Qj^j^(A,B), and the vertical axis is
Interpreted as the extent to which A and B are roughly collinear.

m,.,(x)

not slightly
1

roughly almost exact

^ x
0.25 0.5 0.75

Figure 5.63 Linguistic term set for perceptual grouping tasks

Kang and Walker then use the area centroid of the membership
function for ROUGHLY in Figure 5.63 as the a value in the collinear
grouping algorithm in Table 5.21. In this example only the function

IMAGE PROCESSING AND COMPUTER VISION 657

for roughly is used; all five of them are shown here for graphical
economy - they are not a termset for the input to a set of rules.

Figure 5.64(a) shows the groupings of the initial edge fragments
shown in Figure 5.62(c) at the approximation level almost coUinear.
Figure 5.64(b) and (c) show the groupings at approximation levels
roughly coUinear and slightly coUinear.

(a) groups at approziination level almost

(b) groups at approximation level rough

Figure 5.64 CoUinear grouping of edge fragments

658 FUZZY PATTERN RECOGNITION

(d) groups at approzimation level slightly

Figure 5.64 (con't.) CoUinear grouping of edge fragments

5.10 High-Level Vision

High level vision tries to take advantage of goals and knowledge to
guide visual activities. Therefore, we need methods to model goals
and capabilities and reason about them. A system that employs
high-level techniques should also be able to evaluate the success of
Its approaches. Knowledge representation and object modeling is an
important part of high-level vision. Very often, world knowledge
can be described In vague and imprecise terms, and therefore, fuzzy
methods are ideally suited for this application. High-level vision
also requires powerful inferencing methods, and fuzzy logic can
play a role here. Other examples of high-level activities to which
fuzzy methods can contribute are: matching models to data, belief
maintenance, and constraint relaxation.

We illustrate one way to use a fuzzy model in this context with an
abbreviated summary of Wang and Keller's (1999a, b) work in high
level vision. The fuzzy MA rule base developed for scene description
contains 242 rules and was implemented using the software package
CubiCcdc CWatkins, 1990), with product Inference (firing strengths
are computed with the T norm) and centroid defuzzification (Figure
4.33, and see Klir and Yuan, 1995). Table 5.22 summarizes various
combinations of linguistic values for the five premise variables
representing the 242 rules used by Wang and KeUer.

IMAGE PROCESSING AND COMPUTER VISION 659

Table 5.22 Siunmaiy of input PMFs for 242 scene description rules

Rule-
type

L
Left

A
Above

R
Right

B
Below

S
S u r r o u n d

1 X X X X H
2 m, h m, H m, h m, h m

3 m m, h m I m

4 h m, h h I m

5 m m, h h I m

6 m,h I m, h I m

7 h h I I, m

8 m m I I, m

9 m h I I, m

10 m,h I I e, m

11 I I I m

12 m, h m, h m, h m, h I

13 m m, h m t I

14 m m, h h I I

15 h m, h h I t

16 m, h I m, h t I

Note: X denotes "don't care" In Table 5.22

Wang and Keller used five spatial relations between objects as
linguistic variables about "RELATION BETWEEN" to fuzzily the LHS
of the rule base and build a linguistic description of the scene. The
premise or input linguistic variables were: LEFT_OF = L, RIGHT_OF
= R, ABOVE = A, BELOW = B and SURROUND = S.

Table 5.23 summarizes the various combinations of output
linguistic values for the antecedent clauses in Table 5.22. The output
or consequent side of their MA rule base was fuzzified with 10
consequent linguistic variables: TL, TS, TR, TB, TA, AR, AL, BR, BL
and AM. This notation abbreviates compound words made by
juxtaposition of T= TOTAL with L, R, A. B and S. So, for example, TA
= TOTALLY_ABOVE, AR = ABOVE_RIGHT, BR = BELOW_RIGHT, etc.
AM is a standalone acronym that means "AMONG"; this variable
was used for groups of objects, as in "Tank is AMONG the Armored
Personnel Carriers". These variables head the columns of Table
5.23. Each input and output linguistic variable took 3 linguistic
values : I = LOW, m = MEDIUM and h = HIGH.

660 FUZZY PATTERN RECOGNITION

Table 5.23 Summaiy of output CMFs for 242 scene description rules

Rule TL AL TA AR TR BR T B BL T S AM

1 t I I I I I 1 r h I

2 I I I I I I 1 ' m
3 I (m,h I I I t ' m
4 t I m,h I I I t ' m
5 I I I m I I t t m

6 t i l I I I ', m
7 I I I h I I ', l,m

8 I I I h I I '. l,m

9 I I I I h I I ' l,m

10 I I h I I I t ' l,m

11 I I I I I I t ' m

12 I I I I I I t ' I h

13 I I m,h I I I i ' I m
14 I I I m I I 1 '. I m,h

15 I I m I I I (' I h

16 I I I I I I (' I m,h

If there are two adjacent relations, such as ABOVE and RIGHT, with
both "medium" or both "high", and the others "low", then the output
ABOVE_RIGHT will be "high". Because the 4 primitive spatial
relations are symmetric, we Just list one case; rules for the other
three cases can be obtained by symmetry. For instance, if the inputs
are (medium, high, medium, low, medium) for (L, A, R, B, S), then for
the outputs, TOTAL_SURROUND will be "medium", TOTAL_ABOVE
will be "high" and the others will be "low". This rule is displayed in
the third rule-type of Tables 5.22 and 5.23 (note the choice of "high"
for ABOVE). Now, if the 4 primitive relations of the inputs turn 90
degrees clockwise, i.e., (low, medium, high, medium, medium) for (L,
A, R, B, S), then TOTAL_SURROUND will be "medium",
TOTAL_RIGHT will be "high", and the others will be "low".

Among the 10 output values, the variable with the highest
confidence value was picked to describe the relation between objects
in the scene. This simple linguistic approximation approach
produced very good results in the experiments described later. After
the system was constructed, it was tuned using two images to adjust
some factors which affect the performance of the system, such as
definitions of the membership functions, the rules, and grouping
parameters. A typical rule summarizing the spatial relation

IMAGE PROCESSING AND COMPUTER VISION 661

between a pair of objects Is found by matching a premise row from
Table 5.22 to a consequent In Table 5.23. For example:

Premise clauses from row 3 of Table 5.22

IF L = m
AND A = m
AND R = m
AND B = ̂
AND S = m

onsequei nt clauses fr

THEN TL = ^
AND AL = (
AND TA=m
AND AR = <
AND TR = ^
AND BR = ̂
AND TB = i
AND BL = ^
AND TS = w
AND AM = ^

Wang and Keller (1999a) show that when SURROUND exists, we don't
need to consider the four primitive spatial relationships. Thus, if
SURROUND is "high", whatever the other four input variables are,
TOTAL_SURROUND will be "high" and the other linguistic values
will be "low" in the consequent membership function (CMF) set.
When SURROUND exists but to a weaker extent, the other 4
primitive spatial relations may exist at the same time. So, if
SURROUND is "medium", then TOTAL_SURROUND will be
"medium", and the other relations from output will depend on the 4
primitive relations of the inputs. This is shown, for example, in the
third rule-type of Tables 5.22 and 5.23, where the inputs are
(medium, high, medium, low, medium) for (L, A, R, B, S) - (note the
choice of "high" for ABOVE). These o u t p u t s give
TOTAL_SURROUND: "medium", TOTAL_ABOVE: "high" and the
others: "low".

Writing out the rules amounts to simulating a human's reasoning
about spatial relations. When humans think about spatial
relations, they consider the relations comprehensively. For
example, when the spatial relational membership values (0.88, 0.76,
0.00, 0.00) are given for (A, L, R, B), humans might reason that the
compound relationship is "ABOVE_LEFT" because "LEFT" is "high"
and "ABOVE" is "high" and "RIGHT" is "low" and "BELOW" is "low".
Since the system attempts to model the reasoning process of a
human expert, the designer can understand the cause of the change

662 FUZZY PATTERN RECOGNITION

in the performance after he or she manipulates the rules and
membership functions or uses different parameters. We refer to this
tuning process as training of the system. This scene description
approach requires a priori information (domain knowledge) which
can be encoded as separate rules or procedures. For example, in an
automatic target recognition application, it was necessary to
include procedures to decide if individually detected vehicles should
be considered a group or a convoy, or if some buildings should be
grouped together for the purpose of scene description. Details and
other applications can be found in (Wang and Keller, 1998b). In
Example 5.23 we show the results of applying the Wang and Keller
rule-based system to the segmentation of the "man-and-house"
image in Figure 5.30(d).

Example 5.23 Because angles between all pairs of object points must
be computed (perhaps many times), direct computation can be quite
costly. An arctangent lookup table of the same size as the image was
created to reduce this computational burden. Thus, needed values
come directly from the table instead of being calculated for each pair
of pixels. Also, before determining the spatial relations between two
different objects, we have to decide which pixels belong to the two
objects. To reduce computation, we do not need to examine the
region labels for all the pixels in the image. The smallest rectangles
containing the objects can be generated automatically after
labeling. We jus t search the rectangle areas, which can be much
smaller than the entire image.

Table 5.24 Spatial relationship values for Figure 5.30(d)

arg, ref L A R B S Output
roof, tree 0.00 0.17 0.70 0.05 0.00 TR = 0.99
wall, tree 0.00 0.02 0.61 0.26 0.00 TR = 0.79
sky, tree 0.01 0.40 0.69 0.01 0.00 TR = 0.98
wall, roof 0.13 0.01 0.01 0.73 0.00 TB= 1.00
sky, roof 0.07 0.68 0.12 0.00 0.00 TA = 0.93
lawn, wall 0.06 0.01 0.02 0.76 0.00 TB= 1.00
road, wall 0.08 0.00 0.03 0.83 0.00 TB = 1.00
road, lawn 0.06 0.01 0.03 0.68 0.00 TB = 0.90

Columns L, A, R, B and S in Table 5.24 show (spatial relation)
membership values for the labeled regions in Figure 5.30(d) before
invoking the rule base; these are the input values to the PMFs in the
242 rules. The neural network approach of Wang and Keller (1995)
was used to obtain the input values in Table 5.24. The output
variable having the maximum value after invoking the rule base is
displayed in the last column of Table 5.24. The crisp output of the
rule base after hardening by linguistic approximation is shown in
Figure 5.65 (b). Figure 5.65(a) replicates Figure 5.30(d), the scene to
which the rule-based statements apply.

IMAGE PROCESSING AND COMPUTER VISION 663

, ' . " •

! : ' • '

f...
11'. -

(a) Figure 5.30(cl). repeated

The roof is right of the tree

The wall is right of the tree

The sky is right of the tree

The wall is below the roof

The sky is above the roof

The lawn is below the wall

The road is below the wall

The road is below the lawn

tb) rule based relationships

Figure 5.65 Output of the scene description rules for Figure 5.30(d)

Figure 5.30(d) shows that some parts of the image were labeled
incorrectly. For example, some roof edges were labeled tree, and the
black shutters were labeled road, etc. But these parts did not
dominate the regions to which the parts were assigned, and so the
system still gave very good results. Wang and Keller's fuzzy rule-
based system also works well on other outdoor scenes.

5.11 Comments and bibliography

On stuff we did not cover

A better title for this chapter would be "Selected Topics in Computer
Vision and Image Processing", since the algorithms presented in
this chapter are just a few needles in the haystack of literature on
fuzzy models in this field. There have been many recent surveys that
discuss the use of very innovative and clever fuzzy models in various
imaging applications that we did not discuss. For example. Pal and
Pal (1993) give a good exposition of many topics that received scant
attention here. Keller et al. (1996) give an in depth discussion of the
use of rule based systems in computer vision - touched on here only
briefly. Bezdek and Sutton (1999) provide a fairly comprehensive
review of fuzzy models for medical imaging, with concentration on
segmentation and edge detection in tumor detection. Most of the
textbooks we are aware of have pretty dispersed coverage of image
processing, and are content to scatter an example here and there.
Notable exceptions are the books by Pienkowski (1989) and Chi et al.
(1997).

664 FUZZY PATTERN RECOGNITION

The topic of how to evaluate image processing algorithms always
sparks a lively debate. Since humans excel at visual pattern
recognition, it is easy for most of us to tell really bad outputs from
good ones. But it is nearly impossible to see a five percent
improvement (which may be enough to save a life), much less
measure it, in, say, a segmentation of a digital mammogram to
detect microcalcifications. Even when participants are domain
experts (e.g., radiologists evaluating MR segmentations), there is a
lot of (perhaps unavoidable) subjectivity in performance analysis.

Heath et al. (1998) provide an interesting and thought provoking
article on performance evaluation in image processing. The context
of their paper is edge detection, but their ideas deserve careful
attention by workers in related areas. For exaimple. Table 1 in Heath
et al. lists all edge detection papers that were published in the four
journals IEEE Trans. PAMI, CVGIP, Image Understanding and
Pattern Recognition from 1993-1995. 21 papers are referenced -
none used real image ground truth! Table 2 in Heath et al. lists 12
papers that have described evaluation methods for edge detection - 8
of the 12 require ground truth! What's wrong with this picture? Most
of us are computer professionals, engineers or mathematicians. We
develop image algorithms, grab a few images, run them, choose the
ones we like, and rush to judgment. That's basically what we did
when we wrote this chapter. Heath et al. advocate the use of
quantitative rating instruments used by human panelists who
visually compare outputs of (more or less) comparable algorithms
that have been exercised in a carefully controlled and integrated
software setting. We think this is a very useful paper; have a look at
it.

Tanaka and Sugeno (1991) provide a different twist to image
evaluation. Their work focuses not on the comparative evaluation
of image processing algorithms, but rather, on evaluation of how
different humans evaluate the content of color images. They build a
two stage evaluation model based on the Choquet integred (Section
4.5) that aims to understand how different humans perceive and
respond to Aasual images, and in particular, how they select the most
preferable reproduction of a color photograph.

An important topic that we have virtually ignored in this chapter is
image compression (probably because none of us know much about
it!). Fuzzy models have been used pretty successfully in this area,
competing well with more s tandard approaches to vector
quantization. Karayiannis and Pai (1996) and Karaj^annis (1997b)
show some results using various mutations of the FLVQ method
(Section 4.3) to compress and reconstruct poor Lena, and they report
very favorable signal to noise ratios using their FALVQ family of
algorithms. Wang and Karayiannis (1997) use FLVQ and other
techniques to compress digital mammograms of breasts containing
microcalcifications. Kosko (1992) has a chapter on this topic

IMAGE PROCESSING AND COMPUTER VISION 665

written by Kosko and Kong that utilizes fuzzy associative memories
and competitive learning models for image coding. Kosko (1997) has
a chapter written by Kim and Kosko that extends this work with
subband coding and vector quantization.

Wang et al. (1996) use fuzzy reasoning for image compression. Their
method adaptively adjusts the 3D position of triangular patches
that approximate the corresponding luminance curved surfaces of
the original image. The adaptive adjustment is done considering all
pixels contained in the projection of a patch using a six-rule fuzzy
reasoning system.

Another Important topic that we have paid scant attention to is
image processing based on fuzzy Tnathematical morphology; and
again, it's the case that none of us know very much about it. A large
body of work on this topic is due to Bloch and her colleagues, and for
an introduction to the literature in this area we can do no better
than to recommend her eminently readable survey (Bloch, 1995).
Another important source for fuzzy morphology in image
processing is the work of Dougherty and his colleagues, which is
well summarized in Sinha and Dougherty (1995), and which comes
to fruition in Sinha et al. (1997).

Binary (crisp) morphological operators such as erosion, dilation,
opening, etc. are built on the concept of fitting a structuring element
to structures in the image. We think that Goetcherian (1980) first
discussed fuzzification of crisp morphological operators by
applying standard operators to a-cuts of fuzzy images, and
aggregating the results over the a-cuts to get a final result. Bloch and
Maitre (1993) also suggested fuzzification of morphological
operators in the context of a-cuts.

Sinha and Dougherty (1992) Introduced intrinsically fuzzy
morphological operators, in which both the input and output images
are fuzzy. Erosion is defined using fuzzy set inclusion to represent
the idea of "more or less fits" (the structuring element). Sinha and
Dougherty (1995) propose a set of axioms that seem desirable for
these operators based on a fuzzy subset-hood index, and provide an
extensive study of properties of their system. A general paradigm for
"lifting" crisp morphological algorithms to fuzzy generalizations is
given in Sinha et al. (1997). These authors discuss algorithms for
three important image processing tasks: shape detection, edge
detection and clutter removal. An example of their fuzzy
morphological approach to word recognition is provided.

Bloch et al. (1997) apply the morphological approach to three-
dimensional reconstruction of blood vessels to assist vascular
lesion interpretation. Fuzziness is incorporated in four different
a reas (segmentation, modeling imprecision, mathemat ical
morphology and data fusion), without a priori geom^etrical model

666 FUZZY PATTERN RECOGNITION

information. The approach fuses information from digital
angiographic and echographic data to make a final binary decision,
resolving possible contradictions between the two modalities.
Redundancy in the combined data from two orthogonal X-ray
angiographic projections (which provide longitudinal information
and overall 3D geometry of the vessel), and a series of endovascular
echographic slices (high resolution vessel cross sections) helps to
reduce imprecision and uncer ta inty in the final model.
Segmentation of the endovascular echographic images is based on
fuzzy classification and mathematical morphology, whereas the
digital angiographic images are segmented based on dynamic
tracking of vessel centerlines and contours. During model
reconstruction, fuzzy dilation is used to handle the spatial
Imprecision of the detected contours. The data are then fused using a
fuzzy operator, and a binary decision about the contour is based on a
3D watershed algorithm which connects maximal membership
points. Example images from a dog aorta are provided.

Park and Keller (1997) developed a segmentation approach to detect
white blood cells in human bone marrow images that combines
mathematical morphology with fuzzy relaxation labeling. Other
work in this area includes DiGesu et al. (1991) and Koskinen et al.
(1991).

Feature analysis in image processing

Perhaps the most important choice you will make in image
processing is which numerical features to extract from raw sensor
data. We cannot give you a set of guidelines for getting good features,
because here, as in Chapters 2 and 4, "good" is very problem
dependent - what are the features used for? what properties of a fuzzy
model do we hope they match up with? what type of data do we have?
And so on. Many authors have fuzzified input features to classifier
networks, including features used in image processing. And of
course all of the papers discussed in this chapter use features, but
these are rarely selected or extracted using fuzzy techniques. Most
always, conventional features are used in fuzzy models and
algorithms.

Shell type clustering algorithms, for example, provide a way to
extract features related to boundaries of objects in images. The
divide and conquer noise fuzzy clustering method presented in
Section 5.6 combines the Hough transform (HT) with fuzzy shell
clustering towards this end. There are many alternatives to the
methods we have discussed. lUingworth and Kittler (1987) discuss an
adaptive (crisp) Hough transform which probably could be made
better by generalization to the fuzzy domain.

The concept of the fuzzy Hough transform was Introduced by Han et
al. (1993). In Han et al. (1993) fuzziness is used to generalize the HT

IMAGE PROCESSING AND COMPUTER VISION 667

by extending the HT to points that have memberships other than 0
or 1. The membership degrees are summed to aggregate information
about points on a circle, just as the membership value of 1 is added
in the ordinary HT. The membership functions for the fuz2y points
are taken to be isotropic, i.e., all a-cuts are disks. This approach is
used by Philip et al. (1994) to extract features from medical images.
Geci (1996) defined another fuzzy Hough transform that makes the
angle as well as the spatial location of each point fuzzy, and used it
to determine stained cell counts in images of rat livers.

Bhandarkar, (1994) proposed a fuzzy probabilistic model for the
generalized Hough transform (GHT) based on qualitative labeling of
scene features and used it in object recognition and localization. A
popular paradigm for model-based vision is recognition via
localization, which is banked up on propagation and satisfaction of
local constraints arising from matching of local geometric features.
The GHT is a frequently used technique for constraint propagation
and satisfaction. The GHT works well when the scene has a single
object or there are no occlusions of objects in a multi-object scene.
Multiple object scenes with partial occlusion results in a
combinatorial explosion In the size of the search space of possible
scene interpretations and generates several spurious scene
hypotheses.

The conventional GHT computes a range of transform values for a
given match between a scene feature and a model feature. The range
of transform values is represented by a volume in the Hough space
(accumulator) H, and all buckets in H that intersect this volume are
incremented. For a given quantization level of H, the main reason
for this redundancy of GHT is uncertainty in the computed
parameters due to occlusion. For occluded objects, using the lengths
of the scene feature (s) and the length of the model feature (m), the
author defines a "degree of occlusion" measure m . Values of m ̂ ^̂

are viewed as the extent to which the qualitative attribute
"occlusion" is satisfied. In this fuzzy generalization of the GHT
(Bhandakar calls it the weighted GHT (WGHT)), if a bucket intersects
the volume in the parameter space defined by the match, then the
bucket count is incremented by the fuzzy membership value m ^.
Note that for the GHT this increment is 1. As a result, the WGHT
tends to favor matches with unoccluded features over those with
occlusion. Unoccluded features typically correspond to objects on
top of others, and WGHT favors their recognition. This is very
appropriate. According to the author, for the WGHT the Hough
accumulator which corresponds to transform values with high
redundancy factors are selectively de-emphasized.

One of the central ideas in microcalcification studies for digital
mammography is the use of wavelet-based correlation filters to
extract features that can be used as a basis for discriminating

668 FUZZY PATTERN RECOGNITION

clusters of microcalcifications. Wang and Karayiannis (1997),
Strickland and Lukens (1997) and Strickland and Theodosiou (1998)
all use wavelet-based features with various fuzzy models in digital
mammography. Runkler and Bezdek (1997) propose several fractal
like features that are derived from images, and illustrate their use
for segmentation of a digital mammogram with several fuzzy
models.

Li and Yang (1989) give an image enhancement technique based on
fuzzy relaxation. Lee and Hsueh (1995) proposed a simple filter based
on fuzzy reasoning for noise removal. They first convert the digital
image into a fuzzy one where each pixel intensity represents the
degree to which the pixel is uniform with respect to its local
surroundings. The fuzzy image is then smoothed using a set of three
fuzzy rules. The smooth digital image is finally obtained by
defuzzifying the output of the rule-base with the inverse of the
fuzzification function.

Ekige detection and enhancement

There have been many attempts through the years to improve edge
detection and edge enhancement with fuzzy models. However, the
issue of how best to do this runs deeper than just "to fuzzify or not to
fuzzify". The most important aspect of edge detection may well be the
features used, and this issue is independent of the incorporation of
fuzzy uncertainty into an edge detection model. To appreciate this,
contrast Jain et al.'s view of edge images in Section 5.3 to that of
Hall (1979), who states that human psychovlsual perception of
contrast at some spatial location depends on more than jus t the
gradient or difference in intensity levels between a pixel and its
background. What we learn from this is that different authors have
very different ideas about edges in images, so there are many models
of edge detection, and while the gradient is often predominant,
many other numerical features are also used in some of these
models.

The first work on fuzzy edge detection was apparently Pal and King
(1983a). Tyan and Wang (1993) use gray level values as input
variables to a fuzzy rule based edge detector. Two fuzzy sets, bright
and dark, are defined on the gray level domain. Their idea of fuzzy
edge detection is based on the following heuristic rule:

IF a dark region and a bright region meet
THEN the transition area is an edge

Tyan and Wang use a 2X2 mask. There are 16 cases where dark or
bright pixels can occur in a given 2X2 window. Out of these, there
are 4 cases where an edge occurs, and 12 cases where a non-edge
occurs. Tyan and Wang build a fuzzy rule for each case, so there are
16 rules in the rule base.

IMAGE PROCESSING AND COMPUTER VISION 669

Tao et al. (1993) use gray-level differences between a center pixel and
its eight neighboring pixels. Two linguistic labels, small and large
are used for the input gray level differences. Sixteen structures
corresponding to possible edge configurations are considered using
the small and large linguistic labels. One rule is associated with
each edge structure.

In psychophysiology the perceived contrast C between an object o
and its background b is the ratio of the absolute difference in
illumination between o and b to the average intensity of the

surroundings, C , = I - L / r , where I and I denote the intensities
'^ Ob \ o by h o b

of o and b. Pal and Mukhopadhyay (1996) argue that most edge
detection models ignore the wide variation in the perceived contrast
over the scale of intensities encountered in real images (Buchsbaum,
1980). They propose a simple edge detector that attempts to integrate
psychovisual theory with MA style fuzzy reasoning as described in
Section 4.7, and thus, call their model a psychovisually motivated
fuzzy reasoning edge detector (PSYFRED). Here are the basic
elements of their approach, the forerunner of which was ostensibly
Bezdek and Shirvaikar's (1994) fuzzy reasoning edge detector
(FRED), which had roughly the same architecture but very different
input features.

Let 1 denote the background intensity at location X, the pixel under
consideration. Among the many possibilities for computing I from,
say, a 3 X 3, window W centered at X, Pal and Mukhopadhyay use the
average intensity in the window. The authors then obtain an
estimate of the horizontal and vertical digital gradients g^ and g ,
respectively, from the intensities in W. This can be done using any
of the standard estimates (Sobel, Prewitt, Roberts operators,
Gonzalez and Woods, 1992), but these authors use an aggregation
operator instead.

The two gradients and the background intensity (as embodied by IJ
are used by a pair of simple fuzzy rule bases /€ and /€ to produce
estimates of the strength of an edge, say E and E , in the horizontal
and vertical directions. TTie inputs to /€ are (g^, I J , and the inputs to
R are (fi , I J . /? and R are Identical except for the inputs. The

overall output is the edge strength E(Xj); of the many possible ways
to compute this aggregate, Pal and Mukhopadhyay use the
maximum, E(Xj) = max{Ej^(Xj),E^(X,)}.

Three linguistic values, {positive big = PB, positive small = PS, zero =
ZE} oversee the action of both gradient estimates and the overall

670 FUZZY PATTERN RECOGNITION

edge strength E(Xj); and four linguistic values, {positive big = PB,
positive small = PS, medium = ME, zero = ZE} are used for I , the
average intensity of the window centered at X. Each rule base in
PSYFRED has 12 rules (four of which can be combined into one rule)
of the form : Ifg^ is PB and I is PB then E^ is PS. This rule, for
example, would give X a low edge value even though the gradient is
very high because the background intensity is also very high.
Defuzzifciation in each rule base was done using the local mean of
maximum rule (Klir and Yuan, 1995).

Segmentation

Once features have been extracted, the most frequently used low
level image processing operation is segmentation. Some authors
also refer to edge images as segmented images, but we classiiy edge
detection as a separate operation. In any case, there are literally
hundreds of papers about fuzzy models for segmentation, and we
have barely scratched the surface of this vast and important subject.
Jus t to give you a feel for the extent of this topic, we briefly discuss a
very few of these articles.

First, many, many studies and even entire textbooks of non-fuzzy
segmentation methods have been published. For example, Morrison
and Attikiouzel (1994) describe segmentation by statistical and
neural network models; Jain and Fl)Tin (1996) provide a wonderful
survey of image segmentation by non-fuzzy cluster analysis. Fuzzy
rule-based segmentation has been discussed by many authors (Keller
etal., 1996).

There are many ways to classify segmentation methods, none of
which leads to a crisp partition of them. For example, Dellipiane
(1997) gives a classification tree rooted at image segmentation that
subdivides segmentation algorithms based on the parameters that
guide them to their goal. Dellipiane identifies three main groups of
segmentation methods based on density, topology and geometry. All
of the methods covered in our Chapter 5 fall into the first and
perhaps oldest category (density), where leaves at a depth of 5 in
Dellipiane's tree include segmentation approaches for regions (2D
regions or 3D volumes); and for boundaries (2D edges or 3D surfaces).

Perhaps the leading source of fuzzy models for image segmentation
is in medical computing. First, there is a rich variety of imaging
sensors (PET, X-Ray, MR, CATSCAN, Sonic, Gamma, etc.), all of
which produce diagnostically useful information to clinicians and
physicians. Second, there are powerful economic forces driving the
development of medical imaging devices. And most importantly, the
problems that can be solved with medical imaging are attractive; it
is hard to imagine a more rewarding accomplishment than, say,
reducing the fatality rate from breast cancer by even a few percent

IMAGE PROCESSING AND COMPUTER VISION 671

with the use of an imaging technology you helped develop. We have
already mentioned the survey by Bezdek and Sutton (1999), which is
specialized to medical image processing. We repeat a few of the
references to papers discussed by Bezdek and Sutton, and add
comments on some other papers that are not discussed there.

Microcalcifications in the female breast often appear as small
bright areas in mammogram images (i.e. tiny dots), and are taken as
a potential early indication of the onset of a breast tumor.
Brzakovic et al. (1990) study a fuzzy p5Tamid linking scheme for the
detection of microcalcifications and nodules. Lo et al. (1996) focus
on the detection of clustered microcalcifications using fuzzy
classification modeling.

Strickland and Lukens (1997) and Strickland and Theodosiou (1998)
discuss the use of a TS fuzzy system for the detection of
microcalcifications in digital mammograms. They process images
by first applying a wavelet filter, and then using a TS system with
eight rules to classify pixels in the image. The TS system is trained
with labeled data which is manually extracted from the images.
Surprisingly, this is one of the few applications of fuzzy models to
mammography that we are aware of; see Bezdek and Sutton (1999)
for several others.

Sameti and Ward (1996) begin segmentation with an Initial fuzzy
membership function m^^ whose domain is P . First, these authors
normalize the gray levels; then they find T, the value at which the
histogram of the normalized intensities (I } minimizes. T is used to

set the crossover point where mj^Q(T)=0.5. The graph of m^Q is
displayed in their paper, but its equation is not. The function shown
bears a striking resemblance to a truncated unipolar sigmoid.
Following initialization, an Iteration scheme that mimics gradient
descent updates m^^ until a termination criterion is satisfied,
resulting In a binary image (i.e., a crisp 2-partitlon of the image).
This procedure is subsequently applied repeatedly to each of the two
crisp subsets created by successive phases of the processing until a
satisfactory segmentation of P is obtained. Consequently, P is

segmented into c crisp regions where c = 2̂ ^ 3 k . Sameti and Ward
segment 20 MR images into c = 4 crisp regions this way, and allude to
comparing suspicious regions in them to known suspicious regions.
Details about the evaluation procedure are incomplete.

Hata et al. (1997, 1998) have an approach to the segmentation of
medical Images based almost entirely on reasoning with a set of
fuzzy if-then rules. Both referenced papers describe the use of a fuzzy
rule base that processes numerical pixel-based features. Numerical
features Include Intensities, spatial locations, Euclidean distances
and boundary proximities. Membership functions for the rules are

672 FUZZY PATTERN RECOGNITION

given, but no tuning or training is described. Instead, the shapes and
parameters of these functions are evidently based on domain
specific knowledge about human physiology, such as intracranial
s t ruc ture (for MR brain images), and joint s t ruc ture (for
computerized tomagraphic (CT) images of the human foot). Hata et
al. (1997, 1998) use a fuz2y rule base to represent a single fuzzy
membership function m: P ^ i-> [0,1] on digital images, and then

apply region growing based on thresholding the values {m(i, j)} to
segment P,, into a prespeclfled number of crisp clusters.

Many authors have used one of the c-means models or a derivative
of one for image processing on a wide variety of medical Imagery.
Boudraa (1997) and Boudraa et al. (1993) concentrate on cardiac
images and FCM processing. Brandt and Kharas (1993) compared the
effectiveness of HCM, FCM and PCM for unsupervised segmentation
to separate three simulated clusters in brain images as the amount
of boundary overlap is increased. Rezaee et al. (1995) combine FCM
with the Hough transform to segment MR Images of the ventricle.

Namaslvayam and Hall (1995) assert that over a large set of MR
images from different patients, rules perform reliably when they are
based on relative differences in pixel intensities for different tissue
types. These authors state that fuz^ rules and ssFCM applied to the
unlabeled pixels in test MR images of normal patients can yield
more accurate and much faster segmentation than naive FCM
segmentation (but see our discussion about crisp rules for the Images
in Figure 5.31). In this application crisply labeled training pixels
are chosen by a set of rules that identify tissue types with a high
degree of confidence.

A very different approach to supervised segmentation from the
methods discussed in this chapter is region growing from user
selected seed pixels (or voxels). Delliaplane et al. (1996) give a fuzzy
isovolumes approach to segmentation of 2D and 3D images based on
this idea. A connectivity measure based on fuzzy topology and
homogeneity is constructed from Image intensities and is used to
drive the segmentation process. Supervision is begun by an expert
user, who interactively chooses a single pixel (or voxel) from a
known class as the seed for a region (or volume) growing technique
(the training data is thus a crisply labeled singleton). One class at a
time is built by thresholding an image that possesses a property they
call (fuzzy) intensity connectedness, which is an extension of
Rosenfeld's (1984) idea of fuzzy connected components in a digital
image. A number of potential fuzzy isovolumes are grown from the
selected seed, and the operator then chooses the most appropriate
one before proceeding to the next region (tissue class) in the image.
This style of segmentation proceeds non-iteratlvely, one region at a
time, and is terminated by a human expert - not an algorithmic
criterion.

IMAGE PROCESSING AND COMPUTER VISION 673

Udupa et al. (1997b) also discuss segmentation models based on
various topological notions of fuzzy connectedness and region
growing. Pixel intensities are used as a basis for measures of fuzzy
similarity between image elements in the same tissue class of
various medical images. Their technique is, like Dellipiane et al.'s,
initiated by a user chosen seed for each object. Image segmentation
and object classification are achieved by thresholding a fuzzy
relation in the given image, resulting in various output images.
These authors give some nice examples of their model to
visualization and rendering of lesions in multiple sclerosis
patients.

Hemdon et al. (1996) discuss the use of crisply labeled training data
created by pooling opinions from experts who label every pixel in
training images. This training data are then used to derive a
classifier that segments an input image into c "fuzzy tissue images",
one for each labeled tissue class. Technically, this classifier is
possibilistic since the pixel memberships assigned to the c tissue
images are not constrained to sum to 1. This method of
segmentation is very different than the other tj^jes discussed so far,
and is subsequently used for tissue volume estimation in
normalized Tl MR images.

Bombardier et al. (1997) investigate automated enhancement
strategies in digital subtraction angiography. In this work two
cooperating fuzzy segmentation operators based on textural and
geometric properties are used to successively enhance aorta and
renal artery boundaries. First, fuzzy linguistic rules are derived
from their definition of an edge as "...a high transition near an
homogeneous region". These rules are applied as a set of 5x 11 masks
over the whole image to find characteristic homogeneous and
heterogeneous regions Indicative of aorta outlines. Second,
bifurcation points along these outlines then determine the regions
of Interest where subsequent analysis using an FCM-based edge
operator extracts renal artery boundaries. Results are provided for a
real 2D angiogram. The final edge image created would still need to
be post-processed to characterize any lesion boundary
abnormalities (e.g., narrowing of the artery diameter, as in
stenosis).

Much remote sensing work has been done with fuzzy models for
segmentation of aerial photographs, LANDSAT images, SEASAT
images, etc. Cannon et al. (1986b) use PCM to segment a thematic
mapper image. Fuzzy models have been used in remote sensing
applications such as tax assessment, crop damage, thermal
pollution, bioresources analysis, and so on. Chi and Yan (1993)
segment map images based on fuzzy rules and thresholding. Other
representative literature includes Burroughs and Frank (1996),
Fisher and Pathirana (1990), Gopal and Woodcock (1994), Wang

674 FUZZY PATTERN RECOGNITION

(1990a, b). Canters (1997), Blonda et al. (1991, 1996b, c), and Binaghi
et al. (1996, 1997).

Roux and Desachy (1997) use an interesting combination of
possibility theory and representation of fuz2y rules by neural
networks to segment a LANDSAT image. The image is 4 band data,
augmented by information about the image region such as distance
to rivers, elevations, etc. Each image provides training data pixels
chosen by an operator in one of c = 9 classes that are related to
vegetation and cultivation. A possibility distribution is assigned for
each band from histograms of the labeled pixels. Another
possibility distribution is obtained for the geographical data using a
set of neural networks that represent rules obtained from a photo
interpretation expert. The possibilities are then fused with a
conjunctive fusion operator (Bloch, 1996c) to create a final decision
stream for each of the 9 classes. In operation, the possibility
distribution for an unlabeled pixel is computed, and hardened in the
usual way to 5aeld a crisp label.

Another fertile area for fuzzy image processing is the analysis of
(non aerial) color and black and white photographs. Here we meet
app l ica t ions in f ingerprint ana lys i s , face recognit ion,
environmental monitoring, etc. Lim and Lee (1990) segment color
images with a two stage coarse-fine strategy based on FCM
partitions, and compare their method to several crisp segmentation
techniques. Araki et al. (1993) segment photographs of office scenes
to identify the occupants in a room using a region growing technique
combined with FCM and several of the validity criteria we discussed
in Section 2.5. Moghaddamzadeh and Bourbakis (1997) discuss the
combination of edge detection and region growing approaches to
segmentation using two fuzzy criteria. Applications to both image
compression and object detection are described and illustrated with
a color photograph of a pic (ture) of (pickled) peppers, a house, some
fruits, and of course, last and always, Lena.

Trivedi and Bezdek (1986) proposed an unsupervised segmentation
algorithm for aerial imagery based on FCM clustering that used a
hierarchical pyramidal data structure to represent regions at
different resolutions in different levels of the pyramid. A
homogeneity test is done on the FCM determined regions at a
particular level to decide whether regions should be split at the next
level. A recent twist on using multiple resolutions appeared in
Tolias and Panos (1998), who combine fuzzy segmentation at
different resolutions with an "adaptive" fuzzy clustering
segmentation scheme that is a hybrid algorithm. No objective
function is optimized: rather, update equations based on FCM/PCM
that localize the prototypes to neighborhoods in the image are
defined using heuristic arguments. These authors demonstrate their
method by segmenting -who else, but ? Lena. Zugaj and Lattuati
(1998) discuss the fusion of region and edge segmentation outputs -

IMAGE PROCESSING AND COMPUTER VISION 675

two types of algorithmic information - for segmentation of color
images.

Fuzzy logic has been successfully used in human face
characterization (Grabisch et al., 1996, Figue et al., 1998). Grabisch
et al. proposed a multi-stage scheme for interpretation of human
faces. The system has three complementary channels for extraction
of (1) face boundary, (2) face features like eyes, mouth, eyebrows, and
(3) detection of eyes. Each channel has three stages : segmentation of
objects of interest from the raw data; quantitative characterization
of the extracted regions and interpretation of the segments. The
interpretation stage integrates domain knowledge and the features
extracted from the segmented regions using fuzzy rules. Finally, the
outputs from all three channels are fused again using fuzzy
reasoning. The authors report quite satisfactory performance of
their system in identifying eyes, mouth, eyebrows etc.

Digital surfaces and boundary representation

Anderson and Bezdek (1984) emd Bezdek and Anderson (1985) give a
method for solving problems of the type illustrated in Example 5.11.
Their scheme finds comers in linear fits to data based on the use of
fuzzy c-lines clustering and thresholding of cluster memberships.
Corners are defined using commutators (functions of the
eigenvalues) of scatter matrix pairs of points in the plane. Examples
using both spatial coordinates and chain coded data sets in the
plane are very similar to the results in Figure 5.37. However, the
number of clusters must be specified a priori, and is fixed during the
iterative procedure.

Section 5.7 presented a few of the many concepts that may be useful
for accurate description, rendering, visualization and analysis of
objects and object regions in 2D images. As 3D sensors become more
widespread, generalization of the material in Section 5.7 to
multidimensional digital images is inevitable. Udupa (1992, 1994)
provides an in depth treatment of some aspects of this evolving
discipline for the crisp 3D and multidimensional cases. Udupa and
Samarasekera (1996) give a very general framework for fuzzy
connectedness and object definitions, and illustrate their theory
with 3D rendering of patient knee joints. Udupa et al. (1997a) use
their definitions of fuzzy affinity, adjacency and connectivity for
the multidimensional case, and give an application of their fuzzy
model in an interactive system for viewing 3D renderings of blood
vessels.

High level vision and spatial relations

Defining spatial relations is a popular topic nowadays. Del Bimbo
and Vicario (1998) discuss spatial relationships as if no previous
work had been done with them. Why? Because humans are good at

676 FUZZY PATTERN RECOGNITION

perceiving spatial relationships and we all want to try out our
intuition. How do you pick an appropriate definition for a spatial
relation? The development in Section 5.8 argues intuitively or uses
comparisons of reactions by human subjects in a limited study. In
computer vision the payoff is whether or not spatial relation
features can be used as features, either to recognize objects or
describe the regions in a scene (Wang et al., 1997, Wang and Keller,
1999a, b).

Literature on the application of fuzzy methods to high-level vision
problems is rather sparse. This might be partially attributed to the
fact that interest in fuzzy methods peaked only in the 90's, well after
most researchers in computer vision abandoned developing large
rule-based computer systems that involved high-level vision
techniques. However, there are some notable exceptions. Miyajima
and Ralescu (1993) discuss how fuzziness can be incorporated in
modeling object attributes and in matching. Zhang and Sugeno
(1993) propose a memory model that contains the necessary
knowledge for scene understanding. Fuzzy sets are used to represent
the knowledge and fuzzy logic is used for reasoning. Gasos and
Ralescu (1995) discuss how (fuzzy) knowledge about location and size
of objects can be used to guide object recognition and scene
interpretation. Kawade (1995) discusses how to represent and use
(fuzzy) knowledge in an interactive vision system to recognize
objects in a dynamic environment. Nakagawa and Hirota (1995)
discuss an image understanding system for road scenes that uses
fuzzy if-then rules to incorporate weather conditions in the
knowledge base and generates answers to user queries.

There are several other aspects of image processing and computer
vision where fuzzy methods can be used effectively. For example,
model-based interpretation of 3D reconstruction algorithms has
received much attention in the recent years. Specifically, 3D data
matching relative to a reference model, produced either
interactively or automatically is of crucial importance. Tarel and
Boujemaa (1995) proposed a new 3D registration method in three
steps. First, view-invariant 3D features in the data as well as in the
object model are selected, and 3D matching transformation
parameters are obtained by using a combinatorial approach similar
to the generalized Hough Transform. Then, coarse 3D object pose is
obtained by applying a robust fuzzy clustering algorithm in
parameter space. Data participation in the fuzzy clustering process
is weighted by their relevance according to a confidence value based
on the geometric feature-to-feature correspondence. Finally, local
fine fitting is performed between data and the model to obtain
accurate 3D registration.

Much work remains to be done in all of the areas covered in Chapter
5 before reliable automatic interpretation of scene content is
achieved in fielded applications. Potential areas for the future are:

IMAGE PROCESSING AND COMPUTER VISION 677

image matching, solving the correspondence problem, extraction of
linguistic descriptions from images, searching image databases
based on linguistic queries and hand-drawn sketches, segmentation
and volume estimation in 3D (voxel) data, and rule-based high-level
vision.

IMAGE PROCESSING AND COMPUTER VISION 679

Epilogue
We four have had a lot of fun working in many of the areas covered
in this book. Writing the book has taken us a lot more time than we
thought it would [if four guys who all think they are right all of the
time write a book together, then there will be endless bickering
about small points!)- and it could easily be twice the size it is now.
We hope you have had fun reading the book, and that you will look
us up when you have a chance, to let us know what you like (love) and
dislike (hate) about it. Here is our group portrait. It illustrates the
truth of that old saying.

"Never wear a hat that has more attitude than you do"

Nile \ \

'^

%'

J i m !•

U;!!

^
. i t . H I {

References cited in the text
Abe S. and Lan M. S. (1995). A method for fuzzy rules extraction

directly from numerical data and its application to pattern
classification, lEEETrans. Fuzzy Systs., 3 (1), 18-28.

Aho, A. v., Hopcroft, J. E. and UUman, J. D. (1974). The design and
analysis of computer algorithms, Addison-Wesley, Reading, MA.

Akinniyi, F. A., Wong, A.K. C. and Stacey, D. A. (1986). A new
algorithm for graph monomorphism based on the projections of
the product graph, IEEE Trans. Syst, Man and Cyberns., 16, 740-
751.

Anderson, E. (1935). The Irises of the Gaspe peninsula, Buil. Amer.
IrisSoc, 59, 2-5.

Anderson, I. A. and Bezdek, J. C. (1984). Curvature and tangential
deflection of discrete arcs; a theory based on the commutator of
scatter matrix pairs and its application to vertex detection in
planar shape data, IEEE Trans. Patt. Anal, and Machine IntelL,
6(1), 27-40.

Anderson, I. A., Bezdek, J . C. and Dave, R. (1982). Polygonal shape
description of plane boundaries, in Syst Science and Science, ed.
LenTroncale, SGSRPubl., Louisville, KY, 1, 295-301.

Anderson, J . A. (1982). Logistic discrimination, in Handbook of
Statistics 2: Classification, Pattern Recognition and Reduction of
Dimensionality, eds. P. R. Krishnaiah and L. N. Kanal, North
Holland, Amsterdam, 169-191.

Anderson, T. W. (1966), Some nonparametric multivariate
procedures based on statistical equivalent blocks, Proc. Int. Symp.
Anal, ed. P. R. Krishnaiah, Academic Press, NY.

AndreviTs, D. F. (1972). Plots of high dimensional data, Biometrics,
28, 125-136.

Araki, S., Nomura, H. and Wakami, N. (1993). Segmentation of
thermal images using the fuzzy c-means algorithm, Proc. IEEE Int.
Conf. on Fuzzy Syst, IEEE Press, Piscataway, NJ, 719-724.

Atlas, L., Cole, R., Muthusamy, Y., Lippman, A., Connor, J., Park, D.,
El-Sharkaw^i, M. and Marks, R. J. (1990). A performance
comparison of trained multilayer perceptrons and trained
classification trees, Proc. IEEE, 78(10), 1614-1619.

682 FUZZY PATTERN RECOGNITION

Babuska, R. and Kaymak, U. (1995). Application of compatible
cluster merging to fuzzy modeling of multivariable systems, Proc.
European Congress on Intelligent Techniques and Soft
Computing, Aachen, Germany, 565-569.

Back, C. and Hussain, M. (1995). Validity measures for fuzzy
partitions. Data analysis and information systems, ed. H.H Bock
and W. Polasek, Springer, Berlin, 114-125.

Backer, E. (1978). Cluster analysis by optimal decomposition of
induced fuzzy sets, Delft U. Press, Delft, Netherlands.

Backer, E. and Jain, A.K. (1981). A clustering performance measure
based on fuzzy set decomposition, IEEE Trans. Patt. Anal, and
Machine Intell, 3, 66-75.

Bagui, S. C. (1993). Classification with the first stage rank nearest
neighbor rule for multiple classes, Patt. Recog. Lett., 14, 537-544.

Bagui, S. C. and Pal, N. R. (1995). A multistage generalization of the
rank nearest neighbor classification rule, Patt. Recog. Lett, 16,
601-614.

Ball, G. and Hall, D. A. (1967). A clustering technique for
summarizing multivariate data, Behav. Set, 12, 153-155.

Ballard, D. H. (1981). Generalizing the Hough transform to detect
arbitrary shapes, Patt. Recog., 13(2), 111-122.

Baraldi, A. and Alpaydm, E. (1998). Simplified ART : A new class of
ART algorithms. Technical Report, International Computer
Science Institute, Berkeley, CA.

Baraldi, A. and Parmiggiani, F. (1995). A self-organizing neural
network merging Kohonen's and ART models, Proc. IEEE Int.
Conf. on Neural Networks, IEEE Press, Piscataway, NJ, 2444-2449.

Baraldi, A. and Parmiggiani, F. (1997a). Fuzzy combination of
Kohonen's and ART neural network models to detect statistical
regularities in a random sequence of multi-valued input pattern,
Proc. IEEE Int. Conf. on Neural Networks, IEEE Press, Piscataway,
NJ, 281-286.

Baraldi, A. and Parmiggiani, F. (1997b). Novel neural network
model combining radial basis functions, competitive Hebbian
learning rule, and fuzzy simplified adaptive resonance theory,
Proc. SPIE Applications of FuzzyLogic Tech. IV, eds. J . C. Bezdek
and B. Bosacchi, 3165, SPIE, Bellingham, WA, 98-112.

REFERENCES 683

Baraldi, A., Blonda, P., Parmiggiani, F., Pasquariello, G. and
Satallno, G. (1998). Model transitions in descending FLVQ, IEEE
Trans. Neural Networks, 9(5), 724-738.

Barni, M., Cappellini, V. and Mecocci, A. (1996). Comments on 'A
Possibllistic approach to clustering', IEEE Trans. Fuzzy Syst, 4(3),
393-396.

Barone, J . M., Filev, D. P. and Yager, R. Y. (1995). Mountain method
based fuzzy clustering : methodological considerations, Int. J. Gen.
Syst, 23, 281-305.

Baum, E.B. and Haussler, D. (1989). What size net gives valid
generalization?, Neural Computation, 1, 151-160.

Beckenbach, E. F. and Bellman, R. (1961). Inequalities, Springer-
Verlag, Heidelberg (3rd printing, 1971).

Bell, E. T. (1966). Men of mathematics, 5th printing, Simon and
Schuster, NY.

Bellman, R.E., Kalaba, R. and Zadeh, L.A. (1966). Abstraction and
pattern classification, J. Math. Anal. Applications, 13, 1-7.

Bensaid, A., Bouhouch, N., Bouhouch, R., Fellat, R. and Amri, R.
(1998). Classification of ECG pattterns using fuzzy rules derived
from ID3-induced decision trees, Proc. NAFIPS Conf., eds. J . C.
Bezdek and L.O. Hall, 34-38.

Bensaid, A., Hall. L. O., Bezdek, J . C. and Clarke, L. P. (1996a).
Partially supervised clustering for image segmentation, Patt.
Recog., 29(5), 859-871.

Bensaid, A., Hall, L. O., Bezdek, J . C , Clarke, L., Silbiger, M.,
Arrington, J . and Murtagh, R. (1996b). Validity-guided (re)
clustering for image segmentation, IEEE Trans. Fuzzy Syst, 4(2),
112-123.

Berenji, H. R. and Khedkar, P. (1992). Learning and tuning fuzzy
logic controllers through reinforcements, IEEE Trans. Neural
Networks, 3(5), 724-740.

Besl, P. C. and Jain, R. C. (1988). Segmentation using variable
surface fitting, IEEE Trans. Patt Anal, and Machine Intell, 10,
167-192.

Bezdek, J. C. (1973). Fuzzy mathematics in pattern classiflcation.
Ph. D. Thesis, Cornell U., Ithaca. NY.

684 FUZZY PATTERN RECOGNITION

Bezdek, J. C. (1974a). Numerical taxonomy with fuzzy sets, J. Math.
Bio., 1(1), 57-71.

Bezdek, J. C. (1974b). Cluster validity with fuzzy sets, J. Cyber., 3(3),
58-72.

Bezdek, J . C. (1975). Mathematical models for systematics and
taxonomy, Proc. Int. Conf. on Numerical Taxonomy, ed. G.
Estabrook, Freeman, San Franscisco, CA, 143 - 166.

Bezdek, J . C. (1976). A Physical interpretation of fuzzy ISODATA,
IEEE Trans. Syst, Man and Cybems., 6(5), 387-389.

Bezdek, J. C. (1980). A Convergence Theorem for the Fuzzy ISODATA
Clustering Algorithms, IEEE Trans. Patt. Anal, and Machine
Intell, 2(1), 1-8.

Bezdek, J . C. (1981). Pattern Recognition with Fuzzy Objective
Function Algorithms, Plenum, NY.

Bezdek, J. C. (1992). On the relationship between neural networks,
pattern recognition and intelligence. Int. J. Approx. Reasoning,
6(2), 85-107.

Bezdek, J . C. (1993). A review of probabilistic, fuzzy and neural
models for pattern recognition, J. Intell. and Fuzzy Syst, 1(1), 1-
23.

Bezdek, J . C. (1997). Computational intelligence and edge detection,
Proc. AI5 : Fuzzy Neuro Syst. '97 : Computational Intelligence, eds.
A. Grauel, W. Becker and F. Belli, Infix Press, Zoest, Germany, 1-
31.

Bezdek, J . C. (1998). Computational intelligence defined - by
everyone!, Computational Intelligence: Soft Computing and
Fuzzy-Neuro Integration with Applications, eds. O. Kaynak, L.A.
Zadeh, B. Turksen and I. J . Rudas, Physica-Verlag, Heidelberg,
Germany, 10-37.

Bezdek, J . C. and Anderson, I. (1985). An application of the c-
varleties clustering algorithms to polygonal curve fitting, IEEE
Trans. Syst, Man and Cybems., 15(5), 637-641.

Bezdek, J. C. and Castelaz, P. F. (1977). Prototype classification and
feature selection with fuzzy sets, IEEE Trans. Syst, Man and
Cybems., 7, 87-92.

Bezdek, J. C. and Chiou, E. R. (1988). Core zone scatterplots : A new
approach to feature extraction for visual displays, CVGIP, 41,186-
209.

REFERENCES 685

Bezdek, J . C. and Dunn, J. C. (1975). Optimal fuzzy partitions: A
heuristic for estimating the parameters in a mixture of normal
distributions, IEEE Trans. Computers, 24(8), 835-838.

Bezdek, J. C. and Harris, J. D. (1978), Fuzzy relations and partitions:
An axiomatic basis for clustering. Fuzzy Sets and Syst, 1,111-127.

Bezdek, J. C. and Harris, J. D. (1979). Convex decompositions of
fuzzy partitions, J. Math. Anal. andAppl, 67(2), 490-512.

Bezdek, J. C. and Hathaway, R. J. (1989). Relational duals of the c-
means clustering algorithms, Patt. Recog., 22(2), 205-212.

Bezdek, J. C. and Hathaway, R. J. (1992). Numerical convergence cind
interpretation of the fuzzy c-shells clustering algorithm, IEEE
Trans. Neural Networks, 3(5), 787-793.

Bezdek, J . C. and Pal, N. R. (1995). Two soft relatives of learning
vector quantization. Neural Networks, 8(5), 729-743.

Bezdek, J . C. and Pal, N. R. (1998). Some new indices for cluster
validity, IEEE Trans. Syst, Man and Cybems., C28(3), 301-315.

Bezdek, J . C. and Pal, S. K. (1992). Fuzzy Models for Pattern
Recognition, IEEE Press, Piscataway, NJ.

Bezdek, J. C. and Shirvaikar, M. (1994). Edge detection using the
fuzzy control paradigm, Proc. European Congress on Intelligent
Techniques and Soft Computing, Aachen, Germany, 1, 1-12.

Bezdek, J. C. and Sutton, M. A. (1999). Image processing in medicine.
Applications of Fuzzy Systems, ed. H. J . Zimmerman, Kluwer,
Norwell, MA, in Press.

Bezdek, J. C, Biswas, G. and Huang, L. Y. (1986b). Transitive closures
of fuzzy thesauri for information retrieval systems. Int. J. Man-
Machine Studies, 25, 343-356.

Bezdek, J. C., Chandrasekar, R. and Attikiouzel, Y. A. (1998a). A
geometric approach to edge detection, IEEE Trans. Fuzzy Syst,
6(1), 52-75.

Bezdek, J. C., Cheong, F.M, Dillon, T. and Karla, D. (1995). Edge
detection using fuzzy reasoning and model-based training, in
Computational Intelligence : A Dynamic System Perspective, ed.
M. Palaniswami, Y. Attikiouzel, R. J. Marks, D. Fogel and T.
Fukuda, IEEE Press, Piscataway, NJ, 108-125.

Bezdek, J. C , Chuah, S. and Leep, D. (1986c). Generalized k-nearest
neighbor rules, Fuzzy Sets and Syst, 8(3), 237-256.

686 FUZZY PATTERN RECOGNITION

Bezdek, J . C , Coray, C , Gunderson, R. and Watson, J . (1981a).
Detection and characterization of cluster substructure: I. Linear
structure: fuzzy c-Lines, SIAMJ. Appl Math, 40(2), 339-357.

Bezdek, J . C , Coray, C , Gunderson, R. and Watson, J. (1981b).
Detection and characterization of cluster substructure: II. Fuzzy c-
varieties and convex combinations thereof, SIAM J. Appl. Math,
40(2), 358-372.

Bezdek, J. C , Gunderson, R., Ehrlich, R. and Meloy, T. (1978). On the
extension of fuzzy k-means algorithms for the detection of Linear
clusters,Proc. IEEE Conf. on Decision and Control, IEEE Press,
Piscataway, NJ, 1438-1443.

Bezdek, J. C., Hall, L. O., Clark, M., Goldgof, D. and Clarke, L. (1997a).
Medical image analysis with fuzzy models. Statistical Methods in
Medical Research, 6, 191-214.

Bezdek, J . C , Hathaway, R. J. and Huggins, V.J. (1985). Parametric
estimation for normal mixtures, Patt. Recog. Lett., 3, 79-84.

Bezdek, J . C , Hathaway, R. J. and Pal, N. R. (1995). Norm induced
shell prototype (NISP) clustering. Neural, Parallel and Scientific
Computation, 3, 431-450.

Bezdek, J. C , Hathaway, R. J., Howard, R. E. and Wilson, C. A.
(1986a). Coordinate descent and clustering, Control and Cybems.,
15(2), 195-203.

Bezdek, J. C , Hathaway, R. J., Howard, R. E., Wilson, C. A. and
Windham, M. P. (1987a). Local convergence analysis of a grouped
variable version of coordinate descent,J. Optimization Theory
and Applications, 54(3), 471-477.

Bezdek, J. C , Hathaway, R. J., Sabin, M. J. and Tucker, W.T. (1987b).
Convergence theory for fuzzy c-means : counterexamples and
repairs, IEEE Trans. Syst, Man and Cybems., 17(5), 873-877.

Bezdek, J. C , Li, W.Q., Attikiouzel, Y. A. and Windham, M. P. (1997b).
A geometric approach to cluster validity. Soft Computing, 1, 166-
179.

Bezdek, J . C , Reichherzer, T., Lim, G. S. and Attikiouzel, Y. A.
(1998b). Multiple prototype classifier design, IEEE Trans. Syst,
Man and Cybems., C28(l), 67-79.

Bezdek, J. C , Trivedi, M., Ehrlich, R. and FuU, W. (1981c). Fuzzy
clustering: A new approach for geostatistical analysis. Int. J.
Syst, Measurement and Decision, 1/2, 13-24.

REFERENCES 687

Bezdek, J . C , Windham, M. and Ehrlich, R. (1980). Statistical
parameters of fuzzy cluster validity functionals, Int. J. Comp. and
Inf. Set, 9(4), 1980, 232-336.

Bhandari, D., Pal, N R. and Dutta Majumder, D. (1992). Fuzzy
divergence, probability measures of fuzzy events and image
thresholding, Patt. Recog. Lett., 13, 857-867.

Bhandarkar, S. M. (1994). A fuzzy probabilistic model of the
generalized Hough transform, IEEE Trans. Syst, Man and Cybers.,
24(5), 745-759.

Binaghi, E., Brivio, P. A., Ghezzi, P., Rampini, A. and Zilioli, E.
(1996). A hybrid approach to fuzzy land cover mapping, Patt.
Recog. Lett., 17, 1399-1410.

Binaghi, E., Madella, P., Montesano, M. G. and Rampini, A. (1997).
Fuzzy contextual classification of multiresource remote sensed
images, IEEE Trans. GeoscL and Remote Sensing, 35(2), 326-340.

Bloch, I. (1996a). Fuzzy relative positions between objects in images:
a morphological approach, Proc. SPIE/EUROPTO Conf. on Image
and Signal Proc. for Remote Sensing, 2955, SPIE, Bellingham, WA,
141-152.

Bloch, I. (1996b). Fuzzy spatial relationships: a few tools for model
based pattern recognition in aerial images, Proc. IEEE Conf. on
Image Processing, II, IEEE Press, Piscataway, NJ, 987-990.

Bloch, I. (1996c). Information combination operators for data
fusion: a comparative review with classification, IEEE Trans.
Syst, Man and Cybers., A26(l), 52-67.

Bloch, I. and Maitre, H. (1993). Mathematical morphology on fuzzy
sets, Proc. EURASIP Conf. on Math. Morphology Applications
Signal Processing, Barcelona, 151-156.

Bloch, I. and Maitre, H. (1995). Fuzzy mathematical morphologies: A
comparative study. Patt. Recog., 28(9), 1341-1387.

Bloch, I., Pellot, C., Sureda, F. and Herment, A. (1997). Fuzzy
modeling and fuzzy mathematical morphology applied to 3D
reconstruction of blood vessels by multi-modality data fusion,
Fuzzy Information Engineering, eds. D. Dubois, H. Prade and R.R.
Yager, Wiley and Sons, NY, 93-110.

Blonda, P. N., Benardo, A., Satalino, G. and Pasquariello, G. (1996b).
Fuzzy logic and neural techniques integration: an application to
remotely sensed data, Patt. Recog. Lett.. 17, 1343-1348.

688 FUZZY PATTERN RECOGNITION

Blonda, P. N., Bendrdo, A., Satalino, G., Pasquariello, G., De Blasi, R.
and Milella, D. (1996a). Fuzzy neural network based segmentation
of multispectral magnetic resonance brain images, Proc. SPIE
Applications of Fuzzy Logic Technology III, eds. B. Bosacchi and J.
C. Bezdek, 2761, SPIE, Belllngham, WA, 146-153.

Blonda, P. N., Benardo, A., Pasquariello, G., Satalino, G. and La
Forgia, V. (1996c). Application of the fuzzy Kohonen clustering
network to remotely sensed data processing, Proc. SPIE
Applications of Fuzzy Logic Technology III, eds. B. Bosacchi and J.
C. Bezdek, 2761, SPIE, Belllngham, WA, 119-129.

Blonda, P. N., Pasquariello, G., Losito, S., Mori, A., Posa, F. and
Ragno, D. (1991). An experiment for the interpretation of
multitemporal remotely sensed images based on a fuzzy logic
approach. Int. J. Remote Sensing, 12(3), 463-476.

Blonda, P. N., Satalino, G., Baraldi, A. and De Blasi, R. (1998).
Segmentation of multiple sclerosis lesions in MRI by fuzzy neural
networks: FLVQ and FOSART, Proc. NAFIPS Conf. eds. J. C.
Bezdek and L. O. Hall, 39-43.

Bobrowski, L. and Bezdek, J. C. (1991). c-Means Clustering with the
(^ and (Norms, IEEE Trans. Syst, Man and Cybems., 21(3), 545-

1 oo

554.

Bookstein, F. L. (1979). Fitting conic sections to scattered data,
CVGIP, 9, 56-71.

Bombardier, V., Jaulent, M.-C., Bubel, A. and Bremont, J. (1997).
Cooperation of two fuzzy segmentation operators for digital
substract angiograms analysis. Proc. Sixth IEEE Int. Conf. on
Fuzzy Syst, 2, IEEE Press, Piscataway, NJ, 1057-1062.

Boudraa, A. E. (1997). Automated detection of the left ventricle
region in magnetic resonance images by the fuzzy c-means model.
Int. J. of Cardiac Imaging, 13, 347-355.

Boudraa, A. E., Mallet, J . J., Besson, J. E., Bouyoucef, S. E. and
Champier, J . (1993). Left ventricle automated detection method in
gated isotropic ventriculography using fuzzy clustering, IEEE
Trans. Med. Imaging, 12(3), 451-465.

Boujemaa N., Stamon G. and Lemoine J. (1992b). Fuzzy iterative
image segmentation with recursive merging, Proc. SPIE, Conf. on
Visual Comm. and Image Processing, 1818, 1271-1281.

REFERENCES 689

Boujemaa N., Stamon G., Lemoine J. and Petit E. (1992a). Fuzzy
ventricular endocardiogram detection with gradual focusing
decision, Proc. IEEE Int. Conf. of the Engineering in Medicine and
Biology Society, 14, 1893-1894.

Box, G. and Jenkins, G. (1970). Time Series Analysis: Forecasting
and Control, Holden Day.

Brandt, M. E. and Kharas, Y. F. (1993). Simulation studies of fuzzy
clustering in the context of brain magnetic resonance imaging,
Proc. Int. Conf. on Industrial Fuzzy Control and Intell Syst, IEEE
Press, Piscataway, NJ, 197-203.

Brant-Zawadzkl, M., GiUan, G. D. and Nltz. W. R. (1992). MP-RAGE: a
three dimensional, Tl-welghted, gradient-echo sequence,
Radiology, 182(3), 769-775.

Breiman, L. (1996). Bagging predictors. Machine Learning, 24(2),
123-140.

Breiman, L., Freidman, J. H., Olshen, R. A. and Stone, C. J. (1984).
Classificatwn and regression trees, Wadsworth, Inc., Belmont, CA.

Broomhead, D. S. and Lowe, D. (1988). Multivariable functional
interpolation and adaptive networks, Complex Syst, 2, 321-355.

Brzakovic, D., Luo, X. M. and Brzakovic, P. (1990). An approach to
automatic detection of tumors in mammograms, IEEE Trans.
Medical Imaging, 9(3), 233-241.

Buchsbaum, G. (1980). An analytical derivation of visual non-
linearity, IEEE Trans. Biomed. Engr., 27, 237-242.

Buckley, J. J. and Hayashi, Y. (1994). Fuzzy neural networks, in
Fuzzy Sets, Neural Networks & Soft Computing, eds., R. R. Yager
and L. A. Zadeh, Van Nostrand Reinhold, NY, 233-249.

Bunke, H. (1992). Advances in Structural and Syntactic Pattern
Recognition, World Scientific, Singapore.

Burroughs, P. A. and Frank, A. U., eds., (1996). Geographic Objects
with Indeterminate Boundaries, Taylor and Francis, London.

Cannon, R., Dave, J . and Bezdek, J . C. (1986a). Efficient
implementation of the fuzzy c-means clustering algorithms, IEEE
Trans. Patt Anal and Machine Intell, 8(2), 248-255.

690 FUZZY PATTERN RECOGNITION

Cannon, R., Dave, J., Bezdek, J . C. and Trivedi, M. (1986b).
Segmentation of a thematic mapper image using the fuzzy c-means
clustering algorithm, IEEE Trans. Geo. and Remote Sensing, 24(3),
400-408.

Canters, F. (1997). Evaluating the uncertainty of area estimates
derived from fuzzy land-cover classification, Photogrammetric
Engineerir^ and Remote Sensing, 63(4), 403-414.

Carpenter, G. A. (1989). Neural network models for pattern
recognition and associative memory. Neural Networks, 243-257.

Carpenter, G. A. and Grossberg, S. (1987a). A massively parallel
architecture for a self-organizing neural pattern recognition
machine, CVGIP, 37, 54-115.

Carpenter, G. A. and Grossberg, S. (1987b). ART2 : self-organization
of stable category recognition codes for analog input patterns.
Applied Optics, 26, 4919-4930.

Carpenter, G. A. and Grossberg, S. (1988a). The ART of adaptive
pat tern recognition by a self-organizing neural network.
Computer, 21(3), 77-88.

Carpenter, G. A. and Grossberg, S. (1988b). Neural dynamics of
category learning and recognition : at tention, memory
consolidation and amnesia. Brain Structure Learning and
Memory, eds. J. Davis, R. Newburgh, and E. Wegman,
Wegman,Boulder, CO: Westview Press, 233-290.

Carpenter, G. A. and Grossberg, S. (1990). ARTS : hierarchical search
us ing chemical t ransmi t te r s in self-organizing pa t te rn
recognition architectures. Neural Networks, 3(2), 129-152.

Carpenter, G. A., Grossberg, S. and Rosen, D. B. (1991a). Fuzzy ART :
fast stable learning and categorization of analog patterns by an
adaptive resonance system. Neural Networks, 4, 759-771.

Carpenter, G. A., Grossberg, S. and Rosen, D. B. (1991b). A neural
network realization of fuzzy ART, Tech. rep., CAS/CNS-TR-91-
021, Boston, MA, Boston U.

Carpenter, G. A., Grossberg, S., Markuzon, N, Reynolds, J . H. and
Rosen, D. B., (1992). Fuzzy ARTMAP : A neural network
architecture for incremental supervised learning of analog
multidimensional maps, IEEE Trans. Neural Networks, 3(5), 698-
713.

REFERENCES 691

Carpenter, G. A., Grossberg, S., Markuzon, N. and Reynolds, J. H.
(1991c). ARTMAP : supervised real-time learning and
classification of non-stationary data by a self-organizing neural
network. Neural Networks, 4. 565-588.

Chan, K. P. (1996). Learning templates from fuzzy examples in
structural pattern recognition, IEEE Trans. Syst, Man and
Cybems., B26(l), 118-123.

Chan, K. P. and Cheung, Y. S. (1992). Correction to "fuzzy attribute
graph with application to Chinese character recognition", IEEE
Trans. Syst. Man and Cybems., 22(2), 402-410.

Chang, C.L. (1974). Finding prototypes for nearest neighbor
classification, IEEE Trans. Computer, 23(11), 1179-1184.

Chang, R.L.P. (1976). Application of fuzzy techniques to pattern
recognition and curve fitting, Ph.D. Thesis, Princeton U.,
Princeton, NJ.

Chang, R.L.P. and PavUdis, T. (1977). Fuzzy decision tree
algorithms, IEEE Trans. Syst. Man and Cybems., 7(1), 28-35.

Chen, C. H. (1996). Fuzzy Logic and Neural Networks Handbook,
McGraw Hill, NY, Ch. 27.

Chen, S., Cowan, C. F. N. and Grant, P. M. (1991). Orthogonal least
squares learning algorithm for radial basis function networks,
IEEE Trans. Neural Networks, 2(2), 302-309.

Chen, W., Gader P. and Shi, H. (1997). Improved dynamic
programming-based handwritten word recognition using optimal
order statistics, Proc. SPIE Conf. on Statistical and Stochastic
Methods in Image Processing II, SPIE, Bellingham, WA, 246-256.

Cheng, H. D., Chen, J.-R. and Li, J. (1998). Threshold selection based
on fuzzy c-partition entropy approach, Patt. Recog., 31(7), 857-870.

Cheng, T. W., Goldgof, D. B. and Hall, L. O. (1995). Fast clustering
with application to fuzzy rule generation, Proc. IEEE Int. Conf. of
Fuzzy Syst, IV, IEEE Press, Piscataway, NJ, 2289-2295.

Chernoff, H. (1973). The use of faces to represent points in k-
dimensional space, J. Amer. Stat. Assoc, 68, 361-368.

Cheung, Y. S. and Chan, K. P. (1986). Modified fuzzy ISODATA for the
classification of handwritten Chinese characters, Proc. Int. Conf.
on Chinese Computing, Singapore, 361-364.

692 FUZZY PATTERN RECOGNITION

Chi, Z. and Jabri, M. (1991). A comparison of MLP and ID3-derived
approaches for ECG classification, Proc. Australian Conf. on
Neural Networks, Sydney, Australia, 263-266.

Chi, Z. and Yan, H. (1993). Map image segmentation based on
thresholding and fuzzy rules. Elect. Lett., 29(21), 1841-1843.

Chi, Z. and Yan, H. (1995). Handwritten numeral recognition using a
small number of fuzzy rules with optimized defuzzification
parameters, Neural Networks, 8(5), 821-827.

Chi, Z. and Yan, H. (1996). ID3-derlved fuzzy rules and optimized
defuzzification for handwritten numeral recognition, IEEE Trans.
Fuzzy Syst, 4(1), 1996, 24-31.

Chi, Z., Suters, M. and Yan, H. (1996b). Handwritten digit
recognition using combined ID3-derived fuzzy rules and Markov
chains, Patt. Recog., 29(11), 1821-1833.

Chi, Z., Wu, J. and Yan, H. (1995). Handwritten numeral recognition
using self-organizing maps and fuzzy rules, Patt. Recog., 28(1), 59-
66.

Chi, Z., Yan, H. and Pham, T. (1996a). Fuzzy Algorithms: With
Applications to Image Processing and Pattern Recognition, World
Scientific, Singapore.

Chiang, J . and Gader, P. (1997). Hybrid fuzzy-neural systems in
handwritten word recognition. IEEE Trans. Fuzzy Syst, 5(4), 497-
510.

Chien, Y. T. (1978). Interactive pattern recognition. Marcel Dekker,
Monticello, NY.

Chiu, S. L. and Cheng, J. J. (1994). Automatic rule generation of fuzzy
rule base for robot arm posture selection, Proc. NAFIPS Conf., San
Antonio, Texas, 436-440.

Chiu, S. L. (1994). Fuzzy model identification based on cluster
estimation, J. Intell and Fuzzy Syst, 2, 267 - 278.

Chiu, S. L. (1995). Extracting fuzzy rules for pattern classification by
cluster estimation, Proc. IFSA Congresss, 1-4.

Chiu, S. L. (1997). Extracting fuzzy rules from data for function
approximation and pattern classification. Fuzzy Information
Engineering, eds. D. Dubois, H. Prade and R.R. Yager, Wiley and
Sons, NY, 149-162.

REFERENCES 693

Cho, S.-B. (1995). Fuzzy aggregation of modu la r neura l ne tworks
with ordered weighted averaging operators, Int. J . of Approximate
Reasoning, 13, 359-375.

Cho, S.-B. a n d Kim, J . (1995). Combining multiple neura l networks
by fuzzy integral for robus t classification. IEEE Trans. Syst, Man
andCybems., 25(2), 380 - 384.

Choi J . J . , Arabshahi R. J . , Marks, R. J . a n d Caudell T. P. (1992).
Fuzzy pa rame te r adap ta t ion in neura l sys tems, IEEE Int. Joint
Conf. on Neural Networks, 1, 232-238.

Choi, Y. and Krishnapuram, R. (1995). Image enhancement based on
fuzzy logic, Proc. IEEE Int. Conf. on Image Processing, IEEE Press ,
Piscataway, NJ, 167-170.

Choi , Y. a n d K r i s h n a p u r a m , R. (1996). Fuzzy a n d r o b u s t
fo rmula t ions of maximum-l ike l ihood-based G a u s s i a n mix tu re
decompos i t ion , Proc. of the IEEE Int. Conf. on Fuzzy Syst, IEEE
Press, Piscataway, NJ, 1899-1905.

Choi, Y. and Kr i shnapuram, R. (1997). A robus t approach to image
enhancemen t based on fuzzy logic, IEEE Trans. Image Processing,
6, 808-825.

Chomsky, N. (1965), Aspects of the Theory of Syntax, M.I.T. Press ,
Cambridge, MA.

C h u n g , F. L. a n d Lee, T. (1994). A fuzzy l ea rn ing model for
membersh ip function est imat ion and pat te rn classification, Proc.
EEEInt. Conf. on Fuzzy Syst, 1, IEEE Press, Piscataway, NJ, 426-
431 .

Cios, K. a n d Liu, N. (1992). A mach ine learn ing a lgor i thm for
genera t ion of a neura l ne twork archi tec ture : a con t inuous IDS
algorithm, IEEE Trans. Neural Networks, 3(2), 280-291 .

Cios, K. and Sztandera, L. M. (1992). Cont inuous ID3 algorithm with
fuzzy entropy measures , Proc. IEEE Int. Conf. on Fuzzy Syst, IEEE
Press, Piscataway, NJ 469-476.

Clark, M., Hall, L. C , Goldgof, D, Clarke, L., Velthuizen, R. a n d
Silbiger, M. (1994). MRI segmenta t ion u s ing fuzzy c lus te r ing
techniques : integrat ing knowledge, IEEE Engineering in Medicine
and Biology Magazine, 13(5), 730-742.

Clark, M., Hall, L. O., Goldgof, D, Velthuizen, R.. Murtaugh, F.R. and
Si lbiger , M. (1998). A u t o m a t i c t u m o r s e g m e n t a t i o n u s i n g
knowledge-based t echn iques , IEEE Trans. Med. Imaging, 17(2),
187-201.

694 FUZZY PATTERN RECOGNITION

Coray, C. (1981). Clustering algorithms with prototype selection,
Proc. of Hawaii Int. Conf. onSyst. Set, II, Western Periodicals Co.,
945-955.

Cormen, T. H., Leiserson, C. E. and Rivest, R. L. (1990). Introduction
to Algorithms, McGraw Hill, NY.

Cottrell, G.W., Munroe, P. and Zipser, D. (1989). Image compression
by back-propagation; An example of extensional programming, in
Models of Cognition: A Review of Cognitive Science, ed. N.
Sharkey, Norwood, NJ, 208-240.

Cover, T. and Hart, P. (1967). Nearest neighbor pat tern
classification, IEEE Trans. Inf. Theory, 13, 21-27.

CubiCalc, (1990). Comp. Software Manual, HyperLogic Corporation,
IBM-PC.

DARPA Neural Network Study, (1988). AFCEA Press, Fairfax, VA.

Das Gupta, S. and H. E. Lin (1980). Nearest neighbor rules of
statistical classification based on ranks, SankhyaA, 42, 419-430.

Dasarathy, B.V. (1990). Nearest Neighbor (NN) Norms : NN Pattern
Classification Techniques, IEEE Computer Society Press, Los
Alamitos, CA.

Dasara thy , B.V. (1994a). Minimal consis tent set (MCS)
identification for optimal nearest neighbor decision systems
design, IEEE Trans. Syst, Man and Cybems., 24(3), 511-517.

Dasarathy, B.V. (1994b). Decision Fusion, IEEE Computer Society
Press, Los Alamitos, CA.

Dave, R. N. (1989). Use of the adaptive fuzzy clustering algorithm to
detect lines in digital images, Proc. SPIE Conf. on Intell. Robots
and Comp. Vision, 1192 (2), 600-611.

Dave, R. N. (1990a). An adaptive fuzzy c-elliptotype clustering
algorithm, Proc. NAFIPS Conf 9-12.

Dave, R. N. (1990b). Fuzzy shell-clustering and applications to circle
detection in digital images. Int. J. of Gen. Syst, 16(4), 343-355.

Dave, R. N. (1991a). Characterization and detection of noise in
clustering, Patt. Recog. Lett.,12 (11) 657-664.

Dave, R. N. (1991b). New measures for evaluating fuzzy partitions
induced through c-shells clustering, Proc. SPIE Conf. on Intell.
Robot and Comp. Vision X, 1607, 406-414.

REFERENCES 695

Dave, R. N. (1992). Generalized fuzzy c-shells clustering and
detection of circular and elliptical boundaries, Patt Recog., 25(7),
713-721.

Dave, R. N. (1996). Validating fuzzy partitions obtained through c-
shells clustering, Patt. Recog. Lett., 17. 613-623.

Dave, R. N. and Bhamidipati, S. (1989). Application of the fuzzy-
shell clustering algorithm to recognize circular shapes in digital
images, Proc. Third IPSA Congress, 238-241.

Dave, R. N. and Bhaswan, K. (1991a). Adaptive fuzzy c-shells
clustering,Proc. NAFIPS Conf., 195-199.

Dave, R. N. and Bhaswan, K. (1991b). New measures for evaluating
fuzzy partitions induced through c-shells clustering, Proc. SPIE
Intell. Robots and Comp. Vision X: Algorithms and Techniques,
1607, 406-414.

Dave, R. N. and Bhaswan, K. (1992). Adaptive fuzzy c-shells
clustering and detection of ellipses, IEEE Trans. Neural Networks,
3(5), 643-662.

Dave, R. N. and Fu, T. (1994). Robust shape detection using fuzzy
clustering: practical applications, Fuzzy Sets and Syst, 65(2/3),
161-185.

Dave, R. N. and Krishnapuram, R. (1997). Robust clustering methods:
a unified view, IEEE Trans. Fuzzy Syst, 5(2), 270-293.

Dave, R. N. and Patel, K. J. (1990). Progressive fuzzy clustering
algorithms for characteristic shape recognition, Proc. NAFIPS
ConJ., 121-125.

Dave, R. N. and Sen, S. (1998). Generalized noise clustering as a
robust fuzzy c-means estimator model, Proc. NAFIPS Conf., eds. J.
C. Bezdek and L. O. Hall, 256-260.

Davenport, J. W., Bezdek, J. C. and Hathaway, R. (1988). Parameter
estimation for finite mixture distributions, Int. J. Comp. and
Math, with Applications, 15(10), 819-828.

Davies, D. L. and Bouldin, D. W. (1979). A cluster separation
measure, IEEE Trans. Patt. Anal, and Machine Intell, 1(4), 224-
227.

De Gruijter, J .J . and McBratney, A.B. (1988). A modified fuzzy k-
means method for predictive classification, in Classification and
Related Methods of Data Analysis, ed. H. H. Bock, Elsevier, North
Holland.

696 FUZZY PATTERN RECOGNITION

De Veaux, R. D. (1989). Mixtures of linear regressions, Comp. Stat,
and Data Anal, 8, 227-245.

De, R. K., Pal, N. R. and Pal, S. K. (1997). Feature analysis : neural
network and fuzzy set theoretic approaches, Patt Recog., 30(10),
1579-1590.

Del Bimbo, A. and Vicario, E. (1998). Using weighted spatial
relationships in retrieval by visual contents, Proc. IEEE
Workshop on Content-Based Access of Image and Video Libraries,
IEEE Computer Society Press, Los Alamitos, CA, 35-39.

Delgado, M., Gomez-Skarmeta, A. F. and Martin, F. (1997). A fuzzy
clustering based rapid-prototyping for fuzzy rule-based modeling,
IEEE Trans. Fuzzy Syst, 5(2), 223-233.

Delgado, M., Gomez-Skarmeta, A. F. and Vila, M.A. (1995).
Hiearchical clustering to validate fuzzy clustering, Proc. IEEE Int.
Conf. on Fuzzy Syst, 1807-1812.

Dellepiane, S. (1997). The active role of 2-D and 3-D images: semi
automatic segmentation. Contemporary Perspectives in Three-
Dimensional Biomedical Imaging, eds. C. Roux and J. L. Coatrieux,
lOS Press, 165-189.

Dellepiane, S., Fontana, F. and Vernazza, G. L. (1996). Nonlinear
image labeling for multivalued segmentation, IEEE Trans. Image
Processing, 5(3), 429-446.

Deluca, A. and Termini, S. (1972). A definition of nonprobabilistic
entropy in the setting of fuzzy sets theory. Inf. and Control, 20,
301-312.

Dempster, A. P., Laird, N. M. and Rubin, D. B. (1977). Maximum
likelihood from incomplete data via the EM algorithm, J. of the
Royal Statistical Society, B(39), 1-38.

Denoeux, T. (1995). A k-nearest neighbor classification rule based
on Dempster-Shafer theory, IEEE Trans. Syst, Man and Cybems.,
25, 804-813.

DePalma, G.F. and Yau, S. S. (1975). Fractionally fuzzy grammars
with application to pattern recognition, in Fuzzy Sets and their
Applications to Cognitive and Decision Processes, eds. L. A. Zadeh,
K.S. Fu, K. Tanaka and M. Shimura, Academic Press, NY, 329-351.

Devijver, P. and Kittler, J. (1982). Pattern Recognition: A Statistical
Approach, Prentice-Hall, Englewood Cliffs, NJ.

REFERENCES 697

Di Gesu, v., Maccarone, M.C. and Tripiciano, M. (1991). MMFuzzy:
Mathematical morphology based on fuzzy operators, Proc. IFSA
Congress, 29-32.

Dl Gesu, V. and Maccarone, M.C. (1986). Feature selection and
possibility theory, Patt. Recog., 19, 63-72.

Dlckerson, J. and Kosko, B. (1993). Fuzzy function learning with
covariance ellipsoids, Proc. IEEE Int. Conf. on Neural Networks,
IEEE Press, Piscataway, NJ, 1162-1167.

Diday, E. (1971). La methode des nuees dynamlques. Rev. Stat.
Appliquee, X1X(2), 19-34.

Diday, E. (1975). Classification automatique sequentialle pour la
grands tableaux. Rev. Francaise Automat. Inform. Recherche
Operationnelle, 29-61.

Diday, E. and Simon, J.C. (1976). Cluster Analysis, in Digital
Pattern Recognition, ed. K.S.Fu, Springer Verlag, 47-94.

Diday, E., Schroeder, A. and Ok, Y. (1974), The dynamic clusters
method in pattern recognition, Proc. Int. Federation for Inf.
Processing Congress, American Elsevier, North Holland, f̂Y, 691-
709.

Dong, W., Shah, H., and Wong, F. (1985). Fuzzy computations in risk
and decision analysis. Civil Engineering Syst, 2, 201-208.

Driankov, D., Hellendorn, H. and Reinfrank, M. (1993). An
Introduction to Fuzzy Control, Springer Verlag, NY.

Drucker, H., Schapire, R., and Simard, P. (1993). Improving
performance of neural networks using a boosting algorithm.
Advances in Neural Inf. Processing Syst, 5, Morgan Kaufmann,
San Mateo, CA, 42-49.

Dubois, D. and Prade, H. (1980). Fuzzy sets and systems: theory and
applications. Academic Press, NY.

Dubois, D. and Prade, H. (1982). A class of fuzzy measures based on
triangular norms, Int. J. Gen. Syst, 8 43-61.

Dubois, D. and Prade, H. (1985). A Review of fuzzy set aggregation
connectives, Inf, Sciences, 36(1/2), 85-121.

Dubois, D. and Jaulent, M. C. (1987). A general approach to
parameter evaluation in fuzzy digital pictures, Patt. Recog. Lett, 6,
251-259.

698 FUZZY PATTERN RECOGNITION

Dubois, D., Nguyen, H.T., Prade, H. and Sugeno, M. (1998).
Introduction: the real contribution of fuzzy systems. Fuzzy
Systems: Modeling and Control, eds. H. T. Nguyen and M. Sugeno,
Kluwer, Boston, MA, 8-10.

Duda, R. and Hart, P. (1973). Pattern Classification and Scene
Analysis, Wiley Interscience, NY.

Dudani, S. A. (1976). The distance weighted k-nearest neighbor rule,
IEEE Trans. Syst, Man and Cybems., 6, 325-327.

Dunn, J. C. (1974a). A fuzzy relative of the ISODATA process and its
use in detecting compact well-separated clusters, J. Cybems., 3(3),
32-57.

Dunn, J . C. (1974b). A graph theoretic analysis of pattern
classification via Tamura's fuzzy relation, IEEE Trans. Syst, Man
and Cybems., 4, 310-313.

Dunn, J . C. (1977). Indices of partition fuzziness and the detection of
clusters in large data sets, in Fuzzy Automata and Decision
Processes, ed. M.M. Gupta, Elsevier, NY.

Dutta, S. (1991). Approximate spatial reasoning: integrating
qualitative and quantitative constraints Int. J. of Approximate
Reasoning, 5, 307-331.

Dyckhoff, H. and Pediycz, W. (1984). Generalized means as a model
of compensation connectives, Fluzzy Sets and Syst, 14, 143-154.

Errington, P. and Graham, J. (1993). Application of artificial neural
networks to chromosome classification, Cytometry, 14, 627-639.

Everitt, B. S. (1978). Graphical Techniques for Multivariate Data,
North Holland, NY.

Everitt, B. S. and Hand, D. J. (1981). Finite Mixture Distributions,
Chapman and Hall, NY.

Fahlman, S. E. and Lebiere, C. (1990). The cascade correlation
learning architecture, in Advances in Neural Inf. Processing, ed.
D. Touretzky, Morgan Kauffman, San Mateo, CA, 524-532.

Fayyad, U. M. and Irani, K. B. (1992). On the handling of continuous-
valued attributes in decision tree generation, Machine Learning, 8,
87-102.

Fiesler, E. and Beale, R., eds., (1997). Handbook of Neural
Computation, Institute of Physics Publ., Bristol, UK.

REFERENCES 699

Figue, J., Grabisch, M. and Charbonnel, M. P. (1998). A method for
still image interpretation relying on a multi-algorithm fusion
scheme, application to human face characterization, Fuzzy Sets
andSyst, 103(2).

Fisher, P. F. and Pathirana, S. (1990). The evaluation of fuzzy
membership of land cover classes in the suburban zone. Remote
Sensing of the Environment, 34, 121-132.

Fisher, R. A. (1936). The use of multiple measurements in taxonomic
problems, Ann. Eugenics, 7(2), 179-188.

Forgy, E. (1965). Cluster analysis of multivariate data : efficiency vs
interpretability of classifications, Biometrics, 21(3).

Fowlkes, E. B. and Mallows, C. L. (1983). A method of comparing two
hierarchical clusterings, J. Amer. Stat. Assoc., 78, 553-569.

Freeman, J. (1975). The modeling of spatial relations, Computer
Graphics and Image Processing, 4, 156-171.

Frigui, H. and Krishnapuram, R. (1995). A robust clustering
algorithm based on the M-estimator, Proa. Int. ConJ. on Neural,
Parallel and Scientific Computations, 1, 163-166.

Frigui, H. and Krishnapuram, R. (1996a). A comparison of fuzzy
shell clustering methods for the detection of ellipses, IEEE Trans.
Fuzzy Syst, 4, 193-199.

Frigui, H. and Krishnapuram, R. (1996b). A robust clustering
algorithm based on competitive agglomeration and soft rejection
of outliers, Proc. IEEE ConJ. Comp. Vision and Patt. Recog., IEEE
Press, Piscataway, NJ, 550-555.

Frigui, H. and Krishnapuram, R. (1996c). A robust algorithm for
automatic extraction of an unknown number of clusters for noisy
data, Patt. Recog. Lett., 17(12), 1223-1232.

Frigui, H. and Krishnapuram, R. (1997). Clustering by competitive
agglomeration, Patt. Recog., 30(7), 1109-1119.

Frigui, H., Gader, P. and Keller, J. M. (1998a). Fuzzy clustering for
landmine detection, Proc. NAFIPS ConJ., eds. J. C. Bezdek and L.
O. Hall, 261-265.

Frigui, H., Krishnapuram, R., DeKruger, D., Keller, J. and Gader, P.
(1998b). Robust and fuzzy preprocessing algorithms for target
detection in LADAR images, Proc. IEEE Int. ConJ. on Fuzzy
Systems, IEEE Press, Piscataway, NJ, 1554-1559.

700 FUZZY PATTERN RECOGNITION

Fu, K.S. (1982). Syntactic Pattern Recognition and Applications,
Prentice Hall, Englewood Cliffs, NJ.

Fukunaga, K. (1991). Statistical Pattern Recognition, second edition
(first edition, 1972), Academic Press, San Diego, CA.

Fukuyama, Y. and Sugeno, M. (1989). A new method of choosing the
number of clusters for the fuzzy c-means method, Proc. 5-th Fuzzy
Syst. Symp. (in Japanese), 247-256.

Furukawa, M. and Yamakawa, T. (1998). A fuzzy neural network for
pattern recognition using local feature of pattern, Proc. Int.
Conference on Soft Computing, eds. T. Yamakawa and G.
Matsumoto, lizuka, Japan, World Scientific, Singapore, 1000-
1003.

Gader, P. (1997). Fuzzy spatial relations based on fuzzy morphology,
Proc. IEEE Int. Conf. on Fuzzy Syst, IEEE Press, Piscataway, NJ,
1179-1183.

Gader, P. and Mohamed, M. (1995). Multiple classifier fusion for
handwritten word recognition, Proc. IEEE Int. Conf. Syst, Man,
Cybems., IEEE Press, Piscataway, NJ, 2329-2335.

Gader P. and Mohamed, M. (1996). The Choquet fuzzy integral in
handwritten word recognition, Proc. SPIE Conf. on Document
Recognition, San Jose, 309-321.

Gader, P., Keller, J. M. and Cai, J. (1995a). A fuzzy logic system for
the detection and recognition of street number fields on
handwritten postal addresses, IEEE Trans. Fuzzy Syst, 3(1), 83-95.

Gader, P., Keller, J. M. and Liu, H. (1998b). Landmine detection using
fuzzy clustering in DARPA backgrounds data collected with the
Geo-Centers ground penetrating radar, Proc. SPIE Detection and
Remediation Technologies for Mines and Minelike Targets III,
3392, SPIE, Bellingham, WA, 1139-1149.

Gader, P., Keller, J. M., Frigui, H., Liu, H. and Wang, D. (1998a).
Landmine detection using fuzzy sets with GPR images, Proc. 1998
IEEE Int Conf. on Fuzzy Syst, IEEE Press, Piscataway, NJ, 232-
236.

Gader, P., Keller, J. M., Krishnapuram, R., Chiang, J., and Mohamed,
M. (1997b). Neural and fuzzy methods in handwriting recognition,
IEEE Computer, 30(2) 79-86.

REFERENCES 701

Gader, P., Mohamed, M. and Chiang, J-H. (1992). Fuzzy and crisp
handwrit ten alphabetic character recognition using neural
networks, Proc. Artificial Neural Networks in Engineering, St.
Louis, MO, 421-427.

Gader, P., Mohamed, M. and Chiang, J-H. (1995b). Comparison of
crisp and fuzzy character neural networks in handwritten word
recognition, IEEE Trans. Fuzzy Syst, 3(3), 357-363.

Gader, P., Mohamed, M. and Chiang, J-H. (1997a). Handwritten word
recognition with character and inter-character neural networks.
IEEE Trans. Syst, Man and Cybems., 27(1), 158-165.

Gader, P., Mohamed, M. and Keller, J. M. (1995c). Applications of
fuzzy integrals to handwri t ing recognition, Proc. SPIE
Applications of Fuzzy Logic Technology II, SPIE, Bellingham, WA,
102-113.

Gader, P., Mohamed, M. and Keller, J . M. (1996a). Dynamic-
programming-based handwritten word recognition using the
Choquet integral as the match function, J. of Electronic Imaging,
5(1), 15-24.

Gader, P., Mohamed, M. and Keller, J.M. (1996b). Fusion of
handwritten word classifiers, Patt. Recog. Lett., 17(6), 577-584.

Gader, P., Whalen, M., Ganzberger, M, and Hepp, D. (1995d).
Handprinted word recognition on a NIST data set. Machine Vision
and Its Applications, 8, 31-40.

Gasos, J . and Ralescu, A. L. (1995). Towards a linguistic Instruction
based navigation suppor t system - Using environment
information for guiding scene interpretation, Proc. IEEE Int.
Conf. on Fuzzy Syst, IEEE Press, Piscataway, NJ, 1261-1266.

Gath, I. and Geva, A.B. (1989a). Unsupervised optimal fuzzy
clustering, IEEE Trans. Patt Anal, and Machine Intell, 11, 773-
781.

Gath, I. and Geva, A.B. (1989b). Fuzzy clustering for the estimation of
the parameters of mixtures of normal distributions, Patt. Recog.
Lett., 7, 773-781.

Geci, D. (1996). Cell detection and classification using the fuzzy
Hough transform, MsCS Thesis, U. of W. Florida, Pensacola, FL.

Genther, H. and Glesner, M. (1994). Automatic generation of a fuzzy
classification system using fuzzy clustering methods, Proc. ACM
Symp. on Applied Computing, ACM Press, NY, 180-183.

702 FUZZY PATTERN RECOGNITION

Gersho, A. and Gray, R. (1992). Vector Quantization and Signal
Compression, Kluwer, Boston.

Geva, A. B. and Pratt, H. (1994). Unsupervised clustering of evoked
potentials by waveform, Med. and Bio. Engineering and
Computing, 543-550.

Geyer-Schulz, A. (1998). Fuzzy genetic algorithms, in Fuzzy sets in
Decision Analysis: Operations Research and Statistics, ed. R.
Slowlnski, ffluwer, Boston, MA, 403-460.

Ghosh, A., Pal N. R., and Pal S. K. (1993). Self-organization for object
extraction using multilayer neural netvi^ork and fuzziness
measures, IEEE Trans. Fuzzy Systems, 1, 54-68.

Giarratano, J . and Riley, G. (1994). Expert Syst. : Principles and
Programming, 2nd ed., PWS, Boston, MA.

Gillies, A., Hepp, D. and Gader, P. (1992). A system for recognizing
handw^ritten words, ERIM Technical Report submitted to U. S.
Postal Service,.

Gillies, A., Hepp, D., Ganzberger, M.. Rovner, R. and Gader, P. (1993).
Handwritten address interpretation, ERIM Technical Report
submitted to U. S. Postal Service,.

Gitman, I. and Levine, M.D. (1970). An algorithm for detecting
unimodal fuzzy sets and its application as a clustering techniques,
IEEE Trans. Computers. 19, 583-593.

Godjevac, J . (1997). Neuro-Fuzzy Controllers, P resses
Poljd;echniques et Univeritaires Romandes, Lausanne.

Goetcherian, V. (1980). From binary to gray tone image processing
using fuzzy logic concepts, Patt. Recog., 12(1), 7-15.

Goldberg, D. E. (1989). Genetic algorithms in Search, Optimization
and Machine Learning, Addison-Wesley, Reading, MA.

Gonzalez, R. C. and Thomason, M. G. (1978). Syntactic Pattern
Recognition : An Introduction, Addison Wesley, Reading, MA.

Gonzalez, R. C. and Woods, R. E. (1992). Digital Image Processing,
Addison Wesley, Reading, MA.

Goos, G., Hartmanis, J. and van Leeuwen, J., eds, (1996). Advances in
Structural and Syntactic Pattern Recognition, Lecture Notes in
Comp. Science, 1121, Springer, Berlin.

REFERENCES 703

Gopal, S. and Woodcock, C. (1994). Theory and methods for accuracy
estimation of thematic maps using fuzzy sets, Photogrammetrtc
Engineering and Remote Sensing, 60, 181-188.

Grabisch, M. (1994). Fuzzy integreds as a generalized class of order
filters, Proc. SPIE, 2315, SPIE. Bellingham, WA, 128-136.

Grabisch, M. and Nicolas, J-M. (1994). Classification by fuzzy
integral: Performance and tests. Fuzzy Sets and Systems, 65, 255-
271.

Grabisch, M. and Schmitt, M. (1995). Mathematical morphology,
order filters, and fuzzy logic, Proc. lEEE/lFES Int. Joint. Conf. on
Fuzzy Syst, Yokohama Japan, 2103-2108.

Grabisch, M., Figue, J . and Charbonnel, M. P. (1996). Analysis and
modeling of face images, Proc. IIZUKA'96, 2, eds. T. Yamakawa
and G. Matsumoto, World Scientific, Singapore, 761-764.

Grabisch, M., Murofushi, T, and Sugeno M. (1992). Fuzzy measure of
fuzzy events defined by fuzzy integrals, Fuzzy Sets and Syst, 50,
293-313.

Grabisch, M., Murofushi, T. and Sugeno, M., eds., (1999). Fuzzy
measures and integrals - theory and applications, Springer-
Verlag, Heidelberg.

Grabisch, M., Nguyen, H. and Walker E. (1995). Fundamentals of
Uncertainty Calculi with Applications to Fuzzy Inference. Kluwer,
Dordrecht.

Graham, J. and Piper, J . (1994). Automatic karyotj^e analysis, in
Methods in Molecular Biology, 29, ed. J. R. Gosden, Humana Press,
Totowa, NJ, 141 - 185.

Grossberg, S. (1976a). Adaptive pattern classification and universal
recoding I : parallel development and coding of neural feature
detectors, Biological Cybems., 23, 121-134.

Grossberg, S. (1976b). Adaptive pattern classification and universal
recoding II : feedback, expectation, olfaction, and illusions.
Biological Cybems., 23, 187-202.

Grossberg, S. (1978), Do all neural networks look alike? A comment
on Anderson, Silverstein, Ritz, and Jones, Psychological review,
85, 592-596.

Grossberg, S. (1987). Competitive learning : from interactive
activation to adaptive resonance. Cognitive Science, 11, 23-63.

704 FUZZY PATTERN RECOGNITION

Gunderson, R. (1978). Applications of fuzzy ISODATA algorithms to
star- tracker printing systems, Proc. Triannual World IFAC
Congress, 1319-1323.

Gunderson, R. (1983). An adaptive FCV clustering algorithm, Int. J.
Man-Machine Studies, 19, 97-104.

Gunderson, R. and Thrane, K. (1985). Monitoring polycyclic
aromatic hydrocarbons : An environmental application of fuzzy
c-varieties pattern recognition, in Environmental Applications of
Chemometrics, eds. J. Breen and P. Robinson, ACS Symp. Series
292, ACS, Washington D.C, 130-147.

Gupta, M. M. and Rao D. H. (1994). On the principles of fuzzy neural
networks. Fuzzy Sets and Syst, 61, 1-18.

Gupta M. M. and Qi J. (1991). On fuzzy neuron models, Proc. IEEE
Int. Joint Conf. on Neural Networks, II, 431-436.

Gustafson, E. E. and Kessel, W. (1979). Fuzzy clustering with a fuzzy
covariance matrix, Proc. IEEE Conf. on Decision and Control, San
Diego, IEEE Press, Piscataway, NJ, 761-766.

Halgamuge, S.K., PochmuUer, W. and Glesner, M. (1995). An
alternative approach for generation of membership functions and
fuzzy rules based on radial and cubic basis function networks. Int.
J. Approx. Reasoning, 12(3/4), 279-298.

Hall, D. (1992). Mathematical Techniques in Multisensor Data
Fusion, Artech House, Norwood, MA.

Hall, E. L. (1979). Computer Image Processing and Recognition,
Academic Press, NY.

Hall, L. O. (1996). Learned fuzzy decision rules vs. decision trees in
classifying microcalcifications in mammograms, SPIE Proc. on
Applications of Fuzzy Logic Technology III, 2761, eds. B. Bosacchi
and J. C. Bezdek, SPIE, Bellingham, WA, 54-61.

Hall, L. O. and Lande, P. (1998). The generation of fuzzy rules from
decision trees, J. Adv. Computational Intelligence, 2(4), 128-133.

Hall, L. O., Bezdek, J. C , Boggavarapu, S. and Bensaid, A. (1994).
Genetic algorithm guided clustering, Proc. IEEE Int'l Conf. on
Evolutionary Computation, IEEE Press, Piscataway, 34-39.

Hall, L. O., Chawla, N. and Bowyer, K. (1998). Decision tree learning
on very large data sets, Proc. IEEE Conf. on Syst, Man and
Cybems., IEEE Press, Piscataway, NJ, 2579-2584.

REFERENCES 705

Hall, L.O, Bensaid, A., Clarke, L., Velthuizen, R. Sllblger, M. a n d
Bezdek, J . C. (1992). A comparison of neura l network a n d fuzzy
cluster ing t echn iques in segment ing magnetic resonance images
of the brain, IEEE Trans. Neural Networks, 3(5), 672-682.

Hall, P. (1973). Equivalence between AND/OR graphs and context-
free g rammars , Comm. of the ACM, 16(7), 444-445.

Hampel, F. R. (1975). Beyond location parameters : robus t concepts
a n d methods , Proc. Int. Stat Institute, 46, 375-382.

Han , J . H., Koczy, L.T. a n d Poston, T. (1993). The fuzzy Hough
t r ans fo rm, Proc. IEEE Int. Conf. on Fuzzy Syst, IEEE Press ,
Piscataway, NJ, 803-808.

Hanson , A. R. a n d Riseman, E. M. (1978). Segmentat ion of na tu r a l
scenes, in Comp. Vision Syst, eds. A.R. Hanson and E.M. Riseman,
Academic Press, NY, 129-144.

Harahck , R. M. a n d Shapi ro , L. G. (1992). Computer and Robot
Vision, Volume I, Addison Wesley, Reading, MA, Chapter 10.

Haralick, R.M., S h a n m u g a m , K. and Dinstein, I. (1973). Textural
fea tu res for image classification. IEEE Trans. Syst. Man and
Cybems., 3(6), 610-621.

Hart igan, J . (1975). Clustering Algorithms, Wiley, NY.

H a s h e m , S. (1997). Op t ima l l inea r c o m b i n a t i o n s of n e u r a l
networks, Neural Networks, 10(4), 599-614.

Ha ta , Y., Hi rano , S. a n d Kamiura , N. (1998). Medical image
g ranu la t i on by fuzzy inference, Proc. NAFIPS ConJ. eds . J . C.
Bezdek and L. O. Hall, 188-192.

Hata , Y., Kobashi, N., Kamiura, N. and Ishikawa, M. (1997). Fuzzy
logic approach to 3D magnetic resonance image segmentat ion, in
Irifor. Proc. in Medical Imaging, Lecture no tes in Comp. Science,
1230, 387-392.

Hathaway, R. J . and Bezdek, J . C. (1986a). Local convergence of the
iuzzy c-means algorithms, Patt. Recog., 19(6), 477-480.

Ha thaway , R. J . a n d Bezdek, J . C. (1986b). On the asympto t ic
proper t ies of fuzzy c -means c lus ter prototypes a s es t imators of
mixture subpopulat ions, Comm.. Stat., 5(2), 505-513.

Hathaway, R. J . and Bezdek, J . C. (1988). Recent convergence resul ts
for the fuzzy c-means clustering algorithms, J. Classification, 5(2),
237-247.

706 FUZZY PATTERN RECOGNITION

Hathaway, R. J . and Bezdek, J . C. (1991). Grouped coordinate
minimization using Newton's method for inexact minimization
in one vector coordinate, J . Optimization Theory and
Applications, 71(3), 503-516.

Hathaway, R. J . and Bezdek, J . C. (1993). Switching regression
models and fuzzy clustering, IEEE Trans. Fuzzy Syst, 1(3), 195-
204.

Hathaway, R. J . and Bezdek, J. C. (1994a). Optimization of fuzzy
clustering criteria using genetic algorithms, Proc. IEEE Inf. Cor^.
on Evolutionary Computation, IEEE Press, Piscataway, 589-594.

Hathaway, R. J. and Bezdek, J. C. (1994b). NERF c-Means : Non-
Euclidean relational fuzzy clustering, Patt. Recog., 27(3), 429-437.

Hathaway, R. J. and Bezdek, J. C. (1994c). An iterative procedure for
minimizing a generalized sum-of-squared errors clustering
criterion. Neural, Parallel and Scientific Computations, 2, 1-16.

Hathaway, R. J. and Bezdek, J. C. (1995). Optimization of clustering
criteria by reformulation, IEEE Trans. Fuzzy Syst, 3(2), 241-246.

Hathaway, R. J., Bezdek, J. C. and Pedrycz, W. P. (1996). A parametric
model for fusing heterogeneous fuzzy data, IEEE Trans. Fuzzy
Syst, 4(3), 270-281.

Hathaway, R. J., Davenport, J. W. and Bezdek, J. C, (1989). Relational
duals of the c-means clustering algorithms, Patt. Recog., 22 (2),
205-212.

Hayashi, I., Naito, E. and Wakami, N. (1991). A proposal of fuzzy
connective with learning function and its application to fuzzy
information retrieval, Proc. Int. Fuzzy Engineering Symp.,
Yokohama, Japan, 446-455.

Haykln, S. (1994). Neural Networks : A Comprehensive Foundation,
MacMillan, NY.

Heath, M. D., Sarkar, S., Sanocki, T. and Bowyer, K. W. (1997). A
robust visual method for assessing the relative performance of
edge-detection algorithms, IEEE Trans. Patt. Anal, and Machine
Intell, 19(12), 1338-1359.

Hecht-Nielsen, R. (1988). Neurocomputing: picking the human
brain, IEEE Spectrum, March, 36-41.

REFERENCES 707

Hemdon, R. C , Lancaster, J. L., Toga, A. W. and Fox, P. T. (1996).
Quantification of white and gray matter volumes from Tl
parametric images using fuz2y classifiers, J. Mag. Res. Imaging,
6(3), 425-435.

Hershfinkel, D. and Dinstein, I. (1996). Accelerated fuzzy c-means
clustering algorithm, in Proc. SPIE Applications of Fuzzy Logic
Technology HI, 2761, eds. B. Bosachi and J. C. Bezdek. 41-52.

Higashi, M. and Klir, G. J . (1983). Measures of uncertainty and
information based on possibility distributions. Int. J. Gen. Syst,
9, 43-58.

Hirota, K. and Iwama, K. (1988). Application of modified FCM with
additional data to area division of images. Inf. Set, 45(2), 213-
230.

Ho, T. K., Hull, J. J., and Srihari, S. N. (1994). Decision combination
in multiple classifier systems. IEEE Trans. Patt. Anal, and
Machine Intell, 16(1), 66 - 75.

Hocaoglu A. and Gader, P. (1998). Choquet integral representations
of nonlinear filters with applications to LADAR image processing.
Proc. SPIE Conf. Nonlinear Image Processing IX, SPIE,
Bellingham, WA, 66-72.

Hocaoglu, A. K., Gader, P. and Keller, J. (1997). Nonlinear filters for
target detection in LADAR range images, Proc. NAFIPS Conf, 177-
182.

Hoeppner, F. (1997). Fuzzy shell clustering algorithms in image
processing - fuzzy c-rectangular and 2-rectangular shells. IEEE
Trans. Fuzzy Syst, 5(4), 599-613.

Hoffman, R. and Jain, A. K. (1987). Segmentation and classification
of range images, IEEE Trans. Patt. Anal, and Machine Intell, 9,
608-620.

Hosmer, D. W. (1974). Maximum likelihood estimates of the
parameters of a mixture of two regression lines, Comm.. in Stat,
3(10), 995-1005.

Hough, P.V.C. (1962). Methods and means for recognizing complex
patterns, U.S. Patent 3069654.

House, J . M., Lee, Y. W. and Shin, D. R. (1999). Classification
techniques for fault detection and diagnosis of an air handling
unit. Trans. ASHRAE, 105(1).

708 FUZZY PATTERN RECOGNITION

Huang, T. and Suen, C. (1995). Combination of multiple experts for
recognition of unconstrained handwritten numerals. IEEE Trans.
Patt. Anal and Machine Intell, 17(1), 90-94.

Huber, P.J. {1981).Robust Statistics, John Wiley and Sons, NY.

Hubert, L. J . and Arabic, P. (1985). Comparing partitions, J .
Classification, 2, 193-218, 1985.

Hughes, G. F. (1968). On the mean accuracy of statistical pattern
recognizers, IEEE Trans. Inf. Theory, 14, 55-63.

Hull, J . (1994). A database for handwritten text recognition
research, IEEE Trans. Patt. Anal, and Machine Intell, 16(5), 550 -
554.

Huntsberger, T. and Ajjimarangsee, P. (1990). Parallel self-
organizing feature maps for unsupervised pattern recognition. Int.
J. Gen. Syst, 16, 357-372.

Hwang, S. Y., Lee, H. S. and Lee, J. J. (1998). General fuzzy acceptors
for pattern recognition. Fuzzy Sets and Syst, 80, 397-401.

lUingworth, J. and Kittler, J. (1987). The adaptive Hough transform,
IEEE Trans. Patt. Anal and Machine Intell, 9(5), 690-698.

Ismail, M. A. and Selim, S. A. (1986). On the local optimality of the
fuzzy ISODATA clustering algorithm, IEEE Trans. Patt. Anal and
Machine Intell, 8(2), 284-288.

Jacobs, R.A., Jordan, M.I., Nowlan, S.J. and G.E. Hinton. (1991).
Adaptive mixtures of local experts, Neural Computation, 3, 79-87.

Jacobsen, T. and Gunderson, R. (1983). Trace element distribution in
yeast and wort samples: An application of the FCV clustering
algorithms, Int. J. Man-Machine Studies, 10(1), 5-16.

Jain, A. K. and Dubes, R. (1988). Algorithms for Clustering Data,
Prentice Hall, Englewood Cliffs, NJ.

Jain, A. K. and Fljoin, P. J. (1996). Image segmentation by clustering,
in Advances in Image Understanding, eds. K. Bowyer and N. Ahuja,
IEEE Computer Society Press, Los Alamitos, CA., 65-83.

Jain, R., Kasturi, R. and Schunck, B. G. (1995). Machine Vision,
McGraw-Hill, NY.

Jajuga, K. (1991). (norm-based fuzzy clustering. Fuzzy Sets and
Syst, 39(1), 43-50.

REFERENCES 709

Jang, J.-S. R. (1994). Structure determination in fuzzy modeling: A
fuzzy CART approach, Proc. IEEE Int. Conf. on Fuzzy Syst, IEEE
Press, Piscataway, NJ, 480-485.

Jang, J.-S. R., Sun C.-T. and Mizutani. E. (1997). Neuro-Fuzzy and
Soft Computing, Prentice Hall, Upper Saddle River, NJ.

Janikow, C. Z. (1996a). Exemplar learning in fuzzy decision trees,
Proc. IEEE Int. Conf. on Fuzzy Syst, IEEE Press, Piscataway, NJ,
1500-1505.

Janikow, C. Z. (1996b). A genetic algorithm method for optimizing
fuzzy decision trees. Inf. Set, 89(3-4), 275-296.

Janikow, C. Z. (1998). Fuzzy decision trees: issues and methods,
IEEE Trans. Syst, Man and Cybems., B28(l), 1-14.

Johnson, J. L. (1994). Pulse-coupled neural nets: translation,
rotation, scale, distortion and intensity signal invariances for
images. Applied Optics, 33(26), 6239-6253.

Johnson, R. A. and Wichern, D. W. (1992). Applied Multivariate
Statistical Analysis, 3rd ed.. Prentice Hall, Englewood Cliffs, NJ.

Jolion, J. M., Meer, P. and Bataouche, S. (1991). Robust clustering
with applications in computer vision, IEEE Trans. Pattern Anal,
and Machine Intell, 13(8),791-802.

Jordan, M. I. and Xu, L. (1995). Convergence results for the EM
approach to mixtures of expert architectures. Neural Networks,
8(9), 1409-1431.

Jozwik, A. (1983). A learning scheme for a fuzzy k-NN rule, Patt.
Recog. Lett., 1, 287-289.

Kamel, M. S and Selim, S.Z. (1994). A new algorithm for solving the
fuzzy clustering problem, Patt Recog., 27(3), 421-428.

Kandel, A. (1982). Fuzzy Techniques in Pattern Recognition, Wiley
Interscience, NY.

Kandel, A. and Yelowitz, L. (1974). Fuzzy chains, IEEE Trans. Syst,
Man and Cybems., (4), 472-475.

Kang, H.-B. and Walker, E. (1994). Characterizing and controlling
approximation in hierarchical perceptual grouping. Fuzzy Sets
and Syst, 65, 187-224.

710 FUZZY PATTERN RECOGNITION

Karayiannis, N. B. (1996). Fuzzy and posslbilistic clustering
algorithms based on generalized reformulation, Proc. IEEE Int.
Conf. on Fuzzy Syst, IEEE Press, Piscataway, NJ, 1393-1399.

Karayiannis, N. B. (1997a). Learning vector quantization : a review,
Int. J. of Smart Engineering System Design, 1(1), 33-58.

Karayiannis, N. B. (1997b). Entropy constrained learning vector
quantizat ion algorithms and their application in image
compression, Proc. SPIE Conf. on Applications of Artificial
Neural Networks in Image Processing II, 3030, SPIE, Bellingham,
WA. 2-13.

Karayiannis, N. B. (1997c). A methodology for constructing fuzzy
algorithms for learning vector quantization, IEEE Trans. Neural
Networks, 8(3), 505-518..

Karayiannis, N. B. and Bezdek, J. C. (1997). An integrated approach
to fuzzy learning vector quantization and fuzzy c-means
clustering, IEEE Trans. Fuzzy Syst, 5(4), 622-628.

Karayiannis, N. B. and Mi, W. (1998). Growing radial basis neural
networks: merging supervised and unsupervised learning with
network growth techniques, IEEE Trans. Neural Networks, 8(6),
1492-1506.

Karayiannis, N. B. and Pai, P. 1. (1996). Fuzzy algorithms for
learning vector quantization, IEEE Trans. Neural Networks, 7(5),
1196-1211.

Karayiannis, N. B., Bezdek, J. C , Pal, N. R, Hathaway, R. J. and Pai,
P.I. (1996). Repairs to GLVQ : A new family of competitive learning
schemes, lEEETrans. Neural Networks, 7(5), 1062-1071.

Kaufman, L. and Rousseeuw, P. J. (1990). Finding Groups in Data: An
Introduction to Cluster Analysis, Wiley Interscience, NY.

Kaufmann, A. (1975). Introduction to the Theory of Fuzzy Subsets -
Fundamental Theoretical Elements, 1, Academic Press, NY.

Kawade, M. (1995). Object recognition system in a dynamic
environment, Proc. IEEE Int. Conf. on Fuzzy Syst, IEEE Press,
Piscataway, NJ, 1285-1290.

Keller, J. M. and Chen, Z. (1992a). Learning in fuzzy neural networks
utilizing additive hybrid operators, Proc. Int. Conf. on Fuzzy Logic
and Neural Networks, lizuka, Japan, 85-87.

REFERENCES 711

Keller, J . M. and Chen, Z. (1992b). Detection of unimportant features
during the training of a fuzzy neural network, Proc. Artificial
Neural Networks In Engineering, St. Louis, MO, 357-362.

Keller, J. M. and Gader, P. (1997). Fuzzy logic and sensor fusion for
humanitarian demining, oral presentation at the 1st US Army
Multidisciplinary U. Research Initiative on Demining, Fort
Belvoir, VA.

Keller, J . M. and Hobson, G. (1989). Uncertainty management in a
rule-based automatic target recognizer, Proc. SPIE Conference in
Applications of Artificial Intelligence VI/, 126-137.

Keller, J . M. and Hunt, D. J . (1985). Incorporating fuzzy membership
functions into the perceptron algorithm, IEEE Trans. Pattern
Anal. Machine InteU., 7(6), 693-699.

Keller, J . M. and Krishnapuram, R. (1994). Fuzzy decision models in
computer vision^. inFuzzy Sets, Neural Networks, and Soft
Computing, eds. R. Yager and L. Zadeh.Van Nostrand, 213-232.

Keller J . M. and Osbom, J . (1991). Temporal object identification via
fuzzy models, Proc. SPIE Symp. on Intell. Robots and Comp.
Vision X, SPIE, Belllngham, WA, 466-476.

Keller, J. M. and Osbom, J. (1996). Training the fuzzy integral. Int. J.
ofApprox. Reasoning, 15(1), 1-24.

Keller, J . M. and Qiu, H. (1988). Fuzzy sets methods in pattern
recognition, in Pattern Recognition, Lecture notes in Comp.
Science, 301, ed. J. Kittler, Sprlnger-Verlag, 173-182.

Keller, J . M. and Sztandera, L. (1990). Spatial relationships among
fuzzy subsets of an image, Proc. Int. Symp. on Uncertainty
Modeling and Anal, U. of Maryland, 207-211.

Keller, J. M. and Tahani, H. (1992a). Implementation of conjunctive
and disjunctive fuzzy logic rules with neural networks. Int. J.
Approx. Reasoning, 6(2), 221-240.

Keller, J . M. and Tahani, H. (1992b). Backpropagation neural
networks for fuz^ logic. Inf. Set, 62(3), 205-221.

Keller, J . M. and Wang, X. (1995). Comparison of spatial relation
definitions in computer vision, Proc. Joint ISUMA/NAFIPS
Conf, 679-684.

Keller, J . M. and Wang, X. (1996). Learning spatial relationships in
computer vision, Proc. IEEE Int. Conf. on Fuzzy Syst, IEEE Press,
Piscataway, NJ, 118-124.

712 FUZZY PATTERN RECOGNITION

Keller J. and Yan, B. (1992). Possibility expectation and its decision
making algorithm, Proc. First IEEE Conf. on Fuzzy Syst, IEEE
Press, Piscataway, NJ, 661-668.

Keller, J. M. and Yang, H. (1995). Fuzzy aggregation networks of
hybrid neurons with generalized Yager operators, Proc. IEEE Int.
Conf. on Neural Networks, IEEE Press, Piscataway, NJ. 2270-2274.

Keller J . M., Yager R. R. and Tahani H. (1992). Neural network
implementation of fuzzy logic. Fuzzy Sets and Syst, 45, 1-12.

Keller, J. M., Gader, P. and Caldwell, C.W., (1995b). The principle of
least commitment in the analysis of chromosome images, Proc.
SPIE Symp. on OEfAerospace Sensing and Dual Use Photonics,
SPIE, Bellingham, WA, 178-186.

Keller, J. M., Gader, P., Krishnapuram, R., Wang, X., Hocaoglu, A.,
Frigui, H. and Moore, J . (1998). Fuzzy logic automatic target
recognition system for LADAR range images. Proc. IEEE Int. Conf.
onFuzzy Syst, IEEE Press, Piscataway, NJ, 71-76.

Keller, J. M., Gader, P., Sjahputera, O., Caldwell, C.W. and Huang, H-
M., (1995a). A fuzzy logic rule-based system for chromosome
recognition, Proc. IEEE Symp. on Computer Based Medical Syst,
IEEE Press, Piscataway, NJ, 125-132.

Keller, J. M., Gader, P., Tahani, H., Chiang, J-H. £ind Mohamed, M.
(1994a). Advances in fuzzy integration for pattern recognition.
Fuzzy Sets and Syst, 65 (2/3), 273-284.

Keller, J. M., Gray, M. and Givens, J. (1985). A fuzzy k-nearest
neighbor algorithm, IEEE Trans. Syst, Man and Cyberns., 15,
580-585.

Keller, J. M., Hayashi, Y. and Chen, Z., (1993). Interpretation of
nodes in networks for fuzzy logic, Proc. IEEE Int. Conf. on Fuzzy
Syst, IEEE Press, Piscataway, NJ, 1203-1207.

Keller, J. M., Hayashi, Y., and Chen, Z. (1994c). Additive hybrid
networks for fuzzy logic. Fuzzy Sets and Syst, 66(3), 307-313.

Keller, J. M., Hobson, G., Wootton, J., Nafarieh, A., and Luetkemeyer,
K. (1987). Fuzzy confidence measures in midlevel vision, IEEE
Trans. Syst, Man and Cyberns., 17(4), 676-683.

Keller, J . M., Krishnapuram, R. and Hobson, G. (1991). Information
fusion via fuzzy logic in automatic target recognition, Proc.
Applied Imagery Patt. Recog. Workshop,, 203-208.

REFERENCES 713

Keller, J . M., Krishnapuram, R. and Rhee, F. (1992). Evidence
aggregation networks for fuzzy logic inference, IEEE Trans. Neural
Networks, 3(5), 761-769.

Keller, J . M., Krishnapuram, R., Chen, Z. and Nasraoui, O. (1994b).
Fuzzy additive hybrid operators for network-based decision
making. Int. J. oflntell Syst, 9(11), 1001-1024.

Keller, J . M., Krishnapuram, R., Gader, P. D. and Choi, Y.S. (1996).
Fuzzy rule-based models in computer vision. Fuzzy Modeling:
Paradigms and Practice, ed. W. Pedrycz, Kluwer, Norwell, MA, 353-
374.

Keller, J . M., Qiu, H. and Tahani, J. (1986). The fuzzy integral in
image segmentation, Proc. NAFIPS Conf., 324-338.

Kendall. M and Gibbons, J. D. (1990). Rank Correlation Methods,
Oxford U. Press, NY.

Kersten, P. R. (1995). The fuzzy median and the fuzzy MAD, Proc.
Joint ISUMA/NAFIPS Conf., 85-88.

Kiefer, N. M. (1978). Discrete parameter variation: efficient
estimation of a switching regression model, Econometrica, 46(2),
427-434.

Kim, E., Park, M., Ji, S. and Park, M. (1997). A new approach to fuzzy
modeling, IEEE Trans. Fuzzy Syst, 5(3), 328-336.

Kim, J . (1997). A robust Hough transform based on validity, Ph.D.
Thesis, U. of Missouri, Columbia, MO.

Kim, J . S. and Cho, H. S. (1994). A fuzzy logic and neural network
approach to boundary detection for noisy imagery. Fuzzy Sets and
Syst, 65, 141-160.

Kim, J., Krishnapuram, R. and Dave, R. N. (1995) On Robustifylng the
c-Means Algorithms, Proc. Joint ISUMA/NAFIPS Conf., 630-635.

Kim, J., Krishnapuram, R. and Dave, R. N. (1996). Application of the
least trimmed squares technique to prototype-based clustering,
Patt. Recog. Lett., 17, 633-641.

Kim, T., Bezdek, J. C. and Hathaway, R. (1988). Optimality tests for
fixed points of the fuzzy c-means algorithm, Patt. Recog., 21(6),
651-663.

Kim, Y. S. and Mitra, S. (1994). An adaptive integrated fuzzy
clustering model for pattern recognition, Fuzzy Sets and Systs.,
65, 297-310.

714 FUZZY PATTERN RECOGNITION

Kittler, J . (1998). Combining classifiers: A theoretical approach,
Pattern Anal, and Applications, 1, 18-27.

Klawonn, F. and Kruse, R. (1997). Constructing a fuzzy controller
from data, Fuz2y Sets and Syst, 85(2), 177-193.

Kleiner, B. and Hartigan, J. A. (1981). Representing points in many
dimensions by trees and castles, J. Amer. Stat. Assoc.,76, 260-269.

Klir, G. and Yuan, B. (1995). Fuzzy Sets and Fuzzy Logic -Theory and
Applications, Prentice Hall, Englewood Cliffs, NJ.

Knuth, D. E. (1968). Fundamental Algorithms, Addison-Wesley,
Reading, MA.

Kohonen, T. (1989). Self-Organization and Associative Memory, 3rd
Edition, Springer-Verlag, Berlin.

Koskinen, L., Astola, J . and Neuvo, Y. (1991). Soft morphological
filters, SPIE Proc. Image Algebra and Morphological Image
Processing, 1568, SPIE, Bellingham, WA, 262-270.

Kosko, B. (1992). Neural Networks and Fuzzy Systems, Prentice-
Hall, Englewood Cliffs, NJ.

Kosko, B. (1997). Fuzzy Engineering, Prentice-Hall, Upper Saddle
River, NJ.

Kreinovich, V. L., Mouzouris, G. C. and Nguyen, H. T. (1998). Fuzzy
rule based modehng as a universal approximation tool. Fuzzy
Systems : Modeling and Control, eds. H. T. Nguyen and M. Sugeno,
Kluwer, Boston, MA, 135-196.

Krishnapuram, R. and Chen, L. (1993). Implementation of parallel
thinning algorithms using recurrent neural networks, IEEE
Trans. Neural Networks, 4, 142-147.

Krishnapuram, R. and Freg, C.-P. (1992). Fitting an unknown
number of lines and planes to image data through compatible
cluster merging, Pait Recog., 25(4), 385-400.

Krishnapuram, R. and Keller, J. M. (1993). A possibilistic approach
to clustering, lEEETrans. Fuzzy Syst, 1(2), 98-110.

Krishnapuram, R. and Keller, J. M. (1996). The possibilistic c-means
algorithm: insights and recommendations, IEEE Trans. Fuzzy
Syst, 4(3), 385-393.

REFERENCES 715

Krishnapuram R. and Lee, J. (1988). Propagation of uncertainty in
neural networks," Proc. SPIE Conf. on Robotics and Computer
Vision,1002, SPIE. Bellingham, WA, 377-383.

Krishnapuram R. and Lee, J . (1989). Determining the structure of
uncertainty management networks, SPIE Proc. on Robotics and
Computer Vision, 1192, SPIE, Bellingham, WA, 592-597.

Krishnapuram, R. and Lee, J . (1992a). Fuzay-connectlve-based
hierarchical aggregation networks for decision making, Fuzzy
Sets and Syst,46{l), 11-27.

Krishnapuram, R. and Lee, J. (1992b). Fuzzy-set-based hierarchical
networks for information fusion in computer vision. Neural
Networks, 5, 335-350.

Krishnapuram, R. and Medasani, S. (1995). Recovery of geometric
properties of binary objects from blurred images, Proc. IEEE Int.
Conf. onFuzzy Syst, IEEE Press Piscataway, NJ, 1793-1798.

Krishnapuram, R. and Rhee, F. C.-H. (1993a). Fuzzy rule generation
methods for high-level computer vision. Fuzzy Sets and Syst, 60,
245-258.

Krishnapuram, R. and Rhee, F. C.-H. (1993b). Compact fuz2y rule
generation methods for computer vision, Proc. IEEE Int. Conf. on
Fuzzy Syst, 809-814.

Krishnapuram, R. Keller, J . M. and Ma, Y. (1993a). Quantitative
analysis of properties and spatial relations of fuzzy image regions,
IEEE Trans. Fuzzy Syst, 1(3), 222-233.

Krishnapuram, R., Frigui, H. and Nasraoui, O. (1991). New fuzzy
shell clustering algorithms for boundary detection and pattern
recognition, SPIE Proc. Robotics and Comp. Vision,, 1607, SPIE,
Bellingham, WA, 458-465.

Krishnapuram, R., Frigui, H. and Nasraoui, O. (1993b). Quadratic
shell clustering algorithms and the detection of second degree
curves, Patt. Recog. Lett., 14, 545-552.

Krishnapuram, R., Frigui, H. and Nasraoui, O. (1995a). Fuzzy and
possibilistic shell clustering algorithms and their application to
boundary detection and surface approximation, I, IEEE Trans.
Fuzzy Syst, 3, 29-43.

Krishnapuram, R., Frigui, H. and Nasraoui, O. (1995b). Fuzzy and
possibilistic shell clustering algorithms and their application to
boundary detection and surface approximation, II, IEEE Trans.
Fuzzy Syst, 3, 44-60.

716 FUZZY PATTERN RECOGNITION

Krlshnapuram, R., Nasraoui, O. and Frlgui, H. (1992). The fuzzy c
spherical shells algorithms: A new approach IEEE Trans. Neural
Networks, 3, 663-671.

Kruskal, J. B. (1956). On the shortest spanning subtree of a graph and
the travelling salesman problem, Proc. AMS, 7, 48-50.

Kumar, B. V. K. V. (1992). Tutorial survey of composite filter designs
for optical correlators. Applied Optics, 31(23), 4773-4804.

Kuncheva, L. I. (1997). Application of OWA operators to the
aggregation of multiple classification decisions, inThe Ordered
Weighted Averaging Operators: Theory and Applications, eds. R. R.
Yager and J. Kacprzyk, Kluwer, Norwell, MA, 330-343.

Kuncheva, L. I. (1998). On combining multiple classifiers, Proc. Int.
Conf. Inf. Proc. and Management of Uncertainty, 1890-1891.

Kuncheva, L. I. and Bezdek, J . C. (1998). Nearest prototype
classification: clustering, genetic algorithms or random search?,
IEEE Trans. Syst. ManandCybems., C28(l), 160-164.

Kuncheva, L. I. and Bezdek, J. C. (1999). An integrated framework for
generalized neares t prototype classifier design, Int. J.
Uncertainty, Fuzziness and Knowledge-Based Syst, 6(5), 437-457.

Kuncheva, L. I., Bezdek, J. C. and Duin, R. (1999). Decision templates
for multiple classifier fusion: An experimental comparison, Patt.
Recog., in press.

Kuncheva, L. I., Bezdek, J. C. and Sutton, M. A. (1998). On combining
multiple classifiers by fuzzy templates, Proc. NAFIPS Conf, eds.
J. C. Bezdek and L.O. HaU, 193-197.

Kuncheva, L. I., Kounchev, R.K. and Zlatev, R.Z. (1995). Aggregation
of multiple classification decisions by fuzzy templates, Proc.
European Congress on Intelligent Techniques and Soft
Computing, Aachen, Germany, 1470-1474.

Kundu, S. (1995). Defining the fuzzy spatial relationship LEFT(A,B),
Proc. IPSA Congress, 1, 653-656.

Kwan, H. K. and Cai Y. (1994). A fuzzy neural network and its
application to pattern recognition, IEEE Trans. Fuzzy Syst, 2(3),
185-193.

Lachenbruch, P. A. (1975). Discrim.inant Analysis, Hafner Press,
NY.

REFERENCES 717

Larsen, H. L. and Yager, R. R. (1990). Efficient computation of
transitive closures, Fuzzy Sets and Syst, 38, 81-90.

Larsen, H. L. and Yager, R. R. (1993). The use of fuzzy relational
thesaur i for classificatory problem solving in information
retrieval and expert systems, IEEE Trans. Syst, Man and Cybems.
23, 31-41.

Law, T., Itoh, H. and Seki, H. (1996). Image filtering, edge detection,
and edge tracing using fuzzy reasoning, IEEE Trans. Pattern Anal,
and Machine Intell., 18,481-491.

Lee Y-G. and Hsueh Y-C. (1995). Fuzzy logic approach for removing
noise, Newocompnttng, 9, 349-355.

Lee, E. T. (1972a). Fuzzy languages eind their relation to automata,
Ph.D. Thesis, U. of California, Berkeley, CA.

Lee, E. T. (1972b). Proximity measures for the classification of
geometric figures, J. Cyber., 2, 43-59.

Lee, E. T. (1975). Shape oriented chromosome classification, IEEE
Trans. Syst, Man and Cybems., 6, 47-60.

Lee, E. T. (1976a). Algorithms for finding most dissimilar images
with possible applications to chromosome classification. Bull.
Math. Bio., 38, 505-516.

Lee, E. T. (1976b). Shape oriented classification storage and retrieval
of leukocytes, Proc. IEEE Int Joint Conf. on Patt Recog., 8-11.

Lee, E. T. (1977a). Similarity measures and their relation to fuzzy
query languages, Pol. Anal. Inform. Sys., 1(1), 127-152.

Lee, E. T. (1977b). A similarity directed picture database, Pol. Anal.
Inform. Syst, 1(2), 113-125.

Lee, E. T. (1982). Fuzzy tree automata and syntactic pattern
recognition, IEEE Trans. Patt. Anal, and Machine Intell, 4(4),
445-449.

Lee, E. T. and Zadeh, L. A. (1969) Note on fuzzy languages. Inform.
Sci., 1,421-434.

Lee, S. C. and Lee, E. T. (1970). Fuzzy neurons and automata, Proc.
Princeton Conf. on Infor. Science and Syst, 381-385.

Lee, S. C. and Lee, E. T. (1975). Fuzzy neural networks, Mathematicai
Biosciences, 23, 151 - 177.

718 FUZZY PATTERN RECOGNITION

Lee, S. W. (1992). Noisy Hangul character recognition with fuzzy tree
classifier, Proc. SPIE. 1661, SPIE, Bellingham, WA. 127-136.

Leon, M., Gader, P., and Keller, J . (1996). Multiple neural network
response variability as a predictor of neural network accuracy for
chromosome recognition, Proc. Rocky Mountain Bioengineering
Symp., 32, 56-62.

Levenshtein, V. I. (1966). Binary codes capable of correcting
deletions, insertions and reversals, Sou. Phys. Dokl, 10(8), 707-
710.

Li, C , Goldgof, D. and Hall, L. (1993). Knowledge-based classification
and tissue labeling of MR images of human brains, IEEE Trans.
Med. Imaging, 12(4), 740-750.

Li, H. and Yang, H, S. (1989). Fast and reliable image enhancement
using fuzzy relcixation technique, IEEE Trans. Syst, Man and
Cybems., 19(5), 1276-1281.

Libert, G. and Roubens, M. (1982). Nonmetric fuzzy clustering
algorithms and their cluster validity, in Approximate Reasoning
in Decision Anal., eds. M. M. Gupta and E. Sanchez, 147-425.

Lim, W. Y. and Lee, S. U. (1990). On the color image segmentation
algorithm based on the thresholding and fuzzy c-means
techniques, Patt. Recog., 23(9), 935-952, 1990.

Lin, C. T. and Lee, C. S. G. (1996). Neural Fuzzy Systems, Prentice
Hall, Upper Saddle River, NJ.

Lin, Y. and Cunningham, G.A. (1995). A new approach to fuzzy-
neural system modeling, IEEE Trans. Fuzzy Syst, 3(2), 190-198.

Lippman, R. P. (1987). An introduction to computing with neural
nets, IEEE ASSP Magazine, 61, 4-22.

Lippman, R. P. (1989). Pattern classification using neural networks,
IEEE Comm Magazine, 27, 47-64.

Lo, S.C. B., Lin, J.S., Li, H., Hasegawa, A., Tsujii, O., Freedman, M. T.
and Mun, S. K. (1996). Detection of clustered microcalcifications
using fuzzy classification modeling and convolution neural
network, Proc. SPIE on Medical Imaging: Image Processing, 2710,
SPIE, Bellingham, WA, 8-15.

Lowe, D. G. (1985). Perceptual Organization and Visual Recognition,
Kluwer, Norwell, MA.

REFERENCES 719

MacQueen, J . (1967). Some methods for classification and analysis
of multivariate observations,Proc. Berkeley Symp. Math. Stat
and Prob., 1, eds. L. M. LeCam and J. Neyman, Univ. of California
Press, Berkeley, 281-297.

Maher, P. E. and St. Clair, D. (1992). Uncertain reasoning in an 1D3
machine learning framework, Proc. IEEE Int. Conf. on Fuzzy
Systems, IEEE Press, Piscataway, NJ, 7-12.

Mamdani, E. H. and Assilian, S. (1975). An experiment in linguistic
synthesis with a fuzzy logic controller. Int. J. of Man-Machine
Studies, 7(1),1-13.

Mammographic Image Anal. Society, (MIAS), Digital Mammogram
Database. Published electronically (1994). Electronic contacts as
of J u l y , 1 9 9 8 a r e m i a s @ s v l . s m b . m a n . a c . u k ;
http://s20c.smb.man.ac.uk/services/MIAS/MIAScom.html.

Man, Y. and Gath, I. (1994). Detection and separation of ring-shaped
clusters using fuzzy clustering, IEEE Trans. Patt. Anal, and
Machine Intell.,l6{8], 855-861.

Mancuso, M., Poluzzi, R. and Rizzotto, G. A. (1994) Fuzzy filter for
dynamic range reduction and contrast enhancement, Proc. IEEE
Int. Conf. on Fuzzy Syst, IEEE Press, Piscataway, NJ, 264-267.

Mardia, K. V., Kent, J. T. and Bibby, J. M. (1979) Multivariate
Analysis, Academic Press, NY.

Marks, D. and Egenhofer, M. (1994). Modeling spatial relations
between lines and regions: combining formal mathematical
models and human subjects training. Cartography and Geographic
Inf. Syst, 21, 195-212.

Marks, R. (1993). Intelligence : Computational versus Artificial,
IEEE Trans. Neural Networks, 4(5), 737-739.

Marr. D. (1982) Vision, W. H. Freeman, San Francisco, CA.

Martinetz, T., Bekovich, G. and Schulten, K. (1994). Topology
representing networks, Neural Networks, 7(3), 507-522

Mazurov, V., Krivonogov, A., and Kasantsev, V. (1987). Solving of
optimization and identification problems by the committee
methods, Patt Recog. Lett, 20(4), 371-378.

McBratney, A.B. and Moore, AW. (1985). Application of fuzzy sets to
climatic classification, Ag. and Forest Meteor, 35, 165-185.

mailto:mias@svl.smb.man.ac.uk
http://s20c.smb.man.ac.uk/services/MIAS/MIAScom.html

720 FUZZY PATTERN RECOGNITION

McCuUoch W. and Pitts, W. (1943). A logical calculus of the ideas
immanent in nervous activity, Bull. Math. Biophysics, 7, 115-133.

McKenzie, P. and Alder, M. (1994). Initializing the EM algorithm for
use in Gaussian mixture modeling, in Pattern Recognition in
Practice IV ; Multiple Paradigms, Comparative Studies and Hybrid
Syst, eds. E.S. Gelsema and L. N. Kanal, Elsevier, NY, 91-105.

McLachlan, G. J . and Basford, K. E. (1988). Mixture Models :
Inference and Applications to Clustering, Marcel Dekker, NY.

Medasani, S. and Krishnapuram, R. (1997). Determination of the
number of components in Gaussian mixtures based on
agglomerative clustering, Proc. IEEE Int. Conf. on Fuzzy Syst,
IEEE Press, Piscataway, NJ, 1412-1417.

Medasani, S., Krishnapuram, R. and Keller, J. M. (1999). Are fuzzy
definitions of image properties really useful?, IEEE Trans. Syst,
Man and Cybems., in press.

Milligan, G. W. and Cooper, M. C. (1986). A study of the
comparability of external criteria for the hierarchical cluster
analysis, Mult Behav. Res., 21, 441-458.

Mitra, S. and Yang, S.-Y. (1999). High fidelity adaptive vector
quantization at very low bit rates for progressive transmission of
radiographic Images, J. Electronic Imaging, in press.

Mitra, S., Castellanos, R. and Pemmaraju, S. (1999). Neuro-fuzzy
clustering for image segmentation, Applications of Neuro-Fuzzy
Algorithms, eds. S.K. Pal and A. Ghosh, Springer-Verlag, in press.

Miyajima, K. and Ralescu, A. L. (1993). Modeling of natural objects
including fuzziness and application to image understanding, Proc.
IEEE Int Conf. on Fuzzy Syst, IEEE Press, Piscataway, NJ, 1049-
1054.

Miyajima, K. and Ralescu, A. L. (1994). Spatial organization in 2D
segmented images: representation and recognition of primitive
spatial relations. Fuzzy Sets and Syst, 65, 225-236.

Miyamoto, S. (1990). Fuzzy Sets in Information Retrieval and
Cluster Analysis, Kluwer, Boston.

Miyamoto, S., Miyake, T. and Nakayama, K. (1983). Generation of a
psuedothesaurus for information retrieval based on coocurences
and fuzzy set operations, IEEE Trans. Syst, Man and Cybems., 13,
62-70.

REFERENCES 721

Mlzumoto, M. (1988). Fuzzy controls under various fuzzy reasoning
methods. Inf. Sci., 45, 129-151.

Mlzumoto, M. (1989). Pictorial representations of fuzzy connectives:
1: cases of t-norms, t-conorms and averaging operators, Fuzzy Sets
and Syst, 31, 217-242.

Moghaddamzadeh, A. and Bourbakis, N. (1997). A fuzzy region
growing approach for segmentation of color images, Patt. Recog.,
30(6), 867-881.

Mohamed, M. and Gader, P. (1994). Generalization of hidden
Markov models u s ing fuzzy in tegra ls . Proc. Joint
NAFIPS/IFIS/NASA Conf., TX, 3-7.

Mohamed, M., and Gader, P. (1995). Handwritten word recognition
us ing segmentation-free hidden Markov modeling and
segmentation-based dynamic programming techniques. IEEE
Trans. Patt. Anal, and Machine Intell, 18(5), 548-554.

Moody, J. E. and Darken, C. J. (1989). Fast learning in networks of
locally tuned processing units. Neural Computation, 1, 281-294.

Moore, B. (1988). ARTl and pattern clustering, Proc. 1988
Connectionist Models Summer School, eds. D.S. Touretzky, G.
Hinton and T. J . Sejnowski, Morgan Kaufmann, San Mateo, CA,
174-185.

Moore, J . (1998). A fuzzy logic automatic target detection system for
LADAR range images, MS Thesis, U. of Missouri, Columbia, MO.

Morrison, M. and Attikouzel, Y. (1994). An introduction to the
segmentation of Magnetic Resonance images, Aust. Comp. J., 26(3),
90-98.

Murofushi, T. and Sugeno, M. (1991). A theory of fuzzy measures:
Representations, the Choquet integral, and null sets, J. Math
Anal, and Applications, 159, 532-549.

Murthy, S.K., Kasif, S. and Salzberg, S. (1994). A system for
induction of oblique decision trees, J. AI Research, 2, 1-32.

Murthy, C. A. and Pal, S. K. (1990). Fuzzy thresholding:
mathematical framework, bound functions and weighted moving
average technique, Patt. Recog. Lett., 11, 197-206.

Nakagawa, Y. and Hirota, K. (1995). Fundamentals of fuzzy
knowledge base for image understanding Proc. IEEE Int. Conf. on
Fuzzy Syst, IEEE Press, Piscataway, NJ, 1137-1142

722 FUZZY PATTERN RECOGNITION

Nakamorl, Y. and Ryoke, M. (1994). Identification of fuzzy
prediction models through hyperellipsoidal clustering, IEEE
Trans. Syst Man and Cybem, 24(8), 1153-1173.

Namasivayam, A. and Hall, L. O. (1995), The use of fuzzy rules in
classification of normal human brain tissues, Proc. Joint ISUMA-
NAFIPSConf., 157-162.

Narazaki, H. and Ralescu, A. (1993). An improved synthesis method
for multilayered neural networks using qualitative knowledge,
IEEE Trans. Fuzzy Syst, 1(2), 125-137.

Nasraoui, O. and Krishnapuram, R. (1997). A genetic algorithm for
robust clustering based on a fuzzy least median of squares
criterion, Proc. NAFIPS ConJ., Syracuse NY, 217-221.

Newton, S.C, Pemmaraju, S. and Mitra, S. (1992). Adaptive fuzzy
leader clustering of complex data sets in pattern recognition, IEEE
Trans. Neural Networks, 3(5), 794-800.

Nguyen, H. T. and Kreinovich, V. (1998). Methodology of fuzzy
control, inFuzzy Systems: Modeling and Control, eds. H. T.
Nguyen and M. Sugeno, Kluwer, Boston, MA, 19-62.

Nguyen, H. T. and Sugeno, M., eds., (1998). Fuzzy Systems: Modeling
and Control, Kluwer, Boston, MA.

Nie, J . H. and Lee, T. H. (1996). Rule-based modeling: fast
construction and optimal manipulation, IEEE Trans. Syst, Man
and Cybems., 26(6), 728-738.

Ohashi, Y. (1984). Fuzzy clustering and robust estimation,
presentation at the 9th Meeting of SAS Users Group Int.,
HoUjrwood Beach, Florida.

Ohta, Y. (1985). Knowledge-Based Interpretation of Outdoor Natural
Color Scenes, Pitman Advanced Publishing, Boston, MA.

Otsu, N. (1979) A threshold selection method from gray-level
histograms, IEEE Trans. Syst, Man and Cybers., 9, 62-66.

Pal K., Pal N. R. and Keller J. M. (1998). Some neural net realizations
of fuzzy reasoning, Int J. Intell. Systems, 13(9), 859-886.

Pal, N. R. and Bezdek, J . C. (1994). Measuring fuzzy uncertainty,
IEEE Trans. Fuzzy Syst, 2(2), 107-118.

Pal, N. R. and Bezdek, J. C. (1995). On cluster validity for the fuzzy c-
means model, lEEETrans. Fuzzy Syst, 3(3), 370-379.

REFERENCES 723

Pal, N. R. and Biswas J . (1997). Cluster validation using graph
theoretic concepts, Pott. Recog., 30(6), 847-857.

Pal, N. R. and Chakraborty, S. (1997). A hierarchical algorithm for
classification and its tuning by genetic algorithm, Proc. Int. Conf.
Neural Info. Processing, Springer, Singapore, 1, 404-407.

Pal, N. R. and Chintalapudi K. (1997), A connectionist system for
feature selection. Neural, Parallel and Scientific Computation,
5(3), 359-381.

Pal, N. R. and Mukhopadhyay (1996). A psychovisual fuzzy
reasoning edge detector, Proc. Int. Conf. on Soft Computing,
Methodologies for the Conception, Design and Applications of
Intelligent systems, eds, T. Yamakawa and G. Matsumoto, 1,
lizuka, Japan, 201-204.

Pal, N. R. and Pal, S. K. (1993). A review of image segmentation
techniques, Patt. Recog., 26(9), 1277-1294.

Pal, N. R., Bezdek, J. C. and Tsao, E. C. K. (1993). Generalized
clustering networks and Kohonen's self-organizing Scheme, IEEE
Trans. Neural Networks, 4(4), 549-558.

Pal, N. R., Chakraborty, S. and A. Bagchi (1997). R1D3 : An 1D3 like
algorithm for real data. Inf. Sciences (Applications), 96, 271-290.

Pal, N. R., Nandi, S. and Kundu, M. K. (1998). Self-crossover: a new
genetic operator and its application to feature selection. Int. J.
Syst. Set, 29(2), 207-212.

Pal, N. R., Pal, K. and Bezdek, J. C. (1997a). A mixed c-means
clustering model, Proc. IEEE Int. Conf. on Fuzzy Syst, IEEE Press,
Piscataway, NJ, 11-21.

Pal, N. R., Pal, K., Bezdek, J. C. and Runkler, T. A. (1997b). Some
issues in system identification using clustering, Proc. IEEE Int.
Conf. on Neural Networks, 4, IEEE Press, Piscataway, NJ, 2524-
2529.

Pal, S. K. (1991). Fuzzy tools for the management of uncertainty in
pattern recognition, image analysis, vision and expert system, Int.
J. Syst. Set, 22(3), 511-549.

Pal, S. K. (1992a). Fuzzy set theoretic measure for automatic feature
evaluation - 11, Inform. Sci.^ 64, 165-179.

724 FUZZY PATTERN RECOGNITION

Pal, S. K. (1992b}. Fuzziness, image Information and scene analysis,
in An Introduction to Fuzzy Logic Applications in Intelligent
Systems, eds . R. R. Yager a n d L. A. Zadeh, Kluwer, Norwell MA,
147-184.

Pal, S. K. a n d Bhat tachar j rya , A. (1990). Pa t t e rn recogni t ion
t e c h n i q u e s in ana lyz ing t h e effect of t h i o u r e a on b r a i n
neurosecretory cells, Patt. Recog. Lett., 11, 443-451.

Pal, S. K. a n d Chakraborty, B. (1986). Fuzzy set theoretic measure for
a u t o m a t i c f ea tu re eva lua t i on , IEEE Trans. Syst. Man and
Cybems., 16(5), 754-760.

Pal, S. K. a n d Dutta-Majumder , D.K. (1986). Fuzzy Mathematical
Approach to Pattern Recognition, Wiley, NY.

Pal, S. K. a n d Ghosh, A. (1990). Index of a rea coverage of fuzzy
subse t s and object extraction, Patt. Recog. Lett., 11, 831-841.

Pal, S. K. a n d King, R.A. (1981). Image e n h a n c e m e n t u s i n g
smoothing with fuzzy sets , IEEE Trans. Syst, Man and Cybems.,
11(7), 494-501.

Pal, S. K. a n d King, R.A. (1983). On edge detection of x-ray images
us ing fuzzy sets , IEEE Trans. Patt. Anal, and Machine Intell, 5(1),
69-77.

Pal S. K. a n d Mitra S. (1992). Multilayer perceptron, fuzzy sets a n d
classification, IEEE Trans. Neural Networks, 3(5), 683-697.

Pal, S. K. a n d Rosenfeld, A. (1988). Image e n h a n c e m e n t a n d
th resho ld ing by optimization of fuzzy compac tness , Patt. Recog.
Lett, 7, 77-86.

Pal, S. K., King, R. A. and Hishim. A. A. (1983a). Automatic grey level
thresholding through index of fuzziness a n d entropy, Patt. Recog.
Lett. 1. 141-146.

Pal, S. K., King, R.A. a n d Hishim, A. A. (1983b). Image description
a n d primitive extraction us ing fuzzy sets , IEEE Trans. Syst, Man
andCybems.., 13(1), 94-100.

Panayirci , E. and Dubes , R. C. (1983), A tes t for mul t idimensional
clustering tendency, Patt Recog., 16, 433-444.

Pao , Y.H. (1989). Adaptive Pattern Recognition and Neural
Networks, Addison-Wesley, Reading, MA

Parizeau, M. a n d Plamondon, R. (1995). A fuzzy-syntactic approach
to al lograph modeling for cursive script recognition, IEEE Trans.
Patt Anal, and Machine Intell, 17(7), 702-712.

REFERENCES 725

Parizeau, M., Plamondon, R. and Lorette, G. (1993). Fuzzy shape
grammars for cursive script recognition, in Advances in
Structural and Syntactic Pattern Recognition, ed. H. Bunke, World
Scientific, Singapore, 320-332.

Park, J-S and Keller, J . M. (1997). Fuzzy patch label relaxation in
bone marrow cell segmentation, Proc. IEEE Int. Conference on
Syst, Man, and Cybems., IEEE Press, Piscataway, NJ, 1133-1138.

Park, J . and Sandberg, I. W. (1991). Universal approximation using
radial basis function networks. Neural Computation, 3, 246-257.

Park, J. and Sandberg, I. W. (1993). Approximation and radial basis
functions, Neural Computation, 5, 305-316.

Pathak, A. and Pal, S.K. (1986). Fuzzy grammars in syntactic
recognition of skeletal maturity from X-rays, IEEE Trans. Syst,
Man and Cybems., 16(5), 657-667.

Pavlidis, T. (1980). Structural Pattern Recognition, Springer-Verlag,
NY.

Pedrycz, W. (1985). Algorithms of fuzzy clustering with partial
supervision, Patt. Recog. Lett., 3, 13-20.

Pedrycz, W. (1990a). Direct and inverse problem in comparison of
fuzzy data. Fuzzy Sets and Syst, 34, 223-236.

Pedrycz, W. (1990b). Fuzzy sets in pattern recognition : methodology
and methods, Patt. Recog., 23(1/2), 121-146.

Pedrycz, W., Bezdek, J. C. and Hathaway, R. J . (1998). Two non-
parametric models for fusing heterogeneous fuzzy data, IEEE
Trans. Fuzzy Syst, 4(3), 270-281.

Pedrycz, W., Kandel, A. and Zhang, Y. (1998). Neurofuzzy systems, in
Fuzzy Systems : Modeling and Control, eds. H. Nguyen and M.
Sugeno, Kluwer, Boston, 311-380.

Peeva, K. (1991). Fuzzy acceptors for sjmtactic pattern recognition.
Int. J. Approx. Reasoning, 5, 291-306.

Peli, T. and Lim, J . (1982). Adaptive filtering for image
enhancement, Optical Engineering, 21, 108-112.

Peng, S. and Lucke, L. (1994). Fuzzy filtering for mixed noise
removal during image processing, Proc. IEEE Int. Conf. on Fuzzy
Syst, IEEE Press, Piscataway, NJ, 89-93.

726 FUZZY PATTERN RECOGNITION

Petersen, J., Stockmanns, G., Kochs, H-D. and Kochs, E. (1997).
Automatic feature extraction in clinical monitoring data, Proc.
Fuzzy-Neuro Systems- Computational Intelligence, eds. A. Grauel,
W. Becker and F. Belli, Infix Press, St. Augustine, Germany, 411-
418.

Pham, T. and Yan, H. (1997). Fusion of handwritten numeral
classifiers based on fuzzy and genetic algorithms, Proc. NAFIPS
Conf, 257-262.

Phansalkar and Dave, R. N. (1997). On generating solid models of
mechanical parts through fuzzy clustering, Proc. IEEE Int. Conf.
on Fuzzy Syst, 1, IEEE Press, Piscataway, NJ, 225-230.

Philip, K.P., Dove, E.L., McPherson, D.D., Gotteiner, N. L., Stanford,
W. and Chandran, K.B. (1994). The fuzzy Hough transform - feature
extraction in medical images, IEEE Trans. Med. Imaging, 13(2),
235-240.

Pienkowski, A. (1989). Artificial Colour Perception using Fuzzy
Techniques in Digital Image Processing, Verlag TUV Rheinland,
Germany.

Piper, J. and Granum, E. (1989). On fully automatic feature
measurement for banded chromosome classification. Cytometry,
10, 242-255.

Poggio, T. and Girosi, F. (1990). Regularization algorithms for
learning that are equivalent to multilayer networks, Science, 247,
978-982.

Powell, M.J.D. (1990). The theory of radial basis function
approximation in 1990, DAMTP 1990/NAll, Cambridge U.,
Cambridge, England.

Prasad, N. R. (1998). Neural networks and fuzzy logic, in Fuzzy Sets
in Decision Analysis: Operations Research and Statistics, ed. R.
Slowlnskl, Kluwer, Boston, MA. 381-400.

Pratt, W.K.(1991). Digital Image Processing, 2nd ed., J.Wiley, NY.

Prewitt, J. M. (1970). Object enhancement and extraction in picture
processing and psychopictorics, eds. B.S. Lipkin and A. Rosenfeld,
Academic Press, NY, 75-149.

Prim, R. C. (1957). Shortest connection matrix network and some
generalizations. Bell Syst. Tech. J., 36, 1389-1401.

Qiu, H. and Keller, J. M. (1987). Multispectral segmentation using
fuzzy techniques, Proc. NAFIPS Conf,, 374-387.

REFERENCES 727

Quandt, R. E. and Ramsey, J . B. (1978). Estimating mixtures of
normal distributions and switching regressions, J. Amer. Stat.
Soc., 73, 730-752.

Quinlan, J. R. (1983). Learning efficient classification procedures
and their application to chess end-games, Machine Learning, eds.
R. Michalski, J . Carbonell and T. Mitchell, Tioga, Palo Alto, CA.

Quinlan, J. R. (1986). Induction of decision trees. Machine Learning,
1,81-106.

Quinlan, J. R. (1987). Simplifying decision trees, Int. J. Man-
Machine Studies, 27, 221-234.

Quinlan, J. R. (1993). C4.5: Programs for Machine Learning, Morgan
Kauffman, San Mateo, CA.

Radecki, T. (1976). Concept of fuzzy thesaurus. Inf. Proc. and
Management, 12, 313-318.

Ralescu, A. L. and Shanahan, J. G. (1995). Fuzzy perceptual grouping
in image understanding, Proc. IEEE Int. Conf. on Fuzzy Syst,
IEEE Press, Piscataway, NJ, 1268-1272.

Rand, W. M. (1971). Objective criteria for the evaluation of clustering
methods, J. Amer. Stat. Soc., 66, 846-850.

Rappaport, C. emd Reidy, D. (1996). Focused array radar for real time
imaging and detection, Proc. SPIE, 3079, SPIE, Bellingham, WA,
202-212.

Redner, R, Hathaway, R. J. and Bezdek, J. C. (1987). Estimating the
parameters of mixture models with modal estimators, Comm. in
Stat. (A), 16(9), 2639-2660.

Retz-Schmidt, G. (1988). Various views on spatial relations, AI
Magazine, Summer Issue, 95-105.

Rezaee, R. M., Nyqvist, C , van der Zwet, P. M. J., Jansen, E. and
Reiber, J. H. C. (1995). Segmentation of MR images by a fuzzy c-
means algorithm, Proc. IEEE Conf. on Computers in Cardiology,
IEEE Press, Bscataway, NJ, 21-24.

Rhee, F. (1993). Fuzzy rule generation and inference methods for
pattern recognition and computer vision, Ph.D. Thesis, U. of
Missouri, Columbia, MO.

Rogova, G. (1994). Combining the results of several neural network
classifiers. Neural Networks, 7, 777-781.

728 FUZZY PATTERN RECOGNITION

Rosenblatt, F. (1957). The perceptron: A perceiving and recognizing
automaton, ComeU Aeronaut Lab. Report, 85-460-1, Cornell U.,
Ithaca, NY.

Rosenfeld, A. (1979). Fuzzy digital topology, Inf. and Control, 40, 76-
87.

Rosenfeld, A. (1984). The fuzzy geometry of image subsets, Patt.
Recog. Lett., 2, 311-317.

Rosenfeld, A. (1992). Fuzzy geometry: An overview, Proc. IEEE Int.
Conf. on Fuzzy Syst, 113-118.

Rosenfeld, A. and Haber, S. (1985). The perimeter of a fuz2y set, Patt.
Recog., 18, 125-130.

Rosenfeld, A. and Kak, A. (1982). Digital Picture Processing, Vol. 2,
Academic Press, Orlando, FL.

Rosenfeld, A. and Klette, R. (1985) Degree of adjacency or
surroundedness, Patt. Recog., 18, 169-177.

Rosenfeld, A. and Haber, S. (1985) The perimeter of a fuzzy set, Patt.
Recog., 18, 125-130.

Roubens, M. (1978). Pattern classification problems and fuzzy sets.
Fuzzy Sets and Syst, 1, 239-253.

Roubens, M. (1982). Fuzzy Clustering Algorithms and Their Cluster
Validity. Eur. J. Op. Res., 10, 294-301.

Rousseeuw P. J. and Leroy, A.M. (1987). Robust Regression and
Outlier Detection, John Wiley and Sons, NY.

Roux, L. and Desachy, J. (1997). Multiresources information fusion
application for satellite image classification, in Fuzzy
Information Engineering, eds. D. Dubois, H. Prade and R.R. Yager,
Wiley and Sons, NY, 111-121.

Rowley, H., Baluja, S., and Kanade, T. (1998). Neural network-based
face detection, IEEE Trans. Patt. Anal, and Machine Intell, 20(1),
23-38.

Rumelhart, D. E. and McClelland, J . L. (1982). An interactive
activation model of context effects in letter perception, Peirt 2 : The
contextual enhancement effect and some tests and extension of the
model. Psychological Review, 89, 60-94.

Rumelhart, D. E. and Zipser, D. (1985). Feature discovery by
competitive learning. Cognitive Science, 9, 75-112.

REFERENCES 729

Runkler, T. A. (1995). Improved cluster validity measures for the
fuzzy c-elliptotypes algorithms, Proc. European Congress on
Intelligent Techniques and Soft Computing, Aachen, Germany,
1331-1335.

Runkler, T. A. and Bezdek, J. C. (1997). Image segmentation using
fuzzy clustering with fractal features, Proc. 1997 IEEE Int. Conf.
on Fuzzy Syst, IEEE Press, Piscataway, NJ., 1393-1398.

Runkler, T. A. and Bezdek, J. C. (1998a). Polynomial membership
functions for smooth first order Takagi-Sugeno systems, Fuzzy-
Neuro Systems : Proc. in Artificial Intelligence, 5, eds. A. Grauel,
W. Becker and F. Belli, 382-388.

Runkler, T. A. and Bezdek, J . C. (1998b). RACE; Relational
alternating cluster estimation and the wedding table problem,
Fuzzy-Neuro Systems : Proc. in Artificial Intelligence, 7, ed. W.
Brauer, 330-337.

Runkler, T. A. and Bezdek, J. C. (1998c). Function approximation
with polynomial membership functions and alternating cluster
estimation. Fuzzy Sets and Syst, 101(2), 207-218.

Runkler, T. A. and Bezdek, J. C. (1999). ACE : a tool for clustering and
rule extraction, IEEE Trans Fuzzy Syst, in Press.

Runkler, T. A. and Palm, R. H. (1996). Identification of nonlinear
systems using regular fuzzy c-elliptotype clustering, Proc. IEEE
Int. Conf. Fuzzy Syst, New Orleans, 1026-1030.

Ruspini, E. A. (1969). A new approach to clustering. Inf. and Control,
15, 22-32.

Ruspini, E. A. (1970). Numerical methods for fuzzy clustering, Irifor.
Set, 2, 319-350.

Ruspini, E. H., Bonissone, P. and Pedrycz, W., eds., (1998). Handbook
of Fuzzy Computation, Institute of Physics Publ., Bristol, UK.

Russo, F. (1993). A new class of fuzzy operators for image processing:
design and implementation, Proc. 1993 IEEE Int. Conf. on Fuzzy
Syst, IEEE Press, Piscataway, NJ, 815-820

Russo, F. and Ramponi, G. (1992). Fuzzy operator for sharpening of
noisy images, lEE Electronics Lett., 28, 1715-1717.

Russo, F. and Ramponi, G. (1994a). Combined FIRE filters for image
enhancement, Proc. 1994 Int. Conf. on Fuzzy Syst, IEEE Press,
Piscataway, NJ, 260-264.

730 FUZZY PATTERN RECOGNITION

Russo, F. and Ramponi, G. (1994b). Edge extraction by FIRE
operators, Proc. IEEE Int. ConJ. on Fuzzy Syst, IEEE Press,
Piscataway, NJ, 249-253.

Ryan, W., Winter, C. L. and Turner, C. J. (1987). Control of an
artificial neural system : the property inheritance network.
Applied Optics, 21(23), 4961-4971.

Sabin, M.J. (1987). Convergence and consistency of the fuzay c-
means/lSODATA algorithms, IEEE Trans. Patt. Anal, and
Machine Intell, 661-668.

Safavian, S. R. and Landgrebe, D. (1991). A survey of decision tree
classifier methodology, IEEE Trans. Syst, Man and Cybems.,
21(3), 660-674.

Sahoo, P. K., Soltani, S, Wong, A. K. C. and Chen, Y. C. (1988). A
survey of thresholding techniques. CVGIP, 41(2), 233-260.

Saint Marc, P., Chen, J . and Medioni., G. (1991). Adaptive
smoothing: A general tool for early vision, IEEE Trans. Pattern
Anal, and Machine Intell, 13, 514-529.

Sameti, M. and Ward, R. K. (1996). A fuzzy segmentation algorithm
for mammogram partitioning, in Digital Mammography '96, eds.
K. Doi, M. L. Giger, R. M. Nishikawa and R. A. Schmidt, Elsevier
Science Publishers, 471-474.

Sameti, M., Ward, R. K., Palcic, B. and Morgan-Parkes, J . (1997).
Texture feature extraction for tumor detection in mammographic
images, Proc. IEEE Pacific Rim ConJ. on Communications,
Computers and Signal Processing, 831-834.

Sammon, J . W. (1969). A nonlinear mapping for data structure
analysis, IEEE Trans. Computers, 18, 401-409.

Sanfeliu, A. and Fu, K. S. (1983). A distance measure between
attributed relational graphs for pattern recognition, IEEE Trans.
Syst, Man and Cybems., 13(3), 353-362.

Sankar, A. and Mammone, R. (1993). Growing and pruning neural
tree networks, lEEETrans. Computers, 42(3), 291-299.

Sato, M., Sato, Y. and Jain, L.C. (1997). Fuzzy Clustering Models and
Applications, Physica-Verlag, Heidelberg, Germany.

Schalkoff, R. (1992). Pattern Recognition: Statitistical, Structural
and Neural Approaches, John Wiley and Sons, NY,

REFERENCES 731

Schwartz, T. J . (1991). Fuzzy tools for expert systems, AI Expert,
February, 34-41.

Sebestyen, G. S. (1962). Decision-Making Processes in Pattern
Recognition, Macmillan, NY.

Seidelmann, G. (1993). Using heuristics to speed up induction on
continuous-valued attributes, Proc. European Conf. on Machine
Learning, ed. P. B. Brazdil, Springer, Berlin, 390-395.

Selim, S. A. and Ismail, M. A. (1984). K-means type algorithms: A
generalized convergence theorem and characterization of local
optimality, IEEE Trans. Patt. Anal, and Machine Intell, 6(1), 81-
87.

Sen, S. and Dave, R. N. (1998). Clustering of relational data
containing noise and outliers, Proc. IEEE Int. Conf. on Fuzzy
Syst, IEEE Press, Bscataway, NJ, 1411-1416.

Senay, H. (1992).Fuzzy command grammars for intelligent interface
design, IEEE Trans. Syst, Man and Cybems., 22(5), 1124-1131.

Serrano-Gotarredona, T., Linares-Barranco, B. and Andreou, A. G.
(1998). Adaptive Resonance Theory Microchips : Circuit Design
Techniques, Kluwer, Boston, MA.

Sethi, I. K. (1990). Entropy nets: from decision trees to neural
networks, Proc. IEEE, 78(10), 1605-1613.

Sethi, 1. K. (1995). Neural implementation of tree classifiers, IEEE
Trans. Syst., Man and Cybems., 25(8), 1243-1249.

Sethi, I. K. and Sarvarayudu, G.P.R. (1982). Hierarchical classifier
design using mutual information, IEEE Trans. Patt. Anal, and
Machine Intell, 4, 441-445.

Setnes, M., Babuska, R. and Verbruggen, H. B. (1998). Rule based
modeling: precision and transparency, IEEE Trans. Systs., Man
and Cybems., C28(l), 165-169.

Shafer, G. (1976). A Mathematical Theory of Evidence, Princeton U.
Press, Princeton, NJ.

Shankar, B. U. and Pal, N. R. (1994). FFCM: An effective approach
for large data sets, Proc. Int. Conf. on Fuzzy Logic, Neural Nets and
Soft Computing, lizuka, Japan, 331-332.

Shapiro, L. G. and Haralick, R. M. (1985). A metric for comparing
relational descriptions, IEEE Trans. Patt. Anal, and Machine
Intell, 7, 90-94.

732 FUZZY PATTERN RECOGNITION

Shavlik. J.W., Mooney, R. J. and Towell, G.G. (1991). Symbolic and
neura l learning algorithms: an experimental comparison,
Machine Learning, 6, 111-143.

Shaw, A. C. (1969). A formal picture description scheme as a basis
for picture processing systems. Inf. and Control, 14, 9-52.

Shephard, R.N. and Arabic, P. (1979). Additive clustering :
representat ion of similarities as combinations of discrete
overlapping properties. Psychological Review, 86(2), 87-123.

Shi, H., Gader, P. and Chen, W. (1998). Fuzzy integral filters:
propert ies and parallel implementations, J. of Real-Time
Imaging, 2(4), 233-241.

Shih, F. Y., Moh, J . and Chang, F. (1992). A new ART-based neural
architecture for pattern classification and image enhancement
without prior knowledge, Patt. Recog., 25(5), 533-542.

Simpson, P. K. (1993). Fuzzy min-max neural networks - Part 2 :
Clustering, IEEE Trans. Fuzzy Syst, 1(1), 32-45.

Sims, S. R. and Dasarathy, B. (1992). Automatic target recognition
using a passive multisensor suite. Optical Engineering, 31(12),
2584-2593.

Sin, S. K. and deFigueiredo, R. J . P. (1993). Fuzzy system design
through fuzzy clustering and optimal predefuzzification, Proc.
lEEEInt Conf. Fuzzy Syst, San Francisco, CA, 190- 195.

Sinha, D., Sinha, P., Dougherty, E. R. and Batman, S. (1997). Design
and analysis of fuzzy morphological algorithms for image
processing, IEEE Trans. Fuzzy Syst, 5(4), 570-584.

Sinha, D. and Dougherty, E. R. (1992). Fuzzy mathematical
morphology, J. Comm. Image Representation, 3(3), 286-302.

Sinha, D. and Dougherty, E. R. (1995). A general axiomatic theory of
intrinsically fuzzy mathematical morphologies, IEEE Trans.
Fuzzy Syst, 3(4), 389-403.

Siy, P. and Chen, S. S. (1974). Fuzzy logic for handwritten numeral
character recognition, IEEE Trans. Syst, Man and Cybems., 570-
574.

Slowinski, R., ed., (1998). Fuzzy sets in Decision Analysis:
Operations Research and Statistics, Kluwer, Boston, MA.

REFERENCES 733

Smi th , S. P. a n d J a i n , A. K. (1984). Tes t ing for uniformity in
m u l t i d i m e n s i o n a l d a t a , IEEE Trans. Patt. Anal, and Machine
Intell, 6(1), 73 -81 .

Snea th , P. H. A. a n d Sokal, R. R. (1973). Numerical Taxonomy - The
Principles and Practice of Numerical Classification, W. H.
Freeman, S a n Francisco, CA.

Solina, F. Eind Bajcsy, R. (1990). Recovery of parametr ic models from
range images: the case for superquadr ics , IEEE Trans. Patt. Anal,
and Machine Intell, 12(2), 131-176.

Srinivasem, R., and Kinser, J . (1998). A foveating fuzzy scoring target
recognition system, Patt. Recog., 31(8), 1149-1158.

S r in ivasan , R., Kinser , J . , S c h a m s c h u l a , J . , Shami r , J . a n d
Caulfield, H. J . (1996). Optical syntact ic pa t t e rn recognition by
fuzzy scoring. Optical Lett., 21(11), 815-817.

St. Clair, D. C , Bond, W. E., Rigler, A. K. a n d Aylward, S. (1992). An
eva lua t ion of l ea rn ing pe r fo rmance in b a c k p r o p a g a t i o n a n d
decis ion- t ree classifier sy s t ems , Proc. ACM/SIGAPP Symp. on
Applications Computers, ACM Press, 636-642.

Stanley, R. J . , Keller, J . M., Caldwell, C. W. and Gader, P. (1995).
Automated ch romosome classification l imitat ions due to image
processing, Proc. Rocky Mountain Bioengineering Symp., Copper
Mountain, CO, 183-188.

Stanley, R. J . , Keller, J . , Gader, P. and Caldwell, C.W. (1998). Data-
driven homologue match ing for chromosome identification, IEEE
Trans. Medical Imagir^g, 17(3), 451-462.

Stewart , C. (1995). MINPRAN: A new robus t es t imator for computer
vision, IEEE Trans. Patt. Anal, and Machine Intell, 17(10), 9 2 5 -
938.

Strickland, R. N. and Lukins, G. J . (1997). Fuzzy system improves the
performance of wavelet -based correlation detectors , Proc. IEEE
Int. Conf. on Patt. Recog., 3, 404-407.

S t r ick land , R. N. a n d Theodosiou, T. (1998). Fuzzy sys tem for
d e t e c t i n g mic roca lc i f i ca t ions in m a m m o g r a m s , Proc. SPIE
Applications and Science of Neural Networks, Fuzzy Systems and
Evolutionary Computation, 3455 , eds . B. Bosachhi , J . C. Bezdek
a n d D. Fogel, SPIE, Bellingham, WA, 317-327.

S u e n , C. Y. a n d Wang, Q.R. (1984). ISOETRP - a n interact ive
cluster ing algorithm with new objectives, Patt. Recog., 17(2), 2 1 1 -
219.

734 FUZZY PATTERN RECOGNITION

Suen, C. Y., Nadal. C , Legault, R., Mai, T. and Lam. L. (1992).
Computer recognition of unconstrained handwritten numerals.
Proc. IEEE. 80(7), 1162 - 1180.

Sugeno, M. (1977). Fuzzy measures and fuzzy integrals: A survey, in
Fuzzy Automata and Decision Processes, North Holland,
Amsterdam, 89-102.

Sugeno, M. and Yasukawa, T. (1993). A fuzzy-logic-based approach to
qualitative modeling, lEEETrans. Fuzzy Syst, 1(1), 7-31.

Suh, I. H. and Kim, T. W. (1994). Fuzzy membership function based
neural networks with applications to the visual servoing of robot
manipulators, lEEETrans. Fuzzy Syst, 2(3), 203-220.

SUNY Buffalo Postal Address Image Database (1989). State U. of NY
at Buffalo, CS Department, Buffalo, NY.

Tahani, H. and Keller, J. M. (1990). Information fusion in computer
vision using the fuzzy integral, IEEE Trans. Syst, Man and
Cybems., 20(3), 733-741.

Takagi, T. and Sugeno, M. (1985). Fuzzy identification of systems
and its application to modeling and control, IEEE Trans. Syst,
Man and Cybems., 15(1), 116-132.

Tamura, S. and Tanaka, K. (1973). Learning of fuzzy formal
language, IEEE Trans. Syst, Man and Cybems., 3, 98-102.

Tamura, S., Higuchi, S. and Tanaka, K. (1971). Pattern classification
based on fuzzy relations, IEEE Trans. Syst, Man and Cybems.,
1(1), 61-66.

Tanaka, K. and Sugeno, M. (1991). A sudy on subjective evaluations
of printed color images. Int. J. ofApprox. Reasoning, 5(3), 213-222.

Tanaka, K. and Sugeno, M. (1998). Introduction to fuzzy modeling, in
Fuzzy Systems: Modeling and Control, eds. H. T. Nguyen and M.
Sugeno, Kluwer, Boston, MA, 63-90.

Tani, T. and Sakoda, M. (1992). Fuzzy modeling by ID3 algorithm
and its application to prediction of heater outlet temparature,
Proc. IEEE Int ConJ. on Fuzzy Syst, IEEE Press, Piscataway, NJ,
923-930.

Tao, C. W., Thompson, W. E. and Taur, J .S. (1993). Fuzzy if-then
approach to edge detection, Proc. IEEE Int. ConJ. on Fuzzy Syst,
IEEE Press, Piscataway, NJ, 1356-1360.

REFERENCES 735

Tarel, J.-P. and Boujemaa, N. (1995). A fuzzy 3D registration
method, Proc. European Congress on Intelligent Techniques and
Sofi Computing, Aachen, Germany, 1359-1365.

Taubin, G. (1991). Estimation of planar curves, surfaces, and
nonplanar space curves defined by implicit equations with
application to edge and range image segmentation, IEEE Trans.
Patt. Anal, and Machine Intell, 13(11), 1115-1138.

Tax, D. M., Duin, R. P. W. and van Breukelen, M. (1997). Comparison
between product and mean classifier combination rules, Proc. Int.
Workshop on Stat. Techniques in Patt. Recog., eds. P. Pudil, J .
Novovicova, J. Grim, Prague, Inst, of Inf. Theory and Automation,
Academy of Sciences of the Czech Republic, Prague, 165-170.

Thawonmas R. and Abe S. (1997). A novel approach to feature
selection based on analysis of class regions, IEEE Trans. Syst,
Man and Cybems., B27(2), 196-207.

Thole, U. and Zimmermann, H. -J. (1979). On the stability of the
minimum and product operations. Fuzzy Sets and Syst, 2, 167-
180.

Thomason, M. G. (1973). Finite fuzzy automata, regular fuzzy
languages and pattern recognition, Patt. Recog., 5, 383-390.

Thomdlke, R. L. (1953). Who belongs in the family?, Psychometrika,
18, 267-276.

Titterington, D., Smith, A. and Makov, U. (1985). Statistical
Analysis of Finite Mixture Distributions, Wiley, NY.

Tolias, Y. A. and Panos, S. M. (1998). Image segmentation by a fuzzy
clustering algorithm using adaptive spatially constrained
membership functions, IEEE Trans. Systs., Man and Cybems.,
A28 (3), 359-369.

Tou, J. T. (1979). DYNOC - A dynamic optimum cluster-seeking
technique, Int. J. Comp. Syst. Science, 8, 541-547.

Tou, J . T. and Gonzalez, R. (1974). Pattern Recognition Principles,
Addison-Wesley, Reading, MA.

Toussaint , G. T. (1974). BibUography on est imation of
misclassification, IEEE Trans. Inf. Theory, 20, 472-479.

Trauwaert, E. (1987). J!^ in fuzzy clustering. Statistical Data
Analysis based on the Jl Norm, ed. Y. Dodge, Elsevier,
Amsterdam, 417-426.

736 FUZZY PATTERN RECOGNITION

Trauwaert, E. (1988). On the meaning of Dunn's partition coefficient
for fuzzy clusters, Fuzzy Sets and Syst, 25, 217-242.

Trauwaert, E., Kaufman, L. and Rouseeuw, P. J. (1988). Fuzzy
clustering algorithms based on the maximum likelihood
principle. Fuzzy Sets and Syst, 25, 213-227.

Trivedi, M. and Bezdek, J. C. (1986). Low level segmentation of aerial
images with fuzzy clustering, IEEE Trans. Syst, Man and
Cybems., 16(4), 580-598.

Tsai, W. H. and Fu, K. S. (1979). Error correcting isomorphism of
attributed relational graphs for pattern analysis, IEEE Trans.
Syst, Man and Cybems., 9(12), 757-768.

Tucker, W. (1987). Counterexamples to the convergence theorem for
fuzzy isodata clustering algorithms. The Analysis of Fuzzy
Information, ed. J. Bezdek, 3, 109-121, CRC Press, Boca Raton. FL.

Tukey, J . (1977). Exploratory Data Analysis, Addison-Wesley,
Reading, MA.

Turner, K. and Ghosh, J . (1998). Classifier combining through
trimmed means and order statistics, Proc. Int. Joint Conf. on
Neural Networks, IEEE Press, Piscataway, NJ, 757-762.

Tyan, C. and Wang, P. (1993). Image processing - enhancement,
filtering and edge detection using the fuzzy logic approach, Proc.
IEEE Int Conf on Fuzzy Syst, IEEE Press, Piscataway, NJ, 600-
605.

Udupa, J . K. (1992). Applications of digital topology in medical
three-dimensional imaging. Topology and its Applications, 46,
181-197,

Udupa, J. K. (1994). Multidimensional digital boundaries, CVGIP,
56(4), 311-323.

Udupa, J. K. and Samarasekera, S. W. (1996). Fuzzy connectedness
and object definition: theory, algorithms and applications in
image segmentation, Graphical Models and Image Processing,
58(3), 246-261.

Udupa, J. K., Odhner, D., Tian, J., Holland, G. and Axel, L. (1997a).
Automatic clutter-free volume rendering for MR angiography
using fuzzy connectedness, Proc. SPIE Medical Imaging : Image
Processing, 3034, SPIE, Bellingham, WA, 114-119.

REFERENCES 737

Udupa, J. K., Samarasekera, S. W., Miki, Y., van Buchem, M. A. and
Grossman, R. I. (1997b). Multiple schlerosls lesion quantification
using fuzzy-connectedness principles, IEEE Trans. Medical
Imaging, 16(5), 598-609.

Umano, M., Okamoto, H., Hatano, I., Tamura, H., Kawachi, F.,
Umedzu, S. and Kinoshita, J. (1994). Fuzzy decision trees by fuzzy
1D3 algorithm and its application to diagnosis systems, Proc.
IEEE Int. Conf. on Fuzzy Syst, IEEE Press, Piscataway, NJ, 2113-
2118.

Utgoff, P. (1989). Incremental induction of decision trees. Machine
Learning, 4(2), 161-186.

Vaidyanathan, M., Clarke, L.P., Velthuizen, R. P., Phuphanich, S.,
Bensaid, A. M., Hall, L. O., Bezdek, J. C , Greenberg, H., Trotti, A.
and Silbiger, M. (1995). Comparison of supervised MRI
segmentation methods for tumor volume determination during
therapy, Mag. Res. Imaging, 13(5), 719-728.

Vajda, I. (1970). A note on discrimination information and
variation, IEEE Trans. Inf. Theory, 16, 771-772.

Velthuizen, R. P., Hall, L. O. and Clarke, L. P. (1996). Feature
extraction with genetic algorithms for fuzzy clustering, Biomed.
Engineering Appl, Basis and Communications, 8(6), 496-517.

Velthuizen, R. P., Hall, L. O., Clarke. L. P. and Silbiger, M. L. (1997).
An investigation of mountain method clustering for large data
sets. Pott. Recog., 30(7), 1121-1135.

Wang L., Wang M., Yamada M., Seki H., and Itoh H. (1996). Fuzzy
reasoning for image compression using adaptive triangular plane
patches, Proc, Int. Conf. on Soft Computing, 2, eds. T. Yamakawa
G. Matsumoto, World Scientific, Singapore, 753-756

Wang, D., Keller, J., Carson, C.A., McAdoo. K., and Bailey. C. (1998).
Use of fuzzy logic-inspired features to improve bacterial
recognition through classifier fusion, IEEE Trans. Syst, Man and
Cybems., 28(4), 583-591.

Wang, D., Wang, X. and Keller, J. M. (1997). Determining fuzzy
integral densities using a genetic algorithm for pat tern
recognition, Proc. NAFIPS Conf, 263-267.

Wang, F. (1990a). Fuzzy supervised classification of remote sensing
images, lEEETrans. Geosciences and Remote Sensing, 28, 194-201.

738 FUZZY PATTERN RECOGNITION

Wang, F. {1990b). Improving remote sensing image analysis through
fuzzy information representation, Photogrammetric Engineering
and Remote Sensing, 56, 1163-1169.

Wang, L. X. and Mendel, J. M. (1992). Generating fuzzy rules by
learning from examples, IEEE Trans. Syst. Man and Cybems.
22(6), 1414-1427.

Wang, L., Wang, M., Yamada, M., Seki, H. and Itoh, H. (1996), Fuzzy
reasoning for image compression using adaptive triangular plane
patches , Proc. Int. Conference on Soft Computing, eds. T.
Yamakawa and G. Matsumoto, lizuka, Japan, World Scientific,
Singapore, 753-756.

Wang, Q. R. and Suen, C. Y. (1983). Classification of Chinese
characters by phase feature and fuzzy logic search, Proc. Int. Conf.
Chinese Inf. Proc., 1, Beijing, Oct., 133-155.

Wang, Q. R. and Suen, C. Y. (1984). Analysis and design of a decision
tree based on entropy reduction and its application to large
character recognition set, IEEE Trans. Patt. Anal, and Machine
Intell, 6(4), 406-417.

Wang, Q. R. and Suen, C. Y. (1987). Large tree classifier with heuristic
search and global training, IEEE Trans. Patt. Anal, and Machine
Intell, 9(1), 91-102.

Wang, T. C. and Karayiannis, N. B. (1997). Compression of digital
mammograms using wavelets and learning vector quantization,
in SPIE Proc. Applications of Artificial Neural Networks in Image
Processing II, 3030, SPIE, Bellingham, WA, 44-55.

Wang, W., Wang, Z. and Klir, G. (1998). Genetic algorithms for
determining fuzzy measures from data, J. Intell. and Fuzzy Syst,
6(2), 171-184.

Wang, X. and Keller, J . M. (1999a). Human-based spatial
relationship generalization through neural/fuzzy approaches,
Fuzzy Sets and Syst, 101(1), 5-20.

Wang, X. and Keller, J. M. (1999b). A fuzzy rule-based approach for
scene description involving spatial relationships, Comp. Vision
and Image Understanding, in review.

Wang, X., Keller, J . M. and Gader, P. (1997). Using spatial
relationships as features in object recognition, Proc. NAFIPS
Conf, 160-165.

Wang, Z. and Klir, G. (1992). Fuzzy Measure Theory, Plenum Press,
NY.

REFERENCES 739

Watkins, F. (1990). Cubicalc, Computer Software Manual,
HyperLogic Corporation, IBM-PC.

Weber, R. (1992). Fuzzy IDS : a class of methods for automatic
knowledge acquisition, Proc. 2nd Int. Conf. on Fuzzy Logic and
Neural Networks, lizuka, Japan, July, 265-268.

Wee, W. G. (1967). On generalizations of adaptive algorithms and
applications of the fuzzy sets concept to pattern classification,
Ph.D. Thesis, Purdue U., W. Lafayette, 1967.

Wee, W. G. and Fu, K. S. (1969). A formulation of fuzzy automata and
its application as a model of learning systems, IEEE Trans. Syst.
Science and Cybems., SSC-5(3), 215-223.

Wei, W. and Mendel, J. M. (1994). Optimality tests for the fuzzy c-
means algorithms, Patt. Recog., 27(11), 1567-1573.

Weiss, S. M. and Kapouleas, I. (1989). An empirical comparison of
pa t te rn recognition, neural nets and machine learning
classification methods, Proc. 11-th IJCAI Conf., 781-787.

Weiss, S. M. and Kulikowski, C. A. (1991). Computer Systems that
Learn, Morgan Kauffman, San Mateo, CA.

Werbos, P. (1974). Beyond Regression : New Tools for Prediction and
Regression in the Behavioral Sciences, Ph.D. Thesis, Harvard U.,
Cambridge, MA.

Widrow, B. and Stearns, S. D. (1985). Adaptive Signal Processing,
Prentice Hall, Englewood Cliffs, NJ.

Windham, M. P. (1981). Cluster validity for fuzzy clustering
algorithms. Fuzzy Sets and Syst, 177-183.

Windham, M. P. (1982), Cluster validity for the fuzzy c-means
clustering algorithm, IEEE Trans. Patt Anal, and Machine Intell,
4(4), 357-363.

Windham. M. P. (1985). Numerical classification of proximity data
with assignment measures, J. Classification 2, 157-172.

Winston, P. (1975). The Psychology of Computer Vision, McGraw-
Hill, NY.

Wolfe, J . H. (1970). Pattern clustering by multivariate mixture
analysis, Multivariate Behavioral Research, 5, 329-350.

Woodbury, M. A. and Clive, J. A. (1974). Clinical pure types as a fuzzy
partition, J. Cybem., 4(3), 111-121.

740 FUZZY PATTERN RECOGNITION

Woods, K., Kegelmeyer, W., and Boyer, K., (1997). Combination of
multiple classifiers using local accuracy estimates, IEEE Trans.
Patt. Arml. and Machine InteVi., 19(4), 405-410.

Wootton, J., Keller, J. M., Carpenter, C. and Hobson, G. (1988). A
multiple hypothesis rule-based automatic target recognizer, in
Pattern Recognition, Lecture Notes in Comp. Science, ed. J. Klttler,
301, (Springer-Verlag) 315-324.

Xie, X.L. and Beni, G. A. (1991). A validity measure for fuzzy
clustering, IEEE Trans. Patt. Anal, and Machine Intell, 13(8), 841-
846.

Xu, L., Krzyzak, A. and Suen, C. (1992). Methods of combining
multiple classifiers and their applications to handwriting
recognition, IEEE Trans. Syst, Man and Cybems.., 22(3), 418-435.

Yager, R. R. (1980). On a general class of fuzzy connectives. Fuzzy
Sets and Syst, 4, 235-242.

Yager, R. R. (1988). On ordered weighted averaging aggregation
operators in multicriteria decision making. IEEE Trans. Syst,
Man and Cybems., 18(1),183-190.

Yager, R. R. and and Filev, D.P. (1994a). Approximate clustering by
the mountain method, IEEE Trans. Syst, Man and Cybems., 24(8),
1279-1283.

Yager, R. R. and Filev, D. P. (1994b). Generation of fuzzy rules by
mountain clustering, J. Intell. and Fuzzy Syst, 2, 209-219.

Yager, R. R. and Filev, D. P. (1998). Fuzzy rule based models in
approximate reasoning, in Fuzzy Systems : Modeling and Control,
eds. H. T. Nguyen and M. Sugeno, Kluwer, Boston, MA, 91-134.

Yager, R. R. and Kacprzyk, J., eds., (1997). The Ordered Weighted
Averaging Operators: Theory and Applications, Kluwer, Norwell,
MA.

Yair, E., Zeger, K. and Gersho, A. (1992). Competitive learning and
soft competition for vector quantizer design, IEEE Trans. SP,
40(2), 294-309.

Yamakawa, T. (1990). Pattern recognition hardware system
employing a fuzzy neuron, Proc. Int. Conf. on Fuzzy Logic, hzuka,
Japan, 943-948.

REFERENCES 741

Yamakawa, T., Uchlno, E., Miki, T. and Kusanagi, H. (1992). A new
fuzzy neuron and its application to system identification and
prediction of system behavior, Proc. Int. Conf. on Fuzzy Logic and
Neural Networks , lizuka, Japan, 477-483.

Yan, B. and Keller, J . M. (1996). A heuristic simulated annealing
algorithm of learning possibility measures for multisource
decision making, Fuzzy Sets and Syst, 77, 87-109.

Yan, H. (1993). Prototype optimization for nearest neighbor
classifiers using a two-layer neural network, Patt. Recog., 26(2),
317-324.

Yang, M. S. (1993). A survey of fuzzy clustering. Math. Comput.
Modeling, 18(11), 1-16.

Yen, J. and Chang, C.W. (1994). A multi-prototype fuzzy c-means
algorithm, Proc. European Congress on Intelligent Techniques
ami Soft Computing, Aachen, Germany, 539-543.

Yokoya, N. and Levine, M. D. (1989). Range image segmentation
based on differential geometry: a hybrid approach, IEEE Trans.
Patt. Anal, and Machine Intell, 11(6), 643-694.

Yoshinari, Y., Pediycz, W. and Hirota, K. (1993). Construction of
fuzzŷ models through clustering techniques. Fuzzy Sets and Syst,
54(2), 157-166.

Yuan, Y. and Shaw, M. J . (1995). Induction of fuzzy decision trees.
Fuzzy Sets and Syst, 69, 125-139.

Zadeh, L. A. (1965). Fuzzy Sets, Inf. and Control, 8, 338-353.

Zadeh, L. A. (1971). Similarity relations and fuzzy orderings, Inf.
Set, 177-200.

Zangwill, W. (1969). Non-Linear Programming: A Unified Approach,
Englewood Cliffs, NJ: Prentice Hall, 1969.

Zeidler, J., Schlosser, M., Ittner, A. and Posthoff, C. (1996). Fuzzy
decision trees and numerical attributes, Proc. IEEE Int. Conf: on
Fuzzy Syst, IEEE Press, Piscataway, NJ, 985-990.

Zenner, B. R. C , Caluwe, M. M. D. and Kerre, E. E. (1985). Retrieval
systems using fuzzy expressions. Fuzzy Sets and Syst, 17, 9-22.

Zhang, W. and Sugeno, M. (1993). A fuzzy approach to scene
unders tanding, Proc. Int. Conf. on Fuzzy Syst, IEEE Press,
Piscataway, NJ, 564-569.

742 FUZZY PATTERN RECOGNITION

Zimmermann, H-J. and Zysno, P. (1980). Latent connectives in
human decision making, Fuzzy Sets and Syst, 4(1), 37-51.

Zimmermann, H-J. and Zysno, P. (1983). Decisions and evaluations
by hierarchical aggregation of information, Fuzzy Sets and Syst,
10 (3), 243-260.

Zugaj, D. and Lattuati, V. (1998). A new approach of color image
segmentation based on fusing region and edge segmentation
outputs, Patt. Recog., 31(2), 105-113.

Zurada, J. (1992). Introduction to Artificial Neural Systems, West
Publ. Co.. St. Paul, MN.

Zurada, J., Marks, R. and Robinson, C. (1994). Introduction,
Computational Intelligence: Imitating Life, eds. J . Zurada, R.
Marks and C. Robinson, IEEE Press, Piscataway, NJ.

References not cited in the text
Babuska, R., M. Setnes, U. Kaymak and H. R. Lemke, Rule base

simplification with similarity measures, Proc. IEEE Int. Conf. on
FuzzySyst,3, 1642-1647, 1996.

Bezdek, J. C , Hall, L.O. and Clarke, L. P. (1993). Review of MR image
segmentation techniques using pattern recognition, Med. Physics,
20, 1033-1047.

Bezdek, J. C , Hathaway, R. J. and Windham, M. (1991). Numerical
comparison of the RFCM and AP algorithms for clustering
relational data, Patt. Recog., 24(8), 783-791.

Boudraa, A. E., Champier, J., Damien, J., Besson, J. E., Bordet, J. C.
and Mallet, J .J . (1992). Automatic left ventricular cavity detection
using fuzzy ISODATA and connected-components labeling
algorithms, Proc. IEEE Conf. in Medicine and Biology, CH3207-8,
Piscataway, NJ, 1895-1896.

Boujemaa, N. and Stamon, G. (1994). Fuzzy modeling in early vision
application to medical image segmentation, in Proc. Int. Conf. on
Image Anal, and Processing, ed. S. Impedovo, World Scientific
Singapore, 649-656.

Brandt, M. E., Bohan, T. P., Kramer. L. A. and Fletcher, J. M. (1994).
Estimation of CSF, white and gray matter volumes in
hydrocephalic children using fuzzy clustering of MR images.
Computerized Medical Imaging and Graphics, 18(1), 25-34.

Brandt, M. E., Fletcher, J. M. and Bohan, T. P. (1992). Estimation of
CSF, white and gray matter volumes from MRIs of hydrocephalic
and HIV-positive subjects, Proc. SimTec/WNN, IEEE Press,
Piscataway, NJ, 643-650.

Buckley, J . J . and Hayashi, Y. (1994). Fuzzy neural nets and
applications, Fuzzy Sets andAI, 1, 11-41.

Carazo, J . M., Rivera, F.F., Zapata, E.L., Radermacher, M. and
Frank, J . (1990). Fuzzy sets-based classification of electron
microscopy images of biological macromolecules with an
application to ribsomeal particles, J. Microscopy, 157(2), 187-203.

Chang, C. W., Hillman, G.R., Ying, H.. Kent, T. and Yen, J. (1994).
Segmentation of rat brain MR images using a hybrid fuzzy system,
Proc. Joint NAFIPS/IFIS/NASA Conf, 55-59.

Chang, C. W., Hillman, G.R., Ying, H., Kent, T. and Yen, J . (1995).
Automatic labeling of human brain structures in 3D MRI using
fuzzy logic, Proc. CFSA/IFIS/SOFT Conf World Scientific, 27-34.

744 FUZZY PATTERN RECOGNITION

Chang, C.W., Hillman, G.R.. Ylng, H. and Yen, J. (1995). A two stage
human brain MRI segmentation scheme using fuzzy logic, Proc.
IEEE Int. Conf. on Fuzzy Systems, IEEE Press, Piscataway, NJ,
649-654.

Choe, H. and Jordan, J . B. (1992). On the optimal choice of
parameters in a fuzzy c-means algorithm, Proc. IEEE Int. Conf. on
Fuzzy Syst, IEEE Press, Piscataway, NJ, 349-354.

Conover, W. J., Bement, T. R. and Iman, R. L. (1979), On a method for
detecting clusters of possible uranium deposits, Technometrics 21,
277-282.

Dave R. N. and K. J . Patel, Fuzzy ellipsoidal-shell clustering
algorithm and detection of elliptical shapes, SPIE Proc.
Intelligent Robots and Computer Vision IX, ed. D.P. Casasent,
1607, 320-333.

Dave, R. N. (1992). Boundary detection through fuzzy clustering,
Proc. IEEE Int. Conf. on Fuzzy Syst, IEEE Press, Piscataway, NJ,
127-134.

Dave, R. N. (1993). Robust fuzzy clustering algorithms, Proc. IEEE
Int. Conf. on Fuzzy Syst, IEEE Press, Piscataway, NJ, 1281-1286.

De La Paz, R., Berstein, R., Hanson, W. and Walker, M. (1986).
Approximate fuzzy c-means (AFCM) cluster analysis of medical
magnetic resonance image (MRI) data - a system for medical
research and education, IEEE Trans. Geosct and Remote Sensing,
GE25, 815-824.

De Mori, R. (1983). Computerized Models of Speech Using Fuzzy
Algorithms, Plenum Press, NY.

De Mori, R. and Laface, P. (1980). Use of fuzzy algorithms for
phonetic and phonemic labeling of continuous speech, IEEE
Trans. Patt. Anal, and Machine Intell, 2, 136-148.

de Oliveira, M.C. and Kitney, R. I. (1992). Texture analysis for
discrimination of tissues in MRI data, Proc. Computers in
Cardiology, IEEE Press, Piscataway, NJ, 481-484.

Dellepiane, S. (1991). Image segmentation: Errors, sensitivity and
uncertainty,iEEE Trans. EMBS, 253-254.

Devi, B.B. and Sarma, V.V.S. (1986). A fuzzy approximation scheme
for sequential learning in pattern recognition, IEEE Trans. Syst,
Man and Cyberns., 16, 668-679.

REFERENCES 745

Di Gesu, V. (1994). Integrated fuz2y clustering, Fuzzy Sets and Syst,
68, 293-308.

Di Gesu, V. and Romeo, L. (1994). An application of integrated
clustering to MRl segmentation, Patt. Recog. Lett., 731-738.

Di Gesu, v., De La Paz, R., Hanson, W.A. and Berstein, R. (1991).
Clustering algorithms for MRI, in Lecture notes for medical
informatics, eds. K.P. Adlassing, B. Grabner, S. Bengtsson and R.
Hansen, Springer, 534-539.

Di Nola, A., Sessa, S., Pedrycz, W. and Sanchez, E. (1989). Fuzzy
Relational Equations and Their Applications in Knowledge
Engineering, Kluwer, Dordrecht.

Drakopoulos, J.A. and Hayes-Roth, B. (1998). tFPR: A fuzzy and
structural pattern recognition system of multivariate time-
dependent pattern classes based on sigmoidal functions. Fuzzy
SetsandSyst, 99(1), 57-72.

Dzwinel, W. (1995). In search of the global minimum in problems of
feature extraction and selection, Proc. European Congress on
Intelligent Techniques and Soft Computing, Aachen, Germany,
1326-1330.

Feldkamp, L.A., Puskorius, G.V., Yuan, F. and Davis, L. I. Jr . (1992).
Architecture and training of a hybrid neural-fuzzy system, Proc.
Int. Conf. on Fuzzy Logic and Neural Networks, Ilzuka, Japan, 131-
134.

Full, W., Ehrlich, R. and Bezdek, J. C. (1982). Fuzzy QMODEL: A new
approach for linear unmixing, J. Math. Geo., 14(3), 259-270.

Gader, P. and Keller, J. M. (1996). Fuzzy methods in handwriting
recognition: An overview, Proc. NAFIPS Conf, 137-141.

Gader, P., and Keller, J. M. (1994). Fuzzy logic in handwritten word
recognition, Proc. IEEE Int. Congress on Fuzzy Syst, 910-917.

Granath, G. (1984). Application of fuzzy clustering and fuzzy
classification to evaluate provenance of glacial till, J. Math Geo.,
16(3), 283-301.

Hillman, G. R., Chang, C.W., Ying, H., Kent, T.A. and Yen, J. (1995).
Automatic system for brain MRl analysis using a novel
combination of fuzzy rule-based and automatic clustering
techniques, SPIE Proc. Med. Imaging: Image Processing, ed. M. H.
Lowe, 2434, SPIE, Bellingham, WA, 16-25.

746 FUZZY PATTERN RECOGNITION

Hirota, H. a n d Pedrycz, W. (1994). OR/AND neuron in modeling fuzzy
set connectives, IEEE Trans. Fuzzy Syst, 2, 151-161.

Hirota, K. and Pedrycz, W. (1986). Subjective entropy of probabilistic
s e t s a n d fuzzy c lus te r ana lys i s , IEEE Trans. Syst, Man and
Cybems., 16, 173-179.

Hong, D. Z., Sarkodie-Gyan, T., Campbell, A.W. and Yan, Y. (1998). A
p ro to type indexing a p p r o a c h to 2-D object descr ip t ion a n d
recognition. Patt. Recog., 31(6), 699-725.

Huang, P. H. and Y. S. Chang, Fuzzy rule based qualitative modeling,
Proc. IEEE Int. Conf. on Fuzzy Syst, 1261-1265.

Huntsberger, T., Jacobs , C. L and Cannon, R.L. (1985). Iterative fuzzy
image segmentation, Patt. Recog.,18, 131-138.

Huntsberger , T., Rangarajan, C. a n d J a y a r a m a m u r t h y , S.N. (1986).
Representa t ion of Uncertainty in Comp. Vision Using Fuzzy Sets ,
IEEE Trans. Comp., C-35, 145-156.

Hwang, S. Y., Lee, H.S. and Lee, J . J . (1996). General fuzzy acceptors
for syntactic pa t te rn recognition. Fuzzy sets and Syst, 80(3), 397-
401 .

Ikoma, N., Pedrycz, W. a n d Hirota, K. (1993). Est imat ion of fuzzy
relat ional mat r ix by us ing probabilist ic descen t method, Fuzzy
Sets and Syst, 57, 335-349.

Kang, S. J . and Kwon, Y.R. (1995). A tightly coupled approach to fuzzy
syn tac t ic pa r s ing a n d n e u r a l ne tworks for even t - synchronous
signal inspection, J. oflntell, and Fuzzy Syst, 3(3), 215-227.

Keller J . M. a n d Tahani , H. (1992). Implementat ion of conjunctive
a n d dis junct ive fuzzy logic ru les wi th n e u r a l ne tworks . Int. J.
Approximate Reasoning, 6, 1992, 221-240.

Keller, J . M. (1994). Compu ta t i ona l intel l igence in h igh level
c o m p u t e r v i s ion : d e t e r m i n i n g s p a t i a l r e l a t i o n s h i p s , in
Computational Intelligence: Imitating Life, eds . J . Zurada , R.
Marks II, C. Robinson, IEEE Press, Piscataway, NJ, 81-91 .

Keller, J . M. and Carpenter , C. (1990). Image segmenta t ion in the
presence of uncertainty. Int. J. oflntell. Syst, 5(2), 193-208.

Keller, J . M. a n d Chen, Z. (1994). Image segmenta t ion via fuzzy
addit ive hybrid networks , Proc. Joint NAFIPS/IFIS/NASA Conf,
60-64.

REFERENCES 747

Keller, J . M. a n d Gader, P. (1995). Fuz2y logic and the principle of
leas t commi tment in compute r vision, Proc. IEEE Conf. on Syst,
Man and Cybers., 4621 -4625.

Keller, J . M. and Osbom, J . (1995). A reward /pun i shmen t scheme to
learn fuzzy densi t ies for the fuzzy integral, Proc. IFSA Congress,
97-100.

Keller, J . M. a n d Tahan i , H. (1992). The fusion of information via
fuzzy integration, Proc. NAFIPS Conf., 468-477,

Keller, J . M. a n d Yan, B. (1992). Possibility expectat ion a n d its
decision making algori thm, Proc. IEEE Int. Conf. on Fuzzy Syst,
661-668.

Keller, J . M., Wang, D., Carson, C.A., McAdoo, K., and Bailey, C.
(1995). Improved recognit ion of E. coli 0 1 5 7 : H 7 bac te r i a from
pulsed-field gel e lec t rophores is images t h r o u g h t he fusion of
neu ra l networks with fuzzy t ra ining data , Proc. IEEE Int. Conf. on
Neural Networks, 1606-1610.

Keller, J . M.. Yager, R. R. and Tahan i , H. (1992). Neural ne twork
implementat ion of fuzzy logic. Fuzzy Sets and Syst, 45 , 1-12.

Kersten, P. and Keller, J . M. (1998). Robust fuzzy snakes , Proc. IEEE
Int. Conference on Fuzzy Syst, 1554-1559.

Key, J.A., Maslanik, L. a n d Barry R.G. (1989). Cloud classification
from satellite da ta us ing a fuzzy-sets algorithm - a polar example,
Int J. Remote Sensing, 10, 1823-1842.

Kovalerchuk, B. , Tr ian taphyl lou , E., Ruiz, J . F . a n d Clayton, J .
(1997). Fuzzy logic in computer -a ided b r e a s t cancer d iagnosis :
ana lys i s of lobulat ion. Artificial Intelligence in Medicine, 11(1),
75-85.

Kroll, A. (1996). Identification of functional fuzzy models u s ing
mul t id imensional reference fuzzy sets , Fuzzy Sets and Syst, 80,
149-158.

Kuncheva, L. 1. (1993). An aggregation of pro a n d con evidence for
medical decision suppor t sys tems, Comput Biol. Med., 23(6), 417-
424.

K u n d u , S. a n d Chen, J . (1994). FLIC: Fuzzy l inear i nva r i an t
c l u s t e r i n g wi th a p p l i c a t i o n s in fuzzy con t ro l , Proc. Joint
NAFIPS/IFIS/NASA Conf, 196- 200.

748 FUZZY PATTERN RECOGNITION

Larsen, H. L. and Yager, R. R. (1990). An approach to customized end
user views in information retrieval systems, in Multiperson
Decision Making Models Using Fuzzy Sets and Possibility Theory,
eds. J. Kacprzyk and M. Fedrizzi, Kluwer, 128-139.

Larsen, H. L. and Yager, R. R.(1997). Query fuzziflcation for internet
information retrieval, in Fuzzy Information Engineering: A
Guided Tour of Applications, eds. D. Dubois, H. Prade, H. and R. R.
Yager, John Wiley and Sons, NY, 291-310.

Lee, H. M., Sheu, C.C. and Chen, J. M. (1998). Handwritten Chinese
character recognition based on primitive and fuzzy features via
the SEART neural net model. Applied Intell., 8(3), 269-285.

Lesczynski, K., Penczek, P. and Grochulski, W. (1985). Sugeno fuzzy
measures and fuzzy clustering. Fuzzy Sets and Syst, 15, 147-158.

Li, H. D., Kallergi, M., Clarke, L. P., Jain, V. K. and Clark, R. A. (1995).
Markov random field for tumor detection in digital
mammography, IEEE Trans, on Medical Imaging, 14 (3), 565-576.

Liang, Z. (1993). Tissue classification and segmentation of MR
Images, IEEE EMB SMagazine, 12(1), 81-85.

Lu, Y. and Yamaoka, F. (1997). Fuzzy integration of classification
results, Patt Recog., 30(11), 1877-1891.

Marks, L., Dunn, E., and Keller. J . M. (1995). Multiple criteria
decision making (MCDM) using fuzzy logic: An innovative
approach to sustainable agriculture, Proc. Joint ISUMA/NAFIPS'
Conf, 503-508.

Meisels, A, Kandel, A. and Gecht, G. (1989). Entropy and the
recognition of fuzzy letters. Fuzzy Sets and Syst, 31, 297-309.

Menhardt, W. and Schmidt, K. H. (1988). Computer vision on
magnetic resonance Images, Patt. Recog. Lett. 8, 73-85 (1988).

Mitra, S. and Pal, S. K. (1992). Multilayer perceptrons, fuzzy sets and
classification, IEEE Trans. Neural Networks, 3(5), 683-697.

Muroga, S. (1971). Threshold Logic and Its Applwations, J . Wiley,
NY.

Ngifarieh, A. and Keller, J . M. (1991). A new approach to inference in
approximate reasoning. Fuzzy Sets and Syst, 41(1), 17-37.

Nafarieh, A., and Keller, J . M. (1991). A fuzzy logic rule-based
automatic target recognizer, Int. J. of Intell. Syst, 6(3), 295-312.

REFERENCES 749

Nakagowa, K. and Rosenfeld, A (1978). A note on the use of local max
and min operations in digital picture processing, IEEE Trans.
Syst Man and Cybems, 8, 632-635.

Nath, P. and Lee, T.T. (1983). On the design of classifier with
linguistic variables as input. Fuzzy Sets and Syst. , 1 1 , 265-286.

Pal, S.K. and Majumder, D. (1977). Fuzzy sets and decision making
approaches in vowel and speaker recognition, IEEE Trans. Syst,
Man and Cybems., 7,625-629.

Pal, S. K. and Mitra, S. (1990). Fuzzy djniamic clustering algorithm,
Patt. Recog. Lett., 11(8), 525-535.

Pal, S.K and Pramanik, P.K. (1986). Fuzzy measures in determining
seed points in clustering, Patt. Recog. Lett., 4(3), 159-164.

Pal, S. K., Datta, A.K. and Majumder, D. (1978), Adaptive learning
algorithm in classification of fuzzy patterns : an application to
vowels in CNC context. Int. J. Syst. Set. 9(8), 887- 897.

Pathak, A. and Pal, S.K. (1990). Generalised guard zone algorithm
(GGA) for learning: automatic selection of threshold, Patt. Recog.,
23(3/4), 325- 335.

Pathak, A. and Pal, S.K. (1992). Effect of wrong samples on the
convergence of learning processes-II: a remedy. Inform. Set,
60(1/2), 77-105.

Pediycz, W. (1991). Neurocomputations in relational systems, IEEE
Trans. Pattern Anal and Machine Intell, 13, 289-296.

Pedrycz, W. (1993). Fuzzy Control and Fuzzy Systems, 2nd edition.
Research Studies Press/J.Wiley, Taunton, NY.

Pedrycz, W. (1993). Fuzzy neural networks and neurocomputations.
Fuzzy Sets and Syst, 56, 1993, 1-28.

Pedrycz, W. (1995). Fuzzy Set Engineering, CRC Press, Boca Raton,
FL.

Pedrycz, W. and Rocha, A.F. (1993). Fuzzy-set based models of
neurons and knowledge-based networks, IEEE Trans. Fuzzy Syst,
1, 254-266.

Peleg, S. and Rosenfeld, A. (1981). A min-max medial axis
transformation, IEEE Trans. Patt. Anal, and Machine Intell, 3 ,
208-210.

750 FUZZY PATTERN RECOGNITION

Ripley, B. D. and Rasson, J. P. (1977), Finding the edge of a Polsson
forest, Jour. Applied Probability, 14, 483-491.

Riseman E. M. and Hanson, A. R. (1988). A Methodology for the
development of general knowledge-based vision systems, in
Vision Systems and Cooperative Computation, ed. M. A. Arbib,
MIT Press, Cambridge MA, 1988.

Rocha, A.F. (1992). Neural Nets: A Theory for Brain and Machine.
Lecture Notes in Artificial Intelligence, 638, Springer-Verlag,
Berlin.

Saitta, L. and Torasso, P. (1981). Fuzzy characteristics of coronary
disease. Fuzzy Sets and Systs., 5, 245-258.

Schneeweiss, W.G.(1989). Boolean Functions with Engineering
Applications, Springer-Verlag, Berlin

Shi, H., Gader, P., and Keller, J . M. (1996). An 0(K)-Time
implementation of fuzzy integral filters on an enhanced mesh
processor array, Proc. IEEE Int. Conf. on Fuzzy Syst, 1086-1091.

Simpson, P. (1992). Fuzzy min-max neural networks 1:
classification, IEEE Trans. Neural Networks, 3(5), 776-786.

Sugeno, M. and Tanaka, K. (1991). Successive identification of a
fuzzy model and its application to prediction of a complex system.
Fuzzy Sets and Syst, 42, 315-334.

Sugeno. M. and Kang, G. T. (1988). Structure identification of fuzzy
model, Fuzzy Sets and Syst, 28, 15-33.

Sutton, M. A. and Bezdek, J. C. (1997). Enhancement and analysis of
digital mammograms using fuzzy models, SPIE Proc. AIPR
Workshop: Exploiting New Image Sources and Sensors, 3240,
SPIE, Bellingham, WA, 179-190.

Takagi, H. and Hayashi, 1. (1991). Artificial neural network driven
fuzzy reasoning, IntJ. Appr. Reason., 5(3), 191-212.

Tsypkin, Y. Z. (1973). Foundations of the Theory of Learning
Systems, Translator Z. J. Nikolic, Academic Press, NY.

Wang, D., Wang, X., and Keller, J . M. (1997). Determining fuzzy
integral densities using a genetic algorithm for pat tern
recognition, Proc. NAFIPS Conf, 263-267.

Wang, X., and Keller, J. M. (1997). Fuzzy surroundedness, Proc. IEEE
Int. Congress on Fuzzy Syst, 1173-1178.

REFERENCES 751

Wang. X., Keller, J . M., and Gader, P. (1997). Using spatial
relationships as features in object recognition, Proc. NAFIPS
Conf.,, 160-165.

Windham, M. P., Windham, C , Wyse, B. and Hansen, G. (1985).
Cluster analysis to improve food classification within commodity
groups, J. Amer. Diet Assoc., 85(10), 1306-1314.

Windham, M.P. (1983). Geometrical fuzzy clustering algorithms.
Fuzzy Sets and Syst, 3, 271-280.

Yamakawa, T. and Tomoda, S. (1989). A fuzzy neuron and its
application to pattern recognition, Proc. IFSA Congress, ed. J.
Bezdek. 30-38.

Yan, B. and Keller, J. M. (1991). Conditional fuzzy measures and
image segmentation, Proc. NAFIPS Conf., 32-36.

Appendix 1 Acronyms and abbreviations

Short form Long form
iFLVQ descending fuzzy learning vector quantization
1-nmp nearest multiple prototype (classifier)
1-np nearest prototype (classifier)
1-snp nearest syntactic prototype (classifier)
1 -Urnn 1-stage univariate rank nearest neighbor (rule)
ID one-dimensional
2D two-dimensional
3D three-dimensional
4D four-dimensional
ACE alternating cluster estimation
ADDC adaptive distance djniamic clusters
AFC adaptive fuzzy clustering
AFCE adaptive fuzzy c-elliptotypes
AFCM approximate fuzzy c-means
AFCS adaptive fuzzy c-shells
AFCV adaptive fuzzy c-varieties
AFEI average feature evaluation index
ANFIS adaptive-network-based fuzzy inference system
ANN artificial neural network
AO alternating optimization
AP assignment prototype
APC armored personnel carrier
ART adaptive resonance theory
ARTMAP adaptive resonance theoretic MAP
ATR automatic target recognition
AVR average
BBB branch and bound backtracking
BK background
BKS belief knowledge space
BNN biological neural network
bpa basic probability assignment
CA competitive agglomeration
CART classification and regression trees
CATSCAN computerized axial tomography scan
CCM compatible cluster merging
CFAR constant false alcirm rate
CI centromeric index
CL competitive learning
CLIPS C language integrated production system
CM c-means
CMF consequent membership function
CNN computational neural network
ax> center of gravity
COLL colllnear
CP Chang-Pavlidis (fuzzy decision tree)
CPU central processing unit
CRE crisp rule extraction

754 FUZZY PATTERN RECOGNITION

CS
CSF
CT
CV
CZCS
D&C
D&C-NFCS
DARPA
DEVLIN
DS
DT
dt
DYNOC
EBLVQ
EM
EP
ER
ERIM
F-
FALVQ
FAN
FANNY
FART
FARTMAP
FC2RS
FCE
FCES
FCHP
FCL
FCM
FCP
FCPQS
FCQ
FCQS
FCRM
FCRS
FCS
FCSS
FCV
FDT
FF
FFBP
FHMM
FI
FIRE
FKCN
FLD
FLIR
FLVQ
FM

compact and separated
cerebro-spinal fluid
computerized tomographic
certainty value
coastal zone color scanner
divide and conquer
divide and conquer-noise fuzzy c-shells
defense advanced research procurement agency
deviation from linearity
Dempster-Shafer
decision tree
decision template
dynamic cluster validation
extended batch learning vector quantization
expeactation-maximization
end point
equivalence relation
Environmental Research Institute of Michigan
fuzzy
fuzzy adaptive learning vector quantization
fuzzy aggregation network
fuzzy analysis
fuzzy adaptive resonance theory
fuzzy adaptive resonance theory MAP
fuzzy c two-rectangular shells
fuzzy c-elliptotypes
fuzzy c-ellipsoidal shells
fuzzy c-hyperplanes
fuzzy c-lines
fuzzy c-means
fuzzy c-planes
fuzzy c-plano quadric shells
fuzzy c-quadrics
fuzzy c-quadric shells
fuzzy c-regression models
fuzzy c-rectangular shells
fuzzy c-shells
fuzzy c-spherical shells
fuzzy c-varieties
fuzzy decision tree
feed Forward
feed forward back propagation
fuzzy hidden Markov model
fuzzy integral
fuzzy inference rules-else
fuzzy Kohonen clustering network
Fisher's linear discriminant
forward-looking infrared (radar)
fuzzy learning vector quantization
fuzzy measure

REFERENCES 755

FMLE fuzzy maximum likelihood estimation
FNC fuzzy noise clustering
FNM fuzzy non-metric
FNN fuzzy neural network
FOSART fully self-organized ART
FPCM fuzzy possibilistic c-means
FRC fuzzy robust clustering
FRED fuzzy reasoning edge detector
FSART fuzzy adaptive resonance theory
FTCP fuzzy trimmed c-prototypes
GA genetic algorithm
GHT generalized Hough transform
CK Gustafson-Kessel
GLVQ generalized learning vector quanitization
GM gray matter
GM-2 falsely labeled gray matter
GMD Gaussian mixture decomposition
GMVE generalized minimum volume ellipsoid
GPR ground penetrating radar
GTl ground truth (type 1)
H- hard (crisp)
HCM hard c-means
HF heterogeneous fuzzy (data)
HFD heteregeneous fuzzy data
HMM hidden Markov model
HT Hough transform
lART improved adaptive resonance theory
IDS interactive dichotomizer 3
IDW inverse distance weighted
IEEE Institute of Electrical and Electronics Engineers
lO input-output
lOAC index of area coverage
ISODATA iterative self-organizing data analysis
ISOETRP iterative self-organizing entropy
Iris (?) we use this if we are not sure what version of Iris

was actually used (cf our remarks in the preface)
k-nn k-nearest neighbor (rule)
KB knowledge based
LADAR Lasar radar
LANDSAT land satellite (a guess)
IBG Lloyd-Buzo-Gray
LDC linear discriminant classifier
LHS left hand side
LMS least mean squared (error)
LODARK low and dark
IJCX3 logistic discriminant classifier
LOS linear order statistic
LVQ learning vector quantization
m-Mrnn m-stage multivariate rank nearest neighbor (rule)
m-Urnn m-stage univariate rank nearest neighbor (rule)

756 FUZZY PATTERN RECOGNITION

M3
MA
MAD
MAJ
MAX
MCM
MFV
MIMO
MIN
MINPRAN
MISO
MLE
MLP
MP-RAGE
MPC
MR
MS
MST
MYCIN
NB
NC
NERFCM
NERHCM
NFCS
NFS
NISP
NIST
nmp
NN
np
OFCM
OFR
OLS
OP
OR
or
OWA
P-
p-D
PAM
PCA
PCM
PCNN
PCPQS
PCQS
PDF
PET
PMF
PPR
PRO

modified mountain method
Mamdani-Assilian
median of absolute deviations
majority
maximum
mountain clustering method
mountain function values
multiple input, multiple output
minimum
minimize the probability of randomness
multiple Input, single output
maximum likelihood estimation
multilayered perceptron
magetization-prepared rapid gradient echo
modified partition coefficient
magnetic resonance
multiple sclerosis
minimal spanning tree
shorthand for many drugs such as spectromyacin
naive Bayes
noise clustering
non-Euclidean relational fuzzy c-means
non-Euclidean relational hard c-means
noise fuzzy c-shells
neuro-fuzzy systems
norm Induced shell prototypes
National Institute of Standards and Technology
nearest multiple prototype
neural network
nearest prototype
object (data) fuzzy c-means
optimized fuzzy rules
orthogonal least squares
optimized prototypes
oracle
other
ordered weighted average
posslbillstic
p-dlmensional
partitioning around medolds
principal components analysis
possibllistic c-means
pusle coupled neural network
posslbillstic c-plano quadric shells
possibllistic c-quadrlc shells
probability density function
positron emission tomography
premise membership function
probabilistic product
product

REFERENCES 757

PSYFRED

PT
QCCM
QDC
RACE
RADAR
RBF
RCA
RFCM
RGB
RHS
RIDS
RMS
rnn
ROC
RoFCM
SAHN
SART
SB
SBM
SCM
SCS
SEASAT
sg
sgFCM
sgHCM
sgPCM
SHCM
SIMO
SISO
SLP
snp
SOFM
SRE
SRS
ssFCM

ssfcm
TFCM
TS
UA
UBD
Urnn
VGC
VQ
WGHT
WM

psychovisually motivated
fiazzy reasoning edge detector

pathology
quadric compatible cluster merging
quadratic discriminant classifier
relational alternating cluster estimation
radio detection and ranging
radial basis function
robust competitive agglomeration
relational fuzzy c-means
red, green, blue
right hand side
real interactive dichotomizer 3
root mean square (error)
rank nearest neighbor
receiver operating characteristic (curve)
robust fuzzy c-means
sequential agglomerative hierarchical nested
simplified adaptive resonance theory
single best
segmentation-based method
subtractive clustering method
soft competition scheme
sea satellite (a guess)
string grammar
string grammar fuzzy c-means
string grammar hard c-means
string grammar possibilistic c-means
sequential hard c-means
single input, multiple output
single input, single output
single layer perceptron
S5mtactic nearest prototype
self-organizing feature map
soft rule extraction
soft relaxation scheme
semi-supervised fuzzy c-means

(Bensald et al., 1996a)
semi-supervised fuzzy c-means (Pedrycz, 1985)
temporal fuzzy c-means
Takagi-Sugeno
universal approximator
unsupervised boundary description
1-stage univariate rank nearest neighbor (rule)
validity guided reclustering
vector quantizer
weighted generalized Hough transform
white matter

i)4>pendix 2 The Iris Data: Table I, Fisher (1936)

Iris sestosa Iris versicolor [ris vlrginica
Sepal Sepal Petal Petal Sepal Sepal Petal Petal Sepal Sepal Petal Petal
Leng. Width Leng, Width Leng. Width Leng. Width Leng. Width Leng. Width
5.1 3 .5 1.4 0 .2 7 .0 3 .2 4 .7 1.4 6 .3 3 .3 6 .0 2 . 5
4 .9 3 .0 1.4 0 .2 6 .4 3 .2 4 . 5 1.5 5 .8 2 .7 5 .1 1.9
4 .7 3 .2 1.3 0 .2 6 .9 3 .1 4 .9 1.5 7.1 3 .0 5 .9 2 .1
4 .6 3 .1 1.5 0 .2 5 .5 2 . 3 4 .0 1.3 6 .3 2 .9 5 .6 1.8
5.0 3 .6 1.4 0 .2 6 .5 2 .8 4 .6 1.5 6 .5 3 .0 5 .8 2 .2
5 .4 3 .9 1.7 0 .4 5 .7 2 .8 4 . 5 1.3 7 .6 3 .0 6 .6 2 .1
4 . 6 3 .4 1.4 0 .3 6 .3 3 .3 4 .7 1.6 4 .9 2 . 5 4 . 5 1.7
5 .0 3 .4 1.5 0 .2 4 . 9 2 .4 3 .3 1.0 7 .3 2 .9 6 .3 1.8
4 . 4 2 . 9 1.4 0 .2 6 .6 2 .9 4 .6 1.3 6.7 2 . 5 5 .8 1.8
4 .9 3 .1 1.5 0 .1 5.2 2 .7 3 .9 1.4 7.2 3 .6 6 .1 2 . 5
5.4 3 .7 1.5 0 .2 5 .0 2 .0 3 .5 1.0 6 .5 3.2 5 .1 2 . 0
4 . 8 3 .4 1.6 0 .2 5 .9 3 .0 4 .2 1.5 6 .4 2 .7 5 .3 1.9
4 . 8 3 .0 1.4 0 .1 6 .0 2 .2 4 .0 1.0 6 .8 3 .0 5 .5 2 .1
4 . 3 3 .0 1.1 0 .1 6.1 2 .9 4 .7 1.4 5 .7 2 . 5 5 .0 2 . 0
5 .8 4 . 0 1.2 0 .2 5 .6 2 .9 3 .6 1.3 5 .8 2 .8 5 .1 2 . 4
5 .7 4 . 4 1.5 0 .4 6 .7 3 .1 4 .4 1.4 6 .4 3.2 5 .3 2 . 3
5 .4 3 .9 1.3 0 .4 5 .6 3 .0 4 . 5 1.5 6 .5 3 .0 5 .5 1.8
5.1 3 .5 1.4 0 .3 5 .8 2 .7 4 .1 1.0 7 .7 3 .8 6 .7 2 .2
5 .7 3 .8 1.7 0 .3 6.2 2 .2 4 . 5 1.5 7 .7 2 .6 6 .9 2 . 3
5.1 3 .8 1.5 0 .3 5 .6 2 . 5 3 .9 1.1 6 .0 2 .2 5 .0 1.5
5 .4 3 .4 1.7 0 .2 5.9 3 .2 4 . 8 1.8 6.9 3.2 5 .7 2 .3
5.1 3 .7 1.5 0 .4 6.1 2 . 8 4 .0 1.3 5.6 2 . 8 4 .9 2 .0
4 . 6 3 .6 1.0 0 .2 6 .3 2 . 5 4 .9 1.5 7 .7 2 .8 6 .7 2 .0
5.1 3 .3 1.7 0 . 5 6 .1 2 .8 4 . 7 1.2 6 .3 2 .7 4 .9 1.8
4 . 8 3 .4 1.9 0 .2 6 .4 2 .9 4 . 3 1.3 6 .7 3 .3 5 .7 2 .1
5 .0 3 .0 1.6 0 .2 6 .6 3 .0 4 .4 1.4 7.2 3 .2 6 .0 1.8
5 .0 3 .4 1.6 0 .4 6 .8 2 .8 4 . 8 1.4 6.2 2 .8 4 . 8 1.8
5.2 3 .5 1.5 0 .2 6 .7 3 .0 5.0 1.7 6.1 3 .0 4 . 9 1.8
5.2 3 .4 1.4 0 .2 6 .0 2 .9 4 . 5 1.5 6 .4 2 .8 5 .6 2 .1
4 .7 3 .2 1.6 0 .2 5 .7 2 .6 3 .5 1.0 7 .2 3 .0 5 .8 1.6
4 . 8 3 .1 1.6 0 .2 5 .5 2 .4 3 .8 1.1 7 .4 2 .8 6 .1 1.9
5 .4 3 .4 1.5 0 .4 5 .5 2 .4 3 .7 1.0 7 .9 3 .8 6 .4 2 .0
5.2 4 .1 1.5 0 .1 5 .8 2 .7 3 .9 1.2 6 .4 2 . 8 5 .6 2 .2
5 .5 4 .2 1.4 0 .2 6 .0 2 .7 5.1 1.6 6 .3 2 .8 5.1 1.5
4 .9 3 .1 1.5 0 .2 5 .4 3 .0 4 . 5 1.5 6.1 2 .6 5 .6 1.4
5.0 3 .2 1.2 0 .2 6 .0 3 .4 4 . 5 1.6 7 .7 3 .0 6 .1 2 .3
5 .5 3 .5 1.3 0 .2 6 .7 3 .1 4 .7 1.5 6 .3 3 .4 5 .6 2 .4
4 .9 3 .6 1.4 0 .1 6 . 3 2 . 3 4 .4 1.3 6 .4 3.1 5 .5 1.8
4 . 4 3 .0 1.3 0 .2 5 .6 3 .0 4 .1 1.3 6.0 3 .0 4 . 8 1.8
5.1 3 .4 1.5 0 .2 5 .5 2 . 5 4 .0 1.3 6.9 3.1 5 .4 2 .1
5.0 3 .5 1.3 0 .3 5 .5 2 . 6 4 .4 1.2 6 .7 3.1 5 .6 2 .4
4 . 5 2 . 3 1.3 0 .3 6.1 3 .0 4 .6 1.4 6.9 3 .1 5.1 2 .3
4 . 4 3 .2 1.3 0 .2 5 .8 2 .6 4 .0 1.2 5 .8 2 .7 5.1 1.9
5 .0 3 .5 1.6 0 .6 5 .0 2 . 3 3 .3 1.0 6 .8 3.2 5 .9 2 .3
5.1 3 .8 1.9 0 .4 5 .6 2 .7 4 .2 1.3 6 .7 3 .3 5 .7 2 . 5
4 . 8 3 .0 1.4 0 .3 5 .7 3 .0 4 .2 1.2 6 .7 3 .0 5 .2 2 .3
5.1 3 .8 1.6 0 .2 5 .7 2 .9 4 .2 1.3 6 .3 2 . 5 5 .0 1.9
4 .6 3 .2 1.4 0 .2 6.2 2 .9 4 . 3 1.3 6 .5 3 .0 5 .2 2 .0
5 .3 3 .7 1.5 0 .2 5.1 2 . 5 3 .0 1.1 6.2 3 .4 5 .4 2 . 3
5.0 3 .3 1.4 0 .2 5 .7 2 .8 4 .1 1.3 5.9 3 .0 5 .1 1.8

Index
Acceleration, 36-37
Adaptive algorithms, 39-40
Adaptive distance dynamic clusters

(ADDC), 42
Adaptive fuzzy c-elliptotypes (AFCE),

47-50, 48-50
Adaptive fuzzy c-shells (AFCS), 54-55,

615
Adaptive fuzzy c-varieties (AFCV),

50-52
Adaptive learning, 188
Adaptive-network-based fuzzy

inference systems (ANFIS), 396
Adaptive resonance theoretic MAP

(ARTMAP), 423-424, 542
fuzzy, 423-424

Adaptive resonance theory (ART), 204,
413-442, 542-543, see also
Radial basis function networks;
Simplified adpative resonance
theory

fuzzy, 421-424, 431, 440-441,
542-543

improved, 542
Additive clustering models, 181
Additive ;f-model, 398-401, 407

segmentation and, 589-591
with Yager's union and intersection

operators, 589-591
Affine subspace, 191
Agglomerative algorithms, 137
Aggregation method, 299, 641, 646,

647, 650
Algorithmic labels, 207-208
Alignment, 573-574
Alphabet of G, 496
a-cuts, 153, 630, 639
Alternating cluster estimation (ACE),

133-134, 180
rule extraction and, 330, 334, 358
syntactic pattern recognition and,

504
Alternating optimization (AO), 15, 17
Analjrtical model, 497
Anesthesia depth evaluation, 526
Angle constraint, 652
Angles, 5
Apparent error rate, 184
Approximate fuzzy c-means

alternating optimization
(AFCM-AO), 37

Approximate houses, 501
Area of a fuzzy region, 626

Arithmetic, 397
ARTl, 413-421, 431-432, 440-441,

542-543
algorithm of, 414-421
fuzzy relatives of, 421-424

ART2, 414, 417, 421
ART3,421
Assignment matrices, 161
Assignment-prototype (AP) model,

160-165, 167-168
Attributed edge sets, 510
Attributed graphs, 509-518
Attributed vertex sets, 510
Automatic target recognition (ATR),

259-260, 261-262, 458-460
Average-angle method, 641
Average feature evaluation index

(AFEI), 526
Average gray levels of a region,

637-639
Average linkage clustering algorithms,

151
Average (AVR) operator, 481-483, 489
Average partition density, 103
Average radius of the shells, 113
Average shell partition density, 112
Average shell surface density, 114
Average shell thickness, 113

Bar feature vectors, 365
Basic probability assignment (bpa),

530, 629-630
Batch point-prototype clustering

models, 14—39, see also C-means
models; Semi-supervised
clustering models

probabilistic, 29-34
reformulation theorem in, 37-39,

166
Bayes classifiers, 183, 188, 405, 458
Bayes rule, 20, 221-222
Behavior knowledge space (BKS), 483
Bha data, 266
Bias of a node, 375
Binary morphological operators, 665
Biological neural networks (NN),

370-371, 372-378, 421
Bipolar logistic functions, 376, 386
Blending functions, 567-568, 569-571
Bottom-up approach to decision tree

design, 278
Bottom-up search, 308
Boundary description, 601-624, 675

762 FUZZY PATTERN RECOGNITION

of circular boundaries, 611-615
of linear boundaries, 603-611
of quadric boundaries, 615-621
unsupervised, 615-621

Brain imagery, 131-132, 526, 672
Branch and bound backtracking

(BBB) algorithm, 308
Branch b, 467-468
Breadth of a fuzzy region, 627

C4.5, 275, 280, 314-315, 414, 532,
533-534, 536

Camera man image, 576
Categorical attributes, 271, 272
Categorical data, 3
Categorical values, 282
Categorical veiriables, 282
C diagonal norm, 310
Center of gravity (COG) method,

299-300, 301, 350, 363
Centroid method, 641, 644, 646, 647,

648, 650
Centroids, 5
Centrometric Index (CI), 361
Certainty value (CV), 654
Chang-Pavlidis fuzzy decision tree, 533

described, 303-308
fusion techniques and, 473
ID3-related, 308-309, 318

Chinese characters, recognition of,
510-518, 532

Cholesky decomposition, 60
Choquet fuzzy integral, 256, 258-260,

261, 264, 532, 664
fusion techniques and, 458,

459-460, 462, 463-464, 489
Circular boundaries, 611-615
Circular clusters, 111-112
CITYTOUR, 640
C language integrated production

system (CLIPS), 594
Class conscious (CC) operators, 481,

482-^83, 484
Classification and regression tree

(CART) approach, 280-281, 532,
536

Classifier design, 183-546, see also
Adaptive resonance theory;
Fusion techniques; Fuzzy
integrals; Fuzzy rule-based
classifiers; Nearest neighbor
classifiers; Neural networks;
Prototype classifiers; Syntactic
pattern recognition

Classifier fusion, 187,454-491
Classifiers, 7

Hayes, 183, 188, 405, 458

crisp, 7, 183, 329, 382-385
first level, 455
linear, 192
linear discriminant, 483, 490
logistic, 483
Markov chain, 325
non-crisp, 7
optimized fuzzy rules, 471
quadratic discriminant, 483,

487-489, 490
soft, 183, 455
temporally adaptive, 188

Class indifferent (CI) operators,
482-483

Closed ball, 64-65
Closure, 140-141

reflexive, 140, 141, 143
symmetric, 140, 141, 142, 143
transitive, 141, 142-143, 144-146,

155-158, 169, 180
Cloud clusters, 340, 611
Cluster analysis, see Object data;

Relational data
Cluster center, 190
Clustering, 11, 12

by decomposition of fuzzy relations,
153-158

hierarchical, 137, 149-152, 181
probabihstic, 29-34
progressive, 602-603
relational, see Relational clustering
robust, 75-87
rule-based approximation based on,

325-359
segmentation via, 582-588
validity guided, 595

Clustering algorithms, 130-134, 309
Clustering tendency, 11
Cluster validity

Davies-Bouldin index in, 90-91, 94,
100, 109, 116, 117

direct meastires in, 90
Dunn's index in, 89, 92-96, 103, 109
dynamic, 134-135
fuzzification of statistical indices in,

117-122
indirect index standardization and

normalization in, 105-109
indirect measures for non

point-prototjfpes in, 109-116
indirect measures in, 96-105
for object data, 12, 87-121, 134-136
performance-based, 134
for relational models, 178-180
static, 134

INDEX 763

C-means models, 16-23, see also
Fuzzy c-means; Hard c-means;
Possibilistic c-means

competitive learning networks and,
230-232

sjTitactic pattern recognition and,
504

Coastal Zone Color Scanner (CZCS),
548

CoUinear grouping algorithm, 654-658
Compact and separated (CS)

c-partitions, 93
Compact clouds, 109
Compactness of a fuzzy region, 628
Compactness to separation ratio, 102
Compatibility fuzzy sets, 645-647
Compatibility method, 641, 646, 650
Compatible cluster merging (CCM),

335, 602, 603-606
quadric, 621-624

Competetive agglomeration (CA),
82-84, 543

Competitive layers, 203
Competitive learning (CL) networks,

203-207, 413-417, 419
c-means models and, 230-232

Complement coding, 423
Complete circular clusters. 111
Complete linkage clustering

Eilgorithms, 151
Completeness of the rule-base, 292,

293
Composition-based inferencing, 301
Computational neural networks (NN),

183, 371, 372-378, 421
Computerized tomagraphic (CT)

imaging, 672
Computer vision, 407-410, 547-679,

see also Image processing
Computing layers, 379
Conftision matrices, 184, 229
Consequent, 290
Consequent membership functions

(CMFs), 293, 299, 301, 302
high-level vision and, 660, 661
ID3-related fuzzy trees and, 324, 325
rule extraction and, 338, 346, 352,

354, 358
Consequent parameters, 290
Consistency index, 485
Constant false alarm rate (CFAR), 458,

459
Continuous functions, 347-348
Continuous perceptrons, 427
Convergence, 36
Convex decomposition, 156-158, 180
Convex hulls, 156

Comemess, 572-574
Co-trained fusion operators, 456
Covariance matrices, 6
C-partitions, 12, 13, 14-15, 93
Crack edge strengths, 576-577
Crisp a-level sets, 153
Crisp classifiers, 7, 183, 329, 382-385
Crisp decision trees, 533-534

ARTl and, 413-414
Chang-Pavlidis fuzzy tree compared

with, 303, 304-306
described, 269-272
design of, 278-288
function approximation with,

537-538
ID3-reIated fuzzy trees compared

with, 309, 310, 314-315
incompleteness of, 293
rules from, 273-278

Crisp k-nearest neighbor rule (k-nn),
242-243,248-249

Crisp label vectors, 4, 187, 340-341,
343, 344

Crisp matrices, 98-99
Crisp membership functions, 349-350
Crisp morphological operators, 665
Crisp nearest prototj^jes, 190-191
Crisp partitions, 20, 158

ARTl and, 414
cluster validity and, 96, 117-121
fuzzy relations and, 153
rule extraction and, 346-348, 349

Crisp regions, 641-642, 644, 645, 646
Crisp relations, 138-143
Crisp rule extraction (CRE), 349-350,

352
Crisp rule patches, 274, 275, 277, 350
Cross-validation, 185-186
Cubicalc, 361, 363, 367
Cumulative rank, 489
Cutpoint quantization, 275
Cutpoints, 274-275

Data dependent densities, 463-464
Data level fusion, 443-452
Data selection, 189
Davies-Bouldin index, 90-91, 94, 100,

109, 116, 117
Decision level fusion, 454
Decision profiles, 480-481, 484, 485,

486, 490
Decision templates, 478-491
Decision trees, 290, 376-377, see also

Crisp decision trees; Fuzzy
decision trees

Decomposition of fuzzy relations,
clustering by, 153-158

764 FUZZY PATTERN RECOGNITION

Defense Advanced Research Projects
Agency (DARPA), 198, 443

Defuzzification
height, 295
in Mamdani-Assilian model, 299-300

Degenerate fuzzy c-partitions, 108
Deictic use of spatial prepositions, 640
Dempster-Shafer (DS) theory,

257-258, 262, 460, 483, 484,
489, 530

Dendrograms, 151-152, 154, 178
Dense circular clusters. 111
Dental patient study, 133
Derivation trees, 497
Deviation from linearity (DEVLIN),

458, 459
Digital subtraction angiography, 673
Direct data indices, 93
Direct parametric data indices, 91
Direct parametric indices, 88
Dissimilarity relations, 158, 159, 169
Distance, 5

Euclidean, see Euclidean distance
Levenshtein, 503, 506
Mahalanobis, see Mahaleinobis

distance
Distance ties, 245
Divide and conquer (D&C) algorithm,

611
Divide and conquer NFCS

(D&C-NFCS) algorithm, 611, 612,
614

Dog-rabbit prototype generation
algorithm, 216

Dot products, 5
Dubois-Jaulent basic probability

assignment (bpa), 637, 639
Dunn's index, 89, 92-96, 103, 109
D5mainic cluster validation (DYNOC),

134-135
D3Tiamic off-line adaptive training, 188

Edge detection, 562-572, 664, 668-670
Edge enhancement, 562-572, 668-670
Edge fragments, 562, 655, 657, 658
Edge images, 620-621
Edge interpreters, 510, 512
Edge linking, 572-579
Edgeness, 572-574
Edge operators, 565-566
Edge points, 562
Effective radius, 114
Electron spin resonance spectroscopy,

526
Elliptical prototypes, 54-56
Ellis Fischel Cancer Center, 361
Elongatedness of a fuzzy region, 628

ELSE rule, 563-564
End point constraint, 652-653
Entropy

crisp decision trees and, 279-280,
283, 284-285

ID3-related fuzzy trees and, 309
iterative self-organizing, 131,

309-311
partition, of U, 97-98
quadratic, 280
segmentation and, 596-601

Environmental Research Institute of
Michigan (ERIM), 265, 606

Equivalence relation (ER), 140, 141,
154

Error rates, 184-187
apparent, 184
leave-one-out estimate of, 186-187
neural networks and, 384-385
oracle model and, 485-486
recall, 184
resubstitution, see Resubstitution

error rate
S3nitactic pattern recognition and,

506
Errors

generalization, 184, 279, 387
neural networks and, 382
test, 184, 185, 333, 384
training, see Training errors
VEilidation, 185

EST methods, 355-356
Euclidean distance, 34, 147

assignment-prototype model and,
162

cluster validity and, 100, 110
competitive learning networks and,

204
fusion techniques and, 452
hierarchical clustering and, 149
image enhancement and, 556
linear boundaries and surfaces and,

606, 607, 608
nearest neighbor classifiers and,

241, 245
nearest prototypes and, 192,

194-195
neural networks and, 393
perceptual grouping and, 652-654
prototype generation and, 201
segmentation and, 583

Euclidean inner products, 374
Euclidean norms, 6, 35, 132, 133, 148

Davies-Bouldin index and, 90
edge detection and enhancement

and, 567
feature analysis and, 126, 127

INDEX 765

fusion techniques and, 450, 474,
485

fuzzy regions and, 626, 637
neairest multiple prototjrpes and,

213,214
nearest neighbor classiliers and,

242, 247, 251
nearest prototypes and, 193, 196
non point-prototypes and, 42, 51,

64-65, 77
rule extraction and, 342, 355
segmentation and, 584—586
soft competition scheme and, 221

Euclidean space, 448
Expanded batch learning vector

quantization (EBLVQ), 232
Expectation-maximization (EM)

algorithm, 29, 31
External criteria, 117
Extrapolation, 288-289
Extrinsic diameter of a fuzzy region,

628, 634

False alarms, 454, 458, 459-60, 592
Fast commitment and slow receding,

423
Feature analysis

in classifier design, 523-527
in image processing, 666-668
for object data, 121-130

Feature extraction, 121, 123-126
in edge detection and enhancement,

566
feed-forward back-propogation in,

385-391
Feature level fusion, 453-454
Feature selection, 121, 124-127, 189,

391-392
Feature space, 3
Feature value, 3
Feature vectors

bar, 365
in edge detection and enhancement,

566
segmentation and, 583, 584, 588
transition, 365

Feed-forward back-propogation (FFBP)
networks, 313, 382, 399, 409, 536

Iris data on, 385-391
Feed forward (FF) networks, 382
Filters, 556, 557, 560, 561
Firing strength, 292, 295

Chang-Pavlidis fuzzy tree and, 307
crisp decision trees and, 288, 303,

304, 306
edge detection and enhancement

and, 563, 568

fusion techniques and, 469, 470,
473, 475

ID3-related fuzzy trees and, 310,
311, 312,317,320,323

image enhancement and, 561
Mamdani-Assilian model and, 299,

300, 301
rule extraction and, 354—355

First level classifiers, 455
First order neurons, 375
Fisher's classical measure of

separation, 90-91
Fisher's linear discriminant (FLD), 483
Fitting errors, 467
Forward looking infrared (FLIR)

images, 261-262, 443-444, 544
Forward sequential search, 527
Foveation, 519, 520, 522
Fowlkes-Mallow measure, 119
Frame of discernment, 257-258
Fully self-organized simplified adaptive

resonance theory (FOSART), 424,
431-441

Function approximation, 288-303,
537-540

Fusion operators, 455-456
Fusion techniques, 442-491, 544—545

classifier, 454-491
data level, 443-452
decision level, 454
feature level, 453-454

Fuzzification
of input domains, 292
of Mamdani-Assilian model, 299
of statistical indices, 117-121

Fuzzy adaptive resonance theoretic
MAP (FARTMAP), 423-424

Fuzzy adaptive resonance theory
(FART), 421-424, 431, 440-441,
542-543

Fuzzy aggregation networks (FAN),
398, 403-410, 544

rule extraction with, 410-413
segmentation and, 588-591,

596-601
Fuzzy analysis (FANNY), 180
Fuzzy automata, 500-501
Fuzzy binary relations, 138
Fuzzy c-ellipsoidal shells (FCES),

55-56
Fuzzy c-elliptotypes (FCE), 46-48, 135

adaptive, 47-50, 48-50
rule extraction and, 330-334

Fuzzy c-least median of squares
(FCLMS), 81-82

Fuzzy c-lines (FCL), 46, 48-50, 78, 331
Fuzzy clusters, 96-105

766 FUZZY PATTERN RECOGNITION

Fuzzy c-means (FCM), 16-23, 130
cluster validity and, 104, 107, 120,

134
in dental patient study, 133
feature analysis and, 125, 126,

127-129
fusion techniques and, 450-451
fuzzy leaiming vector quantization

and, 231, 232
fuzzy regions and, 638-639
learning vector quantization and,

212, 222-223
linear boundaries and surfaces and,

611
M3 model and, 239-241
mountain clustering method and,

236
nearest neighbor classifiers and, 247
non point-prototypes and, 39,

45-47, 61-62, 67-68, 79, 83
l-norm in, 79
probabilistic clustering and, 31
reformulation theorem and, 37, 39
relational fuzzy c-means model

compared with, 167
remarks on various aspects of,

34-37
robust, 80-81, 82, 84
rule extraction and, 331, 353-357
segmentation and, 584-586, 588,

594-596, 674
semi-supervised, see

Semi-supervised c-means
subtractive clustering method and,

237
temporal, 132-133, 182, 456
in tumor volume estimates, 131-132

Fuzzy c-means alternating
optimization (FCM-AO), 18-23,
130-131

approximate, 37
cluster validity and, 99, 100-102
fuzzy learning vector quantization

and, 223-224, 226
Gaussian mixture decomposition

and, 32-33
non point-prototypes and, 42-44,

48, 79-81
rule-based approximation and, 334
semi-supervised, 23-28

Fuzzy compactness, 581-582
Fuzzy covariance matrices, 41
Fuz2y c-planes (FCP), 46
Fuzzy c-plano-quadric shells (FCPQS),

61
Fiazzy c-quadrics (FCQ), 57

Fuzzy c-quadric shells (FCQS), 59,
61-62

cluster validity and, 115-16
quadric boundetries/surfaces and,

615, 616
Fuzzy c-rectangular shells (FCRS), 69,

606-611
Fuzzy c-regression models (FCRM),

69-75, 335
Fuzzy c-sheUs (FCS), 52-54, 65, 78

adaptive, 54-55, 615
circular boundaries and, 611, 613
regression models and, 73

Fuzzy c-spherical shells (FCSS), 52,
54, 61+62, 611

Fuzzy c two rectangular shapes
(FC2RS) model, 609, 610, 611

Fuzzy c-varieties (FCV), 45-52
adaptive, 50-52

Fuzzy decision trees, 532-537
Chang-Pavlidis, see Chang-Pavlidis

fuzzy decision tree
ID3-related, 308-325

Fuzzy decision values, 306, 310
Fuzzy densities, 254
Fuzzy edge points, 563
Fuzzy edge strength, 563
Fuzzy fans, 520-521
Fuzzy geometry, see Geometric

properties
Fuzzy grammars, 499-500
Fuzzy Hough transform (HT), 666-667
Fuzzy hypervolume of U, 102
Fuzzy inference ruled by else-action

(FIRE) paradigm, 551, 554, 563
Fuzzy input-output systems, 183
Fuzzy integral filters, 258-260
Fuzzy integrals, 457-458, 532

described, 253-268
fusion techniques and, 483, 484
in pattern recognition, 260-263

Fuzzy isovolumes, 672
Fuzzy k-nearest neighbor rules (k-nn),

244, 248, 530-531
Fuzzy Kohonen clustering network

(FKCN), 223
Fuzzy label vectors, 4, 5, 12, 368-370
Fuzzy languages, 499, 500
Fuzzy learning vector quantization

(FLVQ), 211,231,232
described, 222-230
mountain clustering method and,

233
radial basis function networks and,

4 3 6 ^ 4 1
Fuzzy mathematical morphology, 665

INDEX 767

Fuzzy maximum likelihood estimation
(FMLE), 44-45, 103-105

Fuzzy m^easures (FM), 253-257, see
also Sugeno A fuzzy measure

Fvizzy morphological operators, 665
Fuzzy neural networks (FNN),

393-403, 541
Fiazzy neurons, 540-544, see also

Type I fuzzy neurons
Fuz2y noise clustering (FNC), 79-80,

84
Fuzzy non-metric (FNM), 159-160,

167-168
Fuzzy partitions, 158, 158-178, 180,

292, see also Relational clustering
degenerate, 108

Fuzzy pattern recognition, 1-7, 371
Fuzzy-possibilistic c-means (FPCM),

130
Fuzzy reasoning, 665
Fuzzy reasoning edge detector (FRED),

669
Fuzzy regions, 624-639

geometry of, see Geometric
properties

spatial relations and, 641, 644
Fuzzy relations

clustering by decomposition of,
153-158

described, 143-146
Fiizzy robust clustering (FRC), 79
F u z ^ rule-based classifiers, 268-370,

532-537, see also Crisp decision
trees; Fuzzy decision trees; Rule
extraction

function approximation and,
288-303

rule-based approximation and,
325-359

Fuzzy similarity relations, 144
Fuzzy simplified adaptive resonance

theory (FSART), 424
Fxozzy transitivity, 143-144
Fuzzy trimmed c-prototypes (FTCP),

81-82
Fuzzy version of hidden Markov model

(FHMM), 461-464

Gaussian kernels, 551, 553
Gaussian membership functions, 335,

404, 410-412, 577
Gaussian mixture decomposition

(GMD), 31-34, 39, 543
cluster validity and, 103-105
Gustafson-Kessel model and, 41-45
regression models and, 70-72
robust clustering and, 75

segmentation and, 583, 584-586
Gaussian noise, 551, 637-638
Gaussian radial basis functions, 426,

429, 431, 442, 543-544
Generalization, 184
Generalization errors, 184, 279, 387
Generalized coordinates, 445
Generalized Hough transform (GHT),

602, 667
weighted, 667

Generalized learning vector
quantization - fuzzy (GLVQ-F),
204, 211-212

nearest multiple prototypes and,
212-219

Generalized mean neurons, 397-398,
402-403

Generalized minimum volume ellipsoid
(GMVE) algorithm, 80

Generalized nearest prototype
classifiers, 529

Generalized radial basis functions,
426-427

Generating function of RBF, 425
Generation mode, 497
Genetic algorithm (GA), 38-39, 357
Geo-Centers, Inc., 443, 453
Geometric means, 398
Geometric properties

of fuzzy regions, 625-630
of original and blurred objects,

630-639
Gini diversity index, 279-280, 281
Global convergence theory, 73
Global methods of prototype

generation, 202
Global training, 311
Gradient, 551-552, 572
Grammars, 491, 495-496, 498, 502,

507
fuzzy, 499-500
stochastic, 499, 500
string, see String grammar

Granularity of the variable, 272, 291
Gray levels, 547, 550-551, 554, 555,

556
average, of a region, 637-639
fuzzy regions and, 625

Ground Penetrating Radar (GPR),
197-201, 443-444, 453-454

Grouped coordinate descent, 133
Growing approach in decision tree

design, 278
Gustafson-Kessel (GK) model, 4 1 ^ 5 ,

48-50, 538
linear boundaries and surfaces and,

603,604-606,611

768 FUZZY PATTERN RECOGNITION

quadric boundaries and, 615
quadric protot3rpes and, 61-62
quadric surface approximation and,

615, 623
robust clustering and, 85-87
rule extraction and, 357
segmentation and, 583, 584-586,

587

-1 Handbook of Neural
Computation-0, 379

Handwritten word recognition,
523-524

fusion techniques and, 460-478
fuzzy integrals and, 264-267
heuristic rule extraction and,

364-368, 369-370
S3mtactic pattern recognition and,

465-466, 495, 502, 510-522
Hard binary relations, 139
Hard c-means (HCM), 16-23, 130

cluster validity and, 101
fuzzy regions and, 638-639
ID3-related fuzzy trees and, 309-310
nearest neighbor classifiers and, 247
nearest prototypes and, 191
non point-protot3^es and, 76-77
remarks on various aspects of,

34-37
string grammar, 504-506

Hard c-means alternating optimization
(HCM-AO), 18-23, 130-131

cluster validity for, 93-95
Hardening of U with H, 20
Harmonic means, 397
Height defuzzification, 295
Height of a fuzzy region, 626, 633-635
Heterogeneous fuzzy data (HFD),

445-452
parametric, 447, 450

Heuristic rule extraction, 359-368
Hidden layers, 379, 383, 385, 404,

427, 428, 431
Hidden Msirkov model (HMM),

461-464, 474, 477
Hierarchical clustering, 137, 149-152,

181
Higher order neurons, 375
High-level vision, 658-663, 675-677
Homogeneity, 596-601
Honeywell 500 data, 468
Horizontal structural relations, 511
Hough transforms (HT), 611-613,

666-667
fuzzy, 666-667
generalized, 602, 667

Human face chairacterization, 675

Hybrid fuzzy connectives, 396-397,
398-399

Hybrid learning networks, 429
Hybrid Mamdani-Assilian (MA) model,

353
Hybrid methods in decision tree

design, 278
Hybrid Takagi-Sugeno (TS) model.

353, 354, 355-356
Hyperbolic tangents, 376
Hyperbox diagonal method, 214
Hyperplane, 191-193

separating, 192, 196
Hyperquadric shells, 110-111

ID3, 275, 286, 532, 533
ARTl and, 414
described, 280-283
fusion techniques and, 471-473, 477
fuzzy decision trees related to,

308-325
real, 534-535

Identity matrices, 6
If-then rules, 290
Image enhancement, 550-562
Image processing, 547-679

boundary description and, see
Boundary description

edge detection and enhancement
and, 562-572, 664, 668-670

edge linking and, 572-579
fuzzy regions and, see Fuzzy regions
high-level vision and, 658-663,

675-677
image enhancement and, 550-562
perceptual grouping and, 651-658
segmentation and, see Segmentation
spatial relations and, 639-651
surface approximation eind, see

Surface approximation
Image segmentation, see Segmentation
Improved adaptive resonance theory

|IART), 542
Impulse noise, 551
Impurity function, 279-280, 282, 309
Index of area coverage (lOAC),

581-582, 628
Index of inclusion, 485
Indirect indices, 135-136

standardizing and normalizing,
105-109

Indirect parametric data indices, 91,
99-100, 112

Indirect parametric indices, 103
Indirect parametric measures of

partition qusdity, 88
Inferencing, 299, 301

INDEX 769

Initialization, 35
Inner product norm-induced shells, 65
Inner products, 5
Input domains, fuzzification of, 292
Input layers, 203, 204, 379, 391
Input nodes, 373, 385
Input-output (lO) data, 270, 288
Input vectors, 385-386, 394
Integer grid points, 233
Integrator functions, 374, 395
Intensity connectedness, 672
Internal criteria, 117
Internal nodes, 270, 271, 279-280,

288, 303, 304, 317
Interpolation, 288-289
Interveils, 447
Inverse distance weighted (IDW) k-nn

algorithms, 249-252
Iris data, 187, 202, 759

cluster validity in, 94-95, 101-102
comparison of LVQ, SCS and FLVQ

in, 228-230
feed-forward back-propogation in,

385-391
multi-layer perceptrons in, 382-385,

386
nearest multiple prototjrpes in,

212-217, 218
prototype MCM and FCM in, 236
SAHN models in, 181
subtractive clustering method in,

344-346
UR-ID3 in, 313-314

Iterative self-organizing data analysis
(ISODATA), 130-131, 134, 223,
309-311

Iterative self-organizing entropy
(ISOETRP), 131,309-311

Joint types, 511

Karyotyping, 359-363
K-nearest neighbor rules (k-nn), 188,

197, 239-240, 241, 368, 369,
527, 529

crisp, 242-243
ftizzy, 244, 248, 530-531
possibilistic, 244, 248, 369
soft, 504

Knowledge-based (KB) systems,
592-596

Kuhn-Tucker theory, 180

Label ties, 245
Label vectors, 4—6

crisp, 4, 187, 340-341, 343, 344
fuzzy, 4, 5, 12, 368-370

possibilistic, 4, 5, 12, 14
probabalistic, 4, 5, 12
sets of, 13

LADAR range, 259-260
LaGrange multipliers, 58, 83, 159,

161, 180
Landmine detection, 197-201
LANDSAT, 487, 673, 674
Language-based methods of syntactic

pattern recognition, 493-506
Language over G, 497
Languages, 491

fuzzy, 499, 500
string, 503

Lasar Radar (LADAR), 458-460
Layers, 379

competitive, 203
computing, 379
hidden, 379, 383, 385, 404, 427,

428, 431
input, 203, 204, 379, 391
output, 204, 379, 383, 385, 427,

428, 433-434
Leaf labeling, 278
Learning rate distribution, 204
Learning rates

ARTl and, 415-417, 420
competitive learning networks and,

230-231
fuzzy learning vector quantization

and, 224, 227
learning vector quantization and,

222
soft competition scheme and,

219-20, 221
Learning rule, 381
Learning vector quantization (LVQ),

204, 222-223, 227-229, 231-232
ARTl and, 4 1 9 ^ 2 0
described, 209-211
expanded batch, 232
fuzzy, see Fuzzy learning vector

quantization
generalized, see Generalized

leeuming vector quantization -
fiizzy

nearest multiple prototypes and,
212-219

radial basis function networks and,
438

soft versions of, 211-212
Least mean squared (LMS) algorithm,

430, 431
Leave-one-out estimate of the error

rate, 186-187
Leaves, 270, 271, 310-311, 317, 320,

535

770 FUZZY PATTERN RECOGNITION

Lebesgue integral, 256
Left half-net, 429-430, 431, 432, 434,

436
Left hand side (LHS), 290, 293-294,

295, 296, 298
Lena image, 553, 558-562, 565,

569-571, 664
Length of a fuzzy region, 626-627
Length of a string, 494
Levenberg-Marquardt algorithm, 56
Levenshtein distance, 503, 506
Levenshtein metric, 502
Linear boundaries, 603-611
Linear classifiers, 192
Linear discriminant classifiers (LDC),

483, 490
Linear integrator functions, 374-375,

377,397
Linearly separable data, 192, 196
Linear manifolds as prototj^ies, 45-52
Linear order statistic (LOS) filters, 258
Linear surfaces, 603-611
Line detection algorithm, 615, 616
Line type membership functions,

467-468
Linguistic values, 292, 322, 366

edge detection and enhancement
and, 669-670

high-level vision and, 658-660
perceptual grouping and, 656

Linguistic variables, 272, 323
Linkage algorithms, 137
Link constraints, 433-434
Lloyd-Buzo-Gray (LBG) algorithm, 130
Localized shape matching, 39-40
Local methods of prototype generation,

201-202
LODARK, 458-459
Logistic classifiers (LOG), 483

McPitts (standard) neurons, 376, 394,
395, 397, 402-403

Magnetic resonance (MR) imaging,
548, 671-672, 673

crisp k-nearest neighbor and,
248-249

M3 and, 238-241
radial basis function networks and,

434-440
segmentation and, 592-596

Magnetization-prepared rapid gradient
echo (MP-RAGE), 434-440

Mahalanobis distance, 32, 34-35, 526
robust clustering and, 86
segmentation and, 584, 587

Mahalanobis norms, 30, 103
Majority (MAJ) operator, 481-482

Mamdani-Assilian (MA) model, 288,
290-291, 293, 295, 299-302, 323,
537, 539

architecture of, 291
heuristic rule extraction and, 359,

363, 367
high-level vision and, 658, 659
hybrid, 353
image enhancement and, 555
rule extraction and, 326, 330, 337,

338, 342, 348, 349, 350, 351,
352-353, 358

Mammography, 534, 667-668, 671
Map-fields, 424
Markov chain classifiers, 325
Matching matrices, 118
Match-tracking, 423
Mathematical neural networks (NN),

see Computational neural
networks

Maximal rule-base, 291
Maximum coordinate, 7
Maximum likelihood estimation (MLE),

30-31
fiizzy, 4 4 ^ 5 , 103-105

Maximum membership partitions, 20
Maximum (MAX) operator, 481-483,

489
MC index, 120
Means squared error (MSE)

neural networks and, 402
rule extraction and, 329, 335, 357

Median of absolute deviations (MAD),
86, 557

Membership of a string, 499
Mexican hat function, 206, 324, 326
Minimal spanning tree (MST), 152
Minimize the probability of

randomness (MINPRAN), 80
Miniumum (MIN) operator, 481-483,

489
Minkowski norm metrics, 6, 233
Minkowski norms, 6

edge detection and enhancement
and, 569

fusion techniques and, 484
neural networks and, 397
non point-prototypes and, 65, 66

M3 modle, 238-241
Modified partition coefficient (MPC),

107
Monomorphism, 513-514, 515
Mountain clustering method (MCM),

133
described, 232-241
rule extraction and, 352-353

INDEX 771

MountEun function values (MFVs),
233-234

M rules, 470, 563
M-stage multivariate rank nearest

neighbor (m-Mmn) rule, 531-532
M-stage univariate rank nearest

neighbor (m-Umn) rule, 531-532
MST algorithm, 152
Multi-layer perceptrons (MLP),

382-385, 386, 391-393, 394
feature selection and, 391-392
fusion techniques and, 469, 474,

475-476
radial basis function networks vs.,

425, 427, 429
Multiple-input multiple-output

(MIMO), 288
Multiple-input single-output (MISO),

288, 295, 335, 352, 355, 356
Multiple prototype classifier designs,

196-201, 528
Multiple sclerosis, visualization of, 673
Multiplicative z-model, 398-400, 407,

589-591

National Institute of Standards and
Technology (NIST), 265

Native Bayes (NB) combination, 483
Nearest multiple prototype (1-nmp)

classifiers, 196-197
designs of LVQ and GLVQ-F for,

212-219
Nearest neighbor classifiers, 193

described, 241-253
k-, see K-nearest neighbor classifiers
rank, 531-532

Nearest prototype classifiers (1-np),
190-196

generalized, 529
S5Titactic, 504

Nearest protot3^e partitions, 207
Negative half-space, 192
Network weight vectors, 379, 380
Neural-fuzzy-systems (NFS) models,

541, 542
Neural networks (NN), 290, 329, 333,

370-413, 483, 535-537, 540-544
biological, 370-371, 372-378, 421
computational, 371, 372-378, 421
defined, 378
fuzzy, 393-403, 541
fuzzy aggregation, see Fuzzy

aggregation networks
heuristic rule extraction compared

with, 366, 367-368
models of, 378-393
pulse coupled, 520, 522

spatial relations and, 649-651
Neurons

first order, 375
fuzzy, see Fuzzy neurons
generalized mean, 397-398, 402-403
higher order, 375
McHtts (standard), 376, 394, 395,

397, 402-403
second order, 375

Newton's method, 53, 73, 188
Node decision functions, 304, 305, 310
Node functions

neural networks and, 376-378, 397
radial basis function networks and,

427
Node reuse, 234
Nodes, 204, 373

bias of, 375
input, 373, 385
internal, 270, 271, 279-280, 288,

303,304,317
nonterminal, 507
nonwinner, 231
offset of, 375
terminal, 507
winner, 231

Node spUtting functions, 278,
279-280, 286, 305, 309

Node weights, 204
Node weight vectors, 374
Noise, 550, 556, 557, 558, 559-560

Gaussian, 551, 637-638
impulse, 551

Noise clusters (NC), 79, 613
Noise fuzzy c-shells (NFCS), 613-614
Noise points, 618, 621
Nomination of features, 121
Non-adaptive off-line training, 188
Non-crisp classifiers, 7
Non-crisp partitions, 13-14, 20, 96,

350
Non-Euclidean relational fuzzy

c-means (NERFCM), 168-178, 181
Non-Euclidean relational hard

c-means (NERHCM), 181
Non point-prototype clustering

models, 39-87
elliptical, 54-56
Gustafson-Kessel, see

Gustafson-Kessel model
indirect measures for, 109-116
linear manifolds as, 45-52
norm induced shell, 64-69, 606, 611
quadric, 56-63
regression models as, 69-75
robust clustering and, 75-87

772 FUZZY PATTERN RECOGNITION

rule extraction and, 328, 337, 346,
352

spherical, 52-54
Non-terminal nodes, 507
Nonterminals, 496, 497, 507
Non-trainable fusion operators, 456
Nonwinner nodes, 231
Norm induced shell prototypes (NISP),

64-69, 606,611
Norm metrics, 5
Norms, 5

choice of, 34-35
Euclidean, see Euclidean norms
Mahalanobis, 30, 103

Null strings, 496
Numerical approach to pattern

recognition, 2
NumericEd features, 271

Object data, 3, 11-136, see also Batch
point-prototype clustering models;
Cluster validity; Non
point-prototype clustering models

classifier design for, 183-190
feature analysis for, 121-130
to relational data, 146-149

Object data matrices, 445
Oblique code 1, 269, 278
Offset of a node, 375
1-Stage univariate rank neairest

neighbor (1-Umn) rule, 531
Optimized fuzzy rules (OFR)

classifiers, 471
Optimized prototypes (OP), 474, 477
Oracle (OR) model, 485-485, 489
Ordered weighted aggregation (OWA)

operators, 483
Ordered weighted average (OWA)

filters, 259-260
Ordinal data, 272
Orthogonality, 5
Orthogonal least squares (OLS),

430-431
Otsu algorithm, 635
Outlier points, 587
Output layers, 204, 379, 383, 385,

427, 428, 433-434
Overall feature evaluation index, 526

Parameter estimation, 88, 289
Parameters, 34
Parametric heterogeneous fuzzy data

(HFD), 447, 450
Partial circular clusters. 111
Partition coefTicient of U, 97-98
Partition entropy of U, 97-98
Partitioning for substructure, 88

Pattern recognition, 1-10
definitions for, 1
fuzzy, 1-7, 371
fuzzy integrals in, 260-263
neural networks in, see Neural

networks
numerical approach to, 2
process description and, 2
syntactic, see Syntactic pattern

recognition
Perceptron convergence theorem, 394
Perceptual grouping, 651-658
Performance-based validity, 134
Perimeter of a fuzzy region, 626,

632-633, 636
Perpendicular distance constraint,

652, 653-654
Phoneme, 487-491
Physical labels, 207
Piecewise polynomials, 332-334
Plasticity, 415-417, 421
Plasticity problem, 206
Point prototypes, 15, 328, 337, 340,

346, 347, 348, 352
Population covariance matrices, 30
Positive half-space, 192
Possibilistic c-means (PCM), 16-23,

130
cluster validity and, 120, 134
fuzzy regions and, 637, 638-639
learning vector quantization and,

212
nearest neighbor classifiers and, 247
non point-prototypes and, 80
remarks on various aspects of,

34-37
subtractive clustering method and,

237
Possibilistic c-means alternating

optimization (PCM-AO), 18-23,
130

Possibilistic c-plano-quadric shells
(PCPQS), 621

Possibilistic c-quadric shells (PCQS),
615, 616-617

Possibilistic k-nearest neighbor rule
(k-nn), 244, 248, 369

Possibilistic label vectors, 4, 5, 12, 14
Possibility measures, 254
Premise, 290
Premise membership functions

(PMFs), 292, 294, 296, 299
fusion techniques and, 469
high-level vision and, 659, 662
ID3-related fuzzy trees and,

316-317, 319, 321, 324, 325

INDEX 773

rule-based approximation and, 220,
332-334, 335, 338, 344, 346,
349, 350

rule extraction and, 352, 353,
357-358, 358

Premise parameters, 290
Primitives, 466, 491, 492-494, 495,

498^99 , 502, 505-506, 507, 511,
519, 520-522

valid edge, 510
valid vertex, 510

Principal components analysis (PCA),
388-389

Principle of least commitment, 183,
363, 369, 524, 549

Prior probabilities, 29
Probabalistic decision trees, 303
Probabalistic label vectors, 4, 5, 12
Probabilistic clustering, 29-34
Probabilistic product (PPR), 483
Probability density functions (PDFs),

29-30, 208
Probability measures, 254
Process description, 2
Production rules, 491, 493, 496,

497-498, 502
Product (PRO) operator, 481-483, 489,

490
Progressive clustering, 602-603
Prototype classifiers, 190-201,

528-532
methods of generating, 201-241
multiple, 196-201, 528
nearest, 190-196
soft, 458

Prototype relabeling, 207
Prototjrpe weight matrices, 161
Proximity, 573-574
Proximity relation matrices, 146
Proximity relations, 138
Pruning of decision trees, 276, 278,

281,286-288,307,536
Psychovisually motivated fuzzy

reasoning edge detector
(PSYFRED), 669, 670

Pulse coupled neural networks
(PCNN), 520, 522

Pure classification trees, 271,
285-286, 288, 307, 312

Quadratic discriminant classifiers
(QDC), 483, 487-489, 490

Quadratic entropy, 280
Quadratic regression models, 73-74
Quadric boundaries, 615-621
Quadric compatible cluster merging

(QCCM), 621-624

Quadric prototypes, 56-63
Quadric surface approximation,

615-621
in range images, 621-624

Radial basis function (RBF) networks,
424, 4 2 5 ^ 4 2 , 543-544

Rand index, 119
Random variables, 29
Rank nearest neighbor (rnn)

classifiers, 531-532
Real binary relations, 138
Real ID3, 534-535
Realization of R, 168
Real numbers, 447
Recall error rate, 184
Receiver operating characteristic

(ROC) curve, 459, 460
Reflexive closure, 140, 141, 143
Reflexivity, 139-140, 144, 145,

153-154, 155-158
Reformulation theorem, 37-39, 166
Regression models as prototypes,

69-75
Regular fuzzy systems, 292
Reject option, 468
Relational Eiltemating cluster

estimation (RACE), 180
Relational clustering, 158-178

assignment-prototype model in,
160-165

fuzzy non-metric model in, 159-160
non-Euclidean relational fuzzy

c-means model in, 168-178
relational fuzzy c-means model in,

165-168
Relational data, 3, 137-182

cluster validity for, 178-180
crisp relations in, 138-143
fuzzy relations in, see Fuzzy

relations
hierarchical methods in, 137,

149-152, 181
object data to, 146-149
with objective functions, see

Relationad clustering
Relational dual, 166
Relational fuzzy c-means (RFCM),

165-168, 337
non-Euclidean, 168-178

Relation-based methods of syntactic
pattern recognition, 507-522

Relation matrices, 3, 138
Relative indices, 117
Relative length (RL), 361
Relaxation labeling approach, 576-577
Replacement, 189, 190

774 FUZZY PATTERN RECOGNITION

Representation space, 452
Resolution identity, 153
Resubstitution error rate, 184, 185

crisp decision trees and, 270, 285
nearest multiple prototypes and,

213 ,216 ,217 ,218
neural networks and, 383, 384,

387-388, 390, 392, 402, 408
rule-based approximation and, 336

Right half-net, 429, 430, 431
Right hand side (RHS), 290, 295
Robust clustering, 75-87
Robust competitive agglomeration

(RCA) algorithm, 586-587, 623,
624

Robust c-prototypes (RCP), 84, 85-87
Robust estimators, 77
Robust fuzzy c-means (RoFCM),

80-81, 82, 84
Root-mean-squared (RMS) error, 397,

562
Rouben's indices, 99
Rule-based approximation, 325-359
Rule-based inferencing, 301
Rule-based segmentation, 592-601
Rule extraction

based on clustering, 325-359
crisp, 349-350, 352
with fuzzy aggregation networks,

410-413
heuristic, 359-368
possible problems in, 358-359
soft, 351, 355

Rule induction, 270
Russo-Ramponi edge detector, 564,

565

Saint Marc filter, 561
Sammon's method, 124
Satimage, 487-491
Scalar products, 5
Search parameters, 417
SEASAT, 673
Second order neurons, 375
Segmentation, 579-601, 670-675

fuzzy isovolumes approach to, 672
rule-based, 592-601
supervised, 410-413, 588-591
via clustering, 582-588
via thresholding, 580-582

Segmentation-based method (SMB),
461-464

Selection, 189, see also Data selection;
Feature selection

Self-organizing feature maps (SOFM),
190, 204, 210-211, 523-524

fusion techniques and, 469, 475

radial basis function networks and,
431, 432-433, 437-441

Self-scaling property, 420
Semantic nets, 507-510
Semi-supervised clustering models,

23-29
Semi-supervised fuzzy c-means

(ssFCM), 25-28
non point-prototypes and, 39
segmentation and, 595

Semi-supervised fuzzy c-means
alternating optimization
(ssfcm-AO), 23-28

Separately trained fusion operators,
456

Separating hyperplane, 192, 196
Separation indices, 92
Sequential agglomerative hierarchical

non-overlapping (SAHN) models,
149-152, 179, 181, 309

Sequential hard c-means (SHCM),
204, 208-209, 419

Set distance, 149-150
Sets of label vectors, 13
S-function, 581
Shape recognition, 498-499
Shell clusters, 40, 602

circular boundaries and, 612-613
cluster validity and, 109-116
rule-based approximation and, 340

Shell density, 617-618, 619
Shell hypervolume, 617-618, 619
Shell surface density, 113
Shell thickness, 617-618, 619, 621
Similarity measures, 146
Similarity relations, 153-154

fuzzy, 144
Simplified adaptive resonaince theory

(SART), 424
fuUy self-organized, 424, 431-441
fuzzy, 424

Single best (SB) models, 485, 486, 488
Single-input multiple-output (SIMO),

288
Single-input single-output (SISO),

288, 332, 352, 354
Single layer perceptrons (SLPs), 427,

428
Single linkage clustering algorithms,

151, 152, 155, 156
Smoothness, 327-330, 332, 334, 358
S-norms, 143
Sobel features, 566, 568, 620
Soft classifiers, 183, 455
Soft competition scheme (SCS), 211

described, 219-222

INDEX 775

fuzzy learning vector quantization
and, 225-230

Soft decision trees, 312-313, 535-536
Soft k-nearest neighbor rule (k-nn),

504
Soft labels, 368-370
Soft prototype classifiers, 458
Soft rule extraction (SRE), 351, 355
Sparse circular clusters, 111
Spatial locations, 547
Spatial relations, 639-651
Spherical prototypes, 52-54
Square binary relations, 139, 140
Square fuzzy relations, 143-144
Stability, 415-417, 420, 421
Stabilization, 419, 420
Stack filters, 258
Starting symbol of sentence, 496
Static cluster validity, 134
Static off-line adaptive training, 188
Statistical indices, 117-121
Steepness, 551-552
Steepness parameter, 375, 376
Stochastic grammars, 499, 500
Stochastic relaxation scheme (SRS),

219
Stopping criteria, 278
Straightness, 551-552, 572
String grammar, 497-498, 502-504
String grammar hard c-means

(sgHCM), 504-506
String language, 503
Strings, 502-504, 507
Stroke types, 511
Structure definition, 289-290
Subtractive clustering method (SCM),

237, 241, 343, 344-346, 353
Sugeno A fuzzy measure, 254, 255,

256, 261, 263, 267, 458, 459,
462, 532

Superfluous features, 406
Superquadrics, 69
Supervised learning, 7, 183-184, 288,

289
Supervised segmentation, 410-413,

588-591
Surface approximation, 601-624, 675

of Unear surfaces, 603-611
of quadric surfaces, see Quadric

surface approximation
Switching regression models, 70-72
Symmetric closure, 140, 141, 142, 143
Symmetric trapezoidal fuzzy numbers,

447-448
Symmetric triangular fuzzy numbers,

447

Symmetry, 139-140, 144, 145, 154,
155-158, 551-552, 572

S3Titactic nearest prototype (1-snp)
classifiers, 504

Syntactic pattern recognition, 2,
465^66 , 491-522, 545-546

language-based methods of, 493-506
relation-based methods of, 507-522

System identification, 289
System validation, 289

Takagi-Sugeno (TS) model, 288,
290-291, 295-299, 301, 302, 323,
532, 537, 539

architecture of, 291
edge detection and enhancement

and, 565, 567-568, 569,
570-571

edge linking and, 577
fusion techniques and, 469-470, 475
hybrid, 353, 354, 355-356
image enhancement and, 554, 555
rule extraction and, 326, 328,

330-331, 332, 333-334, 335,
336-339, 342, 343, 344, 346,
348, 352, 353, 354, 355-356

T-conorms, 329, 358
Temporal fuzzy c-means (TFCM),

132-133, 182, 456
TemporEjly adaptive classifiers, 188
Terminal nodes, 507
Terminals, 496, 497
Termination, 35
Test data, 184
Test errors, 184, 185, 333, 384
Test sets, 184
Thickness of circular clusters. 111
Three-way object data, 131
Thresholding, segmentation via,

580-582
Time-based fusion, 456
T-norms, 143, 145-146, 293, 294,

295, 296, 297, 299, 300
Chang-Pavlidis fuzzy tree and, 303,

306-307
ID3-related fuzzy trees and, 317, 320
rule extraction and, 329, 356, 358

Top-down approach to decision tree
design, 278

Top-down search, 308, 311
Trained linear combinations, 483
Training 8md testing dilemma, 186
Training data

generation of fuzzy labels for,
368-370

heterogeneous fuzzy data as, 452
Training errors, 184

776 FUZZY PATTERN RECOGNITION

crisp decision trees and, 280, 286
radial basis function networks and,

428
in rule-based approximation, 333

Training sets, 184
Transfer functions, 375
Transition feature vectors, 365
Transititive square fuzzy relations,

143-144
Transitive closure, 141, 142-143,

144-146, 155-158, 169, 180
Transitivity, 139-140, 154

fuzzy, 143-144
Trapezoidal membership functions,

332, 472-473
Triangular membership functions, 332
Tripleness, 572-574
Tumors

estimates of volume, 131-132
identification via segmentation,

592-596
Tuning constant, 81
Type I fuzzy neurons, 391, 393,

395-397, 399-401, 402-403, see
also Fuzzy aggregation networks

Uninformative features, 406, 410
Unipolar logistic functions, 375
Univariate data, 531
Universal approximation (UA) theory,

326-329, 381, 425
Unreliable features, 406, 410
Unstable learning, 414-415
Unsupervised boundary description

(UBD), 615-621
Unsupervised learning, 7, 12
Unsupervised optimal fiizzy clust ling

(UOFC) algorithm, 103

Update neighborhoods, 210-211
UR-ID3 algorithm, 311-312, 313-314

318

Validation, 11
Vedidation errors, 185
Validation sets, 185
Valid edge primitives, 510
Validity functionals, 88
Validity guided clustering (VGC), 595
Valid vertex primitives, 510
Vector subspace, 191
Vertex interpreters, 510, 512
Vertical planes, 198
Vigilance parameters, 418, 420, 432
Vocabularies of G, 496
Volumetric clusters, 340
Voting strategies, 457

Warshall's algorithm, 142, 640
Wavelet-based correlation filters,

667-668
Waveshapes, 494, 496
Weighted Borda counts, 461
Weighted generalized Hough transfom

(WGHT), 667
Weighted mean of order q, 643
Weight vectors, 373, 394, 427, 428
Width of a fuzzy region, 627
Windows, 548, 549
Window vectors, 566
Winner nodes, 231

Xie-Beni index, 89, 99-100, 102, 109,
136

XOR data, 196

