
FUZZY MODELS 
AND ALGORITHMS FOR 

PATTERN RECOGNITION 
AND IMAGE PROCESSING 



THE HANDBOOKS 
OF FUZZY SETS SERIES 

Series Editors 
Didier Dubois and Henri Prade 

IRIT, Universite Paul Sabatier, Toulouse, France 

FUNDAMENTALS OF FUZZY SETS, edited by Didier Dubois and Henri Prade 
MATHEMATICS OF FUZZY SETS: Logic, Topology, and Measure Theory, edited 

by Ulrich H6hle and Stephen Ernest Rodabaugh 
FUZZY SETS IN APPROXIMATE REASONING AND INFORMATION 
SYSTEMS, edited by James C. Bezdeit, Didier Dubois and Henri Prade 
FUZZY MODELS AND ALGORITHMS FOR PATTERN RECOGNITION AND 

IMAGE PROCESSING, by James C. Bezdek, James Keller, Raghu Krisnapuram 
and Nikhil R. Pal 

FUZZY SETS IN DECISION ANALYSIS, OPERATIONS RESEARCH AND 
STATISTICS, edited by Roman Slowinski 

FUZZY SYSTEMS: Modeling and Control edited by Hung T. Nguyen and Michio 
Sugeno 

PRACTICAL APPLICATIONS OF FUZZY TECHNOLOGIES, edited by Hans-
JUrgen Zimmermann 



FUZZY MODELS 
AND ALGORITHMS FOR 

PATTERN RECOGNITION 
AND IMAGE PROCESSING 

James C. Bezdek 
University of West Florida 

James Keller 
University of Missouri 

Raghu Krisnapuram 
Colorado School of Mines 

Nikhil R. Pal 
Indian Statistical Institute 

^ Springer 



Library of Congress Cataloging-in-Publication Data 

Fuzzy models and algorithms for pattern recognition and image processing 1 James C 
Bezdek . . . [et al.]. 

p. cm. ( T h e  handbooks of hzzy  sets series) 
Includes hihliographical references and index. 
ISBN 0-387-245 15-4 (softcover : alk. paper) 
ISBN 0-7923-8521-7 (hardcover) O 1999 Kluwer Academic Publishers 
I. Optical pattern recognition. 2. Fuzzy algorithms. 3. Cluster analysis. 4. Image 

processing. 5. Computer vision. I. Bezdek, James C., 1939- 11. Series. 

O 2005 Springer Science+Business Media, Inc. (First softcover printing) 
All rights reserved. This work may not be translated or copied in whole or in part without 
the written permission of the publisher (Springer Science+Business Media, Inc., 233 Spring 
Street, New York, NY 10013, USA), except for brief excerpts in connection with reviews or 
scholarly analysis. Use in connection with any form of information storage and retrieval, 
electronic adaptation, computer software, or by similar or dissimilar methodology now 
know or hereafter developed is forbidden. 
The use in this publication of trade names, trademarks, service marks and similar terms, 
even if the are not identified as such, is not to be taken as an expression of opinion as to 
whether or not they are sub.ject to proprietaly rights. 

Printed in the United States of America 

9 8 7 6 5 4 3 2  1 SPIN 1 1384601 

http://springeronline.com


Contents 

Series Foreword v 

Preface vii 

1 Pattern Recognition 1 
1.1 Fuzzy models for pattern recognition 1 
1.2 Why fuzzy pattern recognition? 7 
1.3 Overview of the volume 8 
1.4 Comments and bibliography 10 

2 Cluster Analysis for Object Data 11 
2.1 Cluster analysis 11 
2.2 Batch point-prototype clustering models 14 

A. The c-means models 16 
B. Semi-supervised clustering models 23 
C. Probabilistic Clustering 29 
D. Remarks on HCM/FCM/PCM 34 
E. The Reformulation Theorem 37 

2.3 Non point-prototype clustering models 39 
A. The Gustafson-Kessel (GK) Model 41 
B. Linear manifolds as prototypes 45 
C. Spherical Prototypes 52 
D. Elliptical Prototypes 54 
E. Quadric Prototypes 56 
F. Norm induced shell prototypes 64 
G. Regression models as prototypes 69 
H. Clustering for robust parametric estimation 75 

2.4 Cluster Validity 87 
A. Direct Measures 90 
B. Davies-Bouldin Index 90 
C. Dunn's index 92 
D. Indirect measures for fuzzy clusters 96 
E. Standardizing and normalizing indirect indices 105 
F. Indirect measures for non-point prototype models 109 
G. Fuzzification of statistical indices 117 

2.5 Feature Analysis 121 
2.6 Comments and bibliography 130 



vi FUZZY PATTERN RECOGNITION 

3 Cluster Analysis for Relational Data 137 
3.1 Relational Data 137 

A. Crisp Relations 138 
B. Fuzzy Relations 143 

3.2 Object Data to Relational Data 146 
3.3 Hierarchical Methods 149 
3.4 Clustering by decomposition of fuzzy relations 153 
3.5 Relational clustering with objective functions 158 

A. The Fuzzy Non Metric (FNM) model 159 
B. The Assignment-Prototype (AP) Model 160 
C. The relational fuzzy c-means (RFCM) model 165 
D. The non-Euclidean RFCM (NERFCM) model 168 

3.6 Cluster validity for relational models 178 
3.7 Comments and bibliography 180 

4 Classifier Design 183 
4.1 Classifier design for object data 183 
4.2 Prototype classifiers 190 

A. The nearest prototype classifier 190 
B. Multiple prototype designs 196 

4.3 Methods of prototype generation 201 
A. Competitive learning networks 203 
B. Prototype relabeling 207 
C. Sequential hard c-means (SHCM) 208 
D. Learning vector quantization (LVQ) 209 
E. Some soft versions of LVQ 211 
F. Case Study : LVQ and GLVQ-F 1-nmp designs 212 
G. The soft competition scheme (SCS) 219 
H. Fuzzy learning vector quantization (FLVQ) 222 
1. The relationship between c-Means and CL schemes 230 
J. The mountain "clustering" method (MCM) 232 

4.4 Nearest neighbor classifiers 241 
4.5 The Fuzzy Integral 253 
4.6 Fuzzy Rule-Based Classifiers 268 

A. Crisp decision trees 269 
B. Rules from crisp decision trees 273 
C. Crisp decision tree design 278 
D. Fuzzy system models and function approximation 288 
E. The Chang - Pavlidis fuzzy decision tree 303 
F. Fuzzy relatives of 1D3 308 
G. Rule-based approximation based on clustering 325 
H. Heuristic rule extraction 359 
I. Generation of fuzzy labels for training data 368 

4.7 Neural-like architectures for classification 370 
A. Biological and mathematical neuron models 372 
B. Neural network models 378 
C. Fuzzy Neurons 393 
D. Fuzzy aggregation networks 403 
E. Rule extraction with fuzzy aggregation networks 410 



Contents vii 

4.8 Adaptive resonance models 413 
A. The ARTl algorithm 414 
B. Fuzzy relatives of ART 421 
C. Radial basis function networks 425 

4.9 Fusion techniques 442 
A. Data level fusion 443 
B. Feature level fusion 453 
C. Classifier fusion 454 

4.10 Syntactic pattern recognition 491 
A. Language-based methods 493 
B. Relation-based methods 507 

4.11 Comments and bibliography 523 

5 Image Processing and Computer 'Vision 547 
5.1 Introduction 547 
5.2 Image Enhancement 550 
5.3 Edge Detection and Edge Enhancement 562 
5.4 Edge Linking 572 
5.5 Segmentation 579 

A. Segmentation via thresholding 580 
B. Segmentation via clustering 582 
C. Supervised segmentation 588 
D. Rule-Based Segmentation 592 

5.6 Boundary Description and Surface Approximation 601 
A. Linear Boundaries and Surfaces 603 
B. Circular Boundaries 611 
C. Quadric Boundaries/Surfaces 615 
D. Quadric surface approximation in range images 621 

5.7 Representation of Image Objects as Fuzzy Regions 624 
A. Fuzzy Geometry and Properties of Fuzzy Regions 625 
B. Geometric properties of original and blurred objects 630 

5.8 Spatial Relations 639 
5.9 Perceptual Grouping 651 
5.10 High-Level Vision 658 
5.11 Comments and bibliography 663 

References cited in the text 681 

References not cited in the text 743 

Appendix 1 Acronyms and abbreviations 753 

Appendix 2 The Iris Data: Table I, Fisher (1936) 759 



Series Foreword 

Fuzzy sets were introduced in 1965 by Lotfi Zadeh with a view to 
reconcile mathematical modeling and human knowledge in the 
engineering sciences. Since then, a considerable body of literature 
has blossomed around the concept of fuzzy sets in an incredibly wide 
range of areas, from mathematics and logic to traditional and 
advanced engineering methodologies (from civil engineering to 
computational intelligence). Applications are found in many 
contexts, from medicine to finance, from human factors to 
consumer products , from vehicle control to computational 
linguistics, and so on.... Fuzzy logic is now used in the industrial 
practice of advanced information technology. 

As a consequence of this trend, the number of conferences and 
publications on fuzzy logic has grown exponentially, and it becomes 
very difficult for students, newcomers, and even scientists already 
familiar with some aspects of fuzzy sets, to find their way in the 
maze of fuzzy papers. Notwithstanding circumstantial edited 
volumes, numerous fuzzy books have appeared, but, if we except very 
few comprehensive balanced textbooks, they are either very 
specialized monographs, or remain at a rather superficial level. 
Some are even misleading, conveying more ideology and 
unsustained claims than actual scientific contents. 

What is missing is an organized set of detailed guidebooks to the 
relevant literature, that help the students and the newcoming 
scientist, having some preliminary knowledge of fuzzy sets, get 
deeper in the field without wasting time, by being guided right away 
in the heart of the literature relevant for her or his purpose. The 
ambition of the HANDBOOKS OF FUZZY SETS is to address this 
need. It will offer, in the compass of several volumes, a full picture of 
the current state of the art, in terms of the basic concepts, the 
mathematical developments, and the engineering methodologies 
that exploit the concept of fuzzy sets. 

This collection will propose a series of volumes that aim at 
becoming a useful source of reference for all those, from graduate 
s tudents to senior researchers, from pure mathematicians to 
industrial information engineers as well as life, human and social 
sciences scholars, interested in or working with fuzzy sets. The 
original feature of these volumes is that each chapter - except in the 
case of this volume, which was written entirely by the four authors -
is written by one or several experts in the topic concerned. It 
provides an introduction to the topic, outlines its development, 
presents the major results, and supplies an extensive bibliography 
for further reading. 
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The core set of volumes are respectively devoted to fundamentals of 
fuzzy sets, mathematics of fuzzy sets, approximate reasoning and 
information systems, fuzzy models for pattern recognition and 
image processing, fuzzy sets in decision research and statistics, 
fuzzy systems in modeling and control, and a guide to practical 
applications of fuzzy technologies. 

D. Dubois H. Prade 
Toulouse 



Preface 

The authors Rather than compile many chapters written by various 
authors who use different notations and semantic descriptions for 
the same models, we decided to have a small team of four persons 
write the entire volume. Each of us assumed the role of lead author 
for one or more of the chapters, and the other authors acted like 
consultants to the lead author. Each of us helped the lead author by 
contributing examples, references, diagrams or text here and there; 
and we all reviewed the entire volume three times. Whether this 
approach was successful remains to be seen. 

The plan What we tried to do is this: identify the important work 
that has been done in fuzzy pattern recognition, describe it, analyze 
it, and illustrate it with examples that an interested reader can 
follow. As Avith all projects of this kind, the material inevitably 
reflects some bias on the part of its authors (after all, the easiest 
examples to give already live in our own computers). Moreover, this 
has become an enormous field, and the truth is that it is now far too 
large for us to even know about many important and useful papers 
that go unrecognized here. We apologize for our bias and our 
ignorance, and accept any and all blame for errors of fact and/or 
omission. How current is the material in the book? Knuth (1968) 
stated that "It is generally very difficult to keep up with a field that is 
economically profitable, and so it is only natural to expect that 
many of the techniques described here eventually be superseded by 
better ones". We cannot say it better. 

The numbering system The atomic unit for the numbering system is 
the chapter. Figures, tables, examples and equations are all 
numbered consecutively within each chapter. For example. Figure 
3.5 is Figure 5 of Chapter 3. The beginning and end of examples are 
enclosed by goofy looking brackets, like this: 

Example 5.4 Did you ever have to finally decide? To pick up on 
one and let the other one ride, so many changes 

The algorithms: art, science and voodoo There are a lot of 
algorithms in the book. We ran many, but not certainly not all, of 
the experiments ourselves. We have given pseudo code for quite a few 
algorithms, and it is really pseudo in the sense that it is a mixture of 
three or four programming languages and writing styles. Our intent 
is to maximize clarity and minimize dependence on a particular 
language, operating system, compiler, host platform, and so on. We 
hope you can read the pseudo code, and that you cem convert it into 
working programs with a minimum of trouble. 
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Almost all algorithms have parameters that affect their 
performance. Science is about quantitative models of our physical 
world, while art tries to express the qualitative content of our lives. 
When you read this book you will encounter lots of parameters that 
are user-defined, together with evasive statements like "pick a value 
for k that is close to 1", or "don't use high values for m". What do 
instructions such as these mean? Lots of things: (i) we don't have 
better advice; (ii) the inventor of the algorithm tried lots of values, 
and values in the range mentioned produced the best results for her 
or him; (iii) 0.99 is closer to 1 than 0.95, and 22 is higher than 1.32, 
you may never know which choice is better, and (unfortunately) this 
can make all the difference in your application; (iv) sometimes we 
don't know why things work the way they do, but we should be happy 
if they work right this time - call it voodoo, or call it luck, but if it 
works, take it. 

Is this cynical? No, it's practical. Science is NOT exact, it's a 
sequence of successively better approximations by models we invent 
to the physical reality of processes we initiate, observe or control. 
There's a lot of art in science, and this is nowhere more evident than 
in pattern recognition, because here, the data always have the last 
word. We are always at the mercy of an unanticipated situation in 
the data; unusual structures, missing observations, improbable 
events that cause outliers, uncertainty about the interactions 
between variables, useless choices for numerical representation, 
sensors that don't respect our design goals, computers that lose bits, 
computer programs that have an undetected flaw, and so on. When 
you read about and experiment with algorithmic parameters, have 
an open mind - anjrthing is possible, and usually is. 

The data Most of the numerical examples use small data sets that 
may seem contrived to you, and some of them are. There is much to 
be said for the pedagogical value of using a few points in the plane 
when studying and illustrating properties of various models. On the 
other hand, there are certain risks too. Sometimes conclusions that 
are legitimate for small, specialized data sets become invalid in the 
face of large numbers of samples, features and classes. And of 
course, time and space complexity make their presence felt in very 
unpredictable ways as problem size grows. 

There is another problem with data sets that everyone probably 
knows about, but that is much harder to detect and document, emd 
that problem goes under the heading of, for example, "will the real 
Iris data please stand up?". Anderson's (1935) Iris data, which we 
think was first published in Fisher (1936), has become a popular set 
of labeled data for testing - and especially for comparing - clustering 
algorithms and classifiers. It is of course entirely appropriate and 
in the spirit of scientific inquiry to make and publish comparisons 
of models and their performance on common data sets, and the 
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pattern recognition community has used Iris in perhaps a thousand 
papers for just this reason or have we? 

During the writing of this book we have discovered - perhaps others 
have known this for a long time, but we didn't - that there are at least 
two (and hence, probably half a dozen) different, well publicized 
versions of Iris. Specifically, vector 90, class 2 (Iris Versicolor) in 
Iris has the coordinates (5.5, 2.5, 4, 1.3) on p. 566, Johnson and 
Wichem (1992); and has the coordinates (5.5, 2.5, 5, 1.3) on p. 224 in 
Chien (1978). YIKES !! For the record, we are using the Iris data as 
published in Fisher (1936) and repeated in Johnson and Wichern 
(1992). We will use Iris (?) when we are not sure what data were used. 

What this means is that many of the papers you have come to know 
and love that compare the performance of this and that using Iris 
may in fact have examples of algorithms that were executed using 
different data sets! What to do? Well, there isn't much we can do 
about this problem. We have checked our own files, and they all 
contain the data as listed in Fisher (1936) and Johnson and Wichem 
(1992). That's not too reassuring, but it's the best we can do. We have 
tried to check which Iris data set was used in the examples of other 
authors that are discussed in this book, but this is nearly 
impossible. We do not guarantee that all the results we discuss for 
"the" Iris data really pertain to the same numerical inputs. Indeed, 
the "Lena" image is the Iris data of image processing, - after all, the 
original Lena was a poor quality, 6 bit image, and more recent 
copies, including the ones we use in this book, come to us with 
higher resolution. To be sure, there is only one analog Lena 
(although PLAYBOY ran many), but there are probably, many 
different digital Lenae. 

Data get corrupted many ways, and in the electronic age, it should 
not surprise us to find (if we can) that this is a fairly common event. 
Perhaps the best solution to this problem would be to establish a 
central repository for common data sets. This has been tried several 
times without much success. Out of curiosity, on September 7, 1998 
we fetched Iris from the anonymous FTP site "ftp.ics.uci.edu" under 
the directory "pub/machine-learning-databases", and discovered 
not one, but two errors in it! Specifically, two vectors in Iris Sestosa 
were wrong: vector 35 in Fisher (1936) is (4.9, 3.1, 1.5, 0.2) but in the 
machine learning electronic database it had coordinates (4.9, 3.1, 
1.5, 0.1); and vector 38 in Fisher is (4.9, 3.6, 1.4, 0.1), but in the 
electronic database it was (4.9, 3.1, 1.5, 0.1). Finally, we are aware of 
several papers that used a version of Iris obtained by multiplying 
every value by 10, so that the data are integers, and the papers 
involved discuss 10*lris as if they thought it was Iris. We don't think 
there is a way to correct all the databases out there which contain 
similar mistakes (we trust that the machine learning database will 
be fixed after our alert), but we have included a listing of Iris in 
Appendix 2 of this book (and, we hope it's right). What all this means 

http://ftp.ics.uci.edu
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for you, the pattern recognition aficionado is this: pattern 
recognition is data, and not all data are created equally, much less 
replicated faithfully! 

Numerical results We have tried to give you all the information you 
need to replicate the outputs we report in numerical examples. There 
are a few instances where this was not possible (for example, when 
an iterative procedure was initialized randomly, or when the results 
were reported in someone's paper 10 or 15 years ago, or when the 
authors of a paper we discuss simply could not supply us with more 
details), and of course it's always possible that the code we ran 
implemented something other than we thought it did, or it simply 
had undetected programming errors. Also, we have rounded off or 
truncated the reported results of many calculations to make tables 
fit into the format of the book. Let us know if you find substantial 
differences between outputs you get (or got) cind the results we report. 

The references More than one reference system is one too many. We 
chose to reference books and papers by last names and years. As 
with any system, this one has advantages and disadvantages. Our 
scheme lets you find a paper quickly if you know the last name of 
the first author, but causes the problem of appending "a", "b" and so 
on to names that appear more than once in the same year. There 
may be a mistake or two, or even 0(n) of them. Again, please let us 
know about it. We have divided the references into two groups: those 
actually cited in the text, and a second set of references that point to 
related material that, for one reason or another, just didn't find 
their way into the text discussion. Many of these uncited papers are 
excellent - please have a look at them. 

The acronyms Acronyms, like the plague, seem to spread unchecked 
through the technical literature of pattern recognition. We four are 
responsible for quite a few of them, and so, we can hardly hold this 
bad habit against others. This book has several hundred acronyms 
in it, and we know you won't remember what many of them mean for 
more than a few pages. Consequently, Appendix 1 is a tabulation of 
the acronyms and abbreviations used in the text. 
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shown during the writing of this book: 
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We also want to express our thanks to Andrea Baraldi, Alma Blonda, 
Larry Hall, Lucy Kuncheva and Thomas Runkler, all of whom were 
kind enough to review various parts of the manuscript and/or 
supplied us with computations for several examples that we could 
not find in the literature, and whose helpful comments save us at 
least a few embarrassments. 

The quotes Everyone nowadays seems to have a pithy quote at each 
chapter head, at the end of each email, on their web page, tattooed on 
their leg, etc., so we wanted to have some too. Rather than choose one 
quote for the book that all of us could live with (quite a range of 
tastes exists amongst us four), we decided to each supply one quote 
for this preface. We give the quotes here, but don't identify who 
contributed each one. That will be revealed in the pages of this 
volume - but only to those readers alert enough to recognize the 
patterns. 

"What use are all these high-flying vaunts of yours? 
O King of Birds! You will be the world's laughing stock. 
What a marvel would it be if the hare 
were to void turd the size of elephant dung!" 

Vishnu Sharma, m Panchatantm, circa AD ^00 

"Only the mediocre are always at their best" 
^Slt^e Wave, circa 1995 

"All uncertainty is fruitful ... so long as it is accompanied by the 
wish to understand" 

Antonio Machado, 'Juan de Mairena, 19A3 

'You gotta pay your dues if you want to play the blues, and you know 
that don't come easy" 

l^ingo Starr, circa 1973 

You may think you know which of us contributed each of these 
quotes - but you might be surprised. Life is full of surprises, and so is 
this book. We hope you enjoy both. 

Jim Bezdek 
Jim Keller 

Rags Krishnapuram 
Nik Pal 



1 Pattern Recognition 
1.1 Fuzzy models for pattern recognition 

There is no lack of definitions for the term pattern recognition. Here 
are a few that we like. 

Fukunaga (1972, p. 4): "pattern recognition consists of two parts: 
feature selection and classifier design." 

Duda and Hart (1973, p. vli) "pattern recognition, a field concerned 
with machine recognition of meaningful regularities in noisy or 
complex environments". 

Pavlidis (1977, p. 1): "the word pattern is derived from the same root 
as the word patron and, in its original use, means something which 
is set up as a perfect example to be imitated. Thus pattern 
recognition means the identification of the ideal which a given 
object was made after." 

Gonzalez and Thomason (1978, p. 1) : "Pattern recognition can be 
defined as the categorization of input data into identifiable classes 
via the extraction of significant features or attributes of the data 
from a background of irrelevant detail." 

Bezdek (1981, p. 1) : "pattern recognition is a search for structure in 
data" 

Schalkoff (1992, p. 2) " Pattern recognition (PR) is the science that 
concerns the description or classification (recognition) of 
measurements." 

And here is our favorite, because it comes from the very nice book by 
Devijver and Kittler (1982, p. 2), titled Pattern Recognition: A 
Statistical Approach: "pattern recognition is a very broad field of 
activities with very fuzzy borders" !!! 

What all these definitions should tell you is that it's pretty hard to 
know what to expect from a book with the term pattern recognition 
in its title. You will find texts that are mostly about computer 
science topics such as formal language theory and automata design 
(Fu, 1982), books about statistical decision theory (Fukunaga, 1972, 
1991), books about fuz^ mathematics and models (Bezdek, 1981), 
books about digital hardware (Serrano-Gotarredona et al., 1998), 
handbooks (Ruspini et al., 1998), pure math books, books that 
contain only computer programs, books about graphical 
approaches, and so on. The easiest, and we think, most accurate 
overall description of this field is to say that it is about feature 
analysis, clustering, and classifier design, and that is what this 
book is about - the use of fuz^ models in these three disciplines. 
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Regardless of how it is defined, there are two major approaches to 
pa t t e rn recognition, nunaerical and syntactic. With the exception of 
Section 4.10, this book is exclusively concerned with the numerical 
approach . We character ize numer ica l pa t t e rn recognition with the 
four major a r ea s shown in Figure 1.1. The nodes in Figure 1.1 are 
not i n d e p e n d e n t . In prac t ice , a successfu l p a t t e r n recogni t ion 
sys tem is developed by iteratively revisiting the four modules unti l 
the sys tem satisfies (or is a t leas t optimized for) a given set of 
performance requi rements a n d / o r economic const ra in ts . 

Humans 

Process Description 

Feature Nomination 

X = Numerical Object Data 

= Pair-relational Data 

Feature Analysis 

Design Data Test Data 

Sensors 

Preprocessing 
Extraction 
Selection 

Visual 
• • • 

Classifier Design 

Classification 
Est imat ion 
Prediction 

Control 
• • • 

Cluster Analysis 

Tendency 
Validity 
Labeling 

« • • 

Figure 1.1 Typical elements of numerical pattern recognition 

The uppe r block of Figure 1 . 1 - process description - is always done 
by h u m a n s . Things t h a t m u s t be accomplished he re include the 
selection of a model type, features to be measu red a n d sensors t h a t 
can collect the data . This impor tant p h a s e of system design is not 
well r epresen ted in the l i terature because there are m a n y factors 
s u c h a s t ime, space, weight, cost, speed, etc. t h a t are too problem-
d e p e n d e n t to admi t m u c h generali ty. You need to give careful 
t hough t to process description because your decisions here will be 
reflected in the ul t imate performance of your system. 
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^ Notation Vectors are boldface (x, v, V, etc.); x e 5RP is the px 1 
matrix x = (x, x )^. Matrices and set names are not shown 

boldface (even though a c x p matrix U is a vector in 9̂ ^̂  = R̂*̂  x 9tP). 
For the matrix U e 9l̂ P, ŵ e may write the i-th row as U.̂ , e 9^P , and 

the k-th column as Uĵ^ e Ŝ '̂ . By this convention, when interpreting 
U a s a c p x l c o l u m n vector , we may wr i te 
U = (Uj Up) = (U(i,,..., U(p) )'^ e ĝ '̂ P. When interpreting the rows or 
columns of a matrix as a set, we use set brackets; e.g., the c rows 

U = (U(^,,...,U(^j) e gt'̂ P ^ U = {U(i),...,U(c)} c 9tP. We use 0 for the zero 

vector in all vector spaces; specifically, in both 3i^ and 9t'̂ P. 

Two data types are used in numerical pattern recognition: object 
data (feature or pattern vectors); and (pairwise) relational data 
(similarities, proximities, etc.). Object data are represented 
throughout the volume as X = {x , x x } c 5RP, a set of n feature 

vectors in feature space 9^P . Writers in some fields call the features 
of each object "attributes", and others call them "characteristics". 
The J-th object is a physical entity such as a tank, medical patient, 
stock report, etc. Column vector x. is it's numerical representation; 
Xĵ . is the k.-th feature or attribute value associated with object J. 
Features can be either continuously or discretely valued in 31. 

We will also deal with non-numerical data called categorical data in 
Chapter 4. Categorical data have no natural order. For example, we 
can represent animals with numerical attributes such as number of 
legs, weight, etc. ; or we might describe each one with categorical 
attributes such as skin texture, which itself has values such as furry, 
feathery, etc. When needed, we denote the objects themselves as O = 
{o , o , ..., 0 }. Chapter 2 is about clustering numerical object data. 

Instead of object data, we may have a set of (mn) numerical 
relationships, say {r,}, between pairs of objects (o., o ) in 

Oi X O2, |0i I = m, IO21 = n . The number r.ĵ  represents the extent to 
which o. e Oj is related to Oĵ  e O2 in the sense of some binary 

relation p. It is convenient to array the relational values as an m x n 
relation matrix R = [r.J = [p(o,, Oĵ )]. Many functions can convert 
object data into relational data. For example, every metric (distance 
measure) 5 on 9tP x 9tP produces a square (dis)-similarity relation 
matrix R(X; 6) on the n objects represented by X, as shown in Figure 
1.1. If every r.^ is in {0, 1), R is a crisp binary relation. If any r j^ is in 
[0, 1], we call R a fuzzy binary relation. Chapter 3 is about clustering 
relational data. 
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One of the most basic structures in pattern recognition is the label 
vector. No matter what kind of data you have (including the case of n 
objects as opposed to numerical data that represent them), there are 
four types of class labels - crisp, fuzzy, probabilistic and 
possibilistic. Letting n be the number of objects (or feature vectors or 
number of rows and columns in relational data) integer c denote the 
number of classes, 1 < c < n. Ordinarily, c will not be 1 or n, but we 
admit this possibility to handle special cases that sometimes arise. 

We define three sets of label vectors in 3f as follows: 

Np^={ye9t'^:y. e[0, 1] V i, ŷ  > 0 3 i} = [0,1]=-{0}; 

N. y e N p c : I y i = l 'pc- ^Ji 
i=l 

Nhc = {y^N^c-yi^{o-iJ^4 = h ' « 2 ^c} 

(1.1) 

(1.2) 

(1.3) 

In (1.1) 0 is the zero vector in 'Si'^. Note that N^c c N ^ cNp,.. Figure 
1.2 depicts these sets for c = 3. N is the canonical (unit vector) basis 

of Euclidean c-space, so ej=(0, 0 ,..., 1 ,..., 0)^, the i-th vertex 
i 

of N, , is the crisp label for class i, 1 < i < c. 
he 

N h 3 = { 6 1 , 6 2 , 6 3 } 

fo.r 
0.6 

10.3, 

«'2 = 
'0) 
1 
oj 

Np3=[0 , lp- (0} 
Nf3 = conv(Nh3) 

Figure 1.2 Label vectors for c = 3 classes 
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The set N , a piece of a hyperplane, is the convex hull of N . The 
vector y = (0.1, 0.6, 0.3)"^ is a constrained label vector; its entries lie 
between 0 and 1, and sum to 1. The centroid of N, is the 

fc 
equimembership vector l / c = ( l / c , . . . , l / c ) ^ . If y is a label vector 
for some x e 5R̂  generated by, say, the fuzzy c-means clustering 
method, we call y a fuzzy label for x. If y came from a method such as 
maximum likelihood estimation in mixture decomposition, y 
would be a probabilistic label In this case, 1 / c is the unique point 
of equal probabilities for all c classes. 

N = [0, IJ'̂ -fO} is the unit hypercube in 9^ ,̂ excluding the origin. 
Vectors such as z = (0.7, 0.2, 0.7)"^ with each entry between 0 and 1 
that are otherwise unrestricted are possibilistic labels in N . 

p3 
Possibilistic labels are produced by possibilistic clustering 
algorithms (Krishnapuram and Keller, 1993) and by computational 
neural networks that have unipolar sigmoidal transfer functions at 
each of c output nodes (Zurada, 1992). 

Most pattern recognition models are based on finding statistical or 
geometrical properties of substructures in the data. Two of the key 
concepts for describing geometry are angle and distance. Let A be 
any positive-definite p x p matrix. For vectors x, v e 5tP, the 
functions ()^:9tP X5RP K^ 91, || ||^:9^P ^ 91+, and 5^:9^P x9tP ^ 9?+ 

(x,v)^ = x'̂ Av ; (1.4) 

\\x\\^=^[(^c^ = 4 ^ ^ ;and (1.5) 

6^(x, V) = ||x - v||^ = V(x - v)'^A(x - V) , (1.6) 

are the inner product (dot product, scalar product), norm (length), 
and norm metric (distance) induced on 9tP by weight matrix A. We 
say that x and v are orthogonal (normal, perpendicular) if their dot 
product is zero, (x,v)^ =x^Av = 0. Sometimes we write x ± ^ v to 
indicate this, and note particularly that orthogonality is always 
relative to miatrix A that induces the inner product. 

Equation (1.6) defines an infinite family of inner product induced 
distances, the most important three of which, together with their 
common names and inducing matrices, are: 

• V •J{x-vf{x-v) Euclidean, A=l ; (1.7) 
p 
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||x - V||Q-I = Vfx - v)^D ^(x - v) Diagonal, A=D -1 

X - V M -i=S x - v ) ' M " n x - v ) Mahalanobis, A=M 1 

(1.8) 

(1.9) 

^ Notation In (1.7) I is the p x p identity matrix. Henceforth, we 
drop the subscript I , writing the Euclidean i 

simply as (x, v), ||x|| and ||x - v|| respectively. 

drop the subscript I , writing the Euclidean forms of (1.4)-(1.6) more 

Equations (1.8) and (1.9) use M = cov(X) = I (x. -v)(x, -v )^ / n , 
k=i ^ ^ 

_ n 
the covariance matrix of X, and v = J^x.^ / n, the grand mean of X. 

k=l 
We will always indicate sample means as in statistics, with an 
overbar. The matrix D is the diagonal matrix extracted from M by 
deletion of its off-diagonal entries, D = diag(M). D is not t h e 
diagonalized form of M. 

A second infinite family of lengths and distances that are 
commonly used in pattern recognition are the Minkowski norm and 
Minkowski norm metrics 

I x , q > l 

( 
5 (x,v) X - V X - V 

J J 
q > l 

(1.10) 

(1.11) 

Only three Minkowski distances are commonly used in pattern 
recognition, and the Minkowski 2-norm is just the Euclidean norm, 

X - V L = X - V : 

X - V 

F-v||2 = 
^ P I |2 

|{x - v||^ = max 
isj<p 

{h-v.ll 

City Block (1 -norm); q= 1; (1.12) 

Euclidean (2-norm); q=2; (1.13) 

Sup or Max norm; q ^ oo. (1.14) 
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A classifier is any function D:?^^ h-> N . The value y = D(z) is the 

label vector for z in 9?^. D is a crisp classifier if D[5K ]̂ = N ; 
otherwise, the classifier is fuzzy or probabilistic or possibilistic. 
Designing a classifier simply means finding the parameters of a 
"good" D. This can be done with data, or it might be done by an expert 
without data. If the data are labeled, finding D is called supervised 
learning; otherwise, the problem is unsupervised learning. Notice 
that we use the terms supervised and unsupervised to specifically 
connote the use of labeled or unlabeled data - it is the labels that do 
(or do not) supervise the design. When an expert designs a classifier, 
this is certainly supervised design, but in a much broader sense than 
we mean here. Chapter 4 is about fuzzy models for classifier design. 

Since definite class assignments are usually the ultimate goal of 
classification and clustering, outputs of algorithms that produce 
label vectors in N or N are usually transformed into crisp labels. 
Most non-crisp classifiers are converted to crisp ones using the 
function H: N i-> N^ , 

pc he 

H(y) = e o y - e < e j <=>y, >y, ; j^^ i • (1.15) 
i r ill ' jii --i -'J 

In (1.15) ties are resolved arbitrarily. H finds the crisp label vector e 
in N closest (in the Euclidean sense) to y. Alternatively, H finds the 
index of the maximum coordinate of y , and assigns the 
corresponding crisp label to the object vector, say z, that y labels. 
The rationale for using H depends on the algorithm that produces y. 
For example, using (1.15) for outputs from the k-nearest neighbor 
rule is simple majority voting. If y is obtained from mixture 
decomposition, using H is Bayes decision rule - label z by its class of 
maximum posterior probability. And if the labels are fuzzy, this is 
called defuzzification by the maximum membership rule. We call 
the use of H hardening. 

1.2 Why fuzzy pattern recognition? 

Rather than conclude the volume with the information in this 
subsection, it is provided here to answer a basic question you might 
have at this point: should you read on? Retrieval from the Science 
Citation Index for years 1994-1997 on titles and abstracts that 
contain the ke5mrord combinations "fuzzy" + either "clustering" or 
"classification" yielded 460 papers. Retrievals against "fuzzy" + 
either "feature selection" or "feature extraction" yielded 21 papers. 
This illustrates that the literature contains a large body of work on 
fuzzy clustering and classifier design, and relatively fewer studies of 
fuzzy models for feature analysis. Work in this last area is widely 
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scattered because feature analysis is very data and problem-
dependent, and hence, is almost always done on a case by case basis. 

A more interesting metric for the importance of fuzzy models in 
pattern recognition lies in the diversity of applications areas 
represented by the titles retrieved. Here is a partial sketch: 

Chemistry: analytical, computational, industrial, chromatography, 
food engineering, brewing science. 

Electrical Engineering: image and signal processing, neural 
networks, control systems, informatics, automatics, automation, 
robotics, remote sensing and control, optical engineering, computer 
vision, parallel computing, networking, instrumentation and 
measurement, dielectrics, speech recognition, solid state circuits. 

Geology/Geography: photogrammetry, geophysical research, 
geochemistry, biogeography, archeology. 

Medicine: magnetic resonance imaging, medical diagnosis, 
tomography, roentgenology, neurology, pharmacology, medical 
physics, nutrition, dietetic sciences, anesthesia, ultramicroscopy, 
biomedicine, protein science, neuroimaging, drug interaction. 

Physics: astronomy, applied optics, earth physics. 

Environmental Sciences: soil sciences, forest and air pollution, 
meteorology, water resources. 

Thus, it seems fair to assert that this branch of science and 
engineering has established a niche as a useful way to approach 
pattern recognition problems. The rest of this volume is devoted to 
some of the basic models and algorithms that comprise fuzzy 
numerical pattern recognition. 

1.3 Overview of the volume 

Chapter 2 discusses clustering with objective function models using 
object data. This chapter is anchored by the crisp, fuzzy and 
possibilistic c-means models and algorithms to optimize them that 
are discussed in Section 2.2. There are many generalizations and 
relatives of these three families. We discuss relatives and 
generalizations of the c-means models for both volumetric (cloud 
shaped) and shell clusters in Section 2.3. Roughly speaking, these 
two cases can be categorized as point and non-point prototype 
models. Section 2.3 also contains a short subsection on recent 
developments in the new area of robust clustering. Chapter 2 
contains a long section on methods for validation of clusters after 
they are found - the important and very difficult problem of cluster 
validity. Separate subsections discuss methods that attempt to 
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validate volumetric and shell type clusters; and this section 
concludes with a discussion of fuzzy versions of several well known 
statistical indices of validity. This is followed by a short section on 
feature analysis with references to a very few fuzzy methods for 
problems in this domain. Finally, we close Chapter 2 (and all 
subsequent chapters as well) with a section that contains comments 
and related references for further reading. 

Chapter 3 is about two types of relational clustering: methods that 
use decompositions of relation matrices; and methods that rely on 
optimization of an objective function of the relational data. This is 
a much smaller field than clustering with objective function 
methods. The main reason that relational models and algorithms 
are less well developed than those for object data is that sensors in 
fielded systems almost always collect object data. There are, 
however, some very interesting applications that depend on 
relational clustering; for example, data mining and information 
retrieval in very large databases. We present the main topics of this 
area in roughly the same chronological order as they were 
developed. Applications of relational clustering are also discussed 
in the handbook volume devoted to information retrieval. 

Chapter 4 discusses fuzzy models that use object data for classifier 
design. Following definitions and examples of the nearest single 
and multiple prototype classifiers, we discuss several sequential 
methods of prototype generation that were not covered in Chapter 2. 
Next, k-nearest neighbor rule classifiers are presented, beginning 
with the classical crisp k-nearest neighbor rule, and continuing 
through both fuzzy and possibilistic generalizations of it. Another 
central idea covered in Chapter 4 is the use of the fuzzy integral for 
data fusion and decision making in the classification domain. 
Following this, rule based designs are introduced through crisp and 
fuzzy decision trees in Section 4.6, which contains material about 
the extraction of fuzzy rules for approximation of functions from 
numerical data with clustering. 

Chapter 4 next presents models and algorithms that draw their 
inspiration from neural-like networks (NNs). Two chapters in 
Nguyen and Sugeno (1998) by Pediycz et al.,(1998) and Prasad (1998) 
discuss the use of fuzzy neurons and fuzzy NNs in the context of 
control and functional approximation. These chapters provide good 
ancillary reading to our presentation of related topics in the context 
of pattern recognition. The feed forward multilayered perceptron 
trained by back propagation (FFBP) is the dominant structure 
underlying "fuzzy neural networks" (neurofuzzy computing, etc.), so 
our discussion begins with this network as the standard classifier 
network. Then we present some generalizations of the standard 
node functions that are sometimes called fuzzy neurons. We discuss 
and il lustrate perceptrons, multilayered perceptrons, and 
aggregation networks for classification. Then we discuss the crisp 
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and several fuzzy generalizations of adaptive resonance theory 
(ART), including a short subsection on radial basis function 
networks. Section 4.9 is concerned with the increasingly important 
topic of classifier fusion (or multistage classification). The last 
section in Chapter 4 is a short section on the use of fuzzy models in 
syntactic pattern recognition. Our Chapter 4 comments include 
some material on feature analysis in the context of classifier design. 

Chapter 5 is about image processing and computer vision. It is here 
that the models and algorithms discussed in previous chapters find 
realizations in an important application domain. Chapter 5 begins 
with low level vision approaches to image enhancement. Then we 
discuss edge detection and edge following algorithms. Several 
approaches to the important topic of image segmentation are 
presented next, followed by boundary description and surface 
approximation models. The representation of image objects as fuzzy 
regions is followed by a section on spatial relations. The last section 
in Chapter 5 discusses high level vision using fuzzy models. Chapter 
7.3.2 of volume 7 of this handbook (Bezdek and Sutton, 1998) 
contains an extended discussion of fuzzy models for image 
processing in medical applications. 

1.4 Comments and bibliography 

There are many good treatments of deterministic, statistical and 
heuristic approaches to numerical pattern recognition, including 
the texts of Duda and Hart (1973), Tou and Gonzalez (1974), Devijver 
and Kittler (1982), Pao (1989) and Fukunaga (1991). Approaches 
based on neural-like network models are nicely covered in the texts 
by Zurada (1992) and Haykin (1994). 

The earliest reference to the use of fuzzy sets in numerical pattern 
recognition was Bellman, Kalaba and Zadeh (1966). RAND Memo 
RM-4307-PR, October, 1964, by the same authors had the same title, 
and was written before Zadeh (1965). Thus, the first application 
envisioned for fuzzy models seems to have been in pattern 
recognition. 

Fuzzy techniques for numerical pattern recognition are now fairly 
mature. Good references include the texts by Bezdek (1981), Kandel 
(1982), Pal and Dutta-Majumder (1986) and the edited collection of 
51 papers by Bezdek and Pal (1992). Chi et al. (1997) is the latest 
entrant into this market, with a title so close to ours that it makes 
you wonder how many of these entries the market will bear. Surveys 
of fuzzy models in numerical pattern recognition include Keller and 
Qiu(1988), Pedrycz (1990b), Pal (1991), Bezdek (1993), Keller and 
Krishnapuram (1994), Keller et al. (1994) and Bezdek et al. (1997a). 



2 Cluster Analysis for Object Data 
2.1 Cluster analysis 

Figure 2.1 portrays cluster analysis. This field comprises three 
problems: tendency assessment, clustering and validation. Given an 
unlabeled data set, (T) is there substructure in the data? This is 
clustering tendency - should you look for clusters at all? Very few 
methods - fuzzy or otherwise - address this problem. Panajarci and 
Dubes (1983), Smith and Jain (1984), Jain and Dubes (1988), Tukey 
(1977) and Everitt (1978) discuss statistical and informal graphical 
methods (visual displays) for deciding what - if any - substructure is 
in unlabeled data. 

Unlabeled Data Set 

X = {Xi,X2 X„}c9lP 

i 
^^^ Assessment 

X has clusters ? 

±Yes 

( 2 ) 
Clustering 

i^ pen J 

I 
No 

® Validity 
No 

U is OK ? 

No : Stop 

Yes: 
Stop 

Figure 2.1 Cluster analysis: three problems 

Once you decide to look for clusters (called U in (I), Figure 2.1), you 
need to choose a model whose measure of mathematical similarity 
may capture structure in the sense that a human might perceive it. 
This question - what criterion of similarity to use? - lies at the heart 
of all clustering models. We will be careful to distinguish between a 
model, and methods (algorithms) used to solve or optimize it. There 
are objective function (global criteria) and graph-theoretic (local 
criteria) techniques for both relational and object data. 
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Different algorithms produce different partitions of the data, and it 
is never clear which one(s) may be most useful. Once clusters are 
obtained, how shall we pick the best clustering solution (or 
solutions)? Problem (T) in Figure 2.1 is cluster validity, discussed in 
Section 2.4. 

Problem @ in Figure 2.1 is clustering [ or unsupervised learning) in 
unlabeled data set X = {x , x x }, which is the assignment of (hard 
or fuzzy or probabilistic or possibilistic) label vectors to the {x }. 
The word learning refers to learning good labels (and possibly 
protot3^es) for the clusters in the data. 

A c-partition of X is a c x n matrix U = [U U ... U ] = [u ], where U 
I K ri lie K. 

denotes the k-th column of U. There are three sets of c-partitions 
whose columns correspond to the three types of label vectors 
discussed in Chapter 1 

Mp,„ = j U e 91^-: Uk e Np,Vk; 0 < ̂ I u^, Vi ̂  ; (2.1) 

fen 
{UeMp^„:U,EN^^Vk} : (2.2) 

M,en = {u-M^^^:U^eN^^Vk} . (2.3) 

Equations (2.1), (2.2) and (2.3) define, respectively, the sets of 
possibilistic, fuzzy or probabilistic, and crisp c-partitions of X. Each 
column of U in M (M, , M, ) is a label vector from N (N, , N, ). 

pen fen' hen' pc fc he 
Note that M-^^^ ^ ^fen ^ ^pen • Ou'" notation is chosen to help you 
remember these structures; M = (membership) matrix, h=crisp 
(hard), f= fuzzy (or probabilistic), p=possibilistic, c=number of 
classes and n=number of data points in X. 

^ Notation For U in M^ c=l is represented uniquely by the hard 

1-partition In = [l 1 ••• 1]. which asserts that all n objects belong 
n times 

to a single cluster; and c=n is represented uniquely by U= I , the n x n 
identity matrix, up to a permutation of columns. In this case each 
object is in its own singleton cluster. Crisp partitions have a 
familiar set-theoretic description that is equivalent to (2.1). When 
U = {X^ X } is a crisp c-partition, the c crisp subsets {X,}cX 

satisfy [jX^ = X; Xj n X j = 0if i ?i j ;and Xj 5 t0Vi . We denote the 

cardinality of a crisp set of n elements as |X| = n , and |Xi| = nj V i. 
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Choosing c=l or c=n rejects the h3T)othesis that X contains clusters 
in these cases. The lack of a column sum constraint for 
U e (Mp(,n -Mfcn) means that there are infinitely many U's in both 

(M pin •Mfinjand (M -M^^) pnn 
n 

The constraint 0< XUjk Vi in equation (2.1) guarantees that each 
k=l 

row in a c-partition contains at least one non-zero entry, so the 
corresponding cluster is not empty. Relaxing this constraint results 
in enlarging M to include matrices that have zero rows (empty 
clusters). From a practical viewpoint this is not desirable, but we 
often need this superset of M ^̂  for theoretical reasons. We designate 
the sets of degenerate (crisp, fuzzy, possibilistic) c-partitions of X as 

I M ) 
fcnO' pcnO-'' 

(M. „„, M,_„, M^ 
hcnO' 

The reason these matrices are called partitions follows from the 
interpretation of their entries. If U is crisp or fuzzy, u is taken as 
the membership of Xĵ  in the i-th partitioning fuzzy subset (cluster) of 
X. If U is probabilistic, u is usually the (posterior) probability 
p(i IX ) that, given x^, it came from class (cluster) i. We indicate the 
statistical context by replacing U = [u ] Avith P = [p ] = [p(i | x )]. When 
U is possibilistic, u is taken as the possibility that x belongs to 
class (cluster) i. 

Clustering algorithms produce sets of label vectors. For fuzzy 
partitions, the usual method of defuzzification is the application of 
(1.15) to each column U of matrix U, producing the maximum 

membership matrix we sometimes call 
formalize this operation as equation (2.10). 

U MM 
from U. We will 

Example 2,1 Let X = {Xj = peach, x^ = plum, Xg = nectarine}, and let 
c=2. Typical 2-partitions of these three objects are: 

U i e M h 2 3 U a e Mf23 U 3 e M p 2 3 

Object 

Peaches 
Plums 

X X„ X„ 
1 2 3 

1.0 0.0 0.0 
0.0 1.0 1.0 

X X„ X„ 
1 2 3 

1.0 0.2 0.4 
0.0 0.8 0.6 

X, X„ X„ 
1 2 3 

1.0 0.2 0.5 
0.0 0.8 0.6 

The nectarine, Xg, is labeled by the last column of each partition, 
and in the crisp case, it must be (erroneously) given full membership 
in one of the two crisp subsets partitioning this data. In U , Xg is 
labeled "plum". Non-crisp partitions enable models to (sometimes!) 
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avoid such mistakes. The last column of U allocates most (0.6) of 
the membership of Xg to the plums class; but also assigns a lesser 
membership (0.4) to Xg as a peach. U illustrates possibilistic label 
assignments for the objects in each class. 

Finally, observe that hardening each column of U^ and U with 
(1.15) in this example makes them identical to U . Crisp partitions 
of data do not possess the information content to suggest fine details 
of infrastructure such as hybridization or mixing that are available 
in U and U . Consequently, extract information of this kind before 
you harden U! 

Columns like the ones for the nectarine in U and U serve a useful 
purpose - lack of strong membership in a single class is a signal to 
"take a second look". In this example the nectarine is a peach-plum 
hybrid, and the memberships shown for it in the last column of 
either U or U seem more plausible physically than crisp 
assignment of Xg to an Incorrect class. M ^̂  and M̂ .̂ ^ can be more 
realistic than M because boundaries between many classes of real 
objects are badly delineated (i.e., really fuzzy). M^̂ ^ reflects the 
degrees to which the classes share {x,}, because of the constraint 

'^ k 

inherited from each fuzzy label vector (equation (1.2)) we have 
Xf=i u., = 1 • M ^̂  reflects the degrees of typicality of {x } with respect 
to the prototypical (ideal) members of the classes. 
We believe that Bill Wee wrote the first Ph.D. thesis about fuzzy 
pattern recognition (Wee, 1967); his work is summarized in Wee and 
Fu (1969). Ruspini (1969) defined M^̂ ,̂ and Ruspini (1970) discussed 
the first fuzzy clustering method that produced constrained c-
partitions of unlabeled (relational) data. Gitman and Levine (1970) 
first attempted to decompose "mixtures" (data with multimodality) 
using fuzzy sets. Other early work includes Woodbury and Clive 
(1974), who combined fuzziness and probability in a hybrid 
clustering model. In the same year, Dunn (1974a) and Bezdek (1974a) 
published papers on the fuzzy c-means clustering model. Texts that 
contain good accounts of various clustering algorithms include 
Duda and Hart (1973), Hartlgan (1975), Jain and Dubes (1988), 
Kaufman and Rouseeuw (1990), Miyamoto (1990), Johnson and 
Wichern (1992), and the most recent members of the fold, Chi et al. 
(1996a) and Sato et al. (1997). 

2.2 Batch point-prototype clustering models 

Clustering models and algorithms that optimize them always 
deliver a c-partition U of X. Many clustering models estimate other 
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parameters too. The most common parameters besides U that are 
associated with clustering are sets of vectors we shall denote by 
V = {vj, V2,..-, Vg} c 91^. The vector v. is interpreted as a point 
prototype (centroid, cluster center, signature, exemplar, template, 
codevector) for the points associated with cluster i. Point prototypes 
are regarded as compact representations of cluster structure. 

As j u s t defined, v. is a point in 31^, hence a point-prototype. 
Extensions of this idea to prototypes that are not just points in the 
feature space include v.'s that are linear varieties, hyperspherlcal 
shells, and regression models. General prototype models are covered 
in Section 2.3. Probabilistic clustering with normal mixtures 
produces simultaneous estimates of a c x n partition P (posterior 
probabilities), c mean vectors M = {m m }, c covariance matrices 

{S , ..., S } and c prior probabilities p = (p , ..., p )^. Some writers 
regard the triple (p., m., S.) as the prototype for class i; more 
typically, however, m, is considered the point prototype for class i, 
and other parameters such as p. and S are associated with it through 
the model. 

The basic form of iterative point prototype clustering algorithms in 
the variables (U, V) is 

(Ut,Vt) = e(X:Ut_i ,Vt_J, t>0 , (2.4a) 

where G stands for the clustering algorithm and t is the index of 
iteration or recursion. Non-iterative models are dealt with on a case 
by case basis. When G is based on optimization of an objective 
function and joint optimization in (U, V) is possible, conditions 
(2.4a) can be written as (Uj,V^) = e(X:Hg(U^ ,̂ V^ j)), where H^ is 
determined by some optimality criterion for the clustering model. 
More typically however, alternating optimization (AO) is used, 
which takes the form of coupled equations such as 

Ut = ?e(Vt-i) ; Vt = 5fe(Ut) [V-initialization]; or (2.4b) 
Vt = ^e(Ut-i):Ut = 3e(Vt) [U-initialization]. (2.4c) 

The iterate sequences in (2.4b) or (2.4c) are equivalent. Both are 
exhibited to point out that you can start (initialize) and end 
(terminate) iteration with either U or V. Specific implementations 
use one or the other, and properties of either sequence (such as 
convergence) automatically follow for iteration started at the 
opposite set of variables. Examples of clustering models that have 
(U, V) as joint parameters are the batch hard, fuzzy and possibilistic 
c-means models. Alternating optimization of these models stems 
from functions J and Q which arise from first order necessary 
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conditions for minimization of the appropriate c-means objective 
function. 

A. The c-means models 

The c-means (or k-means) families are the best known and most 
well developed families of batch clustering models. Why? Probably 
because they are least squares models. The history of this 
methodology is long and important in applied mathematics because 
leas t - squares models have many favorable mathematical 
properties. (Bell (1966, p. 259) credits Gauss with the invention of the 
method of least squares for parameter estimation in 1802, but states 
that Legendre apparently published the first formal exposition of it 
in 1806.) The optimization problem that defines the hard {H), fuzzy 
(F) and possibilistic (P) c-means (HCM, FCM and PCM, respectively) 
models is: 

mlnj j„ (U,V;w)= i iuS^D2i, + I w , 1 ( 1 - U i k r j , where (2.5) 
{U/V)i i=lk=l i=l k=l J 

U e M , M, or M for HCM, FCM or PCM respectively 
hen fen pen 

V = (v , V ,..., V) e ĝ cp; v̂  e ĝ p is the i-th point prototype 
T w = (w , w w) ; Wj e 9̂ + is the i-th penalty term (PCM) 

m > 1 is the degree of fuzzification 

D^ =i|x, - V 
2 

ik II k IIIA 

Note especially that w in (2.5) is a fixed, user-specified vector of 
positive weights; it is not part of the variable set in minimization 
problem (2.5). 

^ Caveat: Model optima versus human expectations. The 
presumption in (2.5) is that "good" solutions for a pat tern 
recognition problem - here clustering - correspond to "good" 
solutions of a mathematical optimization problem chosen to 
represent the physical process. Readers are warned not to expect too 
much from their models. In (2.5) the implicit assumption is that 
pairs (U, V) that are at least local minima for J will provide (i) 
good clusters U, and (ii) good prototypes V to represent those clusters. 
What's wrong with this? Well, it's easy to construct a simple data set 
upon which the global minimum of J leads to algorithmically 
suggested substructure that humans will disagree with (example 2.3). 
The problem? Mathematical models have a very rigid, well-defined 
idea of what best means, and it is often quite different than that held 
by human evaluators. There may not be any relationship between 
clusters that humans regard as "good" and the various types of 
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extrema of any objective function. Keep this in mind as you try to 
unde r s t and your d isappointment about the terrible clusters your 
favorite algorithm jus t found. The HCM, FCM and PCM clustering 
models are summarized in Table 2 .1 . Problem (2.5) is well defined 

for any distance function on 9f{P. The method chosen to approximate 
solutions of (2.5) depends primarily on Dik. Ĵ^̂  is differentiable in U 
unless it is crisp, so first order necessary conditions for U are readily 
obtainable. If Dik is differentiable in V (e.g., whenever Dik is an inner 
product norm), the mos t popular technique for solving (2.5) is 
grouped coordinate descent (or alternating optimization (AO)). 

Table 2.1 Optimizing Ji„(U,V;w) when ^ik = p - V : 

Minimize 

First order necessary conditions for 

(U, V) when Dik = ||^ k " '^ij^ > 0 V i, k 

(inner product norm case only) 

HCM 

Ji(U,V;w) 

over(U,V) 

inMhenXR^P 
W: = OV i 

^ ^ ^ ^ | l ; D i , . D y , j . i l . ^ . 

0; otherwise] 

V,- = 

SUikXk 
k=l  

k=l 

E x k 

n: 
V i 

(2.6a) 

(2.6b) 

FCM 

>Jm(U,V;w) 

over(U,V) 

inMfc„xR<=P 

m >1 

w, = O V i 

u ik 

/ _ \ 
ik D 

VDjk/ 

m - l 
Vi ,k ; 

Vk-1 / k-1 / 
V i 

(2.7a) 

(2.7b) 

PCM 

Jm(U,V;w) 

over(U,V) 

inMp,„xR^P 

Wj > 0 V i 

Uik = l + (D, l /wi ) - i 

Vk-1 / k - l / 

Vi ,k ; 

V i 

(2.8a) 

(2.8b) 

Column 3 of Table 2.1 shows the first order necessary conditions 
U, = JtC^t-i) ; ^t = ^ c ( U ) ^'^^ ^ ^^'^ ^ *̂- local extrema of J tha t 
each model requires at extreme points of its functional when the 
d is tance m e a s u r e in (2.5) is an inner p roduc t no rm metr ic . 
Derivations of the FCM and PCM conditions are made by zeroing the 
gradient of Jm with respect to V, and the gradient of (one term of) the 
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LaGrangian of J with respect to U. The details for HCM and FCM 
can be found in Bezdek (1981), and for PCM, see Krishnapuram and 
Keller (1993). 
The second form, Vj for v^in (2.6b), emphasizes that optimal HCM-
AO prototypes are simply the mean vectors or centroids of the points 
in crisp cluster i, Uj = |U(j)|, where U is the i-th row of U. Conditions 
(2.7) converge to (2.6) and J ^ J as m->l from above. At the other 

^ m l 

extreme for (2.7), lim {u^^^} = 1/c V i, k as m increases without bound, 
m-><» 

and lim {Vi} = v = I x^ / n V i (Bezdek, 1981). 
i ^ ^ k=l / 

Computational singularity for u in HCM-AO is manifested as a tie 
in (2.6a) and may be resolved arbitrarily by assigning the 
membership in question to any one of the points that achieves the 
minimum. Singularity for u in FCM-AO occurs when one or more 

12 
= 0 at any iterate. In this case (rare in practice), (2.7a) 

cannot be calculated. When this happens, assign O's to each non-
singular class, and distribute positive memberships to the singular 

c 
classes arbitrarily subject to constraint X u,k = 1. As long as the w 's 

1=1 ' 

are positive (which they are by user specification), PCM-AO cannot 
experience this difficulty. Constraints on the {u } are enforced by 
the necessary conditions in Table 2.1, so the denominators for 
computing each v. are always positive. 

Table 2.2 specifies the c-means AO algorithms based on the 
necessary conditions in Table 2.1 for the inner product norm case. 
The case shown in Table 2.2 corresponds to (2.4b), initialization and 

termination on cluster centers V. The rule of thumb c < Vri in the 
second line of Table 2.2 can produce a large upper bound for c. For 
example, this rule, when applied to clustering pixel vectors in a 
256 X 256 image where n=65,536, suggests that we might look for c = 
256 clusters. This is done, for example, in image compression, but 
for segmentation, the largest value of c that might make sense is 
more like 20 or 30. In most cases, a reasonable choice for c can be 

max 
made based on auxiliary information about the problem. For 
example, segmentation of magnetic resonance images of the brain 
requires at most c = 8 to 10 clusters, as the brain contains no more 
than 8-10 tissue classes. 

All three algorithms can get stuck at undesirable terminal estimates 
by initializing with cluster centers (or equivalently, rows of U ) that 
have the same values because U,, and v are functions of just each 

(i) 1 •' 
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other. Consequently, Identical rows (and their prototypes) will 
remain identical unless computational roundoff forces them to 
become different. However, this is easily avoided, and should never 
present a problem. 

Table 2.2 The HCM/FCM/PCM-AO algorithms 

Store Unlabeled Object Data X c 9^P 

Pick 

number of clusters: 1 < c < n 
maximum number of iterations: T 

weighting exponent: 1 < m < <» (m=l for HCM-AO) 

Ml = ^"Ax 
V, - V, , = big value 

t II t t-iii ^ 

termination threshold: 0 < e = small value 
weights w > 0 V i (w = 0 for FCM-AO/HCM-AO) 

«" inner product norm for J : 

••• termination measure: E, = 

Guess initial prototjqjes: V^ = (v^, -V^oJeSt'^P (2.4b) 

Iterate 

t « - 0 
REPEAT 

t < - t + l 
Ut = 5e(Vt_i) where ?e(Vt-i) (cf- 2.6a, 2.7a or 2.8a) 
Vt = Ge (Ut) where g^ (U )̂ (cf. 2.6b, 2.7b or 2.8b 

UNTIL (t=T or E^<e) 
(U,V)^(Ut,Vt) 

The rows of U are completely decoupled in PCM because there is no 
c 

constraint that X Ujĵ  = 1. This can be an advantage in noisy data 
i=l 

sets, since noise points and outliers can be assigned low 
memberships in all clusters. On the other hand, removal of the 

c 

constraint that J û ĵ  = 1 also means that PCM-AO has a higher 

tendency to produce identical rows in U unless the initial prototypes 
are sufficiently distinct and the specified weights {w} are estimated 
reasonably correctly (Barni et al., 1996, ICrishnapuram and Keller, 
1996). However, this behavior of PCM can sometimes be used to 
advantage for cluster validation - that is, to determine c, the number 
of clusters that are most plausible (ICrishnapuram and Keller (1996)). 
Krishnapuram and Keller recommend two ways to choose the 
weights w for PCM-AO, 

w< K 
n 

k=l 
D ik 

k=l 
K > 0 ; or (2.9a) 
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w , = IDfk /|U(i,„| , (2.9b) 

where U is an a-cut of U,,, the i-th row of the initiaUzing c-
(i)a (i) ° 

partition for PCM-AO. An initial c-partition of X is required to use 
(2.9), and this is often taken as the terminal partition from a run of 
FCM-AO prior to the use of PCM-AO. However, (2.9a) and (2.9b) are 
not good choices when the data set is noisy. It can be shown (Dave 
and Krishnapuram, 1997) tha t the membership function 
corresponds to the idea of "weight function" in robust statistics and 
the weights {w.} correspond to the idea of "scale". Therefore, robust 
statistical methods to estimate scale can be used to estimate the {w} 
in noisy situations. Robust clustering methods will be discussed in 
Section 2.3. 

Clustering algorithms produce partitions, which are sets of n label 
vectors. For non-cr isp part i t ions, the u s u a l method of 
defuzzification is the application of (1.15) to each column U, of 
matrix U. The crisp partition corresponding to the Tnaximum 
membership partition of any U e M is 

U" = H(U,) = e o u > u , J9^i;Vk . (2.10) 
k k I ik jk -* 

The action of H on U will be denoted by U" = [H(Uj)--H(U^)]. The 
conversion of a probabilistic partition P e M by Bayes rule (decide 
X e class i if and only if p(i | x )] > p(j | x )]for jV i) results in the crisp 

partition P" . We call this the hardening of U with H. 

Example 2,2 HCM-AO, FCM-AO and PCM-AO were applied to the 
unlabeled data set X illustrated in Figure 2.2 (the labels in Figure 
2.2 correspond to HCM assignments at termination of HCM-AO). 
The coordinates of these data are listed in the first two columns of 
Table 2.3. There are c=3 visually compact, well-separated clusters in 

The AO algorithms in Table 2.2 were run on X using Euclidean 

distance for J and Ê  until E^= ||Vt -Vt_ i | < e = 0.01. All three 
algorithms quickly terminated (less than 10 iterations each) using 
this criterion. HCM-AO and FCM-AO were initialized with the first 
three vectors in the data. PCM-AO was initialized with the final 
prototypes given by FCM-AO, and the weight w for each PCM-AO 
cluster was set equal to the value obtained with (2.9a) using the 
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terminal FCM-AO values. The PCM-AO weights were w^=0.20, 
FCM-AO and PCM-AO both used m = 2 for the W2=0.21 andWg= 1.41 

membership exponent, and all three algorithms fixed the number of 
clusters at c = 3. Rows U, of U are shown as columns in Table 2.3. 

(1) 

14 

12 

10 

8 

6 

4 

+ + 
+ + 

i^fo^ 

2 • •m 

Terminal 
HCM labels 

+ = 3 
o=2 

• = 1 

10 12 14 

Figure 2.2 Unlabeled data set X 30 

The terminal HCM-AO partition in Table 2.3 (shaded to visually 
enhance its crisp memberships) corresponds to visual assessment of 
the data and its terminal labels appear in Figure 2.2. The cells in 
Table 2.3 that correspond to maximum memberships in the 
terminal FCM-AO and PCM-AO partitions are also shaded to help 
you visually compare these three results. 

The clusters in this data are well separated, so FCM-AO produces 
memberships that are nearly crisp. PCM-AO memberships also 
indicate well separated clusters, but notice that this is evident not by 
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many memberships being near 1, but rather, by many memberships 
being near zero. 

Table 2.3 Terminal partitions and prototypes for X^^ 

DATA HCM-AO FTM-AO PCM-AO 
PT. 

^1 ""2 u7, vL vL u7, u,"!;, u;",, "^, u7. u^ 
(1) (2) (3) (1) (2) (3) 

0.36 
(2) 

0.01 
(3) 

1 1.5 2 .5 1.00 0.00 0.00 0.99 0.01 0 .00 0.36 
(2) 

0.01 0.01 
2 1.7 2 .6 1.00 0.00 0.00 0 .99 0.01 0 .00 0..S8 0.01 0.01 
3 1.2 2 .2 1.00 0.00 0.00 0 .99 0.01 0 .00 0.27 0.01 0 .01 
4 2 2 1.00 0.00 0.00 0 .99 0.01 0 .00 0.94 0 .01 0 .01 
5 1.7 2 .1 1.00 0.00 0.00 1 0.00 0 .00 0.81 0.01 0.01 
6 1.3 2 .5 1.00 0.00 0.00 0.99 0.01 0 .00 0.26 0.01 0.01 
7 2 .1 2 1.00 0.00 0.00 0.99 0.01 0.00 0 .83 0.01 0.01 
8 2 . 3 1.9 1.00 0.00 0.00 0 .98 0.02 0.00 0.52 0.01 0 .01 
9 2 2 .5 1.00 0.00 0.00 0.99 0.01 0.00 0.51 0.01 0.01 
10 1.9 1.9 1.00 0.00 0.00 0.99 0.01 0.00 0.86 0.01 0.01 
11 5 6.2 0.00 1.00 0.00 0 .00 1.00 0.00 0.01 0.57 0.02 
12 5.5 6 O.(H) 1.00 0.00 0.00 1.00 0 .00 0.01 0.91 0.02 
13 4 .9 5.9 0.00 1.00 0.00 0.01 0.99 0 .00 0.01 0.46 0.02 
14 5 .3 6 .3 0.00 1.00 0.00 0.00 1.00 0 .00 0.0] 0 .78 0.02 
15 4 .9 6 0.00 1.00 0.00 0 .01 0 .99 0 .00 0.0] 0 .48 0.02 
16 5.8 6 0.00 1.00 0.00 0.01 0.99 0 .00 0.0] 0.52 0.02 
17 5.5 5.9 0.00 1.00 0.00 0 .00 1.00 0 .00 0 .0] 0.82 0.02 
18 5.2 6.1 0 .00 1.00 0.00 0 .00 1.00 0 .00 0.0] 0 .87 0.02 
19 6.2 6.2 0.00 1.00 0.00 0.02 0 .97 0.01 0.01 0 .23 0.02 
20 5.6 6.1 0.00 1.00 0.00 0 .00 1.00 0.00 0.01 0.79 0.02 
21 10.1 12.5 0.00 0.00 1.00 0 .01 0.02 0.97 0.00 0.00 0 32 
22 11.2 11.5 0.00 0.00 1.00 0 .00 0.01 0.99 0.00 0.00 0 .63 
2 3 10.5 10.9 0.00 0.00 1.00 0 .01 0.04 0 .95 0.00 0.00 0 30 
24 12.2 12.3 0.00 0.00 1.00 0 .00 0.01 0.99 0.00 0.00 0.89 
2 5 10.5 11.5 0 .00 0.00 1.00 0 .00 0.02 0 .98 0.00 0 .00 O.IO 
26 11 14 0.00 0.00 1.00 0.01 0.02 0 .97 0.00 0.00 0 .40 
27 12.2 12.2 0.00 0.00 1.00 0 .00 0.02 0 .98 0.00 0.00 0.89 
2 8 10.2 10.9 0.00 0.00 1.00 0.01 0 .05 0.94 0.00 0.00 0 .25 
29 11.9 12.7 0.00 0.00 1.00 0 .00 0.01 0.99 0.00 0.00 0.84 
30 12.9 12 0.00 0.00 1.00 

v „ 

0 .01 0 .03 0 .96 

v „ 

0.00 0 .00 0 .53 

V , v „ v~ V , v„ 

1.00 

v „ V , v„ 

0 .96 

v „ V , v„ v „ 
1 2 3 1 2 3 1 2 3 1 2 3 

1.77 5.39 11.3 1.77 5.39 11.3 1.77 5.39 11.28 1.92 5.37 11.8 
2.22 6.07 12.0 2.22 6.07 12.0 2.22 6.07 12.0 2.08 6.07 12.2 

For example, the third cluster has many relatively low maximum 
memberships, but the other memberships for each of points 21 to 30 
in cluster 3 are all zeroes. The greatest difference between fuzzy and 
possibilistic partitions generated by these two models is that FCM-
AO memberships (are forced to) sum to 1 on each data point, whereas 
PCM-AO is free to assign labels that don't exhibit dependency on 
points that are not clearly part of a particular cluster. Whether this 
is an advantage for one algorithm or the other depends on the data 
in hand. Experiments reported by various authors in the literature 
support trying both algorithms on the data, and then selecting the 
output that seems to be most useful. 

Because the columns of U in M are independent, PCM actually 
seeks c independent possibilistic clusters, and therefore it can locate 
all c clusters at the same spot even when an algorithm such as FCM 
is used for initialization. In some sense this is the price PCM pays -
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losing the ability to distinguish between different clusters - for the 
advantage of getting possibilistic memberships that can isolate 
noise and outliers. 
The bottom three rows of Table 2.3 enable you to compare the point 
prototypes produced by the three algorithms to the sample means 
{Vj, V2, Vg} of the three clusters. HCM-AO and FCM-AO both 
produce exact (to two decimal places) replicates; PCM-AO cluster 
centers for the second and third clusters are close to V2 and Vg, 
while the PCM-AO prototype for cluster 1 differs by about 15% in 
each coordinate. This is because PCM memberships vary 
considerably within a cluster, depending on how close the points are 
to the prototype. 

Applying (2.10) to the FCM-AO and PCM-AO partitions in Table 2.3 
results in the same terminal partition as found by HCM-AO (i.e., the 
shaded cells in Table 2.3 show that U^^^ = U^^j^ = Uj^^^). This 
happens because the data set is small and well-structured. In large, 
less well structured data sets, the three algorithms may produce 
partitions that, when hardened, can be significantly different from 
each other. Needless to say, the utility of a particular output is 
dependent on the data and problem at hand, and this determination 
is, unfortunately, largely up to you. 

B. Semi-supervised clustering models 

Objective functions such as J and J that minimize sums of 
squared errors are well known for their propensity to find solutions 
that "balance" the number of members in each cluster. This 
illustrates the sometimes confusing and always frustrating fact that 
lower values of J do NOT necessarily point to better partitions of X. 

Semi-supervised c -means clustering models attempt to overcome 
this limitation. In this category are models due to Pedrycz (1985), 
Hirota and Iwama (1988) and Bensaid et al. (1996a). They are 
applicable in domains where users may have a small set of labeled 
data that can be used to supervise clustering of the remaining data 
(this is often the case, for example, in medical image segmentation). 
Algorithms in this category are clustering algorithms that use a 

finite design set X*̂  c 9̂ ^ of labeled (crisp or otherwise) data to help 
clustering algorithms partition a finite set X" c 9^P of unlabeled 
data. These algorithms terminate without the capability to label 
additional points in 9^P - that is, they do not build classifier 

functions. X is used to guide FCM-AO to a good c-partition of X". 
Let X = X"̂  u X", Ix'*] = n^, |x" | = n^, |X| = n^ + n^ = n. Without loss 
we assume that the labeled data are the first n points in X, 
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X^ 

labeled 

^US „ u _ u —V 
2L. , i . „ , . . . , * . 

unlabeled 

y-x^ux". (2.11) 

Pedrycz (1985) defined pointer b = 1 if x̂ ^ is labeled, and b = 0 

otherwise. Then he defined the matrix F = [fi]ĵ ] with the given 
label vectors in appropriate columns and zero vectors elsewhere. 
Pedrycz modified J at (2.5) to the new functional 

J„(U, V) = a I . I (u,, - b, f, )"D:^ + I I , (ujrn 
l=lk=l ik k i k ' Ik l=lk=l Ik' Ik ' 

(2.12) 

where a > 0 and U in M, is a c x n matrix to be found by 
ten 

minimizing (2.12). Under the same assumptions as in Table 2.2, 
Pedrycz derived first order necessary conditions for Ĵ ^̂  by 
differentiating (2.12) with respect to U and V in the usual fashion. 
The formula for V remains (2.7b), while (2.7a) is replaced by the 
more complicated expression 

u 
1 

ik 
1 + a l/{m-l) 

l + [ocl/(m-l)j 
1 -bk I f jk + ai/'™-"btf k^ik 

. | ^ ( D i k / D j k ) 
\2/(m-l) 

(2.13) 

Replacing (2.7a) with (2.13) 3delds the semi-supervised FCM-AO of 
Pedrycz which we call ssJcm-AO. J^ includes a new term whose 
minimization "forces" U to follow F for the patterns that are already 
labeled. Weight factor a is used to balance unequal cluster 
population. Notice especially that U is a new partition of all of X. so 
at termination the supervising labels are replaced by the computed 
labels. 

The approach to semi-supervision taken by Bensaid et al. (1996a) is 
to heuristically alter the equations for FCM-AO given in (2.7). Their 
premise is that the supervising data are labeled correctly, so the n 

labels (crisp or fuzzy) in U'' should be fixed. They use AO scheme 

(2.4c), and take the initial matrix as U^ = [U |U^], where only UQ is 

initialized. The terminal matrix has the form U^ = [U |Uj 1. 
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In ordinary HCM-AO or FCM-AO, once U is determined, the next 
step is to compute cluster centers {v } using all n columns of U . 
However, since the last n columns of U„ are user-initialized, these 

u 0 

authors compute the first set of cluster centers using only the n 
columns in U''. This is justified by their belief that using only the 
labeled data to find the initial cluster centers makes them "well-
seeded". Consequently, they calculate 

1,0=I Kor^k / 1 K,or. 1 î̂ c X 
k;=l' 

(2.14) 

Next, AO c-means ordinarily calculates U using the {v } to update 
all n columns of U . However, Bensaid et al. use the functional form 
at (2.7a) and update only the n columns in U" by calculating, for 1 < 
i < c; 1 < k < n , 

u . lk,t I x " - v 
k i.t-1 

J , t - l | 

2 
m-1 

,t=l,...,T. (2.15) 

The cluster centers are then allowed to migrate in feature space, by 
using all n columns of U to subsequently recompute the {v } after 
the first pass. To counter the possible effect of unequal cluster 
populations, the few samples that are labeled are weighted more 
heavily than their unlabeled counterparts. This is done by 
introducing non-negative weights w = (w , w ,..., w ) as follows: 

V = 
i.t 

/ d \" 
W, U , 

1 k l ik.t/ k k ^ i \ ik.t 

^ ' ^ k « t V k=l k^ ik.t iKf 
, l<i<c;t=l , . . . ,T (2.16) 

x^is replicated w times by this weighting scheme. Equations (2.14)-
(2.16) comprise the basis of the semi-supervised FCM (ssFCM) 
algorithm of Bensaid et al. (1996a). The major difference between 
ssFCM and ssfcm-AO is that Pedrycz's scheme is an attempt to solve 
a new (different than (2.5)) optimization problem, whereas Bensaid 
et al.'s method is a heuristically defined approach based on (2.5) that 
is not a true optimization problem (and hence, does not bear the 
designation AO). 

Each point in X'* can be given a different weight in ssFCM. The vector 
of weights in (2.16) is analogous to the factor a in (2.13): it is chosen 
by the user to induce the labeled data to drive the clustering 
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algorithm towards a solution that avoids the problem of population 
balancing that is illustrated in our next example. 

Example 2.3 Figure 2.3(a) shows the results of processing a data set 
given in Bensaid et al. (1996a) called X , which has c = 2 visually 
apparent clusters, with FCM-AO. Cluster 1 (X ) on the left has 40 
points, while cluster 2 (X ) on the right has only 3. 

Figure 2.3(a) A hardened FCM-AO partition of X 
43 

Data very similar to these appear on p. 220 of Duda and Hart (1973), 
where they were used to illustrate the tendency of J to split large 
clusters. Figure 2.3(a) is essentially the same as Figure 6.13(a) in 
Duda and Hart, except that our figure is a crisp partition of X 

43 
obtained by hardening the terminal partition of a run of FCM-AO. 
The basic parameters used were the Euclidean norm for both J and 

E^.c m 2 and e= 0.0001. The terminal cluster centers are 
indicated by the symbol i'^). Notice how the large number of points 
in X draws v far to the left of its visually desirable position. Here, 
unequal cluster sizes cause J to identify a visually disagreeable 
solution. This exemplifies our caveat about mathematical models: 
J prefers this partition to the one we would choose because its 
measure of similarity and method of aggregation is only a crude and 
very limited representation of what we do in order to see the obvious 
structure in the data. 



CLUSTER ANALYSIS 27 

View 2.3(b) shows a partition obtained by hardening the terminal 
ssFCM (Bensald et al., 1996a) partition of X found using the same 
basic parameters as for FCM-AO. As shown in Figure 2.3(b), ssFCM 
used four points from X and 1 point from X as the supervising 
labeled data (so n = 5), and equal weights w.= 6 for each supervising 
point. Apparently ssFCM overcomes the problem illustrated in 
Figure 2.3(a). The three points in X are isolated from the large 
cluster in the hardened partition, and v occupies a position that is 
visually correct. However, the supervising points for the left cluster 
were well chosen in the sense that they, like v , occupy the visually 
apparent center of X . Loosely speaking, the weight w = 6 essentially 
gives these four points 6 times as much influence as any unlabeled 
individual during iteration of ssFCM. 

^ Supervising points 

Figure 2.3(b) A hardened ssFCM-AO partition of X 43 

View 2.3(c) shows a partition obtained by hardening the terminal 
ssfcm-AO (Pedrycz) partition of X found using the same basic 
parameters and supervising points as for ssFCM, with scale factor a 
in (2.12) set at a = 200. Figures 2.3(a) and 2.3(c) are very similar, and 
based on the difference between views 2.3(b) and 2.3(c), it appears 
that ssFCM-AO is superior to ssfcm-AO. However, this may be due 
more to a fortuitous choice of supervising points and weights than 
by any inherent superiority in ssFCM. Some insight into this aspect 
of comparing various miethods is gained by simply altering the 
points used for supervision of ssfcm-AO, with all other parameters 
fixed. 
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© Supervising points 

Figure 2.3(c) A hardened ssfem-AO partition of X 
43 

Supervising points 

Figure 2.3(d) Another hardened ssfcm-AO partition of X 
43 

Figure 2.3(d) shows the Pedrycz (1985) ssfcm-AO result vv̂ hen the six 
points shown there are used to supervise it. For this alternate choice 
of supervision, the algorithm of Pedrycz produces a hardened 
partition that is quite similar to the one shovm in view 2.3(b); only 2 
of the 43 points are mislabeled in this crisp partition of the data. We 
have no doubt that some combination of supervising points and 
algorithmic parameters would enable ssfcm-AO to produce the same 
partition that ssFCM does here. This emphasizes an important 
point. Most clustering methods will produce almost identical results 
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if you have enough time to find the parameters that yield the same 
solution. For p > 3, the luxury of choosing supervising data that are 
"Just right" is not available even when some of the data are labeled. 
See Bensaid et al. (1996a) for further discussion about this problem. 

C. Probabilistic Clustering 

Chapter 6 of Duda and Hart (1973) gives a very readable account of 
the decomposition of normal mixtures using maximum likelihood. 
This subsection follows their development closely. More complete 
accounts of probabilistic clustering are found in Everitt and Hand 
(1981), Titterington et al. (1985), and McLachan and Basford (1988). 

The expectation-Tnaximization (EM) algorithm is used to optimize 
the maximum likelihood model of the data, and it generates 
probabilistic labels for X under the assumptions of statistical 
mixtures (Titterington et al., 1985). We briefly discuss the 
connection between this scheme and fuzzy clustering. X is assumed 
to be drawn from a mixed population of c p-variate statistical 
distributions that have, for i = 1, 2, ... c: random variables {X}; prior 
probabilities {n,}; and class-conditional probability density 
functions (PDFs ) {g(x | i)}. The PDF formed by taking the convex 
combination 

f(x)=l7Cig(x|i) 
1=1 

(2.17) 

is a distribution which is called a mixture of the components 
{7i,g(x I i)}. Each component g(x | i) can be continuous or discrete, and 
(2.17) can have some components of either type. The case that 
dominates applications is when every component of f(x) is 
multivariate normal. Then the PDF of component i has the familiar 
form 

7(jJi, E.) = g(x|i) = e 2» '̂ '" î 7(2n)2.^/detE 

jA. = (ji ,..., >L .) = population mean vector of class i; and 

where (2.18a) 

(2.18b) 

Z. =[cov(X.)] = 

^1,11 ^1,12 • •• a . ip 

^ i . 2 1 ^1 ,22 ; • ^ i .2p 

i .p l ^ l . p 2 • • a 
1 ,pp 

(2.18c) 
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Z. is the (positive definite) population covariance matrix of class i. 

^'ijk - cov(Xij, Xjjj) is the population covariance between variables j 
and k for class i and the norm in (2.18a) is the Mahalanobis norm 
for class i (equation (1.9)) computed with the population parameters 

Let the a posteriori probability that, given x, x came from class i, be 
denoted by 7i(i|x). Bayes rule relates the elements of (2.18) to the 
probabilities {7i(i|x)} as follows: 

7r(i|x) = 7iig(x|i)/f(x) . (2.19) 

For a sample of n points X = (x , x x } assumed to be drawn 
independently and identically distributed (iid) from (2.17) with 
PDFs as in (2.18), the c x n posterior matrix 11= [n = 7t(i | x )] is in 

^fcn' ^^^ ^^^ °^ constrained c-partitions of X. n (or more accurately, 
estimate p of it) is a probability that plays much the same role in 
statistical clustering that the membership value u plays in fuzzy 
clustering. 

The scheme usually employed for mixture decomposition assumes 
the Gaussian functional form (2.18a) for the {g(x|i)}. Under this 
hypothesis, we attach an unknown parameter vector p to each PDF 
in the mixture: 

f(x:B)=l7tig(x|i;pi) . (2.20) 
i= l 

The mixture density now depends on a parameter vector B = ( P ,..., 

P ) where the parameters for class i are p. = (TI , jji , E,) for component 
PDFs as in (2.18a). Alternatively, estimates for posterior matrix n 
can be viewed as the parameters of (2.20) since equation (2.19) 
couples n to the parameters B we use here. 

One of the most popular ways to estimate B using either labeled or 
unlabeled data is maximum, likelihood estimation (MLE). Given X = 
{x , X ,..., X }, we form the log-likelihood function ln[L(B; X)] of the 
samples as a function of B and try to maximize it (In denotes the 
logarithmic function to the base e). When the component densities 
are Gaussian, g(x|i) = H(ji.,Xj), first order necessary conditions for 

the MLE (p ,m ,S) of each p = (n , )i. Z ) are known (Wolfe, 1970). 
i i i 1 l i , i 

Letting P = [ p J denote the MLE of n = [n j , Wolfe showed that 
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m = i P . .X . / i n ; l < i < c ; 
1 k=i ^ik k/ k=i ^ik 

p^g(x,^|i:(p,,m,,S^)) 
' i k l < i < c l < k < n . 

IPjg(XklJ:(P 
j=i 

(2.21a) 

(2.21b) 

{2.21c) 

(2.22) 
j .m^.S^)) 

The vector of m e a n s , M= (m m ) at (2.21b) is a set of c point 
pro to types ana logous to the vector V of c luster centers in the c-
m e a n s models; and the matr ix P a t (2.22) is the obvious analog to U 
for the FCM model. Equat ions (2.21) are a set of highly non-l inear 
equa t ions t h a t a re coupled th rough Bayes rule (2.22) to t he MLE 
e s t i m a t o r s for t h e popu la t ion p a r a m e t e r s of t he c c o m p o n e n t 
n o r m a l dens i t i e s . Hence , numer i ca l m e t h o d s are u s e d to find 
cand ida tes for local maxima of ln[L(B; X)]. The AO algorithm given 
in Table 2.4 t h a t is based on equat ions (2.21) and (2.22) for normal 
mix tu res is called the Gaussian mixture decomposition (GMD-AO) 
AO algorithm : it is a special case of the EM algorithm. 

Table 2 .4 The GMD-AO algorithm for normal mixtures 

Store Unlabeled Object Data X c 9tP 

Pick 

number of clusters: 1 < c < n. Rule of thumb: c < Vri 
max imum n u m b e r of i terations: T 

no rm for termination: E = P̂ . - P ^ . J = big value 

terminat ion criterion: 0 < e = small value 

Guess initial part i t ion: P„ e M^ 
'^ 0 fen 

(2.4c) 

is (2.21a-c) 

is (2.22) 

t < - 0 
REPEAT 

Iterate t <- t + 1 

Bt=^EM(Pt- i ) where g^^(P^_j) 

Pt=^EM(Bt) where P^ = ^^„(B^) 
UNTIL ( t=T or E^<e) 

(P ,B)^(P^,B^) 

W h e n t h e covar iance s t r u c t u r e of one or more c o m p o n e n t s is 
a rb i t ra ry , ln[L(B; X)] may not have a finite m a x i m u m (Duda a n d 
Hart , 1973). Nonetheless , numer ica l solut ions of th i s sys tem are 
known to p roduce useful e s t ima to r s in m a n y real p rob lems , so 
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probabilistic clustering {that is, estimates of the matrix P) is 
popular. The efficacy of this approach depends mainly on the data 
satisiying the assumption that it be drawn iid from mixture (2.17) 
with components (2.18a). If this is not the case (and often, it is not), 
subs t ruc tu re found by maximizing ln[L(B; X)] can be very 
misleading. 

Note that Mahalanobis distances are needed in (2.18a), and 
therefore in (2.22) as well, so each iteration of GMD-AO requires the 
inversion of the c (pxp) covariance matrices at (2.21c). Hence, GMD-
AO is quite a bit more computationally intense than any of the c-
means algorithms. In view of this, and because the EM algorithm is 
very sensitive to initialization, many authors prefer to preprocess X 
with a simpler scheme to improve the chance that GMD-AO gets 
started at a point in its parameter space that is close to a useful 
solution (Duda and Hart, 1973). 

It has been shown that FCM-AO can provide good initializations for 
GMD-AO (Bezdek and Dunn, 1975, Bezdek et al., 1985, Davenport et 
al., 1988). Gath and Geva (1989b) also studied the estimation of 
components of normal mixtures using a fuzzy clustering approach 
that we discuss in Section 2.3. These papers point out the 
similarities of and differences between estimates produced by FCM-
AO and GMD-AO algorithms. See Hathaway and Bezdek (1986b) for 
an example that proves that the point prototypes {v,} from FCM-AO 
cannot be a statistically consistent estimator of the means {m } 
from an arbitrary univariate mixture. Another approach to 
initialization by clustering with a deterministic competitive 
learning model is given by McKenzie and Alder (1994). Many fuzzy 
clustering algorithms have been proposed that are either hybrids of 
or are related to GMD-AO, or that use the maximum likelihood 
principle in some other way. Among these, we mention the paper by 
Kaufman and Rouseeuw (1990), and we discuss the model of Gath and 
Geva (1989a) in Section 2.4. 

Example 2.4 Data set X from Table 2.3 was processed with the 
GMD-AO algorithm using the same initialization and termination 
parameters as in Example 2.2. Specifically, v =: (1.5, 2.5)^, v = 
(1.7, 2.6)"^ and v^^ = (1.2, 2.2)"^-The results are shown in Table 2. 5. 
Since GMD-AO produces a partition in M, , we compare P„ .„ „ to 

^ ^ fen GMD-AO 

the terminal U produced by FCM-AO for m=2 that appears in the 
third set of columns in Table 2.3. The hardened versions of both 
partitions are also identical, ^QMD ~ ^FCM ~ ^HCM-
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Table 2.5 Terminal EM and FCM partitions and prototypes for X 
30 

Pt. Data Pt. GMD-AO FCM-AO (m =2) 

^ 1 ^ 2 Ml) 
PT 
* (̂2) 

PT 
M3) 

u,T) U,''2) Ui's) 
1 1.5 2 .5 1.00 0 .00 0 .00 0 .99 0 .01 0.00 
2 1.7 2 .6 1.00 0 .00 0 .00 0 .99 0 .01 0.00 
3 1.2 2 .2 1.00 0 .00 0 .00 0 .99 0.01 0.00 
4 2 .0 2 .0 1.00 0 .00 0 .00 0 .99 0.01 0.00 
5 1.7 2 .1 1.00 0 .00 0 .00 1.00 0 .00 0.00 
6 1.3 2 .5 1.00 0 .00 0 .00 0 .99 0 . 0 1 0.00 
7 2 .1 2.0 1.00 0 .00 0 .00 0 .99 0 .01 0.00 
8 2 .3 1.9 1.00 0 .00 0 .00 0 .98 0 .02 0.00 
9 2 .0 2 .5 1.00 0 .00 0 .00 0 .99 0 .01 0.00 
10 1.9 1.9 1.00 0 .00 0 .00 0 .99 0 .01 0.00 
11 5.0 6.2 0 .00 1.00 0 .00 0 .00 1.00 0.00 
12 5.5 6.0 0 .00 1.00 0 .00 0 .00 1.00 0.00 
13 4 . 9 5.9 0 .00 1.00 0 .00 0 .01 0 .99 0.00 
14 5 .3 6 .3 0 .00 1.00 0 .00 0 .00 1.00 0.00 
15 4 .9 6.0 0 .00 1.00 0 .00 0.01 0 .99 0.00 
16 5.8 6.0 0 .00 1.00 0 .00 0 .01 0 .99 0.00 
17 5.5 5.9 0 .00 1.00 0 .00 0 .00 1.00 0.00 
18 5.2 6.1 0 .00 1.00 0 .00 0 .00 1.00 0.00 
19 6.2 6.2 0 .00 1.00 0 .00 0 .02 0 . 9 7 0.01 
2 0 5.6 6.1 0 .00 1.00 0 .00 0 .00 1.00 0.00 
2 1 10.1 12.5 0 .00 0 .00 1.00 0 .01 0 .02 0.97 
2 2 11.2 11.5 0 .00 0 .00 1.00 0 .00 0 .01 0.99 
2 3 10.5 10.9 0 .00 0 .00 1.00 0 .01 0 .04 0.95 
2 4 12.2 12 .3 0 .00 0 .00 1.00 0 .00 0 .01 0.99 
2 5 10 .5 11.5 0 .00 0 .00 1.00 0 .00 0 .02 0.98 
2 6 11.0 14.0 0 .00 0 .00 1.00 0 .01 0 .02 0.97 
2 7 12.2 12.2 0 .00 0 .00 1.00 0 .00 0 .02 0.98 
2 8 10.2 10.9 0 .00 0 .00 1.00 0 .01 0 .05 0.94 
2 9 11.9 12.7 0 .00 0 .00 1.00 0 .00 0 .01 0.99 
3 0 12.9 12.0 0 .00 0 .00 1.00 0 .01 0 . 0 3 0.96 

V l V2 V3 ™1 ™2 n i g 
^ 1 ^ 2 ^ 3 

1.77 5 .39 11 .3 1.77 5 .39 11 .27 1.77 5 .39 11.28 
2.22 6 .07 12 .0 2 .22 6 .07 11 .99 2 .22 6 .07 12.00 

To two significant digits, the terminal GMD-AO partition is crisp 

before hardening, PQMD ~ ^HCM • ^^^i^ i^ "^^ unexpected in view of the 
well separated, Gaussian-like clusters in X . A similar very crisp 
result can be obtained by setting the FCM parameter m to a value 
close to 1. The terminal estimates {m.} of the (assumed normal) 

means are practically identical to the FCM cluster centers {v.} and 
the sample means {v.}. Also available at termination of GMD-AO 
are the covariance matrices, 



34 FUZZY PATTERN RECOGNITION 

Si 
"0.11 
-0.05 

- .05" 
0.07 • ' % = 

"0.16 0.01" 
0.01 0.02 ;and S^ = '0.84 0.24" 

0.24 0.57 

and estimates of the prior probabilities, which were all p = 1/3 to six 
significant digits. The terminal covariance matrices are useful for 
analysis of the shape of each cluster - this will become evident in 
Section 2.3. To summarize, when the clusters are well separated and 
essentially spherical and well distributed throughout their basic 
domains as they are in X , the mixture decomposition and fuzzy c-
means models produce almost identical results. This is, of course, 
not always the case. 

D. Remarks on HCM/FCM/PCM 

The remaining paragraphs of this section offer comments on 
various aspects of the point prototype c-means models. 
Generalizations based on prototypes that are not points in feature 
space is so large and important that we will devote Section 2.3 to 
this topic. 

Choice of parameters. HCM-AO, FCM-AO and PCM-AO share the 
algorithmic parameters (U /V T, ||*||̂ , \\*\\^^, c and e). FCM-AO adds 
weighting exponent m, and PCM-AO adds m and the weight vector w 
to this list. Variation in any of these parameters can affect 
algorithmic results for a fixed set of unlabeled data. Choosing the 
most basic parameter, c = the number of clusters, will be discussed in 
Section 2.4. 

Justifying your choice of m is always a challenge. FCM-AO will 
produce partitions that approach U = [1 / c] as m increases. In 
theory, this happens as m -> oo, but in practice terminal partitions 
usually have memberships close to (1/c) for values of m between 10 
and 20. At the other extreme, as m approaches 1 from above, FCM 
reduces to HCM, and terminal partitions become more and more 
crisp. Thus, m controls the degree of fuzziness exhibited by the soft 
boundaries in U. Most users choose m in the range [1.1, 5], with m = 2 
an overwhelming favorite. See Bezdek (1976) for an electrical analog 
of J that offers a physical explanation for preferring m = 2. 

Macbratney and Moore (1985) discuss an empirical scheme for 
choosing m. 

Choice of norms. Many authors have used distances (1.7), (1.8) and 
(1.9) for D, with J . The results do not indicate a clear advantage for 

ik m ^ 
any distance, nor should they. The data themselves have the last say 
about which distance will provide the best results. Euclidean 
distance is the overwhelming favorite, probably because it is the one 
we live with. Mahalanobis distance is useful when there are large 
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disparities in the ranges of the measured features because it rotates 

the basis of 9̂ ^ so that the data are scaled equally and are pairwlse 
uncorrelated. 

Differentiability of the inner product norm leads to the conditions 
for V shown in Table 2 .1 . When D^̂  in (2.5) is replaced by a 
Minkowski norm other than the 2-norm, this property fails, and 
other means are necessary for finding the function Q^ tha t is 
needed for V̂^ = Q^ (U^). Authors who have studied the use of the city 
block (1- norm) and sup norm (°o norm) for J include Bobrowski 

m 
and Bezdek (1991), Jajuga (1991) and Kersten (1995). Q^ in Table 2.2 
is defined by a method such as linear programming or Newton's 
method when these norms are used. Kersten (1995) has shown that 
^g for the 1-norm is the weighted (or fuzzy) median. Trauwaert 
(1987) also discusses several issues and algorithms related to the use 
of the 1-norm in fuzzy clustering. 

Initialization. Initialization is important. Many examples have been 
published that show termination at different solutions when c-
means AO algorithms are initialized from different starting points. 
There is no general agreement about a good initialization scheme. 
The three most popular methods are: (1) using the first c distinct 
points in the data; (li) using c points randomly drawn from a 
hyperbox containing X; and (ill) using c points uniformly distributed 
along the diagonal of the hyperbox containing X. Some authors 
recommend initializing FCM with the output of HCM, and in turn, 
some initialize PCM with FCM. Be careful not to initialize any of 
these algorithms with equal rows in U or equal cluster centers in V , 

because iterative updates cannot subsequently change them unless 
there is a benevolent roundoff error that upsets equality. 

Termination. The tradeoff between speed and accuracy is affected by 
both E and e. The 1, 2 and sup norms have all been used for E . The 
most popular norm for E is certainly the Euclidean norm, but the 1 -
norm probably provides comparable results at a savings in time. 
The choice of e controls the duration of Iteration as well as the 
quality of terminal estimates. If e is too small, limit cycles may 
occur. Most authors report good success with e In the interval [0.01, 
O.OOOIJ. 

The choice of initialization in V as in (2.4b) or U as in (2.4c) is 
almost a matter of taste. However, there is a large and important 
difference In terms of storage and speed. When Initialization and 
termination are made on U as in (2.4c), (en) variables must all be 
close before termination occurs, and two c x n matrices must be 
stored. On the other hand, only (cp) variables must have small 
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successive differences when initializing and terminating with V, 
and storage for successive iterates of V requires only two cxp 
matrices. To see the difference, suppose you apply c-means to a 
256x256 monochromatic image. Then n=65,536 whereas p=l. Since 
c is common to both schemes, initializing and terminating on V 
realizes an O(IO^) savings in storage and usually reduces CPU 
[central processing unit) time considerably. On the other hand, e 
will usually have to be smaller to achieve termination at estimates 
comparable to using U for initialization and termination instead of 
V. Some authors normalize the termination error by the number of 
variables being estimated, comparing e to either 

k-Ut-iH,J|Vt-Vt-i||_ 
en cp 

Convergence. Convergence always means in some well-defined 
mathematical sense; termination is when and where an algorithm 
stops. Sequences converge, algorithms terminate - hopefully, close 
to a point of convergence. FCM-AO generates an iterate sequence 
that contains a subsequence that converges q-linearly from any 
initialization to a local minimum or saddle point (local maxima are 
impossible) of J . Convergence theory for FCM (and HCM as well) 
began with Bezdek (1980), and has progressed through a series of 
papers that include Selim and Ismail (1984), Ismail and Selim 
(1986), Hathaway and Bezdek (1986a, b), Sabin (1987), Bezdek et al. 
(1987b), Hathaway and Bezdek (1988), Kim et al. (1988) and Wei and 
Mendel (1994). 

Acceleration. In this category are methods that seek to improve 
computational properties (speed and storage) of the c-means AO 
algorithms. The algorithms in Table 2.2 require many distance 
calculations as well as fractional exponentiation at each half 
iterate. For large data sets (e.g., images), this can mean relatively 
slow iteration and lots of storage. Two methods for acceleration are 
used: exploitation of special properties of the data; and alteration 
the equations used for iteration. 

As an example of exploiting special properties of the data, consider 
the case when X is an 8 bit image. Since there are only 256 possible 
values for each x , a great reduction in both memory and CPU time 
can be realized by using the frequency of occurrence of each gray 
level as follows. Let the number of pixels with gray level q be f . All 
of these pixels will have the same membership in all c clusters. Let 
u be the membership of all pixels with gray level q for cluster i, 1 < i 
< c. There are 256 values of u. , one for each gray level. 
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Now consider the computa t ion of, say, the i-th c lus ter center for 
FCM with equat ion (2.7b) w h e n the image h a s 2 5 6 x 2 5 6 = 65 ,536 
pixels: 

65536 /65536 255 /255 
I U ^ X k / I U S = I fqUj^Xk / S fqU- ' 

k=l / k=l q=0 / q=0 

The second form on the r ight follows b e c a u s e all of t he pixels 
(exactly f of them) wi th gray level q will have t he ident ica l 

member sh ip u. . This m e a n s t h a t only 256 membersh ip vectors in 

gjc need to be stored and used, a s opposed to 65,536. Histogramming 
easily obtains the (f }, a n d equat ions (2.6) - (2.8) for all the c -means 
models can be implemented m u c h more efficiently. 

The approximate FCM (AFCM-AO) a lgor i thm of C a n n o n et al . 
(1986a) w a s t he first t echn ique s tudied to speed u p FCM-AO by 
changing equat ions (2.7), and it also made u s e of the special n a t u r e 
of image da ta . AFCM-AO reduced the CPU time for FCM-AO by 
replacing the exact necessary conditions a t (2.7) with approximate 
ones t h a t could be implemented us ing six look-up tables. However, 
AFCM-AO was restricted to discrete da ta (such a s image data), a n d 
con ta ined several approx imat ions t h a t degraded o u t p u t quali ty. 
AFCM-AO saved roughly a n order of magnitude in time, b u t h a s been 
largely overshadowed by more recent developments s u c h a s those 
given by Kamel and Selim (1994), Shanka r a n d Pal (1994), Cheng et 
al. (1995) and Hershfinkel and Dinstein (1996). 

E. The Reformulation Theorem 

Minimization of the c-means functionals can be a t tempted in m a n y 
ways bes ides AO. Hathaway and Bezdek (1995) show tha t problem 
(2.5) can be reformulated by eliminating ei ther U or V from J by 

direct subs t i tu t ion of the necessary conditions for one or the o ther 
from Table 2.1 into equat ion (2.5). This idea had its roots in Bezdek 
(1976), where the reformulation of J for FCM was exhibited, b u t the 

m 
effect of us ing it to replace the original optimization problem w a s 
not d iscussed. The reformulations of J as a function of V alone for 
the three cases are: 

R i (V;0)= I min{Djj^,D2j^,...,D^^} ; (2.23a) 
k=l 

^ \ l - m 

Rm (V; 0) = I I Dj/'i-'") ; (2.23b) 
k=iU=i J 

R ^ ( V ; w ) = i X (D|i^'^-"^' + wJ/»-™'f ' " . (2.23c) 
i=lk=l^ ' 
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Let J denote a particular instance of (2.5) (hard, fuzzy or 
possibilistic) and R denote the corresponding reformulated version 
in (2.23). Let M be M^ , M, , or M , and U = ?(V) denote the 

hen fen pen "̂  
function of V defined by the right hand side of (2.6a), (2.7a) or (2.8a), 
depending on the model used. Let the distances D , for i=l c and 
k=l,...,n, be continuous functions of V e V, where V is an open subset 
of 9t̂ * and V e 9̂ *̂ *. (Using t instead of p admits more general 
prototypes than points in 9^ ;̂ the theorem holds for many non-
point prototype cases which are discussed later.) Let V be such that 
the corresponding distances satisfy D > 0, for i=l,...,c and k=l,...,n. 
Then: 

For the hard, fuzzy or possibilistic cases: 

(i) (U, V) globally minimizes J over MxV => V globally 
minimizes R over V; and 

(ii) V globally minimizes R over V ^ (5(V), V) globally minimizes 
J over MxV. 

For either the fuzzy or possibilistic case: 

(iii) (U, V ) locally minimizes J => V locally minimizes R; and 

(iv) V locally minimizes R => {J{y ), V ) locally minimizes J. 

This theorem can be used to convert problem (2.5) into an equivalent 
unconstrained optimization problem where R in (2.23) is minimized 
with any optimization scheme. Without the reformulation theorem, 
there is no assurance that AO and R - based solutions will even be 
similar, much less the same. This theorem guarantees that while 
approaches based on reformulation will undoubtedly have different 
computational properties (such as speed and storage), they will not 
produce markedly different clustering solutions from AO-based 
solutions. 

For example, consider optimization of J using a genetic algorithm 
(GA) approach (Goldberg, 1989). One of the most important issues for 
using GA is representation of the model in a form that is amenable 
to the GA paradigm. J in (2.5) is not well suited to be a fitness 
function for this type of optimization because of the constraints on 
the (u,}. Reformulations of J in terms of V alone are much more 

ik m 
likely to be good fitness functions, because the number of 
parameters that must be represented and estimated in the 
reformulation is far less than in the original form. For example, 
consider segmenting an unlabeled magnetic resonance image of size 
256x256 in its standard three dimensional parameter space. For c= 



CLUSTER ANALYSIS 39 

10 tissue classes, the number of unknowns sought by FCM-AO is 
c(n+p)= 10(65,536+3) = 655,363; but the reformulated version, FCM-
R, seeks only cp = 10(3) = 30. Moreover, (2.5) demands maintaining 
65,536 constraints on the memberships, which makes the use of GA 
on J quite impractical. 

Several authors have experimented with the GA approach to solving 
(2.5) via (2.23). The reformulation theorem gives this idea a solid 
footing. Desired (but not guaranteed) advantages include 
elimination of dependency on good initialization as well as 
avoidance of local trap states. For small problems (that is, small 
values of n and p), the GA approach seems to deliver good solutions. 
As the size of the data set increases, however, it is less clear that 
optimization of J by GA methods is an improvement to AG 
schemes. This is a fairly new area: representative papers include 
Hathaway and Bezdek (1994a) and Hall et al. (1994). 

2.3 Non point-prototype clustering models 

An important aspect of clustering with the EM method is that the 
eigenstructure of the covariance matrices {S.} at (2.21c) lets clusters 
assume locally different hyperellipsoidal shapes. This enables the 
GMD-AO algorithm to represent each cluster drawn from a normal 
mixture more accurately than the c-means models. When using the 

norm D%^ = \\x^ - VJI in (2.5), only one cluster shape can be matched 
well - the hj^erellipsoidal shape determined by the eigenstructure of 
the fixed weight matrix A. This is fine if all c clusters have that 
shape, but most real data have more variability than this. The 
deficiency of global minima for least squared error functions that is 
illustrated by Figure 2.3(a) is due at least in part to exactly this 
limitation, and ssFCM can be viewed as an attempt to trick the FCM 
functional in hopes of overcoming this problem. Knowledge of this 
deficiency may have been one of the reasons that Gustafson and 
Kessel (1979) introduced the model we discuss next. 

The basic variables that can be altered in the c-means models are 
the way proximities {D } of x to the point prototypes (v } are 
measured; and the kind of prototypes that are used. Geometric 
shapes in clusters can be matched eiliier by adjusting the norm (and 
hence, the shape of open and closed unit balls in feature space), or by 
changing the fitting prototypes V. There have been many studies on 

the effect of changing A in D%. = \\xy. - Vj ||̂  on the assumption that 
all of the clusters in X have roughly the same A-norm geometry and 
that they are "cloud-like" - that is, they are more or less uniformly 
distributed over their convex hulls. Gustafson and Kessel (1979) 
introduced the first fuzzy method for localized shape matching via 
individual norms that adapted to the shapes of individual clusters. 
Algorithms of this kind are called adaptive because individual 
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norms change at each iteration in an attempt to adapt to the 
geometry of individual clusters. 

Some authors prefer to interpret the weight matrix A inducing an 
individual norm for a cluster as part of the prototype of the cluster. 
This leads to the idea of choosing non-point prototypes to match the 
shape of the expected clusters. A linear prototype, rather than a 
point, could be used to represent line-like clusters, and a circular 
prototype could be used to find ring-shaped clusters. Clusters which 
have no "interior points" are called shell clusters to distinguish 
them from cloud type or volumetric structures. Figure 2.4 illustrates 
this idea for three two-dimensional structures that are best 
represented by different kinds of prototypes. The volumetric cloud 
on the left is represented by a point prototjqje, while the linear and 
circular shells in the other two views are best represented by more 
general (non-point) prototypes, namely, a line and a circle. 

V = Point B = Line B = Circle 

ooo 

Figure 2.4 Appropriate prototypes for various clusters 

Sets of c point prototypes are called V, and the collection of c non-
point prototypes will be denoted by B. Sometimes, but not always, a 
model admits V as a special case of B. Non-point prototype-based 
clusters are usually defined by least-squared error models that 
attempt to fit the prototypes to the clusters. The generalization of 
problem (2.5) for non-point prototypes is 

min J (U, B; w) = 2 I u"D^ + X w. I 1 - u , } , where (2.24a) 

B = (|3 ,̂ p^,..., p^); p J is the i-th non-point prototype; and (2.24b) 

Dfî  = S(Xi^,Pi) measures the proximity or similarity 
of X to the i-th non-point prototype. (2.24c) 

The exact nature of p, (and hence S) depends on the particular model. 
A variety of models and AO algorithms have been developed by 
varying p . and S. In AO algorithms the membership update equation 
Ut = ^e(Bt-i) is still given by (2.6a), (2.7a) and (2.8a) for the hard, 
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fuzzy and possibilistic cases respectively, except that D now 
represents an appropriate proximity measure ra ther than 
ll̂ k "'"'iiA- ^^^ prototype update equation B̂ . =^^(11^) depends on 
the particular choice of the prototype. In this section we discuss 
several non-point prototype models. 

A. The Gustafson-Kessel (GK) Model 

Gustafson and Kessel (1979) proposed that the matrix A in equation 
(2.5) be a third variable. They put A = (A ,..., A ), A being a positive-
definite p x p matrix, and modified (2.5) to 

Hii3 \ J CK^^' V. A) = I £ u";||x - V II' \ . (2.25) 

det(A')=p, 

The variables estimated by the GK model are the triplet (U, V, A) 
where V is still a vector of point prototypes. This model predates 
possibilistic partitions by some 15 years, so the weights {wj in (2.5) 
are all zero. The important idea here is that the i-th cluster in U 
might be best matched by a hyperellipsoidal shape generated by the 
eigenstructure of the variable matrix A, much like S does for GMD-

AO at (2.21c). The additional constraint that det(Aj) = p. > 0 
guarantees that A is positive-definite; p. is a user defined constant 
for each cluster. Gustafson and Kessel showed that minimization of 
J with respect to A leads to the necessary condition 

m , G K '̂ ^ I •' 

A. = [p. det(C, )]'^^C-i, 1 < i < c . (2.26) 

In (2.26) C. is the fuzzy covariance matrix of cluster i. 

0 = 1 u'"(x -v.)(x -v.f/l u " , l < i < c ; m > l , (2.27) 
1 j£rj ik k 1 k 1 / ^ i ik 

where v, is the i-th point prototype or cluster center. In the sequel we 
may represent the set of fuzzy covariance matrices calculated with 
(2.27) as the vector C = (C^ C J e 9^'='P''P'. Gustafson and Kessel 

used p,= I for all 1. With this choice, the fixed norm D^ = |xi,. - Vi||^ 
used for the c distances from x to the current {v.} during calculation 
of (2.7a) is replaced in the GK-AO algorithm with the c distances 
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DL.GK=det(Cj i /PK-Vi |g- i , l < i < c . (2.28) 

When crisp covariance matrices are used, the distance measure in 
(2.28) is the one suggested by Sebestyen (1962). This distance 
measure was also used by Diday (1971), Diday et al. (1974) and Diday 
and Simon (1976) in their adaptive distance dynamic clusters 
(ADDC) algorithm. Thus, the GK-AO algorithm can be viewed as the 
fuzzification of ADDC, and may be regarded as the first (locally) 
adaptive fuzzy clustering algorithm. 

For AO optimization of J (U,V, A ), the partition U and centers 
(vj are updated using (2.7a, b) as in FCM-AO, and the covariance 
matrices are updated with (2.26). The GK-AO algorithm is more 
sensitive to initialization than FCM-AO because its search space is 
much larger. Typically, FCM-AO is used to provide a reasonably 
good initialization for this algorithm. Experimental evidence 
indicates that 1 < m <2 gives good results, with m = 1.5 often being 
the recommended value. 

Example 2.5 Figure 2.5 shows two data sets that were processed with 
the FCM-AO, GK-AO, and the GMD-AO algorithms. The parameter m 
was set at 2.0 for FCM-AO, and 1.5 for the GK-AO algorithm. All runs 
were initialized with the first two points in the left views ( v = (30, 

35)^, V = (42, 45)^) or first three points in the right views (v = (21, 

104)"̂ , V = (22, 101)'̂  and v^ ̂  = (22, 104)"̂ ). The termination criterion 

was E = j|V(. - Vt_i|| < e = 0.001. The Euclidean norm was used for J . 

The left side of Figure 2.5 contains points drawn from a mixture of c 
= 2 fairly circular Gaussians. The clusters on the right are drawn 
from a mixture of c = 3 bivariate normals, one of which (in the upper 
right portion of each view) has a covariance structure that tends 
toward linear correlation between x and y. The three clusters on the 
right exhibit visually different shapes, so we expect GK-AO and 
GMD-AO to use their localized adaptivity to find these clouds more 
accurately than FCM-AO, which has a fixed norm-inducing weight 
matrix. 

Terminal partitions hardened with (2.10) are shown in Figure 2.5 by 
assigning different symbols to the crisp clusters. The shaded areas 
in views a, b, d, e and f correspond to the points that, when compared 
with the labels of the samples drawn, were labeled incorrectly. For 
the data on the left, FCM-AO tends to divide the data into circular 
(because the norm is Euclidean) clusters of roughly equal size (the 
problem illustrated in Figure 2.3(a)). The GK-AO result in view 2.5(b) 
shows an even stronger encroachment of the right cluster into the 
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left one. View 2.5(c) shows that GMD-AO labels every point in the 2 
clusters data correctly; it reproduces the a priori labels flawlessly. 
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Figure 2.5 Hardened partitions for 2 sets of Gaussian clusters 
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The GMD-AO model also produces visually better results with the 
three clusters on the right side of Figure 2.5. Here FCM-AO draws 
four points up towards the linear cluster from the centrally located 
large group, and loses three points from the linear cluster to the 
lower cluster on the right (7 mistakes). GK-AO draws three points to 
the left from the lower right hand cluster and loses one point to the 
linear cluster (4 mistakes). GMD-AO reproduces the a priori labels 
almost flawlessly, missing just one point in the bottom right cluster 
to the linear cluster {1 mistake). 

Visually, GMD gives much better results than FCM or GK for both 
data sets in Figure 2.5. Is GMD generally superior? Well, if the data 
are really from a mixture of normals, the GMD model matches the 
data better than the other two models. But if the geometry of the data 
does not fit the pattern expected for draws from a mixture of 
normals very well, GMD does not produce better results than other 
models. Moreover, (2.28) reduces to the Euclidean distance when 

Ci = of I. If this is true for all i = 1 c, the behavior of GK and FCM 
are very similar. 

Bezdek and Dunn (1975) studied the efficacy of replacing GMD-AO 
parameter (P, M) with terminal (U, V)'s from FCM, and then 
calculating the remaining MLE of components (the priors and 
covariance matrices) of normal mixtures non-iteratively. 
Hathaway and Bezdek (1986b) proved that this strategy could not 
produce correct MLEs for (P, M) in even the univariate case. 

Gath and Geva (1989a) discuss an algorithm they called fuzzy 
maxlTnum likelihood estimation (FMLE). Specifically, they used the 
fuz^ covariance matrix C at (2.27) with m = 1 (this does not mean or 
require that the partition matrix U is crisp) to define an exponential 

e ' , where p is the estimate of 
P- * 

the prior probability of class i shown in (2.21a). This distance was 
then used in FCM formula (2.7a) with m = 2, resulting in the 

distance D^ ^^ 

memberships <u^ . | ( ^ . , G G / D „ , O G ) ^ which were taken as 

estimates for the posterior probabilities in equation (2.22). It is not 
hard to verify that this with updating scheme û ĵ  is identical to p 
in (2.22). It is not hard to show that the update equations for FMLE 
are identical to those for GMD-AO. Thus, FMLE is essentially 
equivalent to GMD-AO with the {p } interpreted as fuzzy 
memberships. We will illustrate FMLE in Section 2.4 in conjunction 
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with several measures of cluster validity defined in Gath and Geva 
(1989a). 

Although the GK algorithm was developed for, and both it and GMD-
AO are used to detect ellipsoidal clusters, since lines and planes can 
be viewed as extremely elongated or flat ellipsoids, these two models 
can also be used to detect lines and planes. Other algorithms that 
generate prototypes of this kind are described in the next subsection. 
Chapter 5 contains a more detailed discussion of how the clustering 
algorithms described in this subsection can be used for boundary 
description. 

B. Linear manifolds as prototjrpes 

The earliest reference to the explicit use of non-point prototypes in 
connection with generalizations of FCM was Bezdek et al. (1978). 
These authors discussed a primitive method for fitting fuzzy clusters 
with lines in the plane. The fuzzy c-varieties (FCV) models (Bezdek et 
al. 1981a,b) grew out of this effort, and were the first generalizations 
of FCM that explicitly used many kinds of non-point prototypes. 
FCV uses r-dimensional linear varieties, 0 < r < p-1 as prototypes in 
(2.24a). This model predates possibilistic partitions, so the weights 
{w.} in (2.24) are zero for the FCV objective function. The linear 

variety (or manifold) of dimension r through the point v e ĝ p 

spanned by the linearly independent vectors {bj^, bj2,..., bj^} c 9tP is 

L ={ye9tP|y = v -h t t b . ;t 6 9t} , (2.29) 

SO p. = {v.,b ,b b } are the parameters of L . These prototypes 

can be thought of as "flat" sets in <^v. Dimension r is the number of 

directions in which the flatness extends. FCV uses the perpendicular 
distance from x to L as the distance measure in (2.24a). When the 

k ri 

{b .} are an orthonormal basis for their span, the orthogonal 

projection theorem yields 

2 II l | 2 r / \ 2 
Df - k - ' » ' - - l ( x ^ - v . , b . . ) . (2.30) 

L,„ II k IIIA J=I\ k 1 ij/^ 

D is just the A-norm length of (x -v) minus the A-norm length of 
r.lk 

its unique best approximation by a vector in the span of the {b. j 

j=l,...,r}. When r = 0 equation (2.30) reduces to Df̂  = ||Xk - V J I ^ as 
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used in (2.5), so for r = 0, FCV reduces to FCM. For r = 1, FCV becomes 
Fuzzy c-Lines (FCL), for r = 2, Fuzzy c-Planes (FCP), etc., and for r = p 
- 1 , Fuzzy c-Hyperplanes (FCHP). In the FCV-AO algorithms derived 
to optimize the FCV model, the fuzzy c-partitlon matrix U and the 
centers {v.} are updated with FCM formulae (2.7a, b) except that the 

squared distance in (2.30) is used In place of D%^ = jxy^ - Vi|^. First 
order necessary conditions for minimizing the FCV functional now 
include the spannl 
iteration by finding 
include the spanning vectors {b }, which are updated at each 

b = the J-th unit eigenvector of C j=l, 2, ...p , (2.31) 

where the {b } are arranged in the same order as the descending 
eigenvalues of C., and C is the fuzzy covariance matrix of cluster i 
given by (2.27). The eigenvectors are assumed to be arranged 
corresponding to a descending ordering of their eigenvalues. For r > 
0 it Is of course necessary to get the eigenvalues and eigenvectors of 
the fuzzy covariance matrices at each pass through FCV-AO. This is 
usually done with singular value decomposition, and makes FCV 
and its relatives more computationally Intense than the simpler 
point prototype models. 

Since FCV-AO uses perpendicular distance to the linear varieties, it 
does not take into account the extent (i.e., length, area, etc.) of the 
flat clusters being sought. For example, if r = 1, FCV seeks (infinitely 
long) lines, and thus can lump approximately coUinear clusters 
together, even when they are very far apart (see Figure 24.1 in Bezdek 
(1981)). One solution to this problem is to choose a distance measure 
given by 

D^ =aD^ +( l -a )D^ ; 0 < a < l • (2.32) 

lines points 

which is a convex combination of the perpendicular distance from 
X, to L, ., and the point distance from x, to v . See Figure 4.50 for a 
geometric Interpretation of the distance in equation (2.32). 
Parameter a can vary from 0 for spherical clusters (having point 
prototypes) to 1 for linear clusters (having line prototypes). 

The algorithm resulting from first order necessary conditions for 
J (U, B) with distance (2.32) is called the fuzzy c -elliptotypes (FCE-
AO) algorithm (Bezdek et al., 1981b). More generally, AO algorithms 
to optimize any convex combination of FCV terms with dimensions 
(r) and convex weights {a} were derived by Bezdek et al. (1981a, b). 
The purpose of this is to allow the clusters to have shapes built from 
convex combinations of flat shapes. However, the actual prototypes 
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from the convex combinations model are not easily recognizable 
geometric entities such as ellipses; rather, they are mathematical 
entities described in terms of level sets of certain functions. 

While the parameters V and A in the GK model can be jointly viewed 
as "generalized" prototypes, FCV was the first generalization of FCM 
that explicitly used non-point prototypes for B. The FCV algorithms 
and the particular convex combination FCE have found various 
applications over the years (Jacobsen and Gunderson, 1983, 
Gunderson and Thrane, 1985, Yoshinarl et al., 1993). However, a 
rough idea of the shape of the clusters in the data set must be known 
a priori (which is impossible for p > 3} to select proper values for the 
dimensions {r.} and convex weights {a.}. An important exception is 

rule extraction for function approximation in fuzzy input-output 
systems. FCE seems well suited to this problem because the input-
output space of often ĝ 3̂  and linear Takagi-Sugeno (1985) output 
functions can be fitted quite well with FCE (Runkler and Palm, 1996; 
Runkler and Bezdek, 1998c; and Example 4.17). 

Adaptive fuzzy c-elliptotypes (AFCE). Perhaps the biggest drawback 
of FCV and convex combinations like FCE is that these models find 
c clusters with prototypical "shapes" that are all the same. The 
reason for this is that FCV uses the same real dimension (r) and its 
convex combinations all use the same "mixture of dimensions" for 
all c clusters, so cluster substructure having these characteristics is 
imposed on the data whether they possess it or not. This problem 
resulted in the first locally adaptive fuzzy clustering method (the GK 
model), and the next generation of locally adaptive clustering 
methods followed rapidly on the heels of the FCV models. 

There are a number of ways to make FCV adaptive. The earliest 
scheme for local adaptation in the FCV models was due to Anderson 
et al. (1982). They suggested that the value of a used in convex 
combinations of the FCV functionals should be different for each 
cluster, reflecting a customized distance measure tha t best 
represents the shape of each cluster. When convex combinations are 
used, there is no dimensionality of prototypes. (We remind you that 
it is the distances in the FCV objective function that become convex 
combinations in Bezdek et al. (1981a, b), and not the fitting 
prototypes. The fitting prototypes in AFCE, as in FCE, are no longer 
recognizable geometric entities.) The basic idea in FCE is to mediate 
between geometric needs for point prototypes (central tendencies) 
and varietal s t ruc ture (shape or dispersions). But convex 
combinations of FCV such as FCE fix the amount by which each 
factor contributes to the overall representation of all c clusters. 

Anderson et al. (1982) regulated each cluster through the shape 
information possessed by the eigenstructure of its fuzzy covariance 
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matrix. Adaptation is with respect to the convex weights in (2.32) 
used for each cluster. For X c 9t̂  the modification of FCE to AFCE is 

1 - ^ ^ 2 ^ , 1 = 1,2 , (2.33) 
"•I,max 

where X is the larger eigenvalue and X is the smaller 
i.max ° i.min 

eigenvalue of the 2 x 2 fuzzy covariance matrix C. of cluster i, 1=1,2. 
Equation (2.33) covers only the 2D case. Extensions to higher 
dimensions may be found in Phansalkar and Dave (1997) and Km 
(1997). The AFCE-AO algorithms are exactly the same as the FCE-AO 
methods just described except that the convex weights in (2.32) are 
updated at each iteration with (2.33). 

Example 2.6 Figure 2.6 shows the results of clustering two data sets 
with FCL-AO, AFCE-AO and GK-AO. Each of these models has a 
different kind of prototype (lines, elliptotypes and points, 
respectively); all three are configured for possible success with data 
of this kind. FCL, however, is more rigid than the other two because 
it does not have a feature that enables localized adaptation. The left 
panel depicts three intersecting noisy linear clusters of different 
sizes, and the right side shows three noisy linear clusters, two of 
which are collinear. 

Run time protocols for this example were as follows. The covariance 
matrices for all three methods were initialized with the (U, V) output 
of the fifth iteration of FCM-AO, m = 2, c = 3 using the Euclidean 
norm. FCM-AO was Itself initialized with the first 3 points in each 
data set ((v^ ^ = (80, 81)"̂ , v^ ̂  = (84, 84)"̂  and v^ ^ = (87, 89)"̂ ) in the left 

views, and (v, ^ = (10, 11)"̂ , v _ = (11, 189)'^and v^„ = (14, 14)"̂ ) in the 
Jl,U ^t\) o,U 

right views). Termination of all three methods by either of 
||Vt+i - V t L ^O.OOlor ||Ut+i -UtIL <0.01 yielded the same results. 
FCV and AFCE both used m=2, and GK used m = 1.5 (our experience is 
that GK does much better with a value near 1.5 than it does with a 
value near 2). 

The results shown are terminal partitions hardened with (2.10), 
each cluster identified by a different symbol. In the collinear 
situation for the right hand views, FCL finds two almost 
coincidental clusters and the points belonging to these two clusters 
are arbitrarily assigned to the two prototypes in view 2.6d. The 
AFCE result in 2.6f is much better, having just two squares that are 
erroneously grouped with the dots. GK makes perfect assignments, 
as shown in Figure 2.6e. Terminal values of a for i\FCE were very 
nearly 1 for both data sets. 



CLUSTER ANALYSIS 49 

(a) FCL 

D 

a . 

+ •<l3 

•̂  1, 
a 
a 

D 
• 

a 
a 

t (d) FCL 

\ 

\ if 

(b)GK 

+ 

+ p 

D++ 

4 
4-

4-
4 

(c) AFCE 

4-

1 ° 
+ • 

n + 
4 
4-+ 

4 
• 4 -

+ 

1^^ (f) AFCE 13 

••• • • • • 

Figure 2.6 Detection of linear clusters with FCL, GK and AFCE 

For the three well separated lines (the right views in Figure 2.6), all 
three values were 0.999; for the intersecting lines in the left views of 
Figure 2.6, the three terminal values of a were 0.999, 0.997 and 
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0.999. These are the expected results, since the clusters in both data 
sets are essentially linear, so the ratio of eigenvalues in (2.33) is 
essentially zero. 

The tendency of FCV to disregard compactness is seen in the cluster 
denoted by the six "+" signs in panel 2.6(a). Here the pluses and dots 
are clearly interspersed incorrectly. For this data, both GK and 
AFCE produce flawless results. One possible explanation for this is 
that the FCV functional is more susceptible to being trapped by local 
minima, since it cannot adapt locally like GK and AFCE. 

AFCE is called AFC (adaptive fuzzy clustering) in many of the later 
papers on this topic, especially those of Dave (1989a, 1990a). Because 
several other adaptive schemes discussed in this chapter are not 
based on FCE, we prefer to call this method AFCE. Dave and Patel 
(1990) considered the problem of discovering the unknown number 
of clusters. They proposed progressive removal of clusters that are 
good fits to subsets of the data. This idea was further developed for 
lines and planes in Krisnapuram and Freg (1992). 

Adaptive Fuzzy c-Varieties (AFCV) Gunderson (1983) introduced a 
heuristic way to make the integer dimension (r.) of the fitting 
prototype for class i independent of the dimensions used by other 
clusters sought in the data. His adaptive Juzzxj c - varieties (AFCV) 
scheme is based on the eigenstructure of the fuzzy covariance 
matrices {CI at (2.27) that are part of the necessary conditions for 
extrema of the FCV functional. 

Gunderson observed that the distance calculations made in the 
necessary conditions for U , the i-th row of partition matrix U 
shown at (2.7a), are independent of how the distances themselves are 
computed - that is, (2.7a) does not care what value of r is used in 
equation (2.30). He reasoned that making a heuristic adjustment to 
the optimality conditions by allowing different D^ 's to be used in 

(2.7a) for different i's might enable FCV to seek manifolds of 
different dimensions for the various clusters . A second 
modification of the necessary conditions was to introduce a non-
convex weight d into distance equation (2.30) as follows: 

K,.^ =K -Villi -dfl(xk -v„byf] • (2.34) 

The user defined parameter d in (2.34) essentially controls the 
importance of the non-point or r > 0 part of the distance calculation 
for each cluster, and not much guidance is given about its selection. 
Gunderson's modification of FCV also calls for the selection of (p-1) 
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shaping coefficients {a : 1 < r < p -1} which are compared to ratios of 
eigenvalues from the fuzzy scatter matrices {C.} at (2.27). In 

particular, if {A, < A, <• • • < A, I are the ordered eigenvalues of C , 
^ ip i,p-i 11 1 

Gunderson adapts the dimension of each FCV prototype during 
iteration as follows: If there exists a least integer k, k = 1, 2, .... p-1 so 
that (A,., , /A,., ) < a, ; 1 < i < c, set r = k; otherwise, set r = 0. The 

•• i ,k+l/ i,k k i ' 1 

parameter a is also user defined, and again, is fine tuned during 
iteration, much like many other algorithmic parameters, to secure 
the most acceptable solution to the user. Then, U is updated with r = 
r, in (2.30). These two changes are analogous to the modifications of 
FCM that Bensaid et al. (1996a) used to create ssFCM: the resultant 
algorithm no longer attempts to solve a well-posed optimization 
problem. 

Example 2.7 Figure 2.7 is adapted from Figure 5 in Gunderson (1983). 
Figure 2.7 shows the output obtained by applying Gunderson's 
adaptive FCV to a data set in 5K̂  that contains four visually 
apparent clusters. The two upper clusters are roughly circular, 
cloud-type structures while the two lower are elongated, linear 
structures. 

Using the Euclidean norm, c =4 and m = 1.75 in (2.24), and d = 0.95 
in (2.34), Gunderson's algorithm iteratively chooses r = r = 0, so 
that the cloud shaped clusters are represented, respectively, by the 
point prototypes v and v as shown in Figure 2.7. And the algorithm 
settles on r = r = 1, so that the linear clusters have prototypes that 
are shown as the lines L „ and L, in Figure 2.7. The value of a, is not 

13 14 =" k 

specified. 
Summarizing, Gunderson's method makes FCV adaptive with 
respect to the dimensions {r} of the linear varieties {L }. Different 

^ 1 rl 
clusters are allowed to have representation as linear manifolds of 
possibly different dimensions. In contrast, the adaptive GK model 
does not provide non-point prototypes; instead, it adapts the norms 
{A.} of the clusters so that their level sets implicitly match the 
cluster shapes. 
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Figure 2.7 Gunderson's FCV for two clouds and two lines 

C. Spherical Prototypes 

Coray (1981) first suggested the use of circular prototypes for clusters 
resembling circular arcs - that is, shell-like structures, as opposed to 
cloud like structures (it is arguable whether linear clusters such as 
those in Figure 2.6 are clouds or shells - they seem to be the 
boundary case between the two types of structures). This line of 
research evolved to the fuzzy c-shells (FCS) algorithms (Dave and 
Bhamidipati, 1989, Dave, 1990b, 1992) and the fuzzy c-spherical 
shells (FCSS) algorithms of Krishnapuram et al. (1992). In these 
a lgo r i t hms the i-th p ro to type is t he h y p e r s p h e r e 
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S.(x; V ,r ) = | x e S '̂': X-V. = r icentered at V with radius r , so (3 = 

(v , r ) . The proximity measure D used by these two models is 

different, and hence, the parameters p are updated differently. 
Dave's FCS uses the exact distance from feature vector x, to the 

k 
spherical shell of cluster i, 

D̂  =[ix - v | | - r 
ik \|| k ill i 

(2.35) 

This distance, illustrated in Figure 2.8 for p=2, is the (squared) 
Euclidean distance between data point x and (the tangent to) the 
prototypical circle S that lies along a radius directed towards the 
datum. 

Figure 2.8 The distance basis for Dav6's FCS 

Minimization of (2.24a) in the non-possibilistic case when all 
distances between data and point prototypes {v} are non-zero and 
distance (2.35) is used for (2.24c) yields the usual necessary 
conditions for U (namely, PCM equation (2.7a)). However, 
differentiation with respect to v and r when (2.35) is used 5delds the 
necessary conditions 

k=l 'k 

r 
( ^ k - V 

k=i * 
IK-''^ll-r. 

Ml k ill i j 
= 0 

, and (2.36a) 

(2.36b) 

These equations are not explicit in r and v . Therefore a technique 
such as Newton's method that solves a set of coupled nonlinear 



54 FUZZY PATTERN RECOGNITION 

equations must be used at each half iterate to estimate these 
parameters. This makes FCS computationally expensive. Bezdek 
and Hathaway (1992) showed that an exact solution of (2.36) is not 
required. Instead, only one step of Newton's method is needed at 
each half iterate. Man and Gath (1994) have suggested another 
variant of FCS in which the center and radius estimates are updated 
independently rather than found by simultaneous solution using 
(2.36). This avoids the need for numerical techniques, but may 
increase the overall number of iterations required for termination. 

Krishnapuram et al.'s FCSS avoids the need for numerical solution 
of necessary conditions at each half iterate by using the 
algebraically defined proximity 

ik Ml k 

Defining 

(2.37) 

1 
and Pi(Vi,ri) 

-2v, 

v ; v i 
(2.38) 

it is easy to show that this minor modification of (2.35) makes the 
parameter update equations explicit: 

p =- lH:y, , where (2.39) 

H |,"X< and w. \1,<K\K (2.40) 

In theory the exact geometric distance used in FCS gives more 
accurate results than the algebraically motivated distance used in 
FCSS, but in most practical applications the difference may not 
Justify the higher computational cost of FCS. As a compromise, FCS 
is typically applied to the data after FCSS terminates (that is, FCS is 
often initialized with the terminal outputs from FCSS). There are 
quite a few early papers on these two algorithms, but both have been 
subsumed by the more general case of elliptical prototypes, so an 
example of spherical prototypes is deferred to a later subsection. 

D. Elliptical Prototjrpes 

Dave and Bhaswan (1992) proposed the adaptive fuzzy c-shells 
(AFCS) model for elliptical shells. This model uses a hyperellipse 
for the i-th prototype, 

E ( x ; v , A ) = <{x69tP:| |x-vf =lj- , (2.41) 
•• ' ' II H I A , 
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where A. is a positive definite symmetric matr ix which de te rmines 
the major a n d minor axes lengths a s well a s the orientat ion of the 
hyperellipse, a n d v is i ts center. Consider the dis tance D ^ defined 

by 

ik 
X - V - 1 

li illA. 
(2.42) 

Dave a n d Bhaswan showed t h a t minimization of (2.24a) w h e n all 
d i s tances between da t a a n d point prototypes {v.} are non-zero with 

D?IJ a s in (2.42) resu l t s in the following equat ions for upda t ing the 
parameters p̂  = (v., A) of ellipse E : 

k=l ik 

f 
D<w 

\ 

V 
X - V 

1 ^ . 

(X, • v ) - 0 , and (2.43a) 

k = l Ik 

f 
% 

\ 

\ 
X - V 

1 ̂ . 

( X . vp(x^-v/=0 (2.43b) 

Like (2.36), system (2.43) m u s t be solved numerical ly a t each half 
s tep in the iteration. The u s u a l necessary condit ions for U hold for 
AFCS. The evolution of AFCS is traced through Dave a n d Bhasw an 
(1991a,b), Dave (1992) and Dave and Bhaswan (1992). 

In the i r fuzzy c-elUpsoidal shells (FCES) model , Fr igui a n d 
PWshnapuram (1996a) use the "radial distance" defined by 

Dl = 
(X.. • V . ) - 1 

1 IIA, K-i 
(2.44) 

D^ is a good approximation to the exact (perpendicular) d i s tance 
^ik 

be tween the ellipse E. a n d po in t s located close to i ts major a n d 

minor axes. If z denotes the point of intersection of the line joining 

V. to X, and E., then D 
R,-ik 

(2.44) t h a t D 2 = D 
Ik ' ik 

= l l ^ k - 2 k 

l|2 
X, - V , 

We also see from (2.42) a n d 

" ' T h u s , D-̂  i s a 
ik 
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normalized version of D^ , with the normalization a function of 
Hk 

the position of x . D^ has the advantage of being simpler to 
^ik 

compute when compared with the exact distance to E (see next 
subsection). Minimization of (2.24a) when all distances between 
data and point prototypes {v.} are non-zero with D^ in (2.24c) 

results in the following update equations for p̂  = (v̂ , A )̂: 

/ 

k;=l * 

D„ 

X, - V 
K-^iK-^^^^k-^^ , and (2.45a) 

k=i ' " 

D 
p I 

X, - V . 

k IIIA, 

D^ 

P k - ^ i 
(X. - v . ) = 0 . 
' k i' 

(2.45b) 

Equations (2.45) can be solved numerically with the Levenberg-
Marquardt algorithm. Frigui and Krishnapuram (1996a) have 
shown that D^ performs better than D , especially when the data 

Ik 

are scattered and when the ellipses are of widely varying sizes. 

E. Quadric Prototypes 

(Krishnapuram et al., 1991) first generalized shell clustering to the 
quadric case. The general hyperquadric shell in ĝ p with coordinate 
axes X X can be written as 

1 p 

Q^(x;p^) = {x€9tP;(p^,q) = 0} 

P j P i i ' • • • ' Pp i ' P(p+l)i' • • • ' Prf' P(r+l)l P(r+p)r P{r+p+l)i 

• [^l X p , X 1 X 2 , . . . , Xp_jXp, X j , . . . , X p , IJ 

, where (2.46a) 

(2.46b) 

and (2.46c) 

r = p(p+l)/2 . (2.46d) 

Define the algebraic (or residual) distance from a point x to 

prototype Q with parameters Pi = p as 
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Dt T T , where (2.47a) 

Ik ' • •^pk'^ lk^2k' • ^ ( p - l ) k \ k ' ^ l k ' pk (2.47b} 

In order to obtain a fuzzy c-partition of the data, Krisnapuram et al. 
minimize the non-possibihstic form of (2.24a) when all distances 
between data and point prototypes {v} are non-zero with D^ as the 

underlying distance measure. However, since the objective function 
is homogeneous with respect to pj, we need to constrain the problem 
in order to avoid the trivial solution. In their fuzzy c-quadrics (FCQ) 
model Dave and Bhaswan (1992) use the constraint P.. = 1- However, 
the resulting proximity is not invariant to rotation. Moreover, it 
precludes linear prototypes and certain paraboloids. Another 
possibility is (Krishnapuram et al., 1991) 

Pu+-+Ppi+iP(Vi)i^- + i P ' 1 (2.48) 

This constraint was used by Bookstein (1979) for fitting quadrics 
and has the advantage that the resulting distance measure is 
invariant to rigid transformations of the prototype. However, it 
does not allow the solution to be linear or planar. Many other 
constraints are also possible. Krishnapuram et al. (1995a) have 
shown that the above constraint is the best compromise between 
computational complexity and performance in the 2-D case. If for 
the i-th prototype we define 

a.. = Pii 
- ^ ; p +1< j < r 
V2 

, and (2.49a) 

b.. =p. . forj = r + l,r + 2 r + p + 1 (2.49b) 

then the constraint in (2.48) simplifies to a J =1 . It is easy to show 
that the necessary conditions under this constraint are 

a = eigenvector of (Fj - G^Hj"^Gj) for its smallest eigenvalue;(2.50a) 

b =-H"^Ga 
1 1 1 1 

; where (2.50b) 

.m T .m^ _T .mj. ^r F = I u " r X , G = I u " t X . H. = I u" t t ; . 
1 j ^ i ik k k i j ^ i ik k k i j ^ j Ik k k 

(2.50c) 
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< -
2 2 r-

X . . . , X V2X X , 
Ik pk Ik 2k 

. . ,V2X X 
(p-l)k pk 

and (2.50d) 

and t. 
Ik 

. , X , 1 
pk (2.50e) 

The algebraic distance in (2.47a) is highly nonlinear in nature. 
When there are curves (surfaces) of highly-varying sizes, the 
algebraic distance is biased toward smaller curves (surfaces), and for 
a particular curve (surface) the distance measure is biased towards 
points inside the curve (surface) as opposed to points outside. This 
can lead to undesirable fits (Dave and Bhaswan, 1992, 
Krishnapuram et al. 1995a). To alleviate this problem, use the exact 

(perpendicular) distance denoted by Dp̂ ^ between the point Xĵ^ and 

the shell Q,. To compute Dp ĵ̂ , (2.46a) is first rewritten as 

x^A X + x^b + c = 0 (2.51) 

In (2.51), it is assumed that the coordinate system has been rotated 
to make the matrix A, diagonal. The closest point z on the 

II ||2 
hyperquadric to point xj^ can be obtained by minimizing j \ ~ z|| 
subject to 

z'^Az + z'^b +c 0 (2.52) 

By using a LaGrange multiplier X, the solution is found to be 

i ( l - ^ 0 - \ X b i + 2 x ^ ) (2.53) 

In the 2-D case (i. e., p=2), substituting (2.53) into (2.52) yields a 
quartic equation in X, which has at most four real roots A,., j =1 4. 
The four roots can be computed using the standard closed-form 
solution. For each real root A., the corresponding z vector z. can be 

computed with (2.53), and D is finally computed using 

D 
ik min 

J 

(2.54) 

Minimization of the non-possibilistic form of (2.24a) with respect to 
p when all distances between data and non-point prototypes (p } are 

non-zero (with Dp as the underlying proximity measure) can again 
ik 

be achieved only by numerical techniques. To reduce the 
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computational burden, we assume we can obtain approximately the 
same values for p. by using (2.49) and (2.50), which will be true if all 
the feature points lie reasonably close to the hyperquadric shells. 
The resulting algorithm, in which the memberships are updated 
using Dp of (2.54) in (2.7a), but the prototypes are updated using 

Ik 

D?, , is known as the fuzzy c -quadric shells (FCQS) algorithm. The 

2D case leads to a quartic equation whose roots can be found in 
closed form; for higher dimensions, we must resort to numerical 
solutions. 

Krishnapuram et al. (1995a) have shown that FCQS is adequate for 
some boundary description applications, and we return to this 
application in Chapter 5. The procedure described above to solve for 
the exact distance is practical only in the 2-D case. In higher 
dimensions, one needs to solve for the roots of a sixth (or higher) 
degree polynomial. To overcome this, Krishnapuram et al. (1995a) 
developed an alternative algorithm that uses an approximate 
distance (Taubin, 1991). Roughly speaking, this approximate 
distance corresponds to the first-order approximation of the exact 
distance. It is given by 

n2 _ ^Qik _ P^qkqkPi ,<) cc^ 

r^Qik PI °k^kPi 

where VDQ.ĵ is the gradient of p^q evaluated at x . In (2.55) the 
matrix D is the Jacobian of q evaluated at x . The minimization 

2 
Alk 

with respect to p. of the non-possibilistic form of (2.24a) with D 
as the underlying proximity measure leads to coupled nonlinear 
equations which can be solved only iteratively. To avoid this 
problem, Krishnapuram et al. (1995) choose the constraint 

p ' ^ G p = n , i = l c ,where (2.56) 
1 1 1 1 

G. = i u™D D'^ and n, = X u™ . (2.57) 
1 ]^i ik k k 1 1^1 ik 

This constraint is a generalization of the constraint used by Taubin 
(1991) for the (crisp) single curve case. Minimization of (2.24a) 
subject to (2.56) yields complicated equations that cannot be solved 
explicitly for p.. To avoid iterative solutions we assume that most of 
the data points are close to the prototypes, so the memberships {u } 
will be relatively crisp (i. e., close to 0 or 1). This assumption is also 
valid if we use possibilistic memberships. 
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The magnitude of the gradient at all points with high memberships 
in cluster i is approximately constant, i.e., pjDy.D^Pi ~l. In fact, 

the condition pTOi^Djpj = 1 holds exactly for the case of 
lines/planes and certain quadrics such as circles and cylinders. 
Since D^ and D^ differ only in the denominator which is = 1, we 

will obtain approximately the same solution if we minimize (2.24a) 
with Dg (rather than D\ ) as the distance measure subject to the 
constraint in (2.56). This leads to the generalized eigenvector 
solution for the prototype update: 

where (2.58) 

(2.59) 
k=l 

Unfortunately, since G is rank-deficient, (2.58) cannot be converted 
to the standard eigenvector problem. (The last row of D = [0,...,0].) 
However, (2.58) can still be solved using other techniques that use 
the modified Cholesky decomposition (Taubin, 1991), and the 
solution is computationally inexpensive when p=2 or 3. 

The assumption that p^D D^p = 1 is not valid for many geometric 

shapes when p > 3. One solution is to treat p^D D^p. as a weighting 
factor which is treated as a constant while deriving the update 
equation for p . If we assume that the value of p does not change 
drastically from iteration to iteration, the weighting factor can be 
computed using the parameter values from the previous iteration. In 
this case, the update equation for p. will remain the same as (2.58), 
except that 

Fi(t) = IuJgW(t,kqkqk. where w^^^^ = p^ D D'^P 
Mt- l ) I k k*^(t-l)i 

-1 
(2.60) 

In (2.60), the subscripts in parentheses indicate iteration numbers. 
Since this reweight procedure is heuristic, it is not guaranteed that 
the fit obtained after reweighting will always be better than the one 
without reweighting. Therefore, it is necessary to compute the 
parameter vector p both with and without the weights and accept the 
p. resulting from the reweight procedure only when the error of fit 
decreases. The sum of exact or approximate distances for each 
individual cluster may be used as a measure of the error of fit. The 
reweight procedure is highly recommended when p > 3. 
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Since constraint (2.56) allows lines and planes in addition to 
quadrics, the algorithm that uses (2.55) to update memberships and 
(2.58) (with or without reweighting) to update prototype parameters 
is known as the fuzzy c - plano-quadric shells (FCPQS) algorithm. 
Krishnapuram et al. (1995a) have also generalized the FCPQS 
algorithm to the case of hypersurfaces defined by sets of higher-
order polynomials. 

Shell clustering algorithms are very sensitive to initialization. 
Initializing FCQS and FCPQS randomly works well only in the 
simplest cases. When the data contain highly intermixed shell 
clusters, reliable initialization can sometimes be obtained with 
another clustering algorithm (or several of them), as illustrated in 
Example 2.8. We will return to the issue of sensitivity to 
initialization for shell clustering algorithms in Section 2.4.F. 

Example 2.8 Figure 2.9 shows a typical example of the results 
obtained by the FCQS algorithm on a S5Tithetic data set containing 
about 200 points. Fig. 2.9(a) shows the original data set, a pair of 
randomized ellipses. Noise uniformly distributed over [-1.5, 1.5] was 
added to the x and y coordinates of data points generated by 
sampling functional representations of the three curves so that the 
points do not lie on ideal curves. Figure 2.9(b) shows the resulting 
prototype curves superimposed on the original data set when c=3 
was used. 

(a) Data 

XX X " X 
' Hx 

' , X ^ 

X ' ^ ' X , X X 

X ^x « „ „ X 
"X X X 

X It X X 

X " " 

" » » . . » 

Figure 2.9 Two randomized ellipses and a circle 

The results in Figure 2.9 were obtained by the sequential application 
of four algorithms, viz., FCQS o FCSS o GK o FCM. First, FCM with m 
= 3 is applied to the data for 10 iterations. This locates initial cluster 
centers and memberships for the GK method. Then, 2 iterations of 
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the GK algorithm are made with m = 2, resulting in longer, thinner 
clusters than are produced by FCM. The GK outputs are then used to 
initialize FCSS, which is again run for 5 iterations. This converts 
the long thin clusters to circular arcs. Finally, the FCSS outputs are 
used as inputs to the shell clustering method FCQS, which is run to 
termination with the outputs shown in Figure 2.9(b). The 
termination criterion for this example was to stop when the 
maximum change in the membership of any point in any cluster 
was less than 0.01. This hybrid FCQS model typically terminates in 
about 20 iterations and the CPU time on a Sun Sparc 1 workstation 
is less than 10 seconds. 

Although we have only discussed the fuzzy cases in detail, the non 
point-prototype algorithms discussed in this section can all be used 
either in the hard, fuzzy or possibilistic modes. The possibilistic 
mode, with an initialization provided by the fuzzy mode, may be 

c 
useful in noisy situations. This is because the constraint J û ĵ  = 1 

i=l 

will cause noise points to have relatively high memberships in the 
fuzzy clusters, which can lead to unacceptably high errors in 
prototype parameter estimates. However, the possibilistic mode 
requires that we estimate the scale parameter w for each cluster. In 
most shell clustering models, w may be set equal to the square of the 
expected thickness of the shells (Krishnapuram et al. 1995a,b). 

Example 2.9 The top left view of Fig. 2.10 shows two visually 
apparent ellipses imbedded in a very noisy environment. Crisp, 
fuzzy and possibilistic quadric c-shells were all applied to this data 
set. All parameters for these runs were as in Example 2.9 except that 
c=2 and the initializations varied. Specifically, the initialization 
schemes were hybrid sequences of different algorithms that were 
applied to the data sequentially. The crisp case was the sequence of 
algorithms HCQSoHCSSo ADDCo HCM. The fuzzy case was the 
sequence FCQS o FCSS o GK o FCM. The possibilistic case was 
initialized by the output of FCQS, so that the bottom right view in 
Figure 2.10 is the result of a five algorithm sequence, 
PCQS o FCQS o FCSS o GK o FCM • 
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Figure 2.10 Three outputs for two ellipses in noise 

Figure 2.10 (con't.) Three outputs for two ellipses in noise 

The top right view of Figure 2.10 depicts the result of a HCQS with 
the prototypical ellipses superimposed on the data. The fits are very-
poor. The bottom left in Figure 2.10 shows the result of the FCQS 
algorithm. This is an improvement over the HCQS result, but the 
effect of the noise points on the fits is still fairly significant. The 
bottom right view in Figure 2.10 displays the result of PCQS. The fit 
to the underlying pair of ellipses is quite good. This is a nice 
illustration of the power of hybrid models. 
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F. Norm induced shell protot3rpes 

Bezdek et al. (1995) introduced a method that generates shell 
prototypes corresponding to level sets of any norm on 9^^. To 
describe this model we need to define norm-induced shell-
prototypes. The level set of any norm function for constant A, > 0 is 

Another common notat ion for L„ „ 
INII.^ emphasizes that this is also the closed (boundary) ball centered at 0 

(the zero vector in 3i^) of radius A. in the norm IWI, i.e. 

H.x aB||^||(0.?.): {xe9lP:| |x-0| | = ||x|| = M. 

Figure 2.11 NISPs for various norms on 9t 

For many, the word ball connotes roundness, and this is indeed the 
case for ||*||2, the Euclidean norm. More generally, the shape of the 
ball is determined by level sets of the norm. Figure 2.11 depicts some 
level sets (they are the boundaries shown) of various norm functions 

on 91 . For A, = 1, the boundaries are jus t the unit vectors for the 
norm in question. Along the boundary of the unit circle, for 
example, the Euclidean is 1, ||x||2 = 1. All of the level sets of ||x||2 are 
hyperspherical. If A is any positive-definite p x p matrix, the inner 
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product norm ||x||^ = Vx^Ax has hyperelliptlcal level sets, such as 

the one depicted In Figure 2.11 where ||x||^ = 1 . In other words, the 

ellipse where ||x||^ = 1 is the set of points that are equidistant from 

the origin of 9? when ||x||^ is the measure of distance. Inner product 
norm-induced shells, are sets generated this way. 

More generally, any norm on 3i^ has such level sets, and these are 
responsible for the shape of open and closed balls in their particular 
topology. Shown in Figure 2.11, for example, are the unit vectors 
(closed balls of unit radius) in the 1 and sup or oo n o r m s . 

^ P ^ 
ll̂ lli I and |x||^ = maxj x >. These two norms are special 

i<j<p 
cases of the infinite family of Minkowski q-norms in (1.10). These 
norms cannot be induced by an inner product (except at q=2, the 
Euclidean norm), but they generate norm-induced shell prototypes 
Just the same. Of particular importance for the example to follow is 
the shell induced by | |* | j , which is the "diamond" shown in Figure 

2.11 for ||x|^ = 1, xin 9^ .̂ The points on the diamond are equidistant 
from the origin in the 1-norm. 

Another important fact about norms is that the square of any inner 
product norm is everywhere differentiable, while the squares of 
almost all non-inner product norms are not. This causes a great 
shift in the importance of using AO for approximate minimization 
of functionals that use norms to define the measure D^ = S(xij,pi) 
in (2.24c), because most easily obtainable AO algorithms depend on 
solving necessary conditions obtained through differentiation. This 
has impeded the development of norm-induced shell prototypes that 
use non-inner product norms. 

Recall that the FCS model of Dave is based on AO of the fuzzy 
version of (2.24a) with distance (2.35). Bezdek et al. (1995) proved 
that Dave's formula (2.35) was much more generally applicable. The 
main result is stated here as 

Theorem NISP. Let x and v e 9t^, r > 0, || * || be a given norm on 9t^ 

and 3B,. ,,(v,r) = {y e 9tP|||y-vlj = r} be the closed ball of radius r 
11*11 ' 

centered at v. Then the shortest distance, as measured by || • ||, from 

any point in 3B|| ,,(v,r) tox is | ||x - v|| - r |. 

This result is the basis of the NISP-AO algorithms which iteratively 
optimize (2.24a) when the distance in (2.24c) is defined by any norm 
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on g^p. For example, this means that any Minkowski norm can be 
used in (2.24c), and theorem NISP tells us how to achieve the 
minimization of (2.24a) with respect to the parameters p. = (v., r) of 

the i-th shell, whose equation is 5B„ „(v , r ) = {y e S '̂' 
* i i 

• V = r 
1 i 

Theorem NISP enables us to use other families of norms in (2.24c), 
by redefining (3; to include the shell center v , radius r , and all other 
parameters needed to specify a particular member of the family of 
norms. As an example, suppose we seek a framework whereby it is 
possible to specify any rectangle in the plane as the i-th cluster 
shell. One possibility is to define a family of norms using the two 
real parameters a and G as 

|lx||̂  Q = maxja.|x^ cos(0.) + x^ sin(e. )|,|-Xj sin(e.) + x^ cos(ej)|},(2.61) 

where 0< a. < 1 and 0 < 9 < TI. The NISP corresponding to the i-th shell 
is lust the closed ball centered at v , with radius r for which, in this 

•' i i 
norm, x - v = r as shown in Figure 2.12. 

II ' H a , 9 1 
1 1 

Figture 2.12 Rectangular NISP corresponding to x - v 
illa,,e, 
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To verify tha t (2.61) is a vector norm on 5K̂ , note tha t 
||x||̂  g = ||AQx|L, where A and Q Eire nonsingular matrices, so it is just 

a weighted version (weighted by nonsingular matrix AQ) of another 
'a, 0" 

norm. The nonsingular weighting matrix is AQ, where A 0 1 

and Q = 
cos(6i) sin(6i) 

-sin(Gi) cos(0i) Nonsingularity is crucial to insure that 

the norm property ||x|| = 0 implies that x = 0 holds. The two matrices 
correspond to the operations that are required to turn the square 
into the rotated rectangle, namely: a rotation through 9 (represented 

by Q), and a stretch (represented by A) .We then let |3 =(v., r , a , 0) and 
2 

useDik(xk,Pi) = F k - V i | L „ in (2.24c). Optimization of (2.24a) 

in all three cases (hard, fuzzy and possibilistic) can be done using AO 
directly or after reformulation as in (2.23) via the reformulation 
theorem. Alternatively, optimization can be done using, say, a 
genetic algorithm approach. In example 2.10 from Bezdek et al. 
(1995), a hybrid algorithm composed of FCM followed by 
reformulation optimization is used. 

Example 2.10 The data for this example are a pair of diamond 
shaped shells, shown as hollow circles in Figures 2.13(a) and 2.13(b). 
The first stage in this example uses the FCM point-prototypes 
algorithm to find shell parameters that fit the data reasonably well. 
FCM estimates for the shell parameters in this problem correspond 
to shell centers (the terminal cluster centers v and v found by 

FCM); and shell radii computed as r = J I u™D, / I u™ for 1 < i < 
i ^k=i Ik ik k=i ^ 

2 and the terminal FCM partition U. Here D is the 1-norm on 3i^ -
i.e., the NISP norm of choice for this problem. We initialized FCM 
with a partition U„ e M, . The choice of U did not matter in the 

^ 0 hen 0 
cases examined, and the standard choice was to simply alternate I's 
and O's in each row of U. This choice is a poor initialization since 
every other point in each diamond starts out belonging to the wrong 
cluster. 
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Figure 2.13(a) Stage 1 NISP shells obtained using FCM 

In 18 iterations FCM with c = m = 2 and the Euclidean norm for J 
2 

terminated with ||Uj - Ut_i||^ < 0.001, approximate cluster centers v 
= V and V = V and a fuzzy partition U = U . The terminal cluster 

centers were used to calculate the squared distances D = x - 1 
y II J , 

for i=l,2 and J=l n, which were then used with U to calculate the 
initial shell radii r and r . The stage one shell estimates are shown 
in Figure 2.13(a). They fit the overlapping diamonds pretty well, but 
further processing with NISP-AO will improve the fit. 

In stage 2 the fuzzy c-means shell estimates from stage 1 are used to 
initialize an optimization routine (we used the function "fmins" 
from the MATLAB optimization toolbox) that is then applied to the 

n f c III ,, |2 / ( l -m)y" '" 
fuzzy reformulation Riu(p) = X Z Pk "''''i h ~ "̂i °f 
(2.24a) using the l-norm as the shell inducing norm with m= 2. The 
final results produced using this two stage approach is shown in 
Figure 2.13(b). The l-norm induced shell prototypes (the two 
diamonds) shown in Figure 2.13(b) fit the data quite well. 
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Figure 2.13(b) Stage 2 NISP shells obtained by fmins on R 

If the matrix A in equation (1.6) or the power q in the Minkowski 
norm in equation (1.11) are considered part of the prototype along 
with V and r., it can be shown that the shapes generated by the NISP 
model using these two families of norms are superquadrics (Solina 
and Bajczy, 1990). We will discuss a recent model due to Hoeppner 
(1997) in chapter 5 - the fuzzy c-rectangular shells model - that is 
very similar to and in some ways slightly more general than the 
NISP model. To appreciate how similar the two models are, peek 
ahead to Figure 5.39, and compare it to Figure 2.12. 

G. Regression models as prototypes 

Another family of objective functions that use non-point prototypes 
was introduced in Hathaway and Bezdek (1993). They called this 
family fuzzy c-regression models (FCRM). Minimization of 
particular objective functions in the family yields simultaneous 
estimates for the parameters of c regression models; and a fuzzy c-
partitioning of the data. 

Let S = {(x , y ) (x , y )} be a set of data where each independent 

observation x e 9̂® has a corresponding dependent observation y e 
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9t^ In the simplest case we assume that a single functional 
relationship between x and y holds for all the data in S. In many 
cases a statistical framework is imposed on this problem to account 
for measurement errors in the data, and a corresponding optimal 
solution is sought. Usually, the search for a "best" function is 
partially constrained by choosing the functional form of f in the 
assumed relationship 

y = f(x; B) + c , (2.61) 

where B e Q c 9̂ *̂  is the vector of parameters that define f to be 
determined, and c Is a random vector with mean vector jji = 0 e '3i^ 
and covariance matrix X. The definition of an optimal estimate of B 

depends on distributional assumptions made about c, and the set Q 
of feasible values of B. This type of model is well known and can be 
found in most texts on multivariate statistics. 

The model considered by Hathaway and Bezdek (1993) is known as a 
switching regression model (Hosmer, 1974, Kiefer, 1978, Quandt and 
Ramsey, 1978, De Veaux, 1989). We assume S to be drawn from c 
models 

y = f(x;p.) + Cj , l < i < c , (2.62) 

where p e £2 c 9?^', and c is a random vector with mean vector u = 0 
' i l l '^1 

e Si^ and covariance matrix X. Good estimates for the parameters B 
= {p ,-•••,P } are desired as in the single model case. Here, as in (2.24), 
P. is the set of parameters for the i-th prototype, which in this case is 
the regression function f. However, we have the added difficulty that 
S is unlabeled. That is, for a given datum (x ,y ), it is not known 
which model from (2.62) applies. 

One approach for estimating the parameters {|3 } is to use the GMD-
AO algorithm (Table 2.4).The approach taken here is more akin to 
fuzzy cluster analysis than statistics. The main problem is that the 
data in S are unlabeled, so numerical methods for estimation of the 
parameters almost always lead to equations which are coupled 
across classes. If S were partitioned into c crisp subse t s 
corresponding to the regimes represented by the models in (2.62), 
then estimates for {p p } could be obtained by simpler methods. 
One alternative to using GMD-AO is to first find a crisp c-partition 
of S using an algorithm such as HCM; and then solve c separate 
single-model problems using S. with (2.61). This is usually not done 
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because it may not explain the data structure properly. The 
effectiveness using of (2.61) for each crisp cluster depends on how 
accurate the crisp clusters are. 

Hathaway and Bezdek formulated the two problems (partitioning S 
and estimating {[3 p }, the parameters of the prototype functions 

{f.(x; p.)}) so that a simultaneous solution could be attempted. A 
clustering criterion is needed that explicitly accounts for both the 
form of the regression models as well as the need to partition the 
unlabeled data so that each cluster of S is well-fit by a single model 
from (2.62). For the switching regression problem we interpret u as 
the importance or weight attached to the extent to which the model 
value f.(x ; p.) matches y . Crisp memberships (O's and I's) in this 
context would place all of the weight in the approximation of y by 

f (x • p.) on one class for each k. But fuzzy partitions enable us to 
represent situations where a data point fits several models equally 
well, or more generally, may fit all c models to varying degrees. 

The measure of similarity in (2.24c) for the FCRM models is some 
measure of the quality of the approximation of y by each f: for 

l<i<c; l<k<n, define 

E., (P.) = measure of error in f (x ;P.) = y. . (2.63) 
IK 1 1 K 1 K 

The most common example for such a measure is the vector norm 
E (P ) = II f (x,; P ) - y, II. The precise nature of (2.63) can be left 

I k ' i I ' i k ' i ' k " '• 

unspecified to allow a very general framework. However, all choices 
for E are required to satisfy the following minimizer property. Let 
a = (a,,a^,....a)Twitha >0 V i, and E.(p.) = (E.fp.),...,E. (p.))T 1 < i < c. 

1. ^ n. 1 1 1 11 1 ixi 1 

We require that each of the c Euclidean dot products 
( a ,E i (p i ) ) ; l< i<c (2.64) 

have a global minimum over Q., the set of feasible values of p.. The 
general family of FCRM objective functions is defined, for U e M 

and (P ,...,p ) e O.^Y.Q.^Y.---y.Q.^&'^^ v-'^'^y.-'-y.'^'^, by the fuzzy 
instance of (2.24a) with (2.63) that satisfy (2.64) inserted into (2.24c) 
- that is, D^ = Ey^(pj). The basis for this approach is the belief that 
minimizers (U, B) of J (U, B) are such that U is a reasonable fuzzy 
partitioning of S and that {pj p̂ ,} determine a good switching 
regression model. 
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Minimization of (2.24a) under the assumptions of FCRM can be done 
with the usua l AO approach whenever grouped coordinate 
minimization with analytic formulae is possible. Specifically, 
given data S, set m > 1, choose c parametric regression models {f (x; 

p )}, and choose a measure of error E = {E } so that E (|3) > 0 for i and 
k, and for which the minimizer property defined by (2.64) holds. 
Pick a termination threshold t > 0 and an initial partition U e 
M, . Then for r = 0,1,2,...: calculate values for the c model 

fen 

parameters p.''^' that globally minimize (over Q x D. x x Q. ) the 

restricted obiective function J (U , p ,,...,p ). Update U -^ U e M, 
-" m r ' 1 ' c r r+1 fen 

with the usual FCM update formula (2.7a). Finally, compare either 
||Ur+i-Ui.|| or ||Bj.^i-Br|| in some convenient matrix norm to a 
termination threshold e. If successive estimates are less than e, stop; 
otherwise set r = r+1 and continue. 
Solution of the switching regression problem with mixture 
decomposition using the GMD-AO algorithm can be regarded as the 
same optimization approach applied to the objective function 
L ( U , Y ^ , . . . , Y J = I Iu.j^(Eji^(Yj + ln(u.^)), see equation (11) of 

k=l i=l 

Bezdek et al. (1987a). In this case, the [y] are the regression model 
parameters (the {B}), plus additional parameters such as means, 
covariance matrices and mixing proportions associated with the c 
components of the mixture. Minimization with respect to B is 
possible since the measure of error satisfies the minimizer property 
and J can be rewritten to look like a sum of functions of the form 

m 

in (2.64). 

For a specific example, suppose that t=l , and for l<i<c: k. = s, Q. = 

9^s, f(x^; p̂ ) = (x /p^ , and Ejp^) = (y^ - [x^V^^]^. Then J^(U, B) is a 
fuzzy, multi-model extension of the least squares criterion for 
model-fitting, and any existing software for solving weighted least 
squares problems can be used to accomplish the minimization. The 
explicit formulae for the new iterates p ', 1 < i < c, can be easily 

derived using calculus. Let X denote the matrix in 9?"̂  having x as 

its k-th row; Y denote the vector in 9t" having y as its k-th 

component; and D. denote the diagonal matrix in 5R"" having (u )™ 
as its k-th diagonal element. If the columns of X are linearly 
independent and u > 0 for 1 < k < n, then 

p.'"''= [X'̂ DXI-̂ X'̂ DY . (2.65) 
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If the columns of X are not linearly independent, p ''̂ ^ can still be 
calculated directly, bu t techniques based on orthogonal 
factorizations of X should be used. Though it rarely occurs in 
practice, u can equal 0 for some values of k, but this will cause 
singularity of [XTD.X] only in degenerate (and extremely unusual) 

cases. As a practical matter, p ''̂ ' in (2.65) will be defined throughout 
the iteration if the columns of X are linearly independent. 

Global convergence theory from Zangwill (1969) can be applied for 
reasonable choices of E.. (P ) to show that any limit point of an 
iteration sequence will be a minimlzer, or at worst a saddle point, of 
J (U,p ,...,P ). The local convergence result in Bezdek et al. (1987a) 

states that if the error measures {E (p.)} are sufficiently smooth and 
a standard convexity property holds at a minimizer (U, B) of J , 
then any iteration sequence started with U sufficiently close to U 
will converge to (U, B). Furthermore, the rate of convergence of the 
sequence will be q-linear. 

The level of computational difficulty in minimization of J with 
respect to B is a major consideration In choosing the particular 
measure of error E, (p ). The best situation is when a closed form 

ik ' 1 

solution for the new iterate p exists such as in the example at 
(2.65). Fortunately, in cases where the minimization must be done 
iteratively, the convergence theory in Hathaway and Bezdek (1991) 
shows that a single step of Newton's method, rather than exact 
minimization, is sufficient to preserve the local convergence 
results. The case of inexact minimization in each half step is further 
discussed and exemplified in Bezdek and Hathaway (1992) in 
connection with the FCS algorithm of Dave. 

-tfy^ Nip'' 
Example 2.11 This example illustrates the use of FCRM to fit c = 2 
quadratic regression models. The quadratic models are of the form 

y = P„ + Pj2X + PigX̂  , and (2.66a) 

y = 1̂21 + ̂ 22^-^1^23 '̂ • (2.66b) 

The four data sets A, B, C and D specified in Table 2.6 were generated 
by computing y from 2.66(a) or 2.66(b) at n /2 fixed, equally spaced x-
values across the interval given in Column 3 of Table 2.6. This 
resulted in sets of n points (which we pretend are unlabeled), half of 
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which were generated from each of the two quadratics specified by 
the parameters in Columns 4 and 5 of Table 2.6. These four data sets 
are scatterplotted in Figure 2.14. 

Table 2.6 Data from the qiiadratic models y = p̂ ^ + ̂ ^^x + PiaX^ 

n x - in t e rva l 
Pi h 

A 46 [5, 27.5] |3 j^=(21,-2, 0.0625) P ^ = ( - 5 , 2,-0.0625) 
B 28 [9, 22.5] I3^g=(21,-2, 0.0625) p2B= (-5.2,-0.0625) 

C 30 [9, 23.5] P^^= (18.-1,0.03125) p2c= (-2. 1,-0.03125) 

D 46 [10.5, 21.75] p^j^= (172,-26,1) p2P= (364.-38,1) 

FCRM iterations seeking two quadratic models were initialized at a 
pair of quadratics with parameters P , „= (-19. 2, 0); ^„= (-31, 2, 0). 
Since the coefficients of the x^ terms are zero, the initializing 
models are the dashed lines shown in Figure 2.14. FCRM run 

parameters were c = m = 2 and E^(pj) = (Y^ " Pa " ^n\' ^ta^^^- Iteration 
was stopped as soon as the maximum change in the absolute value of 
successive pairs of estimates of the six parameter values for that 
model was found to be less than or equal to e =.00001, that is. 

»r+l < 0.00001. 

Data Set A 
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\ 
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\ 
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16 
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Figure 2.14 Initial (dashed) and terminal (solid) models 
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Figure 2.14 shows the initial (dashed lines) and terminal regression 
models FCRM found when started at the given initialization. The 
initializing lines were neither horizontal nor vertical - they were 
inclined to the axes of symmetry of the data in every case. This 
initialization led to successful termination at the true values of the 
generating quadratics very rapidly (6-10 iterations) for all four data 
sets. The terminal fits to the data are in these four cases good 
(accurate to essentially machine precision). In the source paper for 
this example FCRM detected and characterized the quadratic models 
generating these four data sets correctly in 9 of 12 attempts over 
three different pairs of initializing lines. 

FCRM differs from quadric c-shells most importantly in the sense 
that the regression functions - which are the FCRM prototypes - need 
not be recognizable geometric entities. Thus, data whose functional 
dependency is much more complicated than hyperquadric can (in 
principle at least) be accommodated by FCRM. Finally, FCRM 
explicitly recognizes functional dependency between grouped 
subsets of independent and dependent variables in the data, whereas 
none of the previous methods do. These are the major differences 
between FCRM and all the other non-point prototype clustering 
methods discussed in this section. In the terminology of Section 4.6, 
FCRM is really more aptly described as a "system identification" 
method, the system being the mixed c-regression models. 

H. Clustering for robust parametric estimation 

The term "robust clustering", sometimes used to describe the 
algorithms in this subsection, is somewhat of a misnomer, since it 
seems to promise a clustering method that is somehow "more 
robust" than, for example, the c-means models. However, the 
algorithms in this subsection do not look for clusters in the same 
circumstances as our previous models. Here, we develop methods 
that can be used as tools to make (more) robust estimates of 
statistical parameters than, say, GMD-AO could, when certain 
assumptions are made about the data. Consequently, this topic fits 
equally well into the framework of subsection 4.6.G, where we 
discuss the use of clustering as a tool for estimating parameters of 
two kinds of fuzzy systems tha t are used for function 
approximation. This is really the aim of robust clustering too -
estimation of model parameters that provide good approximations 
to unknown parameters of the assumed model. 

To understand the intent of robust statistics, imagine that you are 
measuring electronically the weights (w) of Chinook Salmon as they 
are being taken out of a fishing net. The weights of all Chinook 
Salmon will almost certainly resemble a normal distribution 

i^[[i,a^), and you hope to estimate the parameters of this 
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distribution using the collected samples. Suppose the population 
mean weight of all the fish of this species ( excluding fish less than 6 
inches long) is 10 pounds, with a standard deviation in the 
population of 1 pound. Then your expectation is that about 95% of 
all the measured weights will fall in the weight interval [8, 12], 
accounting for two standard deviations on either side of the mean. 
You will have no trouble visualizing the scatterplot of the first 
10,000 samples of this process along the real line - it should look 
much like Sketch A. 

• • — • — • • • • • • • > w 

0 5 10 15 20 

Sketch A 10,000 samples of /̂ (lO, 1] 

The probability of seeing even one observation close to 5 or 15 in 
this situation is so small that the observations shown in sketch A 
are already far-fetched. If you ran the HCM algorithm with the 
Euclidean norm on the data in Sketch A with c = 1, all the points 
would be put unequivocally into one cluster. What estimate would 

you get for the cluster center? Since p = 1, ||xk - v|| = (xĵ ^ - v)^ and 
Ui]j = l V k , the cluster center estimated with (2.6b) would be 

10,000 
V = IXk /10,000, the arithmetic mean of the 10,000 points. This 

k=l 
is exactly what you want, and the estimate would be very close to 10. 
Of course, you can compute this statistic without clustering, but this 
illustrates how clustering can be used in statistical estimation. 

Now suppose the voltage to the electronic scale that is measuring the 
w's suddenly jumps, causing the sensor to record Just one 
measurement of, say, w = 10,000 (this is a fish the authors would like 
to catch!). Most estimates we might make for |j. and a from the data 
collected would be effected dramatically by this single mistake, 
since now the situation in sketch A becomes that of sketch B. 

- • • • -> w 
0 10,000 
Sketch B 9,999 samples of A7(10, 1) + one sample with value 10,000 

If you ran HCM with c = 1 on the data in Sketch B, the estimate of the 
mean would be pulled far to the right, as it would if you simply 
computed the new arithmetic mean of the data. This sensitivity to 
"noise", or "outliers", or whatever you prefer to call unusual 
perturbations of the data, is termed lack of robustness. In this 
example, we say that the statistic used (here the arithmetic mean) 
has a breakdown point of 1/n = 1/10,000 - that is, 1 bad point in n 
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samples can give an estimate that Is arbitrarily far from the true 
value. 

According to Huber (1981), a robust procedure for statistical 
parametric estimation can be characterized by the following: (1) it 
should have a reasonably good efficiency (statistically) at the 
assumed model, (2) small deviations from the model assumptions 
should impair the performance only by a small amount, and (3) 
larger deviations from the model assumptions should not cause a 
catastrophe. 

Statistics that can overcome sensitivity to outliers (to various 
extents) are called robust estimators. For example, if you use the 
median instead of the mean to estimate |j. for the data in Sketch B, 
you will still obtain a very reasonable estimate, because all but one 
of the points to the right of the median is very close to \x relative to 
the one outlier. This estimate can also be obtained by clustering the 
Sketch B data with HCM if you replace the Euclidean norm in J by 
the 1-norm. In this case the necessary conditions (2.6) do not apply, 
and there are a number of alternative methods that find estimates of 
extreme points of J . In particular, the median of the data is known 
to minimize J in the situation of Sketch B (Kersten, 1995), so again, 
we can obtain a reasonable estimate of the mean |J,, using a 
clustering algorithm that is robust in this well defined statistical 
sense. Two things to note: first, we still run the clustering algorithm 
at c = 1, presumably because the physical process here tells us it must 
be 1 (unless there is a large school of giant Chinooks somewhere, 
feeding on sperm whales); and second, although we know (or suspect) 
that the collected samples are contaminated by noise, we don't know 
which ones are the bad ones. 

The question is not "how many clusters are there in sketches A and 
B" - there are two; rather, the question posed in robust statistics is 
"how badly will the estimators of the mean and variance of the 
single distribution we assume produced these samples be affected by 
the addition of the "noise point" whose value is 10,000. To 
underscore this more dramatically, suppose 45% of the 10,000 
points were "accidentally" recorded at values near 10,000. This 
would result in the situation shown in Sketch C. 

^> w 
0 10,000 

Sketch C 5,500 samples of ;̂ (10,1) + 4,500 samples 
with values near 10,000 

From the point of view of clustering, the data in Sketch C have -
without question - two visual clusters, and any clustering algorithm 
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we have discussed so far would find these two clusters in short order 
- provided we ran itatc = 2. But from the point of view of parametric 
estimation, if we knew (or assumed, anyway) that the data must 
come from a single normal distribution, we would want a method 
tha t somehow still produced reasonable estimates for the 
parameters of A7(10,1). The corrupted observations may or may not 
form a "cluster", but are still perfidious to statistical estimators. 

Ordinary statistics such as the average of the 10,000 samples, which 
in this case would produce an estimate of about 4,500 for the mean, 
would be unreliable. In fact, the mean can be made arbitrarily far 
from the "correct" estimate by increasing the values of the 
"corrupted" observations. On the other hand, in the overdramatized 
situation depicted in Sketch C, the median will do much better, since 
the estimate produced by it will not be arbitrarily far from the 
actual (population) value, no matter how high the values of the 
corrupted observations are. The median will break down only when 
the fraction of corrupted samples exceeds 50% - i.e., the breakdown 
point of the median is 50%. 

So, this is the problem set out for "robust clustering" : to find 
reasonable estimates for the model parameters under the 
assumptions that: (i) the model is known, and (il) there are 
(unknown) samples in the data that are aberrant. Fuzzy clustering 
algorithms have been used to estimate parameters of normal 
mixtures for quite a while (Bezdek and Dunn, 1975, Bezdek et al., 
1985, Gath and Geva, 1989b), but the methods used are "intolerant" 
to the problem of robust estimation. Non-point prototype clustering 
algorithms such as fuzzy c-lines (FCL) and fuzzy c-shells (PCS) can 
be used to estimate lines and curves in unlabeled data, and these 
algorithms may suffer from the same intolerance to aberrant data. 
The aim of the techniques discussed in this subsection is to design 
clustering models (albeit not quite unsupervised) that overcome or 
at least obviate sensitivity to noise under the specific assumptions 
just stated. 

In robust statistics, the breakdown point of an estimator is defined 
to be the smallest fraction of noise or outlier points that can result 
in arbitrarily large errors in the estimate (Hampel, 1975). (Outliers 
are misrecorded observations or points otherwise included in data 
whose values can be arbitrarily distant from the correct ones.) 
Prototype-based clustering algorithms may be viewed as estimators 
of prototypes. Therefore, when the prototype es t imates 
corresponding to the global minimum of the objective function can 
have arbitrarily large errors, we may say that the (formulation of 
the) clustering algorithm breaks down. 

The breakdown point of a clustering algorithm can be used as a 
measure its robustness. When there is only one cluster in the data, 
theoretically the best breakdown point one can be achieve is 0.5 (or 
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50%). This Is because if the noise points "conspire" to form a cluster 
t h a t is equal in size to the good cluster, and if the noise c luster is 
arbi trar i ly far away, t hen there is no way to guarantee t h a t any 
c lus t e r ing a lgor i thm will pick t he r ight c lus te r i n s t ead of t he 
spu r ious one. (If the algori thm picks the wrong one, the es t imate 
will be arbitrarily off.) Similarly, when we have a known n u m b e r of 
c lus te r s in t he da t a set, the bes t breakdown point any cluster ing 
algorithm can achieve is Unjin/n, where n^m is the n u m b e r of points 
in the smallest "good" cluster (Dave and Krishnapuram, 1997). 

Bobrowski and Bezdek (1991) first investigated the use of the 1-norm 
in t he FCM model. Kaufman a n d Rousseeuw showed t h a t the c-
m e a n s algorithm can be made more robust by us ing the l -norm (see 
Kaufmann and Rousseeuw, 1990). Kersten (1995) later showed tha t 
when the 1-norm is used, the upda te equation for the cluster centers 
is the fuzzy median. Dave (1991a) proposed the idea of a noise cluster 
(NC) to deal with noisy da ta . In this approach, noise is considered to 
be a separa te class, and is represented by a fictitious prototype t h a t 

h a s a constant distance 5 from all the data points . The membersh ip 
u.j^of point Xk in the noise cluster is defined to be 

u.^ = l - I u . j ^ . (2.66) 

T h u s , the membersh ip constra int for the good clusters is effectively 
c 

relaxed to X u.. < 1, a strategy tha t is very similar to the use of slack 
i=l 'J 

var iables in other optimization domains . This allows noise points 
to have arbitrarily small membersh ip values in good c lus ters . The 
objective function for the fuzzy noise clustering (FNC) model is 

J N C ( U , V ; 0 ) = i i u - D f , + i u - 5 2 . (2.67) 
i=lk=l k=l 

Jnj(U,V;0) 

The second te rm on the r ight side of (2.67) cor responds to the 
weighted s u m of d i s tances to the noise c luster . The m e m b e r s h i p 
u p d a t e equa t ion in Dave 's FNC modification of FCM-AO t h a t 
replaces necessary condition (2.7a) is, for m > 1 and all i, k 

" ,1 = c , , ;;i/.n°;i' , , - „ , „ . . - i • « .68) 

Together with necessary condition (2.7b), (2.68) forms a n AO pair for 
the fuzzy robust clustering (FRC) a lgor i thm. When the init ial 
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prototypes are reasonably close to the actual ones, D , i = 1,..., c, in 
(2.68) will be large for outliers, so the numerator and the first term 
in its denominator will be small relative to the second term in the 
denominator. This results in small membership values in the good 
clusters for the outliers. Dave and Krishnapuram (1997) have shown 
that the FNC approach is essentially the same as Ohashi's (1984) 
method. (To our knowledge, Ohashi's work was never published, but 
a brief description of this method can be found in DeGruijter and 
McBratney, 1988.) 

In the FNC approach, 5 plays a role similar to that of Wj in PCM (see 
(2.5)). PCM and FNC can be shown to be equivalent to the M-
estimator technique of robust statistics (Huber, 1981). As a result, 
their asymptotic breakdown point is limited to 1 / n , where n is the 
number of parameters to be estimated. Dave and Krishnapuram 
(1997) discuss the connection between several robust techniques, 
including the mountain method (Yager and Filev, 1994a); the 
generalized minimuTn volume ellipsoid (GMVE) algorithm (Jolion et 
al. 1991), and a method that seeks to minimize the probability of 
randomness (MINPRAN, Stewart, 1995). 

The approach in (Frigui and Krishnapuram, 1995, 1996a), discussed 
later in this section, was the earliest attempt to incorporate a robust 
statistical loss function into fuzzy clustering. There have been 
several other methods studied to make FCM more robust (Frigui and 
Krishnapuram, 1995; Kim et al., 1995; Choi and Krishnapuram, 
1996; Nasraoui and Krishnapuram, 1997). The methods in last three 
papers jus t mentioned are based on the reformulation theorem, 
equations (2.23), of Hathaway and Bezdek (1995). All of these 
algorithms have the potential to achieve the theoretical breakdown 
point of nuiin/n. 

Recall that the reformulated objective function for FCM is (2.23b): 

n f c , ., y-™ n 
R^(V,0)= S ID/1-™ = I Hĵ  , (2.69) 

™ k=ili=i '" J k=i ^ 

where H, = 
k 

>£j~)i/(i m) j ^ ^ jg 1/c times the harmonic mean of 

the distances {D.j^:j = l c) when m=2. Since the H^ values 
(measured from true prototypes) corresponding to outliers are large, 
the idea is to design the objective function so that its global 
minimum is achieved when large H^ are discounted or even 
completely ignored. The objective function of Choi and 
Krishnapuram (1996) that defines the robust FCM (RoFCM) model 
and whose gradient supplies necessary conditions for the 
corresponding AO algorithm is 
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R R O F C M ( V . O ) = X P ( H , ) . (2.70) 
k = l 

This objective function applies a loss function p(.) to each of the H 's 
to reduce the effect of outliers (Ruber, 1981). The loss function is 
typically chosen to be linear for small distances and then it 
saturates for larger distances. The membership update equation for 
this formulation remains the same as that of the original FCM, i.e., 
u is computed with (2.7a). However, update equation (2.7b) for the 
cluster centers is replaced by, for m > 1, 

^1=^ , i = l c , (2.71) 
X»kuS 

k = l 

where (o^ = co(Hĵ ) = dp(Hj^) / dH^ can be interpreted as the degree of 
"goodness" of point Xk- The RoFCM algorithm is AO of the pair (2.71) 
and (2.7a). Ideally, for noise points, co should be as low as possible. 

In robust statistics, the function co is typically chosen as 

fl; Hk<ymed{H„}l 

..=<»(»,)={„^ „the™.y • '̂ •̂ '̂ 
In (2.72) Y is called the tuning constant, and is typically between 2 
and 8. Note that cô  must be updated at every iteration because the 
{Hĵ } change whenever the {v̂ } do. Moreover, there is no guarantee 
that AO achieves the global minimum of (2.70), and other 
optimization methods may be more effective for some problems. 

The objective function of the fuzzy trimmed c-prototypes (FTCP) 
model of Kim et al. (1995, 1996) is 

Rj^cp(V,0)= i H,^, , (2.73) 

where H|y is the k-th item when the quantities Hj, i=l,.. . ,n are 
arranged in ascending order, and q is a value less than n. The idea 
here is to place the c prototypes in such a way that the sum of the 
smallest q H 's is minimized. If the value of q is set equal to n-
nmin+1 > FTCP will achieve the theoretical breakdown point. 

The fuzzy c-least median of squares (FCLMS) algorithm (Nasraoui 
and Krishnapuram, 1997) replaces the summation that appears on 
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the right side of (2.69) with the median. The objective function of 
FCLMS is 

RFCLMs(V.O) = med{H,} . (2.74) 

The crisp version of this algorithm minimizes the median of the 
distances from the points to their closet prototypes. The median can 
be replaced by the q-th quantile (e. g. q=n-niiiin+l}. AO algorithms 
that heuristically minimize the FTCP and RoFCM functionals can 
(but are not guaranteed to) achieve a high breakdown point with 
relatively low computational complexity. However, the AO 
technique cannot be applied in these two cases, which both require a 
random (or exhaustive) search procedure. Kim et al. (1996) give a 
heuristic AO technique to minimize (2.73). A genetic search is used 
for minimizing the FCLMS functional at (2.74) in (Nasraoui and 
Krishnapuram, 1997). 

Recently, Frigui and Krishnapuram (1996b, 1997) have introduced 
an algorithm based on competitive agglomeration (CA). This 
algorithm tries to determine the number of clusters in a data set 
automatically, without the use of an explicit validity measure. (See 
Section 2.4 for a detailed discussion on cluster validity.) CA 
combines the advantages of agglomerative and partitional 
clustering and achieves relative insensitivity to initialization by 
initially approximating the data set by a large number of small 
clusters. Agglomerative (hierarchical) clustering (see Section 3.3) 
has the advantage that it is insensitive to initialization and local 
minima, and that the number of clusters need not be specified. 
However, one cannot incorporate a priori information about the 
shape and size of clusters, as can be done in partitional prototype-
based clustering. Agglomerative algorithms produce a nested 
sequence of partitions (dendrograms), and they are static in the 
sense that data points that are committed to a cluster in early stages 
cannot move to another cluster. In contrast, partitional prototype-
based clustering is dynamic. The fuzzy CA model uses the following 
objective function, which seems to combine the advantages of both 
paradigms 

J ^ ^ ( U , V ; a ) = i i u 2 ^ D f , - a i 
i=ij=i 1=1 

JgtU.ViO) 

n 

.k=l "^. 
(2.75) 

c 
This objective function is minimized subject to £ Ujĵ  = 1, and a is a 

i=l 
user defined constant. The first term in (2.75) is J ^ at (2.5) with m=2 
and w = 0. It represents the sum of fuzzy Intracluster distances, 
allows us to obtain compact clusters and is minimized when c=n. 
The second term (including the minus sign) is minimized when all 
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good data points are lumped into one cluster. Thus, conceptually 
(2.75) tries to find a balance between c=n and c=l, and thereby 
attempts to partition the data set into the smallest possible number 
of compact clusters. Using LaGrange multipliers, it can be shown 
that the membership update equation for AO of the function at (2.75) 
is given by 

where u '̂̂ '*' is the FCM membership with (2.7a) at m = 2, i.e., 
Ik 

FCM _ 
" i k 

c 
I 

J = l 

D̂ k 

V Df 
(2.77) 

and u^'^^ is the bias membership given by 

^Bias « ( N ^ _ N J . (2.78) 
' ^ ik 

n 
In (2.78) N, = X u,, is the cardinality of cluster i and N, is the 

' k=i "" ^ 
weighted average of cardinalities of all clusters (from the point of 
view of X ), 

__ ,i(l/Df,)N, 
Nĵ  = i^V- — • (2.79) 

1=1 

The second term in (2.76) can be either positive or negative, and it 
allows strong clusters to agglomerate and weak clusters to 
disintegrate. CA is usually initialized by appl)^ng FCM to X with a 
large value of c to find an initial U and V. The value of c is 
continually updated in CA as clusters become extinct. After the 
memberships are updated, if the cardinality of a cluster falls below a 
specified threshold, the prototype corresponding to that cluster and 
the corresponding row in U are discarded. When this happens, the 
memberships are redistributed amongst the remaining clusters 
according to (2.77). The value of a needs to be initially increased 
slowly, beginning from a = 0, to encourage agglomeration, and is 
then gradually reduced. The following "annealing schedule" is 
recommended for the control of a: 
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/ 

« t = 1 l t 
'^,,-^, " i k , t - l Ik,t-1 

n I 
.k=l 

U 
ik , t - l 

where (2.80) 

\ 0 

- t / T . 
(2.81) 

In (2.80) and (2.81) a, ri, u^, and D.ĵ  are shown as functions of 
iteration number t. Values for TIQ, to and t are typically 1, 5 and 10 
respectively. Equation {2.i 
then decays towards zero. 
respectively. Equation (2.81) shows that r]^ increases until t = t , and 

The CA technique can potentially find clusters of various types if we 
use appropriate prototypes and distance measures in the first term 
of (2.75). Since the second term in (2.75) does not involve protolypes, 
the update equations for the prototype parameters are the same as 
those in the corresponding fuzzy clustering algorithms that do not 
use the second term. 

Frigui and Krishnapuram (1995) present a robust clustering 
algorithm called the robust c-prototypes (RCP) based on the M-
est imator . This algori thm uses the objective function 

'RCP (U,B) = X XufkPi(Dut;). where p is the loss function for cluster i. 
l = l k = l '• 

Each cluster in RCP has its own loss function, as opposed to RoFCM 
in (2.70), which has only one loss function for all c clusters. Dave 
and Sen (1998) have shown that with suitable modifications, FNC 
(see equation (2.67)) can be made to behave like RCP. 

CA can be made robust (Frigui and Krishnapuram, 1996b) by 
incorporating the RCP approach into (2.75), resulting in the 
objective function 

J R C A ( U , B : w , a ) = i i u ^ P i ( D f k ) - a i 
i=lk=l 1=1. 

n2 

k = l 
(2.82) 

Thus, the objective function for robust CA (RCA) applies a loss 
function p (*) to the squared distances to reduce the effect of outliers 
(Huber, 1981). However, unlike RoFCM, which associates only one 
weight with each point, RCA uses c robust (possibilistic) weights 
with each point, where w.. e [0,1] is the typicality of x with respect to 
cluster i. As is customary in robust statistics, the robust weights are 
related to the loss function viaw.j^ = Wj(Dĵ ĵ ) = dp.(D ĵ̂ ) / dD^. 
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If a point X is an outlier, the weights {w } will be low for the proper 
choice of p.W, and the second term in (2.82) will effectively ignore the 
contribution of such points. Thus, the second term in (2.82) can be 
interpreted as the sum of squares of robust cardinalities. The 
memberships u^'^'^ and Uĵ ''̂ ^ are now given by 

u,, 
IK 

C 

I 
J=l 

P,(D: 

V 
p ( D i ) 

l/(m-l) 

and (2.83) 

u 
B i a s _ « ( ^ - N , ) 
Ik P.K) 

(2.84) 

where N, = £ w.ĵ u,ĵ  is the robust cardinality of cluster i, and N^ is 
k=l 

the weighted average of robust cardinalities of all clusters given by 

N = i ^ 
k 

i ( l /p ,(Df,))N. 

l ( l /p , (Df , ) ) 
(2.85) 

The prototype update equation for prototype [31 of cluster i (which 
could be a scalar, vector or a matrix), can be obtained from the 
following necessary condition: 

dJRCA(U.B:w,a)^ " 2 dpi dPfi, 
d|3, - h^"^ dD^ dp, 

2.Uu,Wj]^ —rr- - U. 
i=l dp, 

(2.86) 

A proper loss function p.(*) is needed for this algorithm to get good 
results. An alternative to simply guessing p (*) is to estimate w(*) 
from the data at each iteration and then compute p.(*) as the integral 
of w(*). Example 2.12 illustrates this approach. 

Example 2.12 Figure 2.15(a) shows a synthetic data set consisting of 
six Gaussian clusters of varied sizes and orientations. Uniformly 
distributed noise was added to the data set so that the noise points 
constitute about 40% of the total points. The distance measure used 

in this example, D?,j=|Ci| ^(x^ - v,)^Cj"^(xjj - V;), is due to 
Gustafson and Kessel (see (2.28)). The initial value for c was 
overspecified as c = 20. RCA-AO was initialized by running 5 
iterations of GK-AO on the data; GK-AO was initialized by randomly 
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choosing 20 points in the data for V . When v̂  ̂  - v̂  j._j < 0.001V i, 
termination occurred. 

For this distance measure the update equations for the center and 
the covariance matrix of cluster i can be shown to be: 

k=l 

; and (2.87) 

I w^^uf^lx^-VjKx^-Vjf 
C, = _ k=l lk" lk^ 

n 
I W,̂ U 

k=l 

l < i < c 
2 

i k " i k 

(2.88) 

The weight function is estimated as follows. In each iteration, the 
fuzzy partition is hardened. Let Xj denote the i-th cluster of the 
hardened partition, let Ti denote the median of the distances D^ 
such that Xk 6 X;, and let Sj denote the median of absolute deviations 
(MAD) of D^̂  for Xĵ  e X^. The weight function is chosen such that 
points within Tj of the prototype have a weight > 0.5, points within 
TJ+TSI of the prototype have a weight < 0.5, and points beyond TJ+TSJ 

have a weight of 0: 

w.^ =W.(D2, ) = 
ik 1 ^ ik ' 

D ik 

2Tf 

2Y2sf 

:Df,e[O.TJ 

; D ^ E [ T ^ , T , + YSJ 

:Df,>T^+7S, 

(2.89) 

This weight function (softly) rejects 50% of the points within each 
component while updating the prototype parameters. Thus, it can 
tolerate up to 50% outliers In each component. The loss function p (*) 
which Is needed to update u is obtained by integrating the weight 
function. Figure 2.15(a) shows the input data, which has six clusters 
which are visually apparent due to higher local densities than the 
data distribution over the rest of the square. The initial prototypes, 
obtained by running the GK algorithm for 5 iterations with c=20, are 
shown in Figure 2.15(b), where the ellipses enclose points with a 
Mahalanobis distance less than 9. After 6 iterations of RCA-AO the 
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robust cardinalities of the remaining clusters have dropped below 
the threshold (=3), so the number of clusters is reduced to 9 as shown 
in Figure 2.15(c). The final result, after 10 iterations of RCA-AO, is 
shown in Figure 2.15(d). 
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(a) input data (b) After 5 ( ^ iterates 

(c) After 6 RCA iterates (d) Final RCA result 

Figure 2.15 The robust competitive a^omeration technique 

2.4 Cluster Validity 

Now that we have some ways to get clusters, we turn to the problem 
of how to validate them. Figure 2.3(a) shows that the criterion 
driving a clustering algorithm towards an optimal partition 
sometimes produces a result that is disagreeable at best, and wrong 
at worst. This illustrates the need for approaches to the problem of 
cluster validity. 

Clustering algorithms {G} will produce as many partitions as you 

have time to generate. Let /^ = {ej(X) = Uj eMp^n:! ^ J ^ N}, where 

index (j) indicates: (i) clustering X with one C at various values of c; 
(ii) clustering X over algorithmic parameters of a particular Gj or 
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(ill) applying different G's to X. Cluster validity (problem (3), Figure 
2.1) is an assessment of the relative attractiveness of different U's in 
p. The usual approach is computational, and is based on one or more 
validity Junctionals V: D t-> 91, D denoting the domain of V, to rank 
each U. e P. 

You may wonder: if the global minimum of, say J , cannot produce 
the clusters you want, then why not directly optimize a validity 
functional V? First, no model can capture all the properties that 
"good' clusters might possess, and this of course includes any 
particular V we might propose. For example, we seek, from data set 
to data set, clusters with: compactness, isolation, maximal 
crispness, density gradients, particular distributions, etc. And more 
importantly, many of the validity indices that will be discussed do 
not fit naturally into a well behaved framework for mathematical 
optimization. So, we use validity measures as an "after the fact" way 
to gain further confidence in a pgirticular clustering solution. 

There are two ways to view clustering algorithms. First, it is 
possible to regard G as a parametric estimation method - U and any 
additional parameters such as B in the c-means and c-shells models 
are being estimated by C using X. In this case V is regarded as a 
measure of goodness of fit of the estimated parameters (to a true but 
unknown set!). This interpretation is usually (but not exclusively) 
made for validity measures in the context of probabilistic 
clustering. 

The second interpretation of C is in the sense of exploratory data 
analysis. When 1/ assesses U alone (even if the measure involves 
other parameters such as B), V is interpreted as a measure of the 
quality of U in the sense of partitioning for substructure. This is the 
rationale underlying most of the methods discussed in this section. 

When D,, = M. , we call V a direct measure; because it assesses 
V hen 

properties of crisp (real) clusters or subsets in X; otherwise, it is 
indirect. When Dy = M ĉn x other parameters, the test V performs is 

e.g. prototypes B 
still direct, but addition of the other parameters is an important 
change, because these parameters often contain valuable 
information about cluster geometry (for example, measures that 
assess how well the prototypes B fit the cluster shapes). We call 
indices that fall into this category direct parametric indices. 

When U is not crisp, validity measures are applied to an algorithmic 
derivative of X so they are called indirect measures of cluster 
validity. There are both indirect and indirect param.etric measures 
of partition quality. 



CLUSTER ANALYSIS 89 

Finally, many validity measures also use X. This is a third 
important aspect of validity functionals: do they use the vectors in X 
during the calculation of V? We indicate explicit dependence of V on 
X by adding the word data when this is the case. Let Q, represent the 
parameter space for B. Table 2.7 shows a classification of validity 
functionals into six types based on their arguments (domains). 

Table 2.7 One classification of validity measures 

Type of Index Variables Domain D^ of V 

Direct U Mhcn 

Direct Parametric (U,B) M h c n X ^ 

Direct Parametric Data (U, B, X) M, xQx9?P 
hen 

Indirect U ( M p e n - M h e n ) 

Indirect Parametric (U,B) ( M p c n - M h c n ) x " 

Indirect Parametric Data (U, B, X) {M - M . ) x t 2 x 9 t P 
^ pen hen' 

Choosing c=l or c=n constitutes rejection of the hypothesis that X 
contains cluster substructure. Most validity functionals are not 
equipped to deal with these two special cases. Instead, they 
concentrate on 2 < c < n, implicitly ignoring the important question 
of whether X has clusters in it at all. 

^ Notation It is hard to choose a notation for validity indices that 
is both comprehensive and comprehensible. Ordinarily, validation 
means "find the best c", so the logical choice is to show V as V(c). But 
in many cases, c doesn't even appear on the right side of an equation 
that defines V. X in Table 2.7 is fixed, but U and B are functions of c 
through the algorithm that produces them, so any index that uses 
either of these variables is implicitly a function of c as well. A 
notation that indicates functional dependency in a precise way 
would be truly formidable. For example, the Xie and Beni (1991) 
index (which can be used to validate the number of clusters found) 
depends on (U, B, X), U and B depend on C, the clustering algorithm 
that produces them, and C either determines or uses c, the number of 
clusters represented in U. How would you write the independent 
variables for this function? Well, we don't know a best way, so we 
will vacillate between two or three forms that make sense to us and 
that, we hope, will not confuse you. Dunn's index (Dunn, 1974a), for 
example, will be written as Vp(U;X)when we feel it important to 
show the variables it depends upon, but when the emphasis is on its 
use in its application context, recognizing the fact that U is a 
function of c, we will write VQ{C). The partition entropy defined 
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below depends on both U (and hence c) as well as (a), the base of the 
l o g a r i t h m i c func t ion chosen : t h u s , we may u s e 
Vpg(U.c,a),Vpg(U)orVpg(c). 

A. Direct Measures 

If U e Mĵ ^̂  is crisp, it defines nonjuzzy subsets in X, and there are 
many validity functionals that can be used to assess U. Most direct 
validity indices are based on measuring some statistical or 
geometric property that seems plausible as a definition of good 
clusters in X. Statistical indices tend to be estimators of the 
goodness of fit of the clusters to an assumed distribution. Usually, 
cluster free data are assumed to be uniformly or randomly 
distributed over some sampling window, and statistical indices 
measure the departure of a proposed set of clusters from this 
assumption. Geometric indices are based on properties such as 
cluster volume, cluster density and separation between clusters (or 
their centroids). 

B. Davies-Bouldin Index 

Davies and Bouldin (1979) proposed an index that is a function of 
the ratio of the sum of within-cluster scatter to between-cluster 
separation. Let U = (Xj, ...,X^} be a c-partition of X, so that 

U Xj = X; Xj n Xj = 0 if i 5̂  j ; and Xj ^̂  0 V i. Since scatter matrices 
i 

depend on the geometry of the clusters, this index has both 
statistical and geometric rationales, and is designed to recognize 
good volumetric clusters. 

VDB.at(c)=|̂ J.i max|(ai,t + aj,t)/(| |vi-Vj|| ; t , q > l , (2.90a) 

ai,t = ij^-vtii7lXi 
i / t 

,i=l c,t>I 

Vi= I x / | X i | , i = l , . . . , c 
xeX; 

, and (2.90b) 

(2.90c) 

Integers q and t can be selected independently. In (2.90a) Irllqis the 

Minkowski q- norm. In (2.90b) ||*||* is the t-th power of the Euclidean 
norm. For p = q = 2, Davies and Bouldin state that the term 

(ai2 + aj,2)/lllv Vjll I is the reciprocal of Fisher's classical measure 
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of separation between clusters X and X (Duda and Hart, 1973, p. 116). 
However, it differs from Fisher's criterion by having square roots on 
each term in the numerator, and by using cardinalities of the crisp 
clusters in the denominator. In any case, these two criteria share 
similar geometric rationales. 

V (1 ) is undefined, and V (I ) = 0. Since minimum within-
DB.qt Ixn DB.qt n' 

cluster dispersion and maximum between-class separation are both 
desirable, low values of V^„ are taken as indicants of good cluster 

DB.qt ° 

structure. In our classification of validity indices in Table 2.7, 
VQB qt is a direct parametric data index. As a reminder, this would be 
formally indicated by writing V^g qj as a function of U, V and X, 
Vjjg |̂ (U, V;X). We avoid this cumbersome notation when discussing 
its use by writing 1/^^ .(c). 

Araki et al. (1993) proposed a fuzzy generalization of VoB.qt that is 

explicitly tied to the FCM clustering algorithm. For U^^j^ e M̂ .̂ ^ and 
point prototypes V generated from X at some value of m> 1, they 
define 

« i , t = 

k=i "" 

where v^ k=l ^^ ^ 

V k = l J 

,i = l,...c. 

Notice that the square root is not taken, as it would be in (2.90) for t = 
2. Moreover, Araki et al. also use q = 2 in (2.90) without taking the 
square root. 

Substituting {dj^land (Vj} for {ttj J and {Vj} respectively into (2.90), 
Araki et al. arrive at a well defined indirect parametric data index 
V^^2 for validation of fuzzy clusters in U. V^^2 is a fuzzy 
generalization of Vogqj, but cannot be called the fuzzy Davies-
Bouldin index because of its explicit dependence on FCM. 
Furthermore, V^^2 does not reduce to Vjjg.qt when U is crisp. 

Araki et al. incorporate 1/0^22 i'^to FCM by adding an external loop 
for c = 2 to c = c to the iteration phase of FCM in Table 2.2. At 

m a x '• 

termination, this outputs the (U, V) found by FCM that minimizes 
T̂ DB̂ 2 over candidate pairs generated by FCM for 2 < c< c . They 
report that this strategy leads to good segmentations of thermal 
images. 
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C. Dvmn's index 

Dunn (1974a) proposed an index based on geometric considerations 
that has the same basic rationale as V^„ ^ in that both are designed 

DB.qt "^ 

to identify volumetric clusters that are compact and well separated. 
Let S and T be non empty subsets of 9^^, and let 5:5RP X 9?P H^ 5̂ + be 
any metric. The standard definitions of the diameter A of S and the 

set distance 5 between S and T are 

Ai{S) = max{5(x,y)} 
x.yeS 

; and (2.91) 

5i(S,T)=mln{5(x,y)} 
xeS 

(2.92) 

y e ' 

Dunn defined the separation index for the crisp c-partition 
U o { X , , . . . , X } ofXas 

I 2.' c 

VD(U;X) = min 
l<i<c 

min<! 
l<j<c 

8 i (X „X j ) 

max{Ai(Xk)} 
l<k<c 

(2.93) 

The quantity 5i(Xi,Xj) in the numerator of V^ is analogous to 

SJXj.X,) measures the in the denominator of 1/̂ „ : 
DB.qt 

distance between clusters directly on the points in the clusters, 

whereas Vj - v J uses the distance between their cluster centers for 
II Jllq 

the same purpose. The use of A (X ) in the denominator of 1/^ is 

analogous to a^ * in the numerator of 1/̂ „ ;̂ both are measures of 
=' '^•t DB.qt 

scatter volume for cluster X,. Thus, extrema of V„ and V^„ ^ share 
k D DB.qt 

roughly the same geometric objective: maximizing intercluster 
distances while simultaneously minimizing intracluster distances. 
Since the measures of separation and compactness in V^ occur 
inversely to their appearance in V , large values of V^ 
correspond to good clusters. Hence, the number of clusters that 
maximizes V^ is taken as the best solution. V^ is not defined on 
1„ when c= 1 or on 1 when c=n. 

" n 
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Dunn called U compact and separated (CS) relative to the (point) 
metric 6 if and only if: for all s, q and r with q̂ r̂, any pair of points 
X, y e X are closer together (with respect to 5) than any pair u,v with 

u G X and v e X Dunn proved that X can be clustered into a compact 
and separated c-partition with respect to 6 if and only if 

max I V (c) [ > 1. Dunn's indexis a direct data index. 
UeM, 

Example 2.13 Table 2.8 shows values of ^^^ 22 ^^<^ ^D ^°^ terminal 
partitions of X produced by HCM-AO using the same protocols as in 
Example 2,2. Table 2.8 reports values of each index for c=2 to 10. 
Each column of Table 2.8 is computed by appl5rlng the two indices to 
the same crisp c-partition of X. The highlighted (bold and shaded) 
entries correspond to optimal values of the indices. 

Table 2.8 Direct cluster validity for HCM-AO partitions of X30 

2 3 4 5 6 7 8 9 10 
V„ 

DB,22 
0.35 0.18 0.48 0.63 0.79 0.87 0.82 0.88 0.82 
0.96 1.53 0.52 0.12 0.04 0.04 0.04 0.04 0.04 

Figure 2.16 V^ and V ĝ ̂ 2 ^°™^ Table 2.8 for HCM-AO on X 30 



94 FUZZY PATTERN RECOGNITION 

^DB 22 indicates c = 3 by its strong minimum value of 0.18. The table 
shows only two significant digits so ties may appear to occur in it, 
but there are no ties if four digit accuracy is retained. For this very 
well separated data set, V^, which is to be maximized, also gives a 
very strong indication that c = 3 is the best choice. 

Figure 2.16 is a graph of the values in Table 2.8 that shows how 
strongly c = 3 is preferred by both of these direct indices. Don't expect 
these (or any other) indices to show such sharp, well-defined 
behavior on data that do not have such clear cluster structure. 
Another point: don't forget that the graphs in Figure 2.16 are explicit 
functions of HCM-AO, the clustering algorithm that produced the 
partitions being evaluated. You might get different graphs (and infer 
a different best value of c) simply by changing the initialization, or 
the norm, or the termination criterion e, etc. of HCM. 

Our next example illustrates the use of V^ and Vjjg22 °^ clusters 
found by HCM-AO in the ubiquitous Iris data (Anderson, 1935). 
Interestingly, Anderson was a botanist who collected the data, but 
did not publish their values. Fisher (1936) was apparently the first 
author to publish the data values, which he used to illustrate the 
method of linear discriminant analysis. Several scatterplots of Iris 
are shown in Section 4.3. And finally, please see our comments in 
the preface about the real Iris data. 

Example 2.14 Iris has n = 150 points in p = 4 dimensions that 
represent 3 physical clusters with 50 points each. Iris contains 
observations for 50 plants from each of three different subspecies of 
Iris flowers, but in the numerical representation in 9t* of these 
objects, two of the three classes have substantial overlap, while the 
third is well separated from the others. Because of this, many 
authors argue that there are only c=2 geometric clusters in Iris, and 
so good clustering algorithms and validity functionals should 
indicate that c=2 is the best choice. Table 2.9 lists the values of V^ 

and T̂Qg 22 °^ terminal HCM-AO partitions of Iris. All parameters of 
the runs were as in Example 2.2 except that the initializing vectors 
were from Iris. Figure 2.17 shows graphs of the values of V^ and 

^DB.22 in Table 2.9. 

The Davies-Bouldin index clearly points to c = 2 (our first choice for 
the correct value), while Dunn's index seems to equally prefer c = 3 
and c = 7. To four place accuracy (not shown here), c = 3 is slightly 
higher, so Dunn's index here would (weakly) indicate the partition 
corresponding to c = 3. The lesson here is not that one of these 
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answers is right. What is important is that these two indices point to 
different "right answers" on the same partitions of the data. 

Table 2.9 Direct cluster validity for HCM-AO partitions of Iris 

c 2 3 4 5 6 7 8 9 10 
V„ 

DB,22 
0.47 0.73 0.84 0.99 1.00 0.96 1.09 1.25 1.23 
0.08 0.10 0.08 0.06 0.09 0.10 0.08 0.06 0.06 

0 10 

Figure 2.17 V^ and V^g 22 ^°™ Table 2.9 for HCM-AO on Iris 

The numerator and denominator of V^ are both overly sensitive to 

changes in cluster structure. 5̂  can be dramatically altered by the 
addition or deletion of a single point in either S or T. The 
denominator suffers from the same problem - for example, adding 
one point to S can easily scale Ai(S) by an order of magnitude. 
Consequently, V^ can be greatly influenced by a few noisy points 
(that is, outliers or inliers to the main cluster structure) in X, and is 
far too sensitive to what can be a very small minority in the data. 

To ameliorate this Bezdek and Pal (1998) generalized 1/^ by using 
two other definitions for the diameter of a set and five other 
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definitions for the distance between sets. Let A be any positive semi-
definite [diameter] function on PCSi^), the power set of 9t^. And let 5 
denote any positive semi-definite, symmetric (set distance) function 

on P(3iP)xp{'3iP). The general form of V^ ustag 5 and A is 

V-. (U; X) = V-. (c) = min<̂  
1<1<C 

min-< 
1<J<C 

6(Xj,Xj) 

max 
l<k<c 

{A(X,)} 
(2.94) 

Generally speaking indices from family (2.94) other than V^ show 
better performance than V^. The classification of Vĝ  as in Table 

2.7 depends on the choices of 5 and A. All of these indices are direct 
data indices (they all use U and X), and several also use the sample 
means V. 

D. Indirect measures for fiizzy clusters 

If U e (Mpcn - Mĵ cn) is not crisp, there are two approaches to validity 

assessment. First, direct measures such as 1/„„ ^ and 1/„ can be 
DB.qt D 

applied to any crisp partition derived from U. For example, we can 
harden U using (2.10) cind then assess the resultant crisp partition as 
in Examples 2.13 and 2.14. Other defuzzifications of U (e.g., a-cuts at 
different levels) can produce different crisp partitions, and hence, 
different values for validity indices. 
The alternative to hardening U followed by direct validation is 
validation using some function of the non-crisp partition, and 
possibly, X as well as other parameters found by C. Almost all of the 
measures in this category have been developed for fuzzy partitions 
of X, so we concentrate on this tj^je of index. 

Indirect indices that do not involve B and X are nothing more than 
estimates of the fuzziness (or typicality if U is possibilistic) in U. As 
such, it is not possible for them to assess any geometric property of 
either the clusters or prototypes that some algorithm chooses to 
represent them. Given this, it may surprise you to discover how 
much effort has gone into the development of indirect measures. 

A measure of fuzziness estimates the average ambiguity in a fuzzy 
set in some well-defined sense (Pal and Bezdek, 1994). (Measures of 
fuzziness and imprecision are covered extensively in Volume 1 of 
this handbook.) Our discussion is limited to the use of such 
measures as indicants of cluster validity. 
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The first measure of fuzziness was the degree of separation between 
two discrete fuzzy sets Ufu and U(2)On n elements (Zadeh, 1965): 

p{U,i),U(2,) = l - v { U i k A U 2 k ) 
k=l 

(2.95) 

Zadeh used p to characterize separating hyperplanes; he did not 
impose the crisp or fuzzy partitioning constraint (u + u ) = 1 on 

each pair of values in the vectors U(i) and U(2). That is, they were not 
necessarily fuzzy label vectors ( p is applicable to possibilistic 
labels, however). 

The first attempt to use a measure of fuzziness in the context of 
cluster validity was discussed by Bezdek (1973), who extended p to c 
fuzzy sets (the rows of U in M ) by writing 

P.(UeM,^ 1 = 1 -
n c 
V ( A U 

k=l 1=1 
i k ' (2.96) 

Pp, which can be interpreted as (1- the "height" of the intersection of 
the c fuzzy sets), is inadequate for cluster validity. To see this, 
consider, for odd n, 

0.5 
0.5 

0.5 
0.5 

1 • • 1 0.5 0 • • 0 
0 • •• 0 0.5 1 • • 1 = 0.5. (2.97) 

In (2.97) the membership 0.5 occurs 2(n-2) times in the first fuzzy 2-
partition, but only twice in the second one. The value P̂ , = 0 . 5 
indicates that the two partitions at (2.97) are in some sense [exactly, 
in the sense of P !̂) equivalent, but the structure these two partitions 
portrays is certainly very different. The first partition has one point 
each in two clusters, and (n-2) shared equally between them, while 
the second has just one shared point and ((n-l)/2) points in each of 
two distinct sets. 

The failure of Pj, led to the first pair of (sometimes) useful indirect 
validity measures for U in M , viz., the partition coefficient and 
partition entropy of U (Bezdek, 1973). 

2/p^(U,c) = i I l u ^ tr(UU'^) 

n n 
; and (2.98) 
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2/pg(U,c,a) = -
n 

|^JKK("ik)] (2.99) 

In (2.99) a e (1, °°) is the logarithmic base, and is a direct extension to 
c-partitions of the fuzzy entropy of Deluca and Termini (1972). 
Properties of these two indices as functions of U and c were studied 
in Bezdek (1973, 1974b, 1975). For convenience, we drop dependency 
on c and a. Here are the main results: 

^pc(u) = i « VU)^ 0 «=> U e M^^^ is crisp; and (2.100a) 

V(U) = - « V(U)-LnJc) « U U. {2.100b) 

Equation (2.100) shows that 1/^ maximizes ( and ^p„ minimizes) on 
PE 

every crisp c-partition of X. And at the other extreme, 1/ takes its 

unique minimum ( and V^^ takes its unique maximum) at the 

centroid U = [l/c] = U of M . u ^̂  the "fuzziest" partition you can 
get, since it assigns every point in X to all c classes with equal 
membership values l / c . Observe that both of these indices take 
extremal values at the unique crisp partitions 1 = [1 1 • • • 1] at 

c=l and I , the n x n identity matrix for c = n. Neither of these 
indices can be used to accept or reject the hypothesis that X contains 
cluster substructure (i.e., they cannot be used for tendency 
assessment) because they cannot discriminate between different 
hard partitions of the data. 

The bounds in (2.100a) seem to justify the heuristic validation 
strategy of, for example, maximizing Vp^ over candidate U's to pick 
the best one, where "best" means nearest to some crisp partition in 
the sense of the 2-norm of U. This is a weak strategy, however, for 
several reasons. First, there are an infinite number of different 
fuzzy partitions that produce any fixed value of V^^ in the open 

interval ( l / c , 1), or of 1/^^ in the open interval (0, Ln c), because a 
fixed value of either functional can be used to define a hypersphere 

in 'iK'^"^ centered at [l/c] = U whose radius gives a surface upon which 
the fixed value is attained. Consequently, every crisp partition of X -
a vertex of the convex hull of the degenerate partition set M - is 
equidistant from the surface of the hj^ersphere! Thus, all these two 
indices really measure is fuzziness relative to partitions that yield 
other values of the indices. Second, there are roughly fc"/c \\ crisp 
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matrices in M̂^ ^, and V^^ is constantly 1 [y^^ is constantly 0) on all 

of them. For example, Vp^[\3^) = l on: 

Ui = 
"1 0 0" "1 1 1" "0 0 0" '0 0 0" 
0 1 0 ,U2 = 0 0 0 ,U3 = 1 1 1 ,U4 = 0 0 0 
0 0 1 0 0 0 0 0 0 1 1 1 

(2.101) 

The first matrix in (2.101) has c = 3 singleton clusters. Each of the 
other three partitions has only c = 1 cluster. Since the last three 
matrices put all the data into class 1, 2 or 3, respectively, these are 4 
very different partitions of the n=3 objects. But they are all equally 
valid in the eyes of V^^ and V^^. 
M. 

Since ?/„„= 1 (lJp^= 0) for every U in 

hen 
it is misleading to infer that just because V^^ is near 1 ( or V^^ 

is near 0), U is a good clustering of X. 

On the other hand, in the context of validation it is clear that when 
an algorithm produces a partition U that is close to Jj, that 
algorithm is not finding distinct cluster structure. This may be the 
fault of the algorithm, or the data simply may lack substructure. 
Consequently, values near the unique minimum of V^^ (or 

maximum of V^^) are helpful in deciding when structure is not being 
found. It is less clear, as shown in (2.101), that when U approaches 
M , cluster structure has been found. Empirical studies vary: some 

show that maximizing V^^ (or minimizing V^^) leads to a good 
interpretation of the data; others have shown that different indirect 
indices such as the proportion exponent (Windham, 1981, 1982) and 
Rouben's indices (1978) are sometimes more effective. This simply 
confirms what we already know: no matter how good your index is, 
there's a data set out there waiting to trick it (and you). 

V^^ and p̂g, essentially measure the distance U is from being crisp 
by measuring the fuzziness in the rows of U. Normalizations of both 
indices that scale their ranges so that it is fixed are discussed in the 
next subsection. A much more subtle point, the dependency of V^^ 

and 'Z/pg on secondary parameters of the algorithm producing U 
(specifically, m in FCM-AO) are considered in Pal and Bezdek (1995). 

The separation coefficient of Gunderson (1978) was the first indirect 
validity index that explicitly used the three components (U, V; X), 
where U e M and V is a vector of c prototypes that are associated 
with the clusters in U - in the language of Table 2.7, the first indirect 
parametric data index. More recent indices in this category include 
the functionals of Fukuyama-Sugeno (1989) and Xie-Beni (1991). 
The Xie-Beni index V^^ is defined as 

A D 
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2: I xrjx • 
V (U,V;X)= =̂̂  =̂̂  " X B ' 

n 
sep(V) (2.102) 

Xie and Beni interpreted their index by writing it as the ratio of the 
totcxi variation a of (U, V) and separation sep(V) between the vectors 
inV: 

a(U,V;X) 5̂: S < x (2.103) 

sep(V) = niin<̂  v. - v. (2.104) 

If (U, V) is an extrema of the FCM functional J then a = J . A good (U, 
V) pair should produce a small value of a because u is expected to be 

high when is low, and well separated v 's will produce a high 

value of sep(V). So, when ^'^(U .V-X) <«/_(U .V-X) for either of 
XB 1 1 XB 2 2 

these reasons (or both), U is presumably a better partition of X than 
U . Consequently, the minimum of ^^^ over p is taken as the most 
desirable partition of X. This strategy makes sense, because the 
geometric and statistical flavor of 2̂ ^̂  is very similar to the Davies-
Bouldin index: the numerators of both are functions of the 
Euclidean distances I Ix^ ~ '̂ 1 f ^"^^ ^^^ denominators both depend 

on measures of separation (distances j Vj - Vj i) between the cluster 

centers. 

Example 2.15 Table 2.10 shows values for the five indices discussed 
in this section on terminal FCM-AO partitions of X . Processing 
parameters were: m = 2, the Euclidean norm for both similarity and 
termination, e = 0.001, and initialization by random selection of c 
distinct points in the data. Crisp partitions of the data for the direct 
indices 1/^ and ^DB22 were obtained from terminal FCM-AO 

estimates by hardening with (2.10). The values for V^ and l̂ pg 22 i" 
Table 2.10 are slightly different than those in Table 2.8 because the 
hardened partitions from FCM for c > 4 were slightly different. As 



CLUSTER ANALYSIS 101 

expected, all five indices point to the visually correct partition of the 
data at the value c = 3. 

Table 2.10 VaUdity for terminal FCM-AO partitions of X 30 

c V V^ V^^ V^^ V^rr. 
DB,22 D PC PE XB 

2 0.35 0.96 0.91 0.18 0.70 
3 0.18 1.53 0.97 0.08 0.02 
4 0.48 0.52 0.92 0.15 0.05 
5 0.65 0.13 0.86 0.25 0.41 
6 0.77 0.13 0.83 0.77 0.13 
7 0.70 0.10 0.80 0.38 0.53 
8 0.65 0.18 0.79 0.41 0.23 
9 0.54 0.18 0.79 0.41 0.21 
10 0.54 0.18 0.77 0.46 0.21 

Our next example replicates the experiments jus t described in 
Example 2.15 using the Iris data instead of Xg^. 

Example 2.16 Table 2.11 shows values for the five indices on 
terminal FCM-AO partitions of Iris obtained with the same 
protocols as in Example 2.15, including hardening of the fuzzy 
partitions before validation with V^ and V^g 22 • Pl63.se compare the 
first two columns of Table 2.11 with the corresponding values in the 
rows of Table 2.9 for c = 2 to 6 to see that only three of the 10 pairs of 
corresponding values are the same. This is because the hardened 
FCM partitions of Iris are somewhat different than the crisp 
partitions obtained directly from HCM except in these three cases. 
Four of the five indices in Table 2.11 agree that the best partition 
occurs for c = 2; only Dunn's index, applied to the hardened partition 
obtained by FCM-AO, points to c = 3. 

Table 2.11 Validity for terminal FCM-AO partitions of Iris 

c V 1/ 11 ^ V^r. V^r. 
DB,22 D PC PE XB 

2 0.47 0.08 0.89 0.20 0.04 
3 0.76 0.10 0.78 0.39 0.09 
4 1.03 0.04 0.68 0.58 0.57 
5 1.07 0.05 0.62 0.71 0.30 
6 1.07 0.06 0.59 0.80 0.27 
7 1.15 0.08 0.55 0.91 0.50 
8 1.21 0.08 0.52 1.05 0.38 
9 1.37 0.08 0.48 1.11 0.33 
10 1.41 0.08 0.45 1.18 0.63 

http://Pl63.se
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In the four dimensional data space chosen by Anderson there are 
two geometrically well-defined clusters, so the best partition of Iris 
from {four of the five) indices' point of view, c = 2, is (perhaps) 
correct. Since the best solution from the modeler's point of view is 
(perhaps) c=3, this again illustrates the caveat about models and our 
expectations for them stated immediately after equation (2.5). And 
we again see disagreement among validity indices about the best 
value for c on the same partition of the data. 

to'Z/^, «/gp(U,V;X)= I 
k=i "" 

V — V 
i J Ay 

Several generalizations and relatives of the Xie-Beni index have 
been studied recently. See, for example. Pal and Bezdek (1995), who 
define and analyze limiting properties of the index V^^, which is 
the Xie-Beni index with memberships raised to the power m > I that 
is explicitly tied to FCM. 

Bensaid et al. (1996a) introduced another validity index similar 

I 
and call the ratio inside square brackets the compactness to 
separation ratio of cluster i. They illustrate the use of this index for 
progressive clustering (adjustments to individual clusters during 
processing) for different tissue types in magnetic resonance images 
of the brain. 

The last indices covered in this subsection are due to Gath and Geva 
(1989a), who introduced three very useful indirect parametric data 
indices. These indices involve one more set of clustering outputs 
than any of the previous measures that are constructed by 
algorithms such as GK, FCV, GMD and FMLE which produce point 
prototypes V, (fuzzy or probabilistic) partitions U and covariance 
matrices (C}. Chronological order would place our discussion of 

these indices before the Xie-Beni index, but we prefer to discuss them 
here, jus t before validation of shell clusters, because these three 
indices involve one more set of parameters, and because they have 
played an important role in generalizations for shell validity. Gath 
and Geva (1989a) defined the Juzzy hypervolume of u G MJ^^ as 

VHv(C)=iVdet(Ci) , (2.105) 
i=l 

where C = (Cj,..., C ,̂) e 9̂ *̂ '?̂ ?' is the set of fuzzy covariance matrices 
given by (2.27) with m=l (this amounts to using the covariance 
matrices at (2.21c)). C is a function of (X, U, V), but only C appears on 
the left side of (2.105). To be consistent with the notation in Table 
2.7, we call VHV an indirect index. This index should be small when 
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clusters are compact, so good clusters are identified by minima of 
VHV • F°r consistency with the next two indices, users often calculate 
1/ VHV ^^^ search for the maximum. 

Gath and Geva (1989a) also discussed an indirect parametric data 
measure of dispersion they called the average partition density Vp^y 
ofUeMfc„: 

VpD(U,C) = - i 
Ci= l Vdet(Ci) 

(2.106) 

where C0i=jxe9tP:|x-Vi||^^_i < l [ , i = l,...,c is the open ball centered 

at V of radius 1 with respect to the fuzzy Mahalanobis norm 

||x - Vj 1 ,̂-1. This index measures the compactness of points in each 

cluster that have a strong central tendency - the more points within 
cOj, the larger will be Vp^, so this index should be maximized. Lastly, 
they defined the partition density Vp^of U e Mf̂ .̂  as 

1=1 

\ 
l u ik 

VPD(U,C)=^ V fA • (2.107) 

We classify (2.106) and (2.107) as indirect parametric indices. Vp̂ ^ 
should maximize when clusters which are geometrically desirable 
are submitted to it, achieved either by a large numerator (dense 
clusters), or a small denominator (compact clusters), or both. This 
index has a geometric rationale that is quite similar to Dunn's index 
(and the inverse of the Davies-Bouldin index). Gath and Geva 
illustrate the use of these measures on clusters in various data sets. 
For example, Vj^ and Vp^ both select c = 3, the physically correct 
choice, for the Iris data when tested in a situation analogous to the 
experiments described in Tables 2.9 and 2.11. 

Example 2.17 This example is a combined illustration of the Gath 
and Geva (1989a) clustering algorithm called FMLE and cluster 
validation with their three indices at (2.105)-(2.107). Recent papers 
of Geva and his coauthors call the combination of FMLE Avith the 
use of these three validity indices the unsupervised optimal fuzzy 
clustering UOFC) algorithm. As pointed out in Section 2.3, this 
method is essentially GMD-AO. The data we chose for this example 
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is the unbalanced data set called X shown in Figure 2.3(a) that has 
40 points in the left cluster and 3 points in an isolated cluster on the 
right. Although the sample size is quite small, the data can be 
viewed as having been drawn from a mixture of c = 2 (roughly) 
circular bivariate Gaussian distributions. Computing protocols for 
this example: m = 2 in both the FCM and FMLE clustering stages 
(don't forget that m = 1 when using (2.27) with FMLE). 

The algorithm was initialized at c = 1. No clusters are computed for 
this value, but the GG validity indices do take meaningful values. 
Subsequently, c was incremented from 2 to 5, and for each value of c, 
FMLE was executed to termination. Initialization at each new value 
of c is done as explained in Gath and Geva's 1989a paper, by adding 
one more cluster prototype to the set found at the previous value. The 
new prototype is placed very far away from every point in X. 
Specifically, the distance from all data points to the new center are 
set to 10 times the sum of the variances of all 43 data points. 

Table 2.12 lists the values of I / V H V T̂ PD ^^^ ^PD obtained on the 
terminal outputs of FMLE for each c from 2 to 5. All three indices are 
to be maximized. First note that the fuzzy hj^ervolume points to c = 
3, which is clearly wrong. This index is felt by Gath and Geva to be 
least reliable of the three in this group, but it is needed to compute 
the other two in any case. The average partition density points to c = 
4, which is also wrong, and the partition density points to c = 2. We 
conclude from this (again) the same thing that we learn from 
previous examples: using Just one index of validity is a very 
dangerous strategy, for there is great inconsistency in the 
recommendations that various indices can make. 

Table 2.12 Validity measures for FMLE partitions of X^3 

c -> " 
1/V, 

''PD 

HV 

V, 

0.00045 0.00049 0.00040 0.00044 
0.0025 0.0015 0.0036 0.0027 

0.0050 0.0044 0.0047 0.0043 
PD 

(Right cluster) terminal FMLE memberships for c = 2 

datapt. l^ft-"ik "ght:u2^ 

\ i 0.000310 0.999690 
X 0.000221 0.999729 

42 

X 0.000053 0.999947 
43 

At c = 2 the terminal FMLE partition of X has cluster memberships 
that are crisp up to 3 or 4 places past the decimal for the 40 points in 
the left cluster. Membership columns in both clusters for the three 
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points in the right cluster are shown in the bottom portion of Table 
2.12. As you can see, the FMLE algorithm solves the problem 
illustrated in Example 2.3 without recourse to the trick of semi-
supervision illustrated there. Hardening the terminal FMLE 
partition of X found at c = 2 produces the visually correct solution. 

The terminal cluster centers for c = 2 were, to two decimal places, 
v ™ = ( 4 4 . 8 , 4 8 . 8 r and v^^^f = (91,49)'^. The labeled sample 
means for the two visually apparent clusters in X are exactly these 
values! 

Remark Processing X with the standard GMD-AO algorithm gives 
the same result as long as a solution is requested for c = 2. Thus, the 
added value of FMLE seems to be the three validity indices. On the 
other hand, all three of these indices fail to indicate c = 3 on data set 
X in Figure 2.2 (possibly because the small number of points in 
each of the three clusters in X do not follow the expected shapes of 
samples from 2D Gaussians very well). This illustrates the point we 
continue to emphasize: no validity index has proven very reliable 
across wide variations of data, clustering algorithms, or partitions. 

E. Standardizing and normalizing indirect indices 

Indirect indices such as v^^ and V-p^ have at least four problems. 
First, they are at best indirectly connected to real substructure in X. 
Second, justification for using them often relies on heuristic 
rationales - e.g., U is better than U if U is "crisper" than U . We 
have shown this to be a misleading heuristic. Third, many indirect 
indices can be shown to be, or have been experimentally observed to 
be, monotonic in c. And fourth, their range is sometimes itself a 
function of c. This last property makes their use for cluster validity 
problematical. 

For example, equation (2.100) shows that 1/c < l/p^A^) ̂  1 for every 

UeMfcn- Thus, as c increases from 2 to n-1 , the range of v^^ 

increases: c = 2 =* W PC i,l 
2 n - 1 => ^pc ' .1 

n - 1 
«/pE has 

the same problem. Moreover, the range of V^^ is also a function of 
logarithmic base a. 

Variable ranges make interpretation of values of V^^ and V^^ 
difficult, since they are not referenced to a fixed scale. The 
significance, for example, of ^pj,(U) = 0.04 is not as high when 
c = n - 1 as it would be for c « n because of the change in the range of 
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^_„. Moreover, V^„ = 0 at 1, = [1 1 • •• 1] at c=l and at I , for c = 
rb Pĥ  Ixn nxn 

n. Hence, minimization of 1/^^ is confined to c e {2,3, . . . ,n- l} . 

Many authors have attempted to address this problem through 
standardizations and normalizations of various indices. The first 
normalization of this kind was introduced by Bezdek (1974a), who 
transformed the partition entropy V.p^ by a simple scaling so that 
the normalized index was valued in the unit interval, 

In c 
V B ( U ) = ^^^—,UEMf,„ . (2.108) 

The limits for V^^ given at (2.100) immediately yield 

P̂E,B (U) = 0 o «/pE (U) = 0 <=> U e Mfen is crisp ; and (2.109a) 

^pg 3 (U) = 1 o V (U) = In^ c o U = U . (2.109b) 

This scaling fixes the range of 2/pE,B so that V^^ ^ (U) e [0,1] is 

independent of c. This makes the comparison of values of V^^ ^ at 
different numbers of clusters more appealing than the direct use of 
?/pg. Roubens (1978) gave a similar normalization of the partition 
coefficient. 

i.vUs^i,MzlU 'pc,Ri^^-| ——. I'UeMfcn • (2.110) 

Comparing (2.100) with (2.110) establishes that 

-Z/pcR (U) = 1 <=> ^pc{U) = 1 <=> U € Mfcn is crisp ; and (2.11 la) 

^p (U) = Oo^Pc(U) = -<=>U = U . (2.111b) 
c 

Consequently, Roubens' normalization of V^^ scales its range so 

that ^PC,R{U) 6 [0,1] for any value of c. Backer (1978) discussed the 

related index ^pc,Ba(U)= (l-^pc(U)) = 1-^PC,R. but used his 

index as an objective function upon which a cluster seeking 
algorithm was based. Apparently unaware of Roubens work, Dave 
(1996) recently {re)introduced ^PC,R with a new name, viz., the 
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modified partition coefficient (MPC). In any case, ^PC,R is, in the 

end, jus t like ^'PE.B • Both of these indices are normalized measures 
of the fuzziness in U, and as such, really address just one of the four 
problems mentioned above - the problem of variable range. 

Dunn (1977) first suggested that normalizations of indirect validity 
indices be referenced somehow to data substructure - i.e., that they 
be held accountable more directly for substructure in the data. Dunn 
proposed the index 

?/pE(U) fn^pE(U) 

This quas i - s t a t i s t i ca l normalizat ion was given a s an 
approximation to the ratio of i/p^ (U) to the null hj^othesis value we 
call ^pEo(U). Dunn used FCM on a reference set X of n vectors 

uniformly distributed over a hypercube in 9t^ to estimate ^pEo(U). 
which he took to be approximately (n-c)/n. Dunn's idea was that if X 
contained c compact, well-separated clusters, the value ^pg(U) on 
any reasonable partition U of X should be low relative to the value 
^PEo(U} onX . Roughly speaking, ?/pE,D takes the form of an inverse 

likelihood ratio test, so minimizing ^PE,D ostensibly corresponds to 
maximizing the approximate likelihood that X contains cluster 
substructure. 

Dunn used FCM to generate the clusters that lead to his 
approximation of '̂pE.otU), so (2.112), like ^ ^ ^ 2 of Araki et al. 
(1993), is implicitly linked to the fuzzy c-means model. Whether the 
same approximation is useful for fuzzy clusters found by other 
algorithms is an open question. 

Numerical experiments given by Dunn (1977) indicate that ^PE,D is a 

useful modification of Vp^. However, substituting U = U into (2.112) 

with the upper bound for ^pj.(U) in (2.100b) gives the upper bound 

^PE,D(U) = 
r77._fn«'pE(U) = ^^^- at the equi-membership partition 

n - c J V n - c J 
of X, which is again a function of c. Thus, Dunn's normalization of 
^pj, does not solve the variable range problem, bu t it does 
(approximately) reference the indirect index ^pg to a property that 
seems desirable for characterizing data with clusters: namely, that 
data with cluster structure be non-uniformly distributed over a 
hypercube in g^p. 
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Bezdek et al. (1980) gave probabilistic s tandardizat ions for bo th 1/^^ 

a n d 1/p^ b a s e d on t h e well k n o w n fact t h a t t h e l i n e a r 

X — u 
t r a n s f o r m a t i o n Y = ^-^ of t h e r a n d o m variable X with m e a n 

Ox 
a n d s t a n d a r d deviation (JJ-X'^^X) ^̂  ^ r andom variable whose m e a n 
a n d s t a n d a r d deviation are [\i^,ay) = (0,1). The assumpt ion used in 
the i r ana ly s i s w a s t h a t t he validity ind ices in ques t ion were 
r a n d o m variables uniformly distr ibuted over the degenerate fuzzy c-
par t i t ions M of X. This is necessary because the derivations are 
done on one column of U, and it is necessary to have independent (in 
the probabilist ic sense) co lumns to aggregate the resu l t s across a n 
entire part i t ion of X. They derived the mean and s t anda rd deviation 
of ?/pp and ^pg u n d e r th is assumpt ion . Specifically, they prove t h a t 
for u e Mfcno - ^^^ expected value (E) and variance (var) of 1/^^ a n d 
2/pE are 

E(?/pc(U)) 
1 

c + 1 

var(^Pc(U)) = 
4 ( c - l ) 

n(c + l)^(c + 2)(c + 3) 

(2.113a) 

(2.113b) 

E ( ^ P E ( U ) ) = I 
= 2 k k=2 

(2.114a) 

var(2/pE(U)) = -
n k=2 k 

( c -1 ) 
(c + 1) 6 

^J 
(2.114b) 

Results (2.113) can be used with Y : 
X - ^ , 

to standardize Vp„, 2^PC,R 

X 

and ^pcBa- ^ ^ ^ resul ts (2.114) can be used to standardize 1/^^, 'Op^^ 

and ?̂ pE,D the same way. 

For large e n o u g h n, t h e cen t ra l limit t h e o r e m tells u s t h a t a 
s tandard ized r a n d o m variable is approximately normal (Gaussian) 
with m e a n 0 a n d variance 1, indicated as w(0, 1). Thus , for example, 
when u e Nf̂  is uniformly dis t r ibuted over the fuzzy label vectors 

N,, and because M, c: M, . , we have the s tandardizat ions 
fc ten IcnO 
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v;^[v) = 
n(c + 2)(c + 3) 0.5 f(c + l)^p^(U]-2^ 

A7(0,l). (2.115a) 

V(U)^ 
^ E ( U ) -

k=2 k 

( 1 c - 1 
k=2lnk^j l̂ c + 1 

^712 
sO.5 «(0,1). (2.115b) 

6 n 
/y 

Since X is always finite, the actual distribution of standardizations 
such as these can be far from normal. Nonetheless, they provide 
another way to link statistical tests to properties of substructure in 
X by providing a basis for significance tests for cluster validity. Like 
Dunn's normalization of V^^, these standardizations are attempts 
to characterize clusters statistically as a departure from uniformity 
in the feature space. And again, this happens at the expense of a 
fixed range for the validity measure in question. 

F. Indirect measures for non-point prototype models 

The validity criteria discussed so far were designed largely on the 
expectation that X contains volumetric or cloud type clusters. This 
is mirrored in the use of functions that measure central tendency 
(means) and dispersion (variances) about the means. All of the direct 
indices discussed above (Davies-Bouldin, Dunn's index and the 
generalized Dunn's indices) are designed for cloud type clusters, as 
are the indirect parametric indices of Gath and Geva and the 
indirect parametric data index of Xie and Beni. 

In order to evaluate partitions that represent shell clusters, 
different validity measures are needed. To see this, let X be any finite 
set of points uniformly distributed on the surface of a hypersphere 

in 9t^ with radius 1; and let lOOX be the same data drawn from a 
hypersphere of radius 100. These data sets will have the same 
statistic, V, as their classical measure of central tendency of the 
points. The covariance structure of X will also be the same, even 
though X is more compact than lOOX. The surface density of X is 
much greater than that of lOOX. But when these points are regarded 
as shell clusters, the correct hyperspherical prototypes fit them 
equally well, so measures of validity should indicate this. The 
standard measures that assess them for central tendency and 
dispersion can be very misleading. 

Several indirect validity measures that relate to the fitting 
prototypes have their roots in the work of Gath and Geva (1989a). 
Their three indices were not designed for shell clusters - they 
measure properties which are optimized by compact clouds. 
However, these indices paved the way towards similar measures that 



110 FUZZY PATTERN RECOGNITION 

are customized for shell clusters. Man and Gath (1994) defined 
indices for shell clusters that are related to the measures of Gath and 
Geva (1989a), and Dave (1996) refined the hypervolume and 
partition density measures for the cases of spherical and ellipsoidal 
shells. Krishnapuram et al. (1995b) generalized these definitions to 
more general shell types; the development of these measures 
follows. 

Let p be the parameters of (i.e., coefficients of the equation ot) a shell 

prototype S which is a hyperquadric surface in 9t^. For any 

x^ e5RP, define 
k 

'•Ik (2.116) 

where z|̂  is a closest point (measured in Euclidean distance) on the 
shell S, to X . When S. is a hypersphere with center v and radius r the 

vector zj in (2.116) takes the explicit form zl =v, + r, -^ ^7. For 

other h5rperquadric surfaces z\^ can be determined using (2.53). For 

more general types of shells zĵ  may be difficult to compute. In these 
cases we can use a convenient point on the shell or simply use the 
"approximate closest point" (Krishnapuram et al., 1995b) on the 
shell. For example, in the case of ellipsoidal shells, we can use the 
point of intersection of the radial line joining x and v with the 
ellipsoidal shell (cf. ellipsoidal prototypes. Section 2.3). The fuzzy 
shell covariance matrix for shell S is defined as 

Csi=^^=^l^ , l < i < c . (2.117) 

k = l 

Let Cs = (Csj Cs^ ) e 9t'='P''P'. The shell hypervolume of a fuzzy c-

partition U of X with parameters B = (p ,..., p ) is defined as 

VsHv(Cs)=iVdet(CsJ . (2.118) 

Equation (2.118) is a direct generalization of (2.105) for 
hyperquadric shells. The extension of (2.106) and (2.107) to the non-
point prototype case requires some terminology associated with 

shell clusters. We illustrate the basic ideas using 9t̂  as the feature 



CLUSTER ANALYSIS H I 

space with circular prototypes, but many of these ideas can be 

extended to 9t^ and other t3^es of hjrperquadric prototypes. 

Figure 2.18 "Circular" clusters with different properties 

First we point out that clusters are necessarily finite sets of points, 
while non-point prototypes (shells) that the clusters may be fitted to 

are continuous structures. So, for example, a circle in 5R has 
infinitely many points, but a "circular cluster" has only finitely 
many. The following definitions assume a spatial grid of pixels with 
fixed resolution underlying the points in the clusters. We assume 
that each pixel can be represented by a square. See Chapter 5 for 
more on this terminology, which is derived from image processing 
considerations. 

We will say that a "circular" cluster of pixels is dense (or not sparse) 
if and only if its points are either 4-connected or 8-connected in the 
plane. A circular cluster that is not dense will be called sparse. A 
circular cluster is complete if and only if each point on the prototype 
touches or falls within some (square) pixel belonging to the cluster 
of pixels. A circular cluster that is not complete will be called a 
partial circular cluster. The thickness of a circular cluster is the 
average distance from its points to the circular prototype. These 
definitions are illustrated in Figure 2.18. During optimization of 
functions designed to find good circular prototypes to represent 
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clusters of pixels such as these, the distance used is almost always 
measured from the "center" of the pixel to the fitting prototype. 

Extending (2.106), Krishnapuram et al. define the average shell 
partition density V^p^ for a fuzzy c-partltlon U of X with parameters 
B = (V, Cg) as 

V, SPD (U,Cs) = - i 
C 1=1 VdettCg.) 

(2.119) 

where cOg. =-^x e 91P:|X-Vj||^_i < i k i = 1 c. Finally, the shell 

partition density for a c-shell partition U of X with parameters B = 
(V, Cg) is defined as (cf (2.107)) 

' ^SPD(U.CS): 

c 

I 
1=1 

\^Xk60)Sf J 

V. SHV (Cs) 
(2.120) 

Krishnapuram et al. also proposed an alternative definition for cogj, 
the core or central members in X whose memberships are used in the 
calculation of the numerators of (2.119) and (2.120), 

«Si = {Xk e ^^''^lltiklH ^max,i;i = l . - - - .c} (2.121) 

where x^,^; is the expected thickness of the i-th shell. When 
posslbllistlc versions of the shell clustering algorithms are used, 
Krishnapuram et al. suggest tmax, i=V^- Dave (1991b, 1996) 
proposed an indirect parametric data validity index V^^ for fuzzy 
partitions that consist of c hyperspherlcal shells with parameters B, 

c 

I 
i=l 

VST(U,B;X) = -

k = l 
-.r 

l u ' " 
k = l 

Ik 

cyi=i 

(2.122) 
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Recall \\K^ - v j - r ; as shown in Figure 2.8 when interpreting this 
equation. Each factor of the numerator of (2.122) is interpreted as 
the thickness of the i-th hyperspherical shell since it is a 
generalized average distance from the points in the i-th cluster to 
the i-th shell. The denominator in (2.122) is called the average 
radius of the shells and is used to normalize this index so that the 
shell thickness is measured relative to the size of the circles. The 
index Vg^ can be extended to ellipsoidal shells, and is to be 
minimized for identification of the best partition of X. 

Krishnapuram et al. (1995b) also define the total fuzzy average shell 
thickness V^-j- for fuzzy partitions that consist of c hyperquadric 
shells with parameters B = ((3 ,..., |3 ) as 

V S T ( U , B ) = I 
1=1 

Miitikir 
k=l  

k=l 

(2.123) 

The validity measures in equations (2.118), (2.119), (2.120), (2.122) 
and (2.123) suffer from many drawbacks. Their biggest problem is 
large variability depending on the size, sparsity and incompleteness 
of shell clusters. They also lack normalized or standardized 
(theoretical) values to compare against the validity of a particular c-
partition. Hypervolume and shell thickness may be misleadingly 
small when c is overspecifled because there may be only a few points 
in each shell cluster. For example, if there are only three points in a 
circular shell cluster, the error of a perfect fit is zero, the volume is 
zero while the density is infinite, regardless of the relative 
placement of the three points. 

With a view towards ameliorating these drawbacks, Krishnapuram 
et al. (1995b) introduced a surface density criterion for validation of 
hyperquadric shell clusters. In the two-dimensional case, the shell 
surface density VssDi2 ^^ the i-th cluster of a fuzzy partition U whose 

parameters are |3. = (v, C.) is defined as the number of points per unit 
of estimated surface density (along the fitting prototype), i. e.. 

VsSD,2(U,CJ = -

c 
I 
i=l XkemSi 

ik 

27i^Tr(Ci 
(2.124) 

C in (2.124) is the fuzzy covarlance matrix in (2.27), not the shell 
covariance matrix at (2.117), and it is not involved in the iterative 
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calculations of the algorithm; rather, this matrix is computed once 
after the algorithm terminates. The quantity •^Tr(Ci) in the 
denominator of (2.124) is interpreted as the effective radius, 
•^/TY(C^ = r̂ ff [, of the i-th shell because the "equivalent circle" with 
radius ^fTr[C^ has the same second moment as the shell cluster 

under consideration. 27i-^Tr(Ci) is an estimate of the arc length of 
the prototype that represents the (possibly partial) cluster, since the 
exact arc length cannot be computed easily for clusters that are 
sparse or partial. In the continuos case for a complete circle of 

radius r. it can be shown that rj = yTY(CJ . 

In the three-dimensional case, the shell surface density VggQ ^ of 
1̂3 

the i-th cluster of a fuzzy partition U whose parameters are P = ( 
is defined as 

I 
1=1 XkemSi 

'l/ssD,JU,C,) = —^^-—Hrr - . lS i^c , (2.125) 
SSD131 i> 4n(Tr(Ci)) 

where Tr(Cj) = r̂ ff j is the square of the effective radius. In this case 
Vggp measures the number of points per unit of estimated surface 
area of the i-th shell. The average shell surface density in the two 
(VssD2) °^ three ( VgsDs) dimensional cases is 

VssD2 (U, C) = -^f i VssD.2 (U, C,)j ; (2.126b) 

'^ssD3(U,C) = -^fiVssDi3(U.C,)j . (2.126b) 

These measures are used to evaluate fuzzy hyperquadric c-shell 
partitions U of X characterized by the shell parameters B. After the 
algorithm terminates, if desired, the parameters (V, C) are computed 
non-iteratively. 

Example 2.18 Figure 2.19 shows a 158-point data setX consisting 
of three shell clusters (a circle, an ellipse and a parabola). 
Initialization and termination criteria were the same as those used 
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in Example 2.8. To decide on the central members of each cluster, 
(2.121) was used with x = 2 V i . 

=;*• 

X X 

X X 

a a X 

" " S V X X X 

V K X J * X 
V " X ^ ..X '' 
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X« K" • 

X ^ X 

X X X 

Xx 

Figure 2.19 Three shell clusters X 
158 

The FCQS algorithm was applied to X^^^ for c=2 10, and the 

validity indices y^^., VgHy, VpQ, and VSSD2 were computed using 
terminal partitions and parameters from FCQS. Table 2.13 
summarizes the validity values obtained. 

Table 2.13 Validity measures for FCQS partitions of X 
158 

c Vg-p ' '^SHV VpD ^ S S D 2 

2 296.14 127.35 0.13 0.021 
3 4.87 1.69 75.93 0.138 
4 40.89 16.33 7.10 0.070 
5 19.29 7.44 15.25 0.067 
6 13.86 5.70 21.34 0.070 
7 15.35 4.93 26.28 0.058 
8 6.88 1.72 83.85 0.071 
9 4,35 1.64 89.65 0.050 
10 9.36 2.58 54.56 0.052 

T/gsQ , which is to be maximized, indicates the visually correct 
value of c=3. The other three measures all indicate that the optimum 
number of clusters is 9. As mentioned Just below equation (2.123), 
this is because memy clusters are able to provide good (low error) fits 
to various pieces of the shell clusters. 

To provide a better understanding of this problem, the left view in 
Figure 2.20 shows the prototypes obtained with c = 3 superimposed 
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on X . The right view in Figure 2.20 shows the prototypes obtained 
with c=9 superimposed on X 

validity functionals VST 

This does not to imply that the 
id VpQ are without mierit. When 

used in conjunction with VSSD2 they can provide valuable 
information in boundary description applications (cf. Chapter 6). 

Figure 2.20 FCQS prototypes (left, c=3) and (right, c=9) 

We have already mentioned the idea of progressive clustering in 
connection with the work of Bensaid et al. (1996a). The indirect 
validity measures for non point prototypes discussed in this section 
may be used to determine the optimal number of clusters in a c-
shells partition of X. However, repetitively clustering the data for an 
entire range of c-values is very time consuming, and is never 
guaranteed to work due to local minima of the objective function, 
particularly for noisy or complex data sets. Progressive clustering 
based on the validity of individual clusters seems very appropriate 
for shell type algorithms, and will be discussed in more detail in 
Chapter 6. 

Equation (2.94) provides a very general paradigm for defining 

cluster validity indices. Appropriate definitions of 5 and A lead to 
validity indices suitable for different t j^es (e.g., clouds or shells) of 
clusters. Pal and Biswas (1997), for example, used minimal 
spanning trees, relative neighborhood graphs and Gabriel graphs to 
define the denominator of (2.94). These modifications result in 
graph theoretic validity indices that are applicable to chain or shell 
type clusters. These authors also extended the Davies-Bouldin index 
for chain type clusters using graph theoretic concepts. 
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G. Fuzzification of statistical indices 

Table 2.7 provides one classification of validity measures and 
procedures. Jain and Dubes (1988) offer another way to subdivide 
validation methods for crisp partitions of the data. Specifically, 
they discuss (i) external criteria; (ii) internal criteria; and (iii) 
relative criteria for validation of: (a) a particular clustering method; 
(b) nested hierarchies of clusters found by methods such as single 
linkage (see Chapter 3); (c) individual partitions; and (d) individual 
clusters. This provides 12 subgroups of methods, all for crisp 
partitions of X. 

External criteria are those that match the structure of a partition 
U M computed with X to a partition U* of X that pertains to the data 
but which is independent of it. For example, every crisply labeled 
data set comes with a crisp partition U* of X. Or, an investigator may 
hypothesize a partitioning U* of X under some assumption (e.g., the 
random label hypothesis used by Hubert and Arable (1985)). When a 
measure is a function of (U*, U(X)), it is called an external criterion. 
None of the criteria discussed in this section are external. 

Internal criteria a ssess the goodness of fit between an 
algorithmically obtained crisp partition U(X) and the input data 
using only the data themselves, usually in the form of the distance 
matrix D(X) = [5(Xi, Xj l̂ xn of the data. This group of indices are thus 
functions of (U(X), D(X) or X), and it intersects (but is not equal to) the 
measures we call direct data indices in Table 2.7. 

Relative indices are used to decide which of two crisp partitions, U(X) 
or V(X), is a "better choice", where better is defined by the measure 
that is being used. The Davies-Bouldin index discussed earlier, for 
example, is a member of this group. This group includes almost all 
Internal indices, which are simply used differently for this different 
problem, and almost all of the non-crisp indices that have been 
discussed in this section, most of which apply to fuzzy partitions as 
well as (hardened) crisp ones derived from them. Most of these crisp 
validation methods are statistically oriented, and require 
assumptions about the distribution of the data that are often hard to 
justify. Nonetheless, several are widely used and have recently been 
fuzzifled, so we provide a short discussion of two popular external 
indices for crisp partitions. 

Let U, S e M ĉn be crisp partitions of X. Define four counts on pairs 
of objects (Xj, X ) e X X X 

A = # of pairs in the same cluster in U and S 
B = # of pairs in the same cluster in U but not S 
C= # of pairs in the same cluster in S but not U 

(2.127a) 
(2.127b) 
(2.127c) 

D = # of pairs in different clusters in both U and S. (2.127d) 
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A convenient formulation of the indices we describe next is in terms 
of the entries of the so-called cxc matching matrix M of U and S, 

M(U,S) = M = [my] = US'r (2.128) 

Associated with M are three numbers that aggregate the counts in 
(2.127): 

Vj=ii=i ' v 

P = I 
i=l 1^^ 

c f c 

• n 

•n 

9= I Em n 

; (2.129a) 

; (2.129b) 

; (2.129c) 

For U.S e M, Rand (1971) defined the crisp validity measure 

V m s ) - ! A + D ^_ 2 T - P - Q + n ( n - l ) (2.130) 

It is easy to show that 

V =1 
R 

u = s 
V^ = 0 => U and S contain no similar pairs 
0<V^<lV(U,S)eMj^^^xM^^„ 

(2.131a) 
(2.131b) 
(2.131c) 

Consequently, high values of l^nare taken as indicants of a good 
match between U and S. Several corrections of V_, based on 
normalizations that are in spirit very similar to the ones shown in 
(2.115) have been proposed to offset its monotone increasing 
tendency with c. Jain and Dubes (1988) provide a nice discussion of 
such corrections. 

A second external index to compare two crisp partitions of X that is 
often cited is the index of Fowlkes and Mallow (1983), which for 
U, S e M. is defined as 

hen 

^ F M ( U , S ) = 

r T A 
(2.132) 
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Just as in (2.131), we have 

V j , ^ = l o U = S ; (2.133a) 
Vp^ = 0 <=>U and S are completely different ; (2.133b) 
0<V,^<lV(U,S)eM^^„xM,^„ . (2.133c) 

High values of V-^^ are again interpreted as indicating a good match 
between U and S. l/^j^ tends to decrease with increasing c. Milligan 
and Cooper (1986, e.g.) have studied at least 30 external indices of 
this type in a series of papers over several years, and they conclude 
that the adjusted Rand index and the Fowlkes - Mallow measure are 
probably more reliable than mciny others of this kind. 

Back and Hussain (1995) proposed fuzzy generalizations of V^ and 
Vpj^. Given two fuzzy partitions U, S e Mj. , define, in direct analogy 
with (2.128), the c x c fuzzy matching matrix between U and S as 

Mj(U,S) = Mj.=[mj..] = US'^ . (2.134) 

Entries in M are no longer counts of matches and mismatches 
between pairs in XxX; rather, m is now interpreted as the 
similarity between the fuzzy cluster whose membership values are 
the i-th row of U and the fuzzy cluster whose membership values are 
the j - th row of S (which is the J-th column of S^). 

The numbers T, P and Q in (2.129) are well defined for M^ and can be 

used to make direct extensions of 1/„ and V™.. For U, S e M, , Back 
R FM fen 

and Hussain define the fuzzy Rand index and fuzzy Fowlkes-Mallow 
index as, respectively. 

^R,f(U.S) = 

^™.f(U,S) = 

2 T - P - 9 + n ( n - l ) 

V n ( n - l ) 
r rr. \ 

(2.135) 

(2.136) 

The partition coefficient Vp̂ , at (2.98) is a function of UU^ instead 

of US"̂  as in (2.134). Thus, one way to interpret (2.135) or (2.136) is 
that they are generalizations of Vp̂ ,̂ which really compares U to 

itself, whereas Vĵ  ̂  and V^^ ^ compare U to a second fuzzy partition 
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S in different ways. Properties of these two indices are Interesting. 
For example, 

V, R.f 
1=>U = S , U,SGMf^„ 

• U and S are completely dissimilar 

0<V^^ ,< lV(U,S)eM^^„xM^^„ 

(2.137a) 

(2.137b) 

(2.137c) 

1/ĵ  J c anno t be u sed to compare two truly fuzzy part i t ions because 

the implication in (2.137a) is one way; in part icular , Vĵ  ̂ (U.U) ît 1 

for U e Mj.̂ ^ - Mj^ ,̂̂ , so i ts usefulness lies in validation of a fuzzy U 

aga ins t a crisp V. Resul ts similar to (2.137) hold for VpMC Si'^ce 

ne i t he r V^ ^ no r V^^ ^ c an be u s e d to compare two t ruly fuzzy 

par t i t ions of X to each other, Back and Hussa in propose a measu re 

t ha t they call the MC index for this job. Let U, S e Mj.^^, and define 

V ,̂(U,S) = l - [ ^ Y i i(u^-s.,)M = l. 
MC* 2 n 

(2.138) 

From (2.98) ^ (U) = | | u f / n so ^p^(U - S) = ||U - S | V n . Compar ing 
this with (2.138), we have 

V^e(U,S) = l -
V „ , ( U - S ) 

PC (2.139) 

Thus , the MC index is a relative of the parti t ion coefficient t h a t can 
be u s e d for the compar ison of U to S. If Vĵ ,̂ = 1 , U a n d S are 

identical . If Vj^^ = 0, U a n d S are crisp a n d sha re no object in the 

s ame c lass . In th is case V^^ becomes the ratio of equally labeled 

objects in U and S. 

To s u m m a r i z e , (2.137a) m e a n s , for example , t ha t V^^ is really 
useful only for comparing a fuzzy U to a crisp S. When might th i s 
h a p p e n ? Often. For example . Table 2 .3 in Example 2.2 shows 
te rmina l FCM a n d PCM part i t ions of X . Our compar ison of the 
three matr ices in Table 2.2 was confined to hardening the FCM and 
PCM par t i t i on m a t r i c e s a n d t h e n no t ing t h a t all t h r e e were 
identical. If we let S be U*, the visually correct 3-partition of X , we 

can compare it to U from FCM us ing ei ther Vj^^ a n d '^pMf This 
extends the idea of external cluster validation for different terminal 
fuzzy par t i t ions of X to t he case where the re is a known crisp 
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partition of the data (usually just the labels of labeled data, such as 
we have for Iris) without using the defuzzification or hardening of U. 

2.5 Feature Analysis 

Methods that explore and improve raw data are broadly 
characterized as feature analysis. This includes scaling, 
normalization, filtering, and smoothing. Any transformation 
<l):9tP i-> 9̂ '̂  does/eature extraction when applied to X. Usually q « 
p, but there are cases where q ^ p. For example, transformations of 
data can sometimes make them linearly separable in higher 
dimensions (cf. functional link nets, Zurada, 1992). For a second 
example where q > p, in image processing each pixel is often 
associated with a vector of many variables (gray level at the pixel, 
gradients, texture measures, entropy, average, standard deviation, 
etc.) built from, for example, intensity values in a rectangular 
window about the pixel. Examples of feature extraction 
t r ans fo rma t ions inc lude Fourier t r ans forms , pr inc ipa l 
components, and feature vectors built from window intensities in 
images. 

The goals of extraction and selection are: to improve the data for 
solving a particular problem; to compress feature space to reduce 
time and space complexity; and to eliminate redundant (dependent) 
and unimportant (for the problem at hand) features. When p is large, 
it is often desirable to reduce it to q « p . Feature selection consists of 
choosing subsets of the original measured features. Features are 
selected by taking <1> to be a projection onto some coordinate 

subspace of 9t^. If q « p, time and space complexity of algorithms 
that use the transformed data can be significantly reduced. Our next 
example uses a cartoon type illustration to convey the ideas of 
feature nomination, measurement, selection and the construction 
of object vector data. 

Example 2.19 Three fruits are shown in Figure 2.21; an apple, an 
orange and a pear. In order to ask and attempt to answer questions 
about these objects by computational means, we need an object 
vector representation of each fruit. A human must n o m i n a t e 
features that seem capable of representing properties of each object 
that will be useful in solving some problem. The choices shown in 
column two are ones that allow us to formulate and answer some 
(but not all!) questions that might be posed about these fruits. 

Once the features (mass, shape, texture) are nominated, sensors 
measure their values for each object in the sample. The mass of each 
fruit is readily obtainable, but the shape and texture values require 
more thought, more time, more work, and probably will be more 
expensive to collect. 
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Nominate 
Features 

I 
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Shape 
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Sensor 
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I 
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Diameter 

Smooth 
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Object 
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Mass 

Shape 

Texture 

Mass 

Shape 

Texture 

Weight 

Diame 

Rough 

a 6̂  
Diameter v = 

^o 

Smooth 

Figure 2.21 Feature analysis and object data 

A number of definitions could yield shape measures for the 
diameter. We might take the diameter as the maximum distance 
between any pair of points on the boundary of a silhouette of each 
fruit. This will be an expensive feature to measure, and it may not 
capture a property of the various classes that is useful for the 
purpose at hand. Finally, texture can be represented by a binary 
variable, say 0 = "smooth" and 1 = "rough". It may not be easy or 
cheap to automate the assignment of a texture value to each fruit, but 
it can be done. After setting up the measurement system, each fruit 
passes through it, generating an object vector of measurements. In 

Figure 2.21 each feature vector is in p=3 space, x^ e 9t^. 

Suppose the problem is to separate the citrus fruits from the non-
citrus fruits, samples being restricted to apples, oranges and pears. 
Given this constraint, the only feature we need to inspect is the third 
one (texture). Oranges are the solution to the problem, and they will 
(almost) always have rough texture, whereas the apples and pears 
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generally will not. Thus, as shown in Figure 2.21, we may select 
texture, and disregard the first and second features, when solving 
this problem. This reduces p from 3 to 1, and makes the 
computational solution simpler and possibly more accurate, since 
calculations involving all three features use measurements of the 
other variables that may make the data more mixed in higher 
dimensions. The feature selection function O that formally 
accomplishes this is the projection 0(x,, x^, x„) = Xo. It is certainly 

possible for an aberrant sample to trick the system - that is, we 
cannot expect a 100% success rate, because real data exhibits noise 
(in this example noise corresponds to, say, a very rough apple). 

Several further points. First, what if the data contained a 
pineapple? This fruit has a much rougher texture than oranges, but 
is not a citrus fruit, so in the first place, texture alone is insufficient. 
Moreover, the texture measurement would have to be modified to, 
perhaps, a ternary variable; 0 = smooth, l=rough, and 2 = very 
rough. Although it is easy to say this verbally, remember that the 
system under design must convert the texture of each fruit into one 
of the numbers 0, 1 or 2. This is possible, but may be expensive. 

Finally, the features selected depend on the question you are 
attempting to answer. For example, if the problem was to remove 
from a conveyor belt all fruits that were too small for a primary 
market, then texture would be useless. One or both of the first two 
variables would work better for this new problem. However, the 
diameter and weight of each fruit are probably correlated. 
Statistical analysis might yield a functional relationship between 
these two features. One of the primary uses of feature analysis is to 
remove redundancy in measured features. In this example, the 
physical meaning of the variables suggests a solution; in more 
subtle cases, computational analysis is often the only recourse. 

It is often unclear which features will be good at separating the 
clusters in an object data set. Hence, a large number - perhaps 
hundreds - of features are often proposed. While some are intuitive, 
as those in Example 2.19, many useful features have no intuitive or 
physically plausible meaning. For example, the coefficients of the 
normalized Fourier descriptors of the outline of digitized shapes in 
the plane are often quite useful for shape analysis (Bezdek et al., 
1981c), but these extracted features have no direct physical 
interpretation as properties of the objects whose shapes they 
represent. Even finding the "best" subset of selected features to use is 
computationally so expensive as to be prohibitive. 

Any feature extraction method that produces Y = <I>[X] c 9?i can 
be used to make visual displays by taking q = 1, 2, or 3 and plotting Y 
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on a rectangular coordinate system. In this category, for example, 
are feature extraction functions such as the linear transformations 
defined by principal components matrices, and feature extraction 
algorithms such as Sammon's method (Sammon, 1969). A large 
class of transformations, however, produce only visual displays 
from X (and not data sets Y c % 5R̂  or 9? )̂ through devices other 
than scatterplots. In this category are functions such as 
trigonometric plots (Andrews, 1972) and pictogram algorithms such 
as Chernoff faces (Chemoff, 1973), and trees and castles (Kleiner and 
Hartlgan, 1981). 

The simplest and most natural method for selecting 1, 2 or 3 features 
from a large feature set is to visually examine each possible feature 
combination. Even this can be computationally challenging, since p 
features, for example, offer p(p-l) two dimensional planes upon 
which to project the data. Moreover, visual assessment of projected 
subsets can be very deceptive, as we now illustrate. 

Example 2.20 The center of Figure 2.22 is a scatterplot of 30 points X 
= {(x , X )} whose coordinates are listed in columns 2 and 3 of Table 
2.14. The data are indexed so that points 1-10, 11-20 and 21-30 
correspond to the three visually apparent clusters. Projection of X 
onto the first and second coordinate cixes results in the one-
dimensional data sets X and X . This illustrates feature selection. 

1 2 

Xa X = XiXX2c5K^ Xi + X^ c9 t 

Xa c 9̂  <~-

1 

i 

0 

'o8 

10 

-^i-"-Q!^Bccv'^"'-^^--^^-"-€ix3rTr^'^ 

^ 

^ > X i 

15 

XjcSt 

Figure 2.22 Feature selection and extraction 
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The one dimensional data ^(X^ +X2) in Figure 2.22 (plotted to the 
right of X, not to scale) is made by averaging the coordinates of each 
vector in X. Geometrically this amounts to orthogonal projection of 
X onto the line x. X . This illustrates feature extraction. 

Table 2.14 Data and terminal FCM cluster 1 for four data sets 

^ 1 ^ 2 
Init Init Init X 

^ 1 iix^+x^) ^ 2 

u 
(10) 

u 
(20) 

u 
(30) 

U(l, " ( 1 ) " ( I ) U(l) 

^ 1 
1.5 2.5 1 0 0 0.99 1.00 1.00 0.00 

^2 
1.7 2.6 0 1 0 0.99 1.00 0.99 0.03 

X 3 1.2 2.2 0 0 1 0.99 0.99 0.98 0.96 

X4 1.8 2.0 1 0 0 1.00 1.00 1.00 0.92 

X5 1.7 2.1 0 1 0 1.00 1.00 1.00 0.99 

^ 6 1.3 2.3 0 0 1 0.99 0.99 0.99 0.63 

^ 7 
2.1 2.0 1 0 0 0.99 0.99 1.00 0.92 

Xg 2.3 1.9 0 1 0 0.97 0.98 1.00 0.82 

Xg 2.0 2.4 0 0 1 0.99 1.00 0.98 0.17 

^ 1 0 
1.9 2.2 1 0 0 1.00 1.00 1.00 0.96 

^ 1 6.0 1.2 0 1 0 0.01 0.01 0.01 0.02 

^ 1 2 
6.6 1.0 0 0 1 0.00 0.00 0.00 0.00 

^ 1 3 
5.9 0.9 1 0 0 0.02 0.02 0.07 0.02 

"^14 
6.3 1.3 0 1 0 0.00 0.00 0.00 0.07 

^ 5 
5.9 1.0 0 0 1 0.02 0.02 0.05 0.00 

^ 6 
7.1 1.0 1 0 0 0.01 0.01 0.02 0.00 

^ 7 
6.5 0.9 0 1 0 0.00 0.00 0.00 0.02 

^ 8 
6.2 1.1 0 0 1 0.00 0.00 0.01 0.00 

"^19 
7.2 1.2 1 0 0 0.02 0.02 0.03 0.02 

^ 2 0 
7.5 1.1 0 1 0 0.03 0.03 0.04 0.00 

^ 2 1 
10.1 2.5 0 0 1 0.01 0.01 0.01 0.00 

^ 2 2 
11.2 2.6 1 0 0 0.00 0.00 0.00 0.03 

^ 2 3 
10.5 2.5 0 1 0 0.01 0.01 0.00 0.00 

^ 2 4 
12.2 2.3 0 0 1 0.01 0.01 0.01 0.63 

"^25 
10.5 2.2 1 0 0 0.01 0.01 0.01 0.96 

^ 2 6 
11.0 2.4 0 1 0 0.00 0.00 0.00 0.17 

^ 2 7 
12.2 2.2 0 0 1 0.01 0.01 0.01 0.96 

"^28 
10.2 2.1 1 0 0 0.01 0.01 0.02 0.99 

^^29 
11.9 2.7 0 1 0 0.01 0.01 0.01 0.09 

^ 3 0 
11.5 2.2 0 0 1 0.00 0.00 0.00 0.96 



126 FUZZY PATTERN RECOGNITION 

Visual inspection should convince you that the three clusters seen in 

X, X and i (X^ + X2) will be properly detected by most clustering 
algorithms. Projection of X onto its second axis, however, mixes the 
data in the two upper clusters and results in Just two clusters in X . 
This illustrates that projections of high dimensional data into 
lower (often visual) dimensions cannot be relied upon to show much 
about cluster structure in the original data as explained next. 

The results of applying FCM to these four data sets with c = 3, m = 2, e 
= 0.01, and the Euclidean norm for both termination and J are 

m 
shown in Table 2.14, which also shows the (poor) initialization 
used. Only memberships in the first cluster are shown. In Table 2.14 
the three clusters are blocked into their visually apparent subsets of 
10 points each. As expected, FCM discovers three very distinct fuzzy 
clusters in X, X, and i (X, + X„) (not shovm in Table 2.14). For X, X 

and ^(Xj + X2) all memberships for the first ten points are > 0.97, 
and memberships of the remaining 20 points in this cluster are less 
than or equal to 0. 07. For X , however, this cluster has eight 
anomalies with respect to the original data. 

When the columns of U ^.. forX„ are hardened, this cluster contains 
FCM 2 

the 12 points (underlined in Table 2.14) numbered 3, 4, 5, 6, 7, 8, 10, 
24, 25, 27, 28 and 30; the last five of these belong to cluster 3 in X, 
and the points numbered 1,2, and 9 should actually belong to this 
cluster, but do not. 

Example 2.20 shows the effects of changing features and then 
clustering the transformed data. Conversely, clustering can 
sometimes be used to extract or select features. Bezdek and 
Castelaz(1977) illustrate how to use terminal point prototypes from 
FCM to select subsets of triples from a set of 11 (binary-valued) 
features for 300 stomach disease patients. Their experiments 
showed that the average error committed by a nearest prototype 
classifier (cf. Chapter 4) was nearly identical for the original data 
and the selected feature triples. We discuss this in more detail in 
Chapter 4, but mention it here simply to illustrate that fuzzy 
clustering can be used in the context of feature analysis. 

Another possibility is to use the c distances from each point in the 
original data to the cluster centers as (c-dimensional) extracted 
features that replace the original p-dimensional features. We close 
chapter 2 with an example that shows how important feature 
selection can be in the context of a real data application -
segmentation of a digital image. 
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Example 2.21 To show how feature selection can effect a real world 
pattern recognition problem, consider the segmentation of a 7 
channel satellite image taken from (Barni et al., 1996, 
&ishnapuram and Keller, 1996). Figure 2.23(a) shows channel 1. 
Barni et al. applied FCM pixel-based clustering with c = 4 to this 
multispectraJ image, which had p = 7 bands with spatial dimensions 
512x699. Thus, data set X contained n = 512x699 = 357,888 pixel 
vectors in p = 7-space. (pixel vector x .̂ =(Xj......,x^..)^ e X is the 

vector of 7 intensities taken from the spatial location in the image 
with address (i,j), 1 < i < 512; 1 < j < 699.) In this example we 
processed the image for two sets of features wiih FCM using c = 4, m = 
2, the Euclidean norm for both termination and J , and e = 0.1. FCM 

m 
was initialized v r̂ith the first four pixel vectors from the image as V . 

Figure 2.23 (a) Channel 1 of a 7 band satellite image 

While this image has 4 main clusters (water, woods, agricultural 
land, and urban areas), when viewed in proper resolution there are 
many regions that do not fit into any of the four main categories. 
For example, what about beaches? Do we distinguish between roads, 
bridges and buildings or lump them all into the category of urban 
areas? In the latter case, do the features allow us to do that? 
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Figure 2.23 (b) FCM segmentation using all 7 features 
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Figure 2.23(c) FCM segmentation using only 2 features 
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The seven channels in this image are highly correlated. To illustrate 
this, we show the FCM segmentation when all 7 channels are used 
(Figure 2.23(b)), and when only channels 5 and 6 are used (Figure 
2.23(c)). Visually similar results imply that channels 1-4 and 7 don't 
contribute much to the result in Figure 2.23(b). From Figure 2.23(b) it 
appears (visually) that the FCM misclassification rate is high. This 
is mainly due to the choice of these features, which are not 
sufficiently homogeneous within each class, and distinct between 
classes to provide good discrimination. 

250-

100 150 

channel 5 

250 

Figure 2.24 Scatter plot of channel 5 vs 6 of satellite image 

Figure 2.24 is a scatterplot of the two features (channels 5 and 6) used 
for the segmentation shown in Figure 2.23(c). Since the number of 
data points is very large (512x699), to prevent clutter, only a 
subsample of the data set is shown, and in the subsample only two 
distinct clusters can be seen. The water region appears as the 
smaller and denser cluster, because in this region, there is relatively 
less variation in the intensity values in all 7 channels. The highly 
reflective areas that appear white in the image show up as outliers in 
this mapping. 

The larger cluster includes samples from all the remaining regions, 
and it is hard if not impossible to distinguish the remaining three 
classes within this cluster. If this data were to be used for classifier 
design (instead of clustering) we could tell from the scatterplot that 
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the features would not be sufficient to distinguish 4 classes. Other 
more complex features, such as texture, would be needed. 

2.6 Comments and bibliography 

Clustering algorithms 

The crisp or hard c-means clustering model has its roots in the work 
of Gauss, who wrote to Olbers in 1802 about the method of least 
squared errors for parameter estimation (Bell, 1966). Duda and Hart 
(1973) credit Thorndike (1953) as the first explicit user of the HCM 
functional for clustering. There are now thousands of papers that 
report theoretical results or applications of the HCM model. There is 
also a very large body of non-fuzzy work in the signal and image 
processing literature that is a very close relative of (indeed, perhaps 
it is] HCM. The basic method for this community is the Lloyd-Buzo-
Gray (LBG) algorithm. See Gersho and Gray (1992) for an excellent 
summary of this material. A new approach to signal processing 
based on clustering has been recently discussed by Geva and Pratt 
(1994). 

The FCM model and FCM-AO were introduced by Dunn (1974a) for 
the special case m=2, and both were generalized by Bezdek (1973, 
1974a) for any m > 1. PMshnapuram and Keller's (1993) PCM model 
and PCM-AO was published in 1993. The newest entrant to the c-
means families is a mixed fuzzy-possibilistic c-means (FPCM) 
model and AO algorithm for optimizing it that simultaneously 
generates both a fuzzy partition of and typicality matrix for 
unlabeled data set X (Pal et al., 1997a). See Yang (1993) for a nice 
survey of many other generalizations of the basic FCM model, 
including some to the case of continous data processes, in which the 
double sum for J is replaced by integrals. 

There are several points to be careful about when reading papers on 
c-means clustering. First, many writers use k instead of c for the 
integer that denotes the number of clusters. Our notation follows 
Duda and Hart (1973). Second, many papers and books refer to the 
sequential version of c or k-means more simply as, e.g., "k-means". 
The well-known sequential version is not an AO method and has 
many adherents. Its basic structure is that of a competitive learning 
model, which will be discussed in Chapter 4. Be very careful, when 
reading about c-means or k-means, to ascertain whether the author 
means the sequential (Section 4.3.C) or batch version (Section 
2.2.A); their properties and performance can be wildly different. 

The term ISODATA was used (incorrectly) for both HCM-AO and 
FCM-AO in early papers that followed the lead of Dunn (1974a) and 
Bezdek (1973). Conditions (2.6) were used by Ball and Hall (1967) in 
their crisp ISODATA [iterative self-organizing data analysis) 
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algorithm, which is our HCM-AO combined with a number of 
heuristic procedures for (dynamic) determination of the correct 
number of clusters to seek. Early papers by Dunn and Bezdek called 
the FCM-AO algorithm "fuz2y ISODATA", even though there were no 
heuristics attached to it analogous to those proposed by Ball and 
Hall. Later papers replaced the term fuzzy ISODATA by fuzzy c-
means, but the incorrect use of fuzzy ISODATA still occurs now and 
then. To our knowledge, a generalization of crisp ISODATA that 
could correctly bear the name fuzzy ISODATA has - surprisingly- yet 
to be studied. There is a crisp iterative self-organizing entropy 
(ISOETRP) clustering algorithm due to Wang and Suen (1984) that 
uses some of the same heuristics as ISODATA. ISOETRP is an 
interactive clustering model that builds classifier decision trees, 
and it attempts to optimize an entropy functional instead of J : we 

will discuss this method in Section 4.6. 

Suppose you have T sets of unlabeled data, X = {X^,...,X.j,}, where 

X . = { x . , X. }c:9?P, 
J j l j n ' 

X, 
J 

= n , for J = 1 to T. Sato et al. (1997) call 

data of this kind 3-way object data, and refer to X as the j - th 
situation in the data. Data like these are common. For example, in 
estimates of brain tumor volume such as those made by Clark et al. 
(1998), X corresponds to the j - th slice in a set of T slices of 3D 
magnetic resonance images. In this example, the data are not 
collocated either spatially or temporally. For a second example, X 
might be the j - th image in a temporal sequence of frames collected 
by an imaging sensor such as a Ladar on a flying seeker platform 
that sweeps the scene below it. In this second case the data are not 
temporally collocated, but after suitable adjustments to register the 
images, they are spatially collocated. 

In the first step of tumor volume estimation in Clark et al. (1998) 
each of the T magnetic resonance slices is independently segmented 
by unsupervised FCM, leading to a set of T computationally 
uncorrelated terminal pairs, say {(Uj,Vj) (U.j,,V.j,)} for the input 
data sets X = {X^,..., X^}. In such a scheme the number of clusters 
could be - and in this application should be - a variable, changing 
from slice to slice as the number of tissue classes changes. In the 
seeker example, however, when images are collected at very high 
frame rates, only the locations of the targets (the V, ' s ) in the 
images should change. The number of clusters for each frame in a 
(short time window) of this temporal data should be fixed. You can 
cluster each image in such data independently with c fixed, of 
course, and the sequence {(Uj,V^),...,(U.j,,V.j,)} might be a useful 
representation of unfolding events in the illuminated scene. 
However, Sato et al. (1997) discuss a different approach to this 
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problem that involves a very minor change to the FCM functional 
that seems like a useful alternative. 

Sato et al. extend the basic FCM function J (U, V) = S X u^D?, by 
i=ik=i "^ 

adding together T terms (one for each X), and each term is weighted 
with a user specified weight co , j = 1 T. Their temporal fuzzy c-

means (TFCM) function is defined as J^''^'"(U.{V.}) = Io)jJ^(U, Vj), 

CO > 0 for all i. (TFCM is our name for their model and algorithm; 
j •' 

they don't really give it a name.) J^FCM jg ^ positive linear 
combination of T copies of the FCM functional, so an easy corollary 
that follows from the proofs for necessary conditions (Bezdek, 1981) 
yields necessary conditions for AO minimization of J^^^^'^that are 
simple extensions of (2.6a) and (2.6b). The fuzzy partition common 
to all T terms of j " ^ ^ * ^ " ^ is calculated as 

m 

U i ik 

c 

I 
s=l 

If«j8 (Xjk.Vji) 
J=l 
I03t8^(Xtic.Vts) 

t=l 

m - l 

- 1 

, l < i < c , l < k < n . (2.140a) 

The c prototypes V , one for each data set X, are updated with the 
common fuzzy c-partition in (2.140a) using the standard equation in 
(2.7b), 

£"S-,., / n ^ 
k=i y 

l< j<T , l < i < c (2.140b) 

In (2.140) the values {u } define a common fuzzy c-partition for all T 

data sets X = {X̂  X^}, and for each data set X, there is a set of c 

point prototjrpes, V = {v ,..., v } c 3i'^^. Sato et al. only discuss the 
j i ' jc 

case where 6 is the Euclidean norm, but equations (2.140) are easily 
generalized to any inner product norm, and, we suspect, are also 
easily generalizable to many instances of non-point prototype 
models as well. AO between (2.140a) and (2.140b) produces, at 
termination, the set {(U, V^),...,(U,V.j,)}. Thus, U is a common fuzzy 
c-partition of all T situations, and the {V } provide an estimate of 
the trajectory of the c point prototypes through time (that is, 
through the 3-way data). Because tumors come and go in a set of 
magnetic resonance image slices of a human with a brain tumor. 
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TFCM seems inappropriate for the application discussed by Clark et 
al. (1998), but we can imagine the sequence {V } being very useful in 
si tuations such as the seeker example in automatic target 
recognition, or hurricane tracking via real time satellite imagery. 
However, it is clear that the effectiveness of TFCM is very dependent 
upon "good" choices for the T fixed, user-defined weights {co.}. 

Sato et al. give severed examples of TFCM, including a data set of 60 
dental patients who have had underbite treatment. Each patient has 
p=8 numerical features measured at T=3 different post-treatment 
times. TFCM with c = 4, m = 2 and the Euclidean norm are applied to 
this data, and the resultant prototypes of the four clusters seem to 
have physically interpretable meanings over time. The only 
complaints we have about the examples in Sato et al.'s book are that 
none of them are compared to other methods (such as applying FCM 
to each data set in the sequence independently); and no guidance is 
given about the choice of the T weights {co.}. Nonetheless, we think 
this is a very promising extension of FCM ^or some problems with a 
temporal aspect. 

Much of the general theory for AO (also called grouped coordinate 
descent) is contained in Bezdek et al. (1986a, 1987a), Redner et al. 
(1987) and Hathaway and Bezdek (1991). AO schemes are essentially 
split gradient descent methods, and as such, suffer from the usual 
numerical analytic problems. They need good initializations, can 
get trapped at undesirable local extrema (e.g., saddle points), and can 
even exhibit limit cycle behavior for a given data set. Karayiannis 
(1996) gives fuzzy and possibilistic clustering algorithms based on a 
generalization of the reformulation theorem discussed in Section 
2.2.E. 

There are many hybrid clustering models that combine crisp, fuzzy, 
probabilistic and possibilistic notions. Simpson (1993) uses fuzzy 
sets to find crisp clusters (directly, without hardening). Moreover, 
this method adjusts the number of clusters djniamically, so does not 
rely on posterior validation indices. The method of Yager and Filev 
(1994a) called the "mountain clustering method" is often described 
as a fuzzy clustering method. However, this method, and a relative 
called the sub tractive clustering method (Chiu, 1994) are not fuzzy 
clustering methods, nor are they even clustering methods. They both 
seek point prototypes in unlabeled data without reference to good 
partitions of the data, and then use the discovered prototypes non-
iteratively to construct crisp clusters with the nearest prototype rule 
(equation 2.6a). These models will be discussed in Chapter 4. 

Runkler and Bezdek (1998a) have recently introduced a new class of 
clustering schemes that are not driven by objective function models. 
Instead, they propose alternating cluster estimation (ACE), a scheme 
whereby the user selects update equations for prototypes and 
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memberships from toolbars of choices for each of these sets of 
variables. All of the AO models of this chapter can be imbedded in 
the ACE framework (including probabilistic models), and 
additionally, ACE enables users to build new clustering algorithms 
by a "mix and match" paradigm, that is, by mixing formulae from 
various sources. This type of algorithm trades mathematical 
interpretability (the objective function and necessary conditions for 
it) for user-defined properties of presumably desirable prototypes 
and membership functions (e.g., convexity of membership 
functions, a property not enjoyed by continuous functions 
satisfying the FCM necessary condition (2.7a)). 

Cluster Validity 

A third way (besides direct and indirect validity measures) to assess 
cluster validity is to assign each U e P some task, and then compare 
its performance on the task to other candidates in p (Backer and 
Jain, 1981). For example, the labels in U can be used to design a 
classifier, and empirical error rates on labeled data can then be used 
to compare the candidates. This is performance-based validity. It is 
hard to give more than a general description of this idea because the 
performance criteria which dictate how to select the best solution 
are entirely context dependent. Nonetheless, for users with a real 
application in mind, this is an important methodology to 
remember. A best strategy when the end goal is known may be to 
first eliminate badly incorrect clustering outputs with whatever 
validity measures seem to work, and then use the performance goal 
to make a final selection from the pruned set of candidates. 

Our discussion of cluster validity was made in the context that the 
choice of c is the most important problem in validation studies. 
Duda and Hart (1973) call this the "fundamental problem of cluster 
validity". A more complete treatment of cluster validity would also 
include validation of clustering methods as well as validation of 
individual clusters, neither of which was addressed in Section 2.4. 

Applying direct, indirect or performance-based validity criteria to 
each partition in P is called static cluster validity. When assessment 
criteria are integrated into the clustering scheme that alter the 
number of clusters during computation (that is, other than in the 
obvious way of clustering once at each c in some prespecified range), 
as in Ball and Hall's (1967) ISODATA or Tou's (1979) DYNOC, the 
resulting approach is called dynamic cluster validation. In this 
approach P is not generated at all - rather, an algorithm generates U, 
assesses it, and then adjusts (or simply tries other) parameters (and 
possibly algorithms) in an attempt to find a "most valid" U or P for 
X. Surprisingly enough, a fuzzy version of ISODATA per se has never 
been developed. However, many authors have added merge-split (or 
progressive) clustering schemes based on values of various validity 
functionals to FCM/PCM in an attempt to make them dynamic (see 
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Dave and Bhaswan, 1991b, Krishnapuram and Freg, 1992, Bensaid 
et al., 1996b, Frlgui and Krishnapuram, 1997). 

Given the problems of indirect indices (functions of U alone, which 
are usually mediocre at best), it is somewhat surprising to see so 
much new work on functionals of this type. For example, Runkler 
(1995) discusses the use of a family of indirect indices (the mean, 
median, maximum, minimum and second maximum) of the c row 
maximums {Mj = max{U(j5},i = 1 c} of U for validation of clusters 

l<k<n 
found by the FCE algorithm. Continued interest in measures of this 
type can probably be attributed to three things: their simplicity; the 
general allure of computing "how fuzzy" a non-crisp entity is; and 
most importantly, how important cluster validity really is for users 
of clustering algorithms. Trauwaert (1988) contains a nice 
discussion of some of the issues raised here about the use of the 
parti t ion coefficient (historical note: Trauwaert mistakenly 
attributed the partition coefficient to Dunn in the title of and 
throughout his paper; Bezdek (1973) introduced the partition 
coefficient to the literature). See Cheng et al. (1998) for a recent 
application of the partition entropy at (2.99) to the problem of 
(automatically) selecting thresholds in images that separate objects 
from their backgrounds. 

There are several principles that can be used as guides when building 
an index of validity. First, computational examples on many data 
sets with various indices suggest that the more reliable indices 
explicitly use all of the data in the computation of the index. And 
second, most of the better indices also use the cluster means V(U) if 
U is crisp or whatever prototjqjes B in (2.24a) are available in their 
definition. Even when X is not used, using V(U) or B implicitly 
involves all of X, and insulates indices from being brittle to a few 
noisy points in the data. 

If it is possible to know, or to ascertain, the rough structure of the 
data, then of course an index that is designed to recognize that type 
of structure is most appealing. For example, mixtures of normal 
distributions with roughly equal covariance structure are expected 
to generate hyperellipsoidal clusters that are most dense near their 
means, and in this case any index that optimizes for this type of 
geometry should be more useful than those that do not. Bezdek et al. 
(1997b) discuss this idea at length, and show that both crisp and 
fuzzy validity indices as reliable as many of the most popular 
probabilistic criteria for validation in the context of normal 
mixtures. 

When an indirect index is used (partition coefficient, partition 
entropy, etc.), the quality of B either as a compact representation of 
the clusters or as an estimate of parameters is never directly 
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measured, so this class of indices cannot be expected to perform well 
unless the data have very distinct clusters. Thus, indirect Indices that 
Involve only U are probably not very useful for volumetric or shell 
cluster validation - in either case they simply measure the extent to 
which U is a non-crisp partition of the data. When parameters such 
as B are added to an indirect index (Gath-Geva or Xie-Beni for 
example), the issue of cluster type becomes more important. When the 
clusters are volumetric (because they are, or because the algorithm 
that produced them seeks volumetric structure), B should be a set of 
point prototypes. When the clusters use B, a parameter vector of a set 
of non-point prototypes as representatives, the cluster structure is 
shell like. In either case, the validity index should incorporate B into 
its definition. We feel that the best indices are direct or indirect 
parametric data indices. This is why we chose the classification of 
indices in Table 2.7 as the fundamentally important way to 
distinguish between types of measures. 

The literature of fuzzy models for feature analysis when the data are 
unlabeled as in this chapter is extremely sparse and widely scattered. 
The few papers we know of that use fuzzy models for feature analysis 
with labeled data will be discussed in Section 4.11. 

Finally, we add some comments about clustering for practitioners. 
Clustering is a very useful tool that has many well documented and 
important applications: to name a few, data mining, image 
segmentation and extraction of rules for fuzzy systems. The problem 
of validation for truly unlabeled data is an important consideration 
in all of these applications, each of which has developed its own set of 
partially successful validation schemes. Our experience is that no 
one index is likely to provide consistent results across different 
clustering algorithms and data structures. One popular approach to 
overcoming this dilemma is to use many validation indices, and 
conduct some sort of vote among them about the best value for c. 
Many votes for the same value tend to increase your confidence, but 
even this does not prevent mistakes (Pal and Bezdek, 1995). We feel 
that the best strategy is to use several very different clustering 
models, vary the paramiCters of each, and collect many votes from 
various indices. If the results across various trials are consistent, the 
user may assume that meaningful structure in the data is being 
found. But if the results are inconsistent, more simulations are 
needed before much confidence can be placed in algorithmlcally 
suggested substructure. 



3 Cluster Analysis for 
Relational Data 

3.1 Relational Data 

In Chapter 1 we mentioned that two types of data, object (X) and 
relational (R), are used for numerical pat tern recognition. 
Relational methods for classifier design are not as well developed as 
methods for object data. The most compelling reason for this is 
probably that sensors collect object data. Moreover, when each 
object is not represented by a feature vector, the problem of feature 
analysis is non-existent. Consequently, the models in this chapter 
deal exclusively with clustering. There are many applications that 
depend on clustering relational data - e.g., information retrieval, 
data mining in relational databases, and numerical taxonomy, so 
methods in this category are important. Several network methods 
for relational pattern recognition are given in Chapter 5. 

The basic idea in relational clustering is to group together objects in 
an object set O that are "closely related" to each other, and "not so 
closely" related to objects in other clusters, as indicated by relative 
relational strengths. The objects are usually implicit, so we find 
groups in O by clustering based on the strength of relationships 

between pairs of objects. If we have object data XcSt^ , we can 
generate many relations R(X) from X. 

Relational clustering algorithms are usually hierarchical (local, 
graph theoretic) or partitional (global, objective function driven). 
Many hierarchical algorithms are designed to find clusters in any 
proximity relation and hence, these methods will also work for 
fuzzy relational data. Consequently, this chapter describes several 
non-fuzzy methods that produce crisp partitions; and several fuzzy 
methods that can produce crisp or fuzzy partitions from proximity 
relations. 

Hierarchical clustering can be divided into agglomerative (bottom 
up, clumping) and divisive methods. Agglomerative algorithms start 
with each object in its own singleton cluster (c=n), and subsequently 
merge similar clusters until the procedure terminates at a single 
cluster (c=l). In the top down or divisive approach all points begin in 
a single cluster (c=l) and then clusters are split by some rule until 
every object eventually ends up in its own singleton cluster (c=n). 
Good expositions of many of these methods appear in Sneath and 
Sokal (1973) and Jain & Dubes (1988). We will briefly describe one 
family of agglomerative algorithms - the linkage algorithms -
because of their connection to some fuzzy relational methods that 
produce hierarchical clusters. The chapter concludes with 
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discussions about several partitional algorithms that are driven by 
minimizing relational objective functions. 

A. Crisp Relations 

Relations on finite data sets need not be square nor binary, but in 
pattern recognition they almost always are square and binary, so 
our presentation is confined to this special case. Let the set of objects 
be O = {oj,..., Ojj}. A crisp binary relation /? in O is a crisp subset 
/ ? c O x O . Pairs of objects, say (04,0.) are either fully related under 
/€, or they are not related at all. Since /€ is a crisp subset, we can 
describe it by a membership function, say p:OxO i-> {0,1}. The n^ 
numbers {p(Oi,Oj)} characterize the membership of (o^Oj) in the 
relation /€, and we write p(Oj,Oi) = 1 <^ o./^o. <=>o is /€-related to 0 . 

J J i j 

It is convenient to array the relationships as an n x n relation 

matrix R(p;0) = fri. = p(Oj,o,)| . We may write R{p;0) simply as R, 

and we follow others in sloppily calling the matrix R variously "the 
relation (even though the subset /€ actually is, by writing, e.g., aRb 
instead of a/€b)", "the relation matrix'" and even "the relational 
data". This terminology accrues from crisp relations where the three 
descriptions of R are equivalent. Since crisp relations are crisp 
subsets, the notation /€̂  c ^2 is well defined for two relations 
/?,,/€„ c O x O . We extend this notation to the relation matrices R, 
and R of /€ and f? by writing R < R , meaning r .. < r for 1 < i,j < n. 

More generally, real binary relations in O are functions 
p: O X O —> 5R called proximity relations that represent similarity or 
dissimilarity between pairs of objects. In this case R is a proximity 
matrix. When p(Oi,Oj)«{0,1}, it is customary to regard r . as the 
strength of the relationship between o, and o.. Given an object data 

set X = {Xj,...,x^} c 9?P, X. G 9tP characterizing object Op there are 
many functions that can be used to convert X into a proximity 
relation. For example, every metric 6 on 91^x5^^ produces a 
proximity relation in X x X. We discuss this in detail in Section 3.2. 

The conceptual basis of relational clustering is p: O x O -> 5R. We 
identify three basic types of relations: 

p: O X O -> SiReal Binary Relation (on or in) O (3. la) 

p: O X O -^ [0,1] Fuzzy Binary Relation (on or in) O (3. lb) 
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p: O X O -> {0,1} Hard Binary Relation (on or In) O (3.1c) 

These relations are binary because p has two arguments. Equation 
(3. Ic) displays the membership function of a crisp subset /€ c O x O. 
Similarly, equation (3. lb) shows that we can regard fuz2y relations 
in O as fuzzy subsets of O x O characterized by the membership 
function r. An arbitrary finite proximity relation R can always be 
converted into a fuzzy relation by a suitable normalization. 

A (square binary) relation R is reflexive if r̂ ^ = p(Oj, o.) = 1 V o. e O. 

(I < R). Reflexivity means that every element is fully related to 

itself. R is symmetric when r 
jk 

:r^. V j , k (R = R^). This means that 

whenever o is related to o, at emy level, o, is related to o at the same 
j k -̂  k J 

level. R is transitive if r., =1 whenever, for some i, r., =1 and 
jk ' j i 

r i k = U R L 
of R with itself, [R2^^\, = ^v^(r^ A r,.)). 

R(VA)R = R, where R is the Boolean matrix product 

A finite crisp binary relation on O x O can be viewed as a graph G = 
(V, E) where V={o} are the vertices of G; and E is the set of edges in G, 

(o., o.) e E o r.. = 1. In this context R is the adjacency matrix of G. A 
path from o, to o. in G is any set of nodes that have edges connecting 
o. and o.. The path length is the number of edges in the path. R is 
transitive if, whenever there is a path of length greater than 1 from 
o to o , there is a direct path of length 1 from o to o . 

1 j f O J J 

Example 3.1 Let O = {a, b, c, d} and R •• 
1 1 1 0 
1 1 1 0 
1 1 1 0 
0 0 0 1 

be a relation on 

O x O . This R is reflexive, symmetric and transitive. Reflexivity is 
represented by self loops at each node as in Figure 3.1(a) ; symmetry 
is expressed by pairs of edges (shown in Figure 3.1(b) as edges 
directed in both directions) between pairs of related nodes. Figure 
3.1(c) gives the complete graphical representation of the reflexive, 
symmetric, and transitive relation R. 
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(a) Reflexivity (b) Symmetry (c) The graph of R 

Figure 3.1 Reflexivity, symmetry and transitivity of R 

It is easy to see that R is transitive: the only paths of lengths > 1 in R 
are paths of length 2 between any pair of the nodes 1,2 and 3; and for 
each such path, there is a direct path of length 1. So transitivity adds 
no edges to the graph of this relation that are not required for 
reflexivity and symmetry. 

DeHnition 3.1 A crisp square binary relation R in O x O is an 
equivalence relation (ER) if it is (i) reflexive, (ii) symmetric and (iii) 
transitive. The set of all ERs on n objects will be called R^. 

The ER is important in pattern recognition because it defines a set of 
c equivalence classes which are isomorphic to a crisp c- partition of 

O. To see this, let C ĵ = joj: OjRoj, Oj G O\ be the set of objects that are 
equivalent to o.. Then for two objects o. and o, since the relation is 

transitive, either C 
Oi Coj or Coj n Coj 

J 
0 . Moreover, U C^. = 0 . 

01 eO ' 

In Example 3.1 R is a crisp ER, and it induces the unique 2-partition 
{a, b, c} u {d} on the objects O = {a, b, c, d}. 

An important concept for any crisp relation R is its closure with 
respect to a given property P that R might possess. Generally, the P-
closure of R is the smallest relation containing R that has property 
P. The symmetric closure of R = {(a, b), (a, c), (c, a), (b, c), {c, b)} on {a, b, 
c} is formed by adding the single pair (b, a) to R. Other pairs such as 
(a, a) can be added too, but the smallest relation that is symmetric 
and contains R as a subset is {{a, b), (b, a), (a, c), (c, a), (b, c), (c, b)}. R is 
not reflexive either. The reflexive closure of R is formed by adding 
the three pairs (a, a), (b, b) and (c, c) to the original relation R without 
adding (b, a). The smallest relation that contains R that is both 
reflexive and symmetric is the union of its reflexive and symmetric 
closures, obtained by adding the four pairs just displayed to R. 
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Similarly, t he transitive closure R°° of a cr isp relat ion R is t he 
sma l l e s t t r ans i t ive re la t ion t h a t con ta in s R a s a s u b s e t . The 

cons t ruc t ion of R°° from a given R does no t require t h a t R be 
reflexive or symmetr ic . If R is no t transit ive, we add Jus t enough 
pa i rs to the relation to give it th is property. In the example of the 
preceding paragraph , making R symmetric also makes it t ransi t ive 
(coincidental ly) , a n d h e n c e , t h e u n i o n of t h e reflexive a n d 
symmetric closures of this R is a n ER on {a, b , c}. 

If R is no t a n ER, we can take its closure with respect to the three 

propert ies required by Definition 3 .1 . This gives u s an ER R on the 
objects which is the smallest extension of R tha t is a n ER. Clus ters 

in the given objects are obtained from the equivalence classes of R. 

E x a m p l e 3 . 2 Let 0 = {a,b,c,d,e} a n d R = be a 

0 1 1 0 0 
0 1 0 0 0 
0 1 0 0 0 
0 0 0 1 1 

^ 0 0 0 0 1 
re la t ion on O x O . R is no t reflexive, symmetr ic or t rans i t ive . 
Adding I 's a t addresses (1,1) and (3,3) yields the reflexive closure of 
R. Adding I ' s a t add re s se s (2,1), (2,3), (3,1) a n d (5,4) yields t he 
symmetr ic c losure of R. Taking the un ion of these two c losures 

" 1 1 1 0 0" 
1 1 1 0 0 
1 1 1 0 0 
0 0 0 1 1 
0 0 0 1 1 

yields the relation R = Every pa th between pa i rs of 

nodes in R can be realized by a direct path, so R = R°° is a n ER on O, 
a n d t h e u n i q u e par t i t ion it co r r e sponds to is the 2 -par t i t ion 

{a,b,c}u{d,f} of O- This part i t ion of O is based on R, not on the 

given da ta R. Since R is a transformation of the given data , it is no t 
correct to asser t tha t (a, b, c} u (d, f} is a parti t ion of O obtained from 
R. It is proper to regard th is partit ion as the parti t ion of O suppor ted 
by the ER closest to R. 

Comparing matr ices of the ERs in Examples 3.1 and 3.2, notice t ha t 
they bo th have c sub-blocks of I 's t h a t are n x n in size, where n is 

•̂  i l l 

the n u m b e r of po in ts in the equivalence c lass (and therefore, t he 
n u m b e r of points in the i-th crisp cluster in O). This is always the 
case, u p to a permuta t ion of the objects (and hence the columns) of 
the matr ix representing the ER. 
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R°° can be cons t ruc ted in var ious ways. Conceptually, the easiest 
me thod is the well known resu l t t h a t combines the n (Boolean) 
powers of R: 

R~ = R V R 2 V...VR" , where (3.2) 

the k - th power, for k > 2, is defined as R^^ = R(VA)R(VA)-- -{VA)R. 

When R is symmetric and transitive (3.2) collapses to 
k times 

R: R n-1 {<=>In < R a n d R = R'^) (3.3) 

These equat ions are convenient for small n, b u t direct calculation of 

R°° by ma t r ix mult ipl icat ion h a s t ime complexity 0(n*) , so th i s 
method is impractical for large n (Cormen et al., 1990). Warshal l ' s 
algori thm for the transitive closure of a crisp relation is 0(n^), and 
there are minimal spanning tree approaches (Dunn, 1974b) t h a t are 
O(n^). Nonetheless, (3.2) is useful for small to moderately sized da ta 
se ts a n d also for pedagogical purposes , so we i l lustrate i ts u s e in 
Example 3.3. 

Example 3 . 3 Find the transit ive closure of R = 

we compute the max-min powers of R: 

1 
0 
0 
0 

First 

RvA -

RvA = 

R 

1 0 1 0" 
0 1 0 1 
0 0 0 0 
0 0 0 0 

0 1 0 1" 
1 0 1 0 
0 0 0 0 
0 0 0 0 

1 0 1 0" 
0 1 0 1 
0 0 0 0 
0 0 0 0 

It is easy to check tha t all higher even powers will equal R , a n d 

tha t all h igher odd powers will equal R^^. Now use (3.2): take the 
element by element maximum of all three relations: 
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R^/. — 

0 1 0 0" 
1 0 1 0 
0 0 0 1 V 

0 0 0 0 

1 0 1 0" 
0 1 0 1 
0 0 0 0 V 

0 0 0 0 

0 1 0 1" 
1 0 1 0 
0 0 0 0 
0 0 0 0 

1 1 1 r 
1 1 1 1 
0 0 0 1 
0 0 0 0 

Notice that R°° Is neither reflexive or symmetric, so it is not an ER 
and does not induce a crisp partition on its set of objects. 

B. Fuzzy Relations 

Symmetry and reflexivity extend uniquely and naturally to fuzzy 
relations. Extending transitivity, however, is a much more subtle 
task. A fuzzy relation R can be regarded as a weighted graph G = (V, E, 
R), with R the (weighted) adjacency matrix of G. r̂ . = o^Ro is the 

weight of edge (o,, o.) e E. This view is advantageous for interpreting 
transitivity in fuzzy relations. 

max For a crisp relation [R^^I = v (rjj,. Arj^.). The min and 

operators correspond to intersection and union in crisp logic. Fuzzy 
transitivity is defined in terms of two more general operators that 
are used for the intersection and union of pairs of fuzzy sets. 
Specifically, intersections are represented by T-norms and unions 
with S-norms (T co-norms) of fuzzy sets (Klir and Yuan, 1995). 

We use © , ® respectively as the S and T-norms of any pair of real 
numbers a, b in [0, 1], S(a, b) = a © b , T(a, b) = a (8) b . (There are seven 
infinite families of T and S norms. See Volume 1 of this handbook 
for an extensive treatment.) In the fuzzy literature the min and max 
operators are called T and S , T3(a,b) = a A b , S3(a,b) = a v b . 

The ij-th element of the n x n relation matrix in the © - ® 
composition of two square fuzzy relations R and R is 

[Ri(®(8))R2l.. = © (r, ik ® r , ki). If R, = R„ = R the k-th power of R, for k 
•"J k = l • ' •' 1 2 

> 2, is R | » = R(©®)R(©®)---(©(g))R. 
k times 

Definition 3.2 Zadeh (1971) A square fuzzy relation R is v-(8) 

transitive if and only if r > v (r 
y k=l 

Ik 
r..) V i^tj (i.e.. R>R^«), 

k j ' J >• > v g ) ' 

where (8) is associative and monotone non-decreasing in each of its 
arguments. 
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Zadeh (1971) gave T and T as examples of intersection operators 
that could be used for ® in Definition 3.2. Bezdek and Harris (1978) 
studied v - A transitivity for Tj(a,b) = aAb = maxfO,a + b - 1 } , and 
interpreted fuzzy v - ® transitivity graphically for T , T and T . 
More generally, a fuzzy relation R is ©-(E) transitive when 

r >r2 ^ = ® (rjj^®r ) V i , j , ( R > R | g ) , but this is a little too 
J •>• k = l •' 

general for our purposes. In practice, the only S norm that finds 
applications in pattern recognition is Sg = v. Zadeh used his 
concept of fuzzy v -(B) transitivity to extend the concept of ERs to 
fuzzy relations as follows: 

Definition 3.3 Zadeh (1971) A fuzzy relation R is a fuzzy similarity 
relation (or fuzzy equivalence relation) if R is reflexive, symmetric 
and V - ® transitive. 

The set of all fuzzy v - ® transitive similarity relations on n objects 
will be called R^ ,̂. The sets {R^̂ :̂ ® is a T-norm} are important in 
relational clustering, so we formalize them as 

R^«={Re9t"": I„<R, R = R T , R>R(v®)R} . (3.4) 

If R is crisp and ® = A, the condition in Definition 3.3 guarantees 
that R is a crisp equivalence relation, so R^ c R^^. Zadeh noted that 
because ab < a A b , R̂  c R^, For the choice ® = A the condition 

rj- > V (rjk A ry) V i^ j requires that the weight of any direct path 
k = l 

in G = (V, E, R) from node i to node j be at least as large as the smallest 
weight of any other path from i to j . Not surprisingly, Zadeh used 
this to show that R e R^^ o 5(Oi, Oj) = 1 - r^ was an ultrametric on 
the object set. Bezdek and Harris (1978) established that 
R G RvA "^ ^(Oi'Oj) = l~rij was a psuedometric, and exhibited a 
hierarchy of seven nested sets of fuzzy similarity relations, the most 
important of which are R c R c R c R . . 

^ n — VA — v» — v A 

Zadeh (1971) also gave the first exposition of transitive closures of 
fuzzy relations, confining his analysis to the V - A case. More 
generally, the v - ® transitive closure R^g, of fuzzy relation R is the 

smallest fuzzy relation containing R that is v - ® transitive. R~ 
can be computed as 
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R: R V R 2 V. . .VR" (3.5) 

Furthermore, if R Is reflexive and sjonmetric, then at worst we need 
only the (n- l)-st power of R, 

R : ® = Rv®. where k = min {J: R^^ = RJ^'} 
l<J<n-l 

(3.6) 

Example 3.4 Find the v - A transitive closure of R = 
LO 0.4 0.5 
0.4 LO 0.3 
0.5 0.3 LO 

RvA -

LO 0.4 0.5 
0.4 LO 0.4 
0.5 0.4 LO 

; RvA 

LO 0.4 0.5 
0.4 LO 0.4 
0.5 0.4 LO 

= R 2 = R ~ , the last 

equality holding because R is reflexive and symmetric. 

Table 3.1 The v - ® transitive closure by matris multiplication 

Store R e [0,1]"^" (fuzzy) or R e (0,1}"''" (crisp) 
Pick (S)= any T-norm. If R e (0,1}"^", ® = A 

Ry® — R 
Forj = 2 to n 

Do 

RJ^^=RJ,-̂ (̂v(8))R 
lf(l < R a n d R = R'^andRJ =RJ-i) 

^ n v® V ® ' 

R : ® = R I ® ; stop 
Next J 
R°° — R^ 

For j = 2 to n 
Rv® — Ry® ^ Ry® 

Next J 

Equations (3.5) and (3.6) can be used to compute the v - ® transitive 
closure of a fuzzy relation, and like (3.2) and (3.3), they both have 
complexity O(n^). Faster algorithms for computing R̂ ^̂  will be 
discussed in the next section. Table 3.1 gives the naive algorithm for 
R~g, based on (3.5) and (3.6). Since every crisp relation is fuzzy, this 
algorithm also produces the transitive closure of any crisp relation 
via (3.2) or (3.3) provided the T-norm is the minimum, ® = A. Bezdek 
et al. (1986b) showed that the algorithm in Table 3.1 was correct for 
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the Six T-norms now called TQ , T^, Ti 5, Tg, Tg 5, Tg. See Nguyen and 
Sugeno (1998) for a more complete discussion of T-norms. 

3.2 Object Data to Relational Data 

Before discussing algorithms that find clusters in relational data, 
we discuss some methods for constructing a proximity relation 

matrix R(X) from an object data X c 9tP. Once this is done, clustering 
may be done in X (as in Chapter 2), or in R(X) using methods 
discussed in this chapter. Sometimes it is advantageous to make 
this conversion from object data to relational data. 

A similarity measure is a real binary relation s:OxO -^3i^. s{Oj,o ) 
is the similarity ( for dissimilarity, we use 5(Of,Oj)) between Oj and 
Oj. The values {s(Oj,o )} or {5(Oi,Oj)} are sometimes assigned by an 
expert. For example, this is often the case in numerical taxonomy 
(Sneath and Sokal, 1973). More commonly, {s(Oj,o )} or {5(Oi,Oj)} 

are computed from characteristics - numerical or otherwise - of 
pairs of the objects. There are many similarity measures: for 
example, measures of association, resemblance, correlation, 
matching, and so on. Similarity measures may be based on 
heuristic, probabilistic, deterministic, fuzzy or semantic principles. 

An object data set X c 9^P can be converted into a dissimilarity 
relation R = [r..] using any metric 5 on SRP x 9^P, 

ry =p(Oi,Oj) = 5(Xi,Xj), l < i , j < n . (3.7) 

If the objects aire characterized by qualitative attributes, e.g., color € 
{red, blue, green}, then we cannot use (3.7) directly. Using numerical 
representations such as 1 for red, 2 for blue and 3 for green before 
applying (3.7) may distort structural relationships that exist or do 
not exist between pairs in the qualitative data. For example, any 
distance relation using these numerical values for colors suggests 
that 3 is closer to 2 than it is to 1, even though red, blue and green are 
qualitatively equivalent. 

Numerical representation of qualitative features can be based on 
binary vectors. For example, red, blue and green can be represented 
by the strings 100 = red, 010 = blue and 001= green. More generally, if 
there are p qualitative features and the i-th feature can take n 

p 
values, then the original p features can be represented by a p = X n 

1=1 

dimensional binary vector x e {0,1}^. With this representation (3.7) 
can be used because distances between any two vectors are unbiased 
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and well defined. On the other hand, the feature values may or may 
not make sense physically, and the dimension of x can be very large. 
In our colors example, the Euclidean distance between any pair of 
colors is 1, so false proximity is not imposed on the data by this 
numerical representation. 

Table 3.2 lists a few of the many different ways object data can be 
converted to relational data. In this table the data type real means 

that X and y are in 9^^, and data type 0-1 means that x and y are in 

{0,1}P-

Table 3.2 Some transformations of X c 5RP into R e 91"''" 

Symbol Name Data 
Type 

A-Norm Real 
(1.6) or 0-1 

q-Norm Real 
(1.11) or 0-1 

cos{x_y) Real 
if real or 0-1 

Tanimoto Real 
coefficient or 0-1 

simple 0-1 
match 
double 0-1 
match 
double 0-1 

mismatch 
ignore 0-0 0-1 

(Jacard) 

Formula for p(x,y) 

DM 

'DMM 

||x-y|^=V(«-y)''A(x-y) 

II J - ' J 
.q>l 

î ll l|y|| 

(x,x) + (y ,y ) - (x ,y ) 
a + d 

P 
2(a + d) 

2(a -(- d) + b + c 
a + d 

a + d + 2(b + c) 
a 

a + b + c 

In Table 3.2 the last four similarity coefficients are shown as 
functions of a, b, c and d. These four numbers are computed from the 
binary vectors x and y as follows: 

a = # of 1-1 matches 
b = # of 1-0 mismatches 
c = # of 0-1 mismatches 
d = # of 0-0 matches 

between the p binary coordinates in x and y. For example, if 
x"̂  =(100111) , y"̂  = ( 0 0 1 0 1 0 ) , then a = l,b = 3 , c = l,d = l . 
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Example 3.5 For the 10 dimensional binary vectors x and y given by 
x'r = (0 0 1 1 0 1 0 1 1 0) and y"̂  = (1 0 0 1 1 1 0 0 1 0), we have 
a=3, b=2, 0=2 and d =3. Consequently, 

8i(x,y) = 4 
82(x,y) = 2 
6^(x.y) = l 

s^(x,y) = ^ ^ ^ = - ^ = 0.60 
l|y|| VsVs 

s^(x,y) = -. . ) "[ . r = ^ " ^ = 0.42 
T (x,x) + (y ,y ) - (x ,y ) 5 + 5 - 3 

Ss{x.y) = 0.60 
s„„(x,y) = 0.75; 

DMM 
(x,y) = 0.42; 

s,(x,y) = 0.42 

As an example of transforming an object data set X into relational 
data, we transform data set X ( the first two rows of Table 3.3 and 
Figure 3.2) by the Euclidean norm, which yields the relation R in 
the last nine rows of Table 3.3. We show only the lower triangular 
part of the symmetric relation R . R will be used to exempliiy 
several of the clustering algorithms in subsequent sections of this 
chapter. 

Table 3.3 Xg and relational data Rg = S^IXc 

X 1 2 2 1 4 5 4.5 5 4 
y 1 1 3 3 1.5 1.5 1.5 2.5 2.5 

^ 1 ^ 2 ^ 3 \ ^ 5 ^ 6 ^ ^ 8 ^ 9 

^ 1 0 

\ 1.00 0 

^ 3 
2.24 2.00 0 

^ 4 
2.00 2.24 1.00 0 

^ 5 
3.04 2.06 2.50 3.35 0 

^ 6 
4.03 3.04 3.35 4.27 1.00 0 

^ 7 
3.54 2.25 2.92 3.81 0.50 0.50 0 

\ 4.27 3.35 3.04 4.03 1.41 1.00 1.12 0 

\ 3.35 2.50 2.06 3.04 1.00 1.41 1.12 1.00 0 
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y 

3-- o 

1 • • 

4- + 

#9 f s 

® ® ® 
^ 5 ^ 7 ^ 6 

- > x 
1 

Figure 3.2 Data set X^ 

3.3 Hierarchical Methods 

Sequential Agglomerative Hierarchical Non-Overlapping (SAHN) 
models (Sneath & Sokal, 1973) yield crisp clusters in fuzzy 
relations. Cluster merger (agglomeration, clumping) is based on a set 

distance 6 (X, Y) between crisp sets X and Y. The three most common 

set distances used are 8 . = 8, at (2.92), 5 and 8 „. 
nun 1 ^ ' max avg 

Figure 3.3 depicts the geometric meaning of these three set distances. 

8 , and 8 are the nearest and furthest distances (as measured by 
m m max ^ •' 

any metric 8 on X x Y) between pairs of points in X x Y. 8 is the 
average of all the pairwise distances between points in the two sets, 
and uses their cardinalities, n = | X | , n = lYI. 

We describe and illustrate the SAHN bottom up approach with 
relational data set R . Each object begins in its own singleton cluster 
so c = n = 9. Next, find the pair of most closely related objects, as 
indicated by values in relational data matrix R (find the pair of 
indices in R that satisfy some criterion for merger). To group the two 
objects in X that are closest in the sense of Euclidean distance, 
search R and find the minimum distance (0.50) : this occurs at two 
pairs (5,7) and (6,7). Deciding ties arbitrarily, suppose we merge 

points 5 and 7. At this first step the set distance 8 plays no role -
two objects will be merged if their dissimilarity is minimum (or 
their similarity is maximum). We now have c=8 clusters in R and 
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X , The cluster {x , x } has two points, and the other 7 points are still 
singleton subsets of X„. 

* 9 

X 

, ' - ' 3^3 '« 

y . ; 

. xi / 6^i„(X,Y) = min{5(x.y)} = §(x2,yi) 

yeY 

•^.^1 > 
8 „ ^ (X, Y) = niax{6(x. y)} = 8(x3, y 3) 

xeX 
yeY 

y' ^3 ; 

I X 

nxny 

Figure 3.3 Inter-cluster distances 5 , , 5 and 6 
^^ min max avg 

Next, merge the two clusters in the current set of 8 that are closest to 

each other in the sense of set distance 8 . Two other singletons 
might merge, or perhaps one or more singletons will Join {x , x }. In 
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any case, different 5 's may result In different ensuing sequences of 
crisp clusters. This merging process continues until c=l. 

The SAHN procedure is hierarchical in that c proceeds from c=n to 
c=l, nesting more and more objects together as it proceeds. Since the 
process is non-iterative, there is no need for initialization, and the 
clusters found at each value of c are unique. The algorithms that use 

8 . , 5 and 5 „ are known as the single, complete and average 
mm max avg c ' x- c? 

linkage clustering algorithms respectively. The linkage methods are 
well defined for any relational data matrix that has positive real-
valued proximities. In particular, these algorithms generate 
hierarchies of crisp partitions in the object set from arbitrary/uzzy 
relational data. 

Partition hierarchies produced by single and complete linkage 
applied to R are displayed as dendrograms (trees) in Figure 3.4. The 
left half of Figure 3.4 shows the dendrogram obtained by single 

linkage for R . The vertical scale is set distance 5 , . This indicates 
c' 9 min 

the level at which clusters are merged. At the top of the tree each 
point is in its own cluster and c=9. For single linkage at the first 
stage points (5 and 7) and (6 and 7) are possible candidates for 
merging. Breaking ties arbitrarily, suppose we merge (5 and 7) first, 
and then this cluster merges with 7 at the same level in the next step. 

Then, at level 5ĵ in = l. points 1 and 2 merge, as do points 3 and 4, and 
5,7,6 merge with 8 and 9. In this example single linkage never 
produces, e.g., c=7 clusters if we generate clusters by cutting the 
dendrogram horizontally. However, in the process of development 
of the dendrogram a unique (up to arbitrary breaking of ties) 
partition is generated for every possible value of c, 1 < c < n . Cutting 
the dendrogram horizontally at any level in-between merger levels 
shows c as the number of vertical lines cut. In Figure 3.4 at 

6ĵ ĵ  = 1.60, the single linkage cut shows 3 clusters resulting in the 
crisp 3 - partition {1,2} u {3,4} u {5,6,7,8,9}. 

The right half of Figure 3.4 shows the complete linkage dendrogram 
using set distance 5 ^ ^ . Comparing the single and complete linkage 
solutions shows that the two hierarchies are structurally quite 
different. For example, c = 3 at 5 , =1.60, but c = 4 for 5 = 1.60. 

'^ mln max 
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Single Linkage Complete Linkage 

1 2 3 4 5 6 7 8 9 o 1 2 3 4 5 6 7 8 9 

0.00 

c = 3 0 = 4 

8r!]:i: 61 

4.10 

Figure 3.4 Single and complete linkage dendrograms on Rg 

In terms of the fuzzy graph G = (V, E, R), the single linkage algorithm 
can be interpreted as follows. At initialization, each object (node) is 
in its own singleton cluster; this corresponds to a forest of n trees in 
G. At any succeeding time in the procedure, say at c = q, the graph is 
composed of q subtrees that are again a forest in G. Each merger of 
two clusters via gmin corresponds to adding a minimum weight edge 
between the two closest subtrees, thereby creating a forest with one 
less tree. At termination of single linkage there is c = 1 cluster. In 
terms of G, the sequence of linking edges is at this point a minimal 
spanning tree (MST). This is essentially Kruskal's (1956) MST 
algorithm, which has complexity 0(|E|log2|V|) for a relation on 

|V| = n objects that has |E| edges. 
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3.4 Clustering by decomposition of fuzzy relations 

Clustering in fuzzy relational data often utilizes a-cuts of R. An a-
cut or crisp a-level-set, a e (0,1], of a fuzzy relation R is the crisp 

binary relation /€„ = l(Oi ,Oj)eOx Orry =p(Oi ,Oj)>a|. As a runs 

through (0, 1], the a- cuts of R form a nested sequence of crisp 
relations such that a^ >a2 =>/?„, c/€„„ , Le., R„, <R, • /? c/€ ie ' a i "c (2 -

In this section we give two methods for fuzzy relational data that 
jdeld sets of crisp c-partitions of the objects. One method produces 
hierarchically nested clusters while the second approach does not. 
We begin with clustering in the max-min transitive closure of R. 
Given a fuzzy similarity relation, Zadeh's (1971) resolution identity 
can be used to generate nested partitions of the objects. The 
algorithm is based on: 

0 < a < 1 where R, , = aR is the fuzzy 
(a) a •' 

Theorem Z (Zadeh, 1971): Any fuzzy relation R on X x X has the 
decomposition R = V R(„) 

a 

fa; if R(x,y) > a 
0; otherwise 

relation defined by R, Jx.y) : (3.8) 

We give an example illustrating the use of Zadeh's theorem to 
decompose a fuzzy relation on 3 objects. 

Example 3.6 

R = 
0.5 0.0 0.7 
0.3 LO 0.0 
0.5 0.3 LO 

0.3 0.0 0.3 
0.3 0.3 0.0 
0.3 0.3 0.3 

= 0.3 
1 0 1 
1 1 0 
1 1 1 

V 
0.5 0.0 0.5 
0.0 0.5 0.0 
0.5 0.0 0.5 

V 

V 0.5 
1 0 1 
0 1 0 
1 0 1 

0.0 0.0 0.7 
0.0 0.7 0.0 
0.0 0.0 0.7 

V 0.7 
0 0 1 
0 1 0 
0 0 1 

V 

V 1 

0 0 0 
0 1 0 
0 0 1 

0 0 0 
0 1 0 
0 0 1 

If R is a V - A transitive similarity relation, then R̂^̂  is an 
equivalence relation on O. To see this, note that reflexivity and 
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symmet ry are preserved for all a. Now suppose (i, j ) e R , a n d 

(J ,k)eRj^j , t h e n ry > a a n d r j ^ S a . Since R is V - A t rans i t ive 

rjk > max{min{ris,rsk}} => rjj, ^ min{rij,rjk}=> r^^ > a=:> (i,k) e R,^,. 

Therefore for V - A t rans i t ive similari ty re la t ions on n objects 
theorem Z will generate a unique set of nested crisp part i t ions of the 
objects. 

Examples .? R 

1.0 0 .8 0 .4 0.8 0.8 
0.8 1.0 0 .4 0 .8 0.9 
0 .4 0 .4 1.0 0 .4 0 .4 
0.8 0 .8 0 .4 1.0 0.8 
0.8 0 .9 0 .4 0.8 1.0 

on X = {x^,X2,x^,x^,x^} 

is a V - A transit ive similarity relation. Using theorem Z, 

R = 0 .4 

VO.9 

1 1 1 1 1 " 
1 1 1 1 1 
1 1 1 1 1 
1 1 1 1 1 
1 1 1 1 1 

V O . 8 

" 1 1 0 1 1 " 
1 1 0 1 1 
0 0 1 0 0 
1 1 0 1 1 
1 1 0 1 1_ 

1 0 0 0 
0 1 0 0 
0 0 1 0 
0 0 0 1 
0 1 0 0 

0" 
1 
0 
0 
1 

V l 

" 1 0 0 0 0 
0 1 0 0 0 
0 0 1 0 0 
0 0 0 1 0 
0 0 0 0 1 

The ERs in th is decomposition yield the following parti t ions : 

U Q 4 = (X^, X2, X3,X4,X5} , 

U0.9 = { X i } u { X 2 , X 5 } u { X 3 } u { X 4 } , 

Ui = { X i } u { X 2 } u { X 3 } u { X 4 } u { X 5 } . 

Figure 3.5 i l lus t ra tes t h i s graphical ly wi th a dendrogram. The 
vert ical axis cor responds to the va lues of a a t which c lus te rs are 
merged bottom up, starting at c = 5 and a = 1. 
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0.40 

t 
a cut level 

Figure 3.5 ix cut tree for Example 3.7 

Zadeh (1971) used matrix multiplication (0(n )) to find the max-
min transitive closure of a symmetric, reflexive fuzzy relation. 
Tamura et al. (1971) gave a slightly different method based on 
successive approximations that is at worst 0(n log n) and at best 
0 (n ). Dunn (1974b) showed that the hierarchies generated by 
Tamura et al.'s (1971) method were equivalent to single linkage 
hierarchies, and that the equivalence classes used by Tamura et al. 
could be generated from a family of nested graphs obtained by 
deleting edges in a maximal spanning tree defined on O, assuming r^ 

as the edge weight between Oj and Oj. Dunn gave an algorithm for 
constructing the max-min transitive closure of a symmetric, 
reflexive fuzzy relation based on maximal spanning trees and 
maximal capacity routes that is 0(n ). Other authors have studied 
construction of the transitive closure (see Kandel and Yelowitz, 1974 
or Larsen and Yager, 1990), but none are asymptotically faster than 
Dunn's method. A result giving the equivalence between partitions 
generated by four relational algorithms is : 

Theorem M (Miyamoto, 1990) 

O = {Oj,...,o^}, R:OxO->[0, l] is a symmetric, reflexive fuzzy 
relation. For arbitrary a e [0,1], the crisp partitions of O obtained by 
the following four schemes are identical. 
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(i) Perform hierarchical clustering using the single linkage 
algorithm. Cut the resulting dendrogram at level a to generate a 
hard partition of O = {o^,..., o^}. 

(11) G = (V, E, R) is a complete graph. ( R need not be reflexive and 

symmetric ). Let the maximal spanning tree of G be G. Let G be the 

graph that is obtained by deleting all edges in E with weights ry < a 

(edges in G^ satisfy ry > a). Let the connected components of G be 

denoted by subgraphs (GĴ ; i = l , . . . ,k}. Then the vertices of the 

connected components of G are a partition of O. 

(ill) G = (V,E,R), and G^=(0,E^,R^) is any a-cut of G. If R is 
reflexive and symmetric, the vertices of the connected components 
in G„ are a partition of O. 

(iv) Let the transitive closure of R be R~. Then the a-cuts of R°° 
induce a partition of O. 

The method of this section has been studied in information 
retrieval, where it has been used, for example, to construct fuzzy 
thesauri. Good articles related to this include: Radecki (1976), 
Miyamoto et al. (1983), Zenner et al. (1985), Bezdek et al. (1986b) and 
Larsen and Yager (1993). 

Theorem Z affords a way to decompose a fuzzy similarity relation 
into a nested hierarchy of crisp partitions of O with associated 
scalars a in [0, 1]. A different decompositional method was suggested 
by Bezdek and Harris (1978, 1979). Recall that R^ is the set of all 
hard ERs on O, 

R„={Re9l"":rye{0, l} .In<R.R = R'^,R = R 2 j . (3.9) 

Let conv(R^) be the convex hull of R . R e conv(R ) guarantees at 
least one convex decomposition 

R = i c^R^, R ^ E R ^ V k , (3.10) 
k = l 

where (c } in [0, 1] are convex weights, / is the length of the convex 
/ 

decomposition, J, c, = 1, and each R, e R is a hard ER and hence, 
k=l ^ k n 

isomorphic to a hard c-partition of O. Equation (3.10) holds for any 
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R E conv(R^). Unlike decomposition by resolution of the transitive 
closure of R, the set of partitions generated by convex decomposition 
is not a hierarchy of nested partitions. 

Example 3.8 

R = 

1.0 0.3 0.6 0.0 
0.3 LO 0.7 0.0 
0.6 0.7 1.0 0.0 
0.0 0.0 0.0 LO 

is reflexive and symmetric but not max-

min transitive. Because of the special structure of column 4, R has a 
unique convex decomposition : 

R = 0.4 

1 0 0 0" 
0 
0 

1 
1 

1 
1 

0 
0 + 0.3 

0 0 0 1 

1 1 1 0" 
1 1 1 
1 1 1 

0 
0 + 0.3 

0 0 0 1 

1 0 1 0 
0 1 0 0 
1 0 1 0 
0 0 0 1 

The ERs in this convex decomposition yield the partitions 

Uo.4 ={Xi}u{X2,X3}u {X4} ; 

U0.3 ={Xi,X2,X3}u{x4} ; a n d 

U0.3 ={Xi,X3}u{X2}u{X4} 

(3.11) 

There are two partitions for c = 0.3, one with c = 2 clusters, and one 
with c = 3 clusters. For comparison we decompose the max-min 
transitive closure of R. 

R° 

LO 0.6 0.6 0.0 
0.6 LO 0.7 0.0 
0.6 0.7 LO 0.0 
0.0 0.0 0.0 LO 

0.6 

1 1 1 0 ' 

1 
1 

1 
1 

1 
1 

0 
0 

vO.7 

0 0 0 1 

1 0 0 0' 

0 
0 

1 
1 

1 
1 

0 
0 

vl.O 

0 0 0 1 

1 0 0 0 
0 1 0 0 
0 0 1 0 
0 0 0 1 

The ERs in this decomposition by theorem Z yield the partitions 
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Uo.6 = { X i , X 2 , X 3 } u {X4} ; 

U0.7 ={xi}u{x2,X3}u{x4} -.and (3.12) 

Ui.o = { X i } u { X 2 } u { X 3 } u { X 4 } 

Comparing the partitions at (3.11) with those at (3.12), convex 
decomposition suggests U^ ^ = {x̂ } u {X2,Xg}u {x^} with c = 3 as the 
best description of the structure in the data. The hierarchy based on 
transitive closure does not have a preferred value for c based on the 
values of a. However, at c = 3, the unique choice suggested by (3.12) is 
Ug^ = {Xj}u{x2,X3}u{x^}, which is the partition "most highly 
recommended" by convex decomposition in the sense that its convex 
weight is maximum. Notice that convex decomposition never 
produces a partition for c = n. 

Since (3.10) is applicable only to R's in conv(R^), the important open 
question of how to recognize when this is true must be solved before 
this method is generally useful. Any R admitting decomposition 
(3.10) must be symmetric and reflexive. Bezdek and Harris (1978) 
showed that R^̂  c conv(R^) c R^^ for n > 3, where R^^.R^^ are the 
sets of fuzzy similarity relations defined at (3.4) that are v - A and 
V -A transitive, respectively. Thus, every fuzzy similarity relation 
in the sense of v - A transitivity on more than three objects also has 
at least one convex decomposition. Bezdek and Harris (1979) give 
three algorithms for the computation of convex decompositions of 
fuzzy c-partitions into crisp c-partitions, and show several ways to 
construct relations from them, but do not solve the problem of how 
to usefully characterize conv(R ). The related question of when a 
convex decomposition is unique is, to our knowledge, also unsolved. 

3.5 Relational clustering with objective functions 

In this section we describe several models and algorithms which 
generate a fuzzy partition from relational data based on 
minimization of an objective function. These models all assume R 
to be a pairwise dissimilarity relation between objects in O. The first 
method of this type was given by Ruspini (1970). Here we discuss four 
representative models due to Roubens (1978), Windham (1985), 
Hathaway et al. (1989) and Hathaway and Bezdek (1994b). 
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A. The Fuzzy Non Metric (FNM) model 

Rouben's (1978) model assumes that R is a dissimilarity relation 
satisfying three conditions : V i, J, r > 0, r̂ ^ = 0 and r.. = r .̂ . For 

example, every relation matrix produced from XcSt^ using (3.7) 
satisfies these three conditions. In order to partition the objects to c 
fuzzy clusters, Roubens proposed the objective function model 

min KpNM(U)-i i Su^u^rkj . (3.13) 
UeMfcn I =̂1̂ =1 J=l J 

Rewrite the objective function in (3.13) as 

c n 2 
KFNMIU)= S X Ujk 

l=lk=l 

where 

l u ^ f k j 
vi=i 

= i i u f k D i k , (3.14) 
l=lk=l 

Dik=Iu2rk j . (3.15) 
J=i 

Using the LaGrange multiplier technique under the assumption that 
Djk > 0 V i, k. Roubens obtained the usual first order necessary 
conditions for optimality of U, 

u., 
ik 

l < i < c ; l < k < n . (3.16) 

(3.16) is just an instance of (2.7a) when Dĵ . = \\x^ - v j ^ is replaced by 

Dik = S u^ry and m = 2. An alternating optimization scheme based 
J=i 

on (3.15) and (3.16) can be used to iteratively minimize K^„„. 
FNM 

Initialization is made on U, the (Di^} in (3.15) are computed with it, 
U is updated with (3.16), and then return to (3.15) results in a new set 
of values for {D^y^. This algorithm is summarized in Table 3. 4. 
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Table 3 .4 The fuzzy non-metric (FNM-AO) algorithm 

Store 
Relation matr ix R = [rj^j 

Vi ,J , Ty > 0 , rji = O a n d ry = rji 

Pick 
(•• number of clusters : 1 < c < n 
i*" m a x i m u m n u m b e r of i terat ions : T 
«•• terminat ion threshold : 0 < e 

Guess Initial par t i t ion U^ e M .̂̂ ^ 

Iterate 

t ^ l 
While (t < T ) 

For k= 1 to n 
For i=l to c 

Dik,t-1 - X Uy t-lflq 
J=i 

Next i 
For s= 1 to c 

/ 
u sk,t 

c D sk,t-l 
j=iD Jk,t-1 

Next s 
N e x t k 

If |Kp„^(U^) - Kpj,^(U^_j)| < e Then Exit While 

t ^ t + 1 
End while 
U < - U t 

Using a n argument such as that in Diday (1975), it can be shown tha t 
the FNM algori thm converges to a local m i n i m u m of K , . Libert 

a n d Roubens (1982) give some extensions a n d addit ional mater ia l 
on c luster validity associated with th is model. 

B. The Assignment-Prototype (AP) Model 

Windham's (1985) AP algorithm a s s u m e s t h a t R satisfies the s ame 
condit ions a s the FNM model. Suppose the objects are to be grouped 
into c cr isp c lus te r s Xi,...,X^- Windham a s s u m e s t h a t for each 

cluster Xj there is an object (oj^.) which is the bes t representat ive or 
prototype of t h a t cluster. Then the quality of the clustering can be 
measured by 
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(3.17) 

The smaller the value oft, the more similar the objects in X^ are to 
the prototype of the class. Minima of T point to crisp partitions of O 
that are well represented by their prototypes. Optimization of t in 
(3.17) produces hard partitions. Windham modified x so that it seeks 
fuzzy partitions U as part of optimal pairs (U, T) of the AP model 

, min .^KAP(U, T ) = I I I u^t^rk, , where (3.18) 
— ' ~ r ^ i=ik=ij=i " 

U e M^̂ ^ and M ,̂„ = { T e ^^^: T(k) e Nf, V k } . (3.19) 

In (3.19) T is the k-th row of the c x n matrix T. In component form, 
the constraints on elements of T are that each row sum to one, 

i t i k = l V i = l ,c ; and that t >0 V i,k. 
k=l ' 

U in (3.18) is a fuzzy partition of O, so û ^̂  gives the degree to which 
Oĵ  belongs to fuzzy cluster u.. The entry t̂ ĵ  represents the degree to 
which o, represents (or is typical of) the i-th prototype. Windham 
calls U an assignment matrix, and T the prototype weight matrix. 
Using the LaGrange multiplier technique twice (holding T fixed and 
optimizing on U, and then conversely) results in the usual first order 
necessary conditions 

t . =1 V?"'u.^w l / I I y i ^ ^ k n , I V U , and (3.20a) 
k y/ m V / k 

^n.=[^/}^l^^j/^[^/}^l'uj Vi'k . {3.20b) 

These equations can also be derived directly from (2.7a) in Chapter 2 
by grouping the fixed variables for each problem together and 
calling them D as in FCM for the special case m=2. Estimates of 
optimal pairs (U, T) are obtained through alternating optimization 
between (3.20a) and (3.20b). The AP algorithm is summarized in 
Table 3.5. Windham and Roubens both advocate termination when 
successive values of the objective function become close, rather than 
terminating when successive estimates of the fuzzy partition are 
close. However, termination on the closeness of successive estimates 
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of U is better because a proper choice for e when terminating on 
successive values of the objective function is very delicate. This is 
because the correct choice for e depends strongly on the actual value 
of a local minimum in the attracting neighborhood, which is, of 
course, unknown. 

Table 3.5 The assignment-prototype (AP-AO) algorithm 

Store 
Relation matrix R = rjĵ ^ ; 

Vi , j , ry > 0 , Tu = 0 and ry = rjj 

Pick 
number of clusters : 1 < c < n 
maximum number of iterations : M 
termination threshold : 0 < e 

Guess Initial partition UQ e Mf̂ .̂  

t ^ l 
While (t < M ) 

For i= 1 to c 
For ^ 1 to n 

'-il.t - I V ^ ^ik,t-l' 'k£ I V IUik,t-irkm 
m = l W k=l 

Iterate 

Next^ 
Next i 
For i= 1 to c 

For k= 1 to n 

u Ik.t - I V S ^it.t^M I^^yi^t|e,trk£ 

Next k 
Next i 

If |K^(U^,T^)-K^(Uj_j,T^_j)|<e Then Exit While 

Else t <- t + 1 
End while 
(U,T)^(Ut ,Tt) 

Example 3.9 Windham (1985) considered the (11 x 11) symmetric 
relational matrix R listed in Table 3.6. Entries for object 6 are 
highlighted because this object plays a special role when 
interpreting the output of the AP algorithm. 

R was generated from a two dimensional object data set X . The 
coordinates shown in Table 3.7 are roughly correct. Windham 
rounded off the squared Euclidean distance between each pair of 
points in Table 3.7 to the nearest integer to obtain the (relational 
data) integers in Table 3.6. For example, the squared distance 



RELATIONAL CLUSTERING MODELS 163 

between points 1 and 3 in Table 3.7 is 2.77, but in Table 3.6 this value 
is rounded up to 3. 

Table 3.6 Windham's dissimilarity data R̂ ^ 

1 2 3 4 5 6 7 8 9 10 11 
1 0 6 3 6 11 25 44 72 69 72 100 
2 0 3 11 6 14 28 56 47 44 72 
3 0 3 3 11 25 47 44 47 69 
4 0 6 14 28 44 47 56 72 
5 0 3 11 28 25 28 44 
6 0 3 14 11 14 25 
7 0 6 3 6 11 
8 0 3 11 6 
9 0 3 3 
10 0 6 
11 0 

Table 3.7 (Approximate) coordinates of X̂ ^ 

Datum X y 
^1 -5.00 0.00 

^2 
-3.34 1.67 

^3 -3.34 0.00 

^4 
-3.34 -1.67 

2̂ 5 
-1.67 0.00 

^6 
0.00 0.00 

^7 
1.67 0.00 

^8 3.34 1.67 

^9 3.34 0.00 

^10 
3.34 -1.67 

^ 1 
5.00 0.00 

2 
O 

8 
O 

o 
4 

O 
10 

11 
X 

Figure 3.6 Data set X^̂  
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Figure 3.6 displays the 11 points in Table 3.7. Although the AP 
algorithm uses only relational data R interpretation of the results 
is facilitated by knowing the (approximate) structure of the object 
data from which it was built. 

The visual configuration of X suggests that it possesses c=2 
clusters, (the left and right 5-point sets), with a bridge or neck 
between them provided by object 6. We initialize the AP algorithm 
with the 2-partition 

Ur K K K K K ' U ' U \ ) t ) ' D ' U 
U X ) X ) ' U X ) K K K K K K 

, where (3.21) 

K=0.75 and v = 0.25. Using other protocols specified in Windham 
(1985) leads to the outputs shown in Table 3.8. The rows of U and T 
are shown transposed, and as required, columns of U and rows of T 
sum to 1. 

Table 3.8 [U, T) produced by AP-AO for R̂ ^ 

Memberships Prototype weights 
Datum u,T) U(''2) T ^ 

X j 0.92 0.08 0.13 0.01 

^ 2 
0.90 0.10 0.14 0.02 

^ 3 
0.95 0.05 0.27 0.02 

^ 4 
0.90 0.10 0.14 0.02 

^ 5 
0.86 0.14 0.16 0.03 

^ 6 
0.50 0.50 0.06 0.06 

^ 7 
0.14 0.86 0.03 0.16 

^ 8 
0.10 0.90 0.02 0.14 

^ 9 0.05 0.95 0.02 0.27 

^ 0 
0.10 0.90 0.02 0.14 

^ 1 
0.08 0.92 0.01 0.13 

The membership values in Table 3.8 are symmetric with respect to 
the y axis in Figure 3.6. Objects 3 and 9 have the highest 
memberships in clusters 1 and 2, respectively. The prototype 
assignment values suggest that object 3 is the best representative for 
cluster 1, and that object 9 is the best prototype for cluster 2. Visual 
inspection of X agrees with this. 



RELATIONAL CLUSTERING MODELS 165 

Diday (1975) proposed a problem that seeks crisp clusters in R based 
on minimizing an objective function which is quite similar to the 
AP objective function, 

K(U,T) = I E I u ^ t r 
1 k J ^ ^ 

(3.22) 

subject to Uik.tjk e {0,1} V i,k, lUik 
i=l 

1 V k and X tj^ = ni V i. 
k = l 

Relation r^j is a measure of dissimilarity between o and o satisfying 
V i, j , ry > 0, Tjj = 0 and ry = rji, where HJ is the number of points in 
crisp cluster i. 

C. The relational fuzzy c-means (RFCM) model 

Recall from Chapter 2 that for object data Xc9 tP , the FCM 
clustering model is defined by the optimization problem 

min J ^ ( U , V ) = I XuJ^Djk 
(U, V) I i = l k = l 

(3.23) 

Equation (2.23b) shows the reformulation of J in terms of V alone 

when Djĵ  = llxii - Vj 11̂ . For relational clustering Hathaway et al. 
(1989) applied the opposite-case reformulation to J , using (2.7a) to 
eliminate V instead of U from J . The effect of this substitution is to 

m 

restrict J to a surface in (U,V) space which satisfies two important 
properties: (i) J is a function of U alone on this surface; and (ii) by 
the reformulation theorem, this surface contains all minimizing 
pairs (U*,V*) of J . We represent the reformulation of J in terms of 
U as K . After some algebraic manipulation K takes the form 

K„(U)=X 
i=l VĴ  =1 k = l 

I I u | f u S x j - x J / 2 I u -
t=i J 

(3.24) 

Equation (3.24) can be rewritten as 

K ^ ( U ) - S 
i=l 

i xKuSrjk)/Uiu-
t = l 

, where (3.25a) 

jk 11 J "^IIA 
(3.25b) 
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By the reformulation theorem, minimization of Km at (3.25) is 
equivalent to minimization of J in (3.23) or R at (2.23b) provided 

R satisfies (3.25b). Condition (3.25b) holds for some X c: 9^P and 
positive definite A t̂ I if and only if it holds for some Y c 9tP and A = 
I. When there exists a set of n object data in some dimension p such 
that the pairwise distances define R, we say that Km is the relational 
dual of Jm-

Table 3.9 The relational fuzzy c-means (RFCM-AO) algorithms 

Store 
Relation matr ix ^^h-^Lxn^^t^'fy^^S Vi , j , k , 

ry > 0 , rii = 0, ry = rj; and r^^ = |xj - Xk||^ 

'•- number of clusters : 1 < c < n 
Pick »•• max imum n u m b e r of i terations : T 

••" weighting exponent : 1 < m < °o 
• - terminat ion threshold : 0 < e 

Guess Initial par t i t ion U^ e M^̂ ^ 

t ^ l 
While (t < T ) 

For i= 1 to c 

vu=K,t-i us,t-i)yi<t-i 
Next i 
For k= 1 to n 

For i= 1 to c 

dL t= (RVi , t )k - ( (Vu) ' 'RVi , t ) / 2 
Next i 

Iterate If dik,t>OVi 

Then u^^^ = 1/ 
f=i 

(0 ; du„ t>0 

Else uu,,t = 1 ^ ^ ^ . ^ ^ ^ ^ Q. ^^^^ ^ Q̂̂  jj_ 1 ^ ^ ^ ^ J 

N e x t k 

If | K ^ ( U J - K^(U^ )̂ < 8, Then Exit While 

t ^ t + 1 
End while 
U ^ U t 
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RFCM implicitly assumes that R is obtained from (inner product) 
distances between pairs of object data. It is important to note that R 
is not necessarily a fuzzy relation. R must satisfy the same 
requirements as the AP and FNM models, and (3.25b) as well. First 
order necessary conditions for minimization of K lead to the 
alternating optimization scheme called the relational fuzzy c-
means (RFCM) algorithms which are summarized in Table 3.9. 

Protocols needed in case d = 0 for some (j, k) are the same as for 

FCM. Let X c 9̂ P have n points and R = II iP 
J*^ II J ' ' H A 

be the 

associated n x n relation matrix. If started at the same initial 
partition, FCM and RFCM yield identical iterate sequences of 
partition matrices (Hathaway et al., 1989). The update equation for 
U in FCM and RFCM has the same functional form, but the vectors 
{v,} in the iteration of Table 3.9 lie in g^", not in ĝ p as they do for 
FCM. That is, RFCM does not generate cluster centers of object data 
during iteration because RFCM processes relational data. However, 

II i|2 
if object da ta satisfying rjk= Xj-Xj^ are known, the 
reformulation theorem guarantees that non-iterative computation 
of the cluster centers with (2.7b) based on the terminal partition 
found by RFCM will be the same as the cluster centers found directly 
with FCM, provided both algorithms are initialized at the same 
partition of X. The reformulation theorem can also be used to design 
relational versions of HCM and PCM. 

Example 3.10 

Table 3.10 shows terminal membership values for fuzzy cluster U 
(u (o )=1- u (o ) Vk) in partitions generated by the FNM, AP and 
RFCM (m=2) relational clustering models. 

Since R in Example 3.9 is derived from X with Euclidean 
distance, we expect RFCM to produce reasonably good results for this 
data. All three algorithms were initialized with the 2- partition U 
at (3.21), and all were terminated (in less than 18 iterations) when 
the absolute difference between successive values of their objective 
function was less than e = 0.0001. 

Table 3.10 shows that all three models behave similarly on this data 
set. They all produce membership functions that are symmetric 
with respect to the y axis, and they all assign the membership value 
0.5 to object 6 in both fuzzy clusters. The RFCM result is the crispest 
of the three outputs, and FNM is very slightly the fuzziest, even 
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though all three algorithms use squares for membership exponents 
in this example. 

Table 3.10 Terminal cluster 1 memberships for R̂ ,̂  

FNM A P RFCM 
Datum U(T) uS) u,T) 

^1 0.91 0.92 0.95 

\ 0.88 0.90 0.94 

^3 0.93 0.95 1.00 

^4 
0.88 0.90 0.94 

^5 
0.82 0.86 0.91 

^6 
0.50 0.50 0.50 

X 
7 

0.18 0.14 0.09 

Xg 0.12 0.10 0.06 

Xg 0.07 0.05 0.00 

^ 0 
0.12 0.10 0.06 

^ 1 
0.09 0.08 0.05 

AP and FNM require one less assumption on R than RFCM. Thus, 
the AP and FNM models have a wider reach in applications than 
RFCM. What happens when RFCM is applied to arbitrary 
dissimilarity data that does not satisfy (3.25b)? Hathaway and 
Bezdek (1994b) provide a partial solution to this problem through an 
extension of RFCM that is discussed next. 

D. The non-Euclidean RFCM (NERFCM) model 

RFCM can be used to cluster a set of n objects described by pair-wise 
dissimilarity values in R if (and only if) there exist n object data 
points in some p-space whose squared Euclidean distances match 
values in R. More formally, a relation R is Euclidean if there exists a 

data set X = {x,,...,x } in 9t"-^ such that R " "̂  ^jk F J - ^ K 
otherwise, R is said to be non-Euclidean. Any object data set X 
corresponding to a Euclidean relation R is called a realization of R. 
If there exists a realization of R in p-space, p < n-1, we can get a 
realization in n-1 space by adding n-p-1 components with constant 
values to each point in the p dimensional data. 

The duality theory of the relational (RFCM) and object (OFCM) data 
versions of the fuzzy c-means models says that RFCM applied to R 
corresponds to OFCM applied to object data X if and only if there 
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exists a set of n points in 9 "̂"̂  whose squared Euclidean distances 
match the given dissimilarity data R. Given an arbitrary relation 
there is no reason to believe that the duality condition will hold. 
And if it does not, RFCM may fail. We will see later an example of 
this type where the relational data are generated as squared, pair-
wise (object-data) distances in 1-norm. 

NERF c-means assumes that dissimilarity relation R is irreflexive, 
positive and sjonmietric : 

rj, = 0 ,j = l,. . ,n ; {3.26a) 

rjk > 0 ,1 < j , k < n ; and (3.26b) 

rjk = rkj , l < J , k < n . (3.26c) 

Given a non-Euclidean R that satisfies (3.26), the basic idea in NERF 
c-means is to convert R into a Euclidean relation Rp using a [3-

spread transformation, and then apply RFCM-AO to Rp. This is very 
similar in spirit to clustering in the transitive closure of a relation 
after finding it, as we did in Example 3.2. The transformation is: 

R p = R + P ( l „ , „ - I J , (3.27) 

where p is a suitably chosen real scalar, l̂ ^ is the n x n identity 

matrix and 1 is the n x n matrix with I's at every address. 
nxn -^ 

Choosing |3 = 0 in (3.27) reduces Rp to the original relation, R = RQ. 
The operation in (3.27) is called p-spreading since the addition of p 
> 0 to the off-diagonal elements of any Euclidean matrix R has the 
effect of spreading out the corresponding realization. We discuss the 
case p < 0 after Example 3.11. 

Example 3.11 Let R be the Euclidean relation 

R = Ro 
0 81 100 
81 0 1 

100 1 0 
(3.28) 

One realization of R = RQ is given by the three points 

xi = (}), X2 = [ \ ° j and X3 = ( Y ] , (3.29) 

which are plotted along the horizontal line segment in Figure 3.7 
indicated by p = 0. 
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0 
0 

p = o 
16 

Figure 3.7 Some 3-point realizations for Rg using R from (3.28) 

Figure 3.7 also exhibits realizations for Rj, Rjg, Rgg, and RIQO- This 
demonstrates geometric spreading of the realization as p increases. 
Realizations are not generally unique. However, the ones shown in 
Figure 3.7 are the only ones satisfying these three conditions: the 
left point is x ; (2) the second coordinate of the right point = 1; and (3) 
the second coordinate of the middle point is at least 1. Visually, the 
natural crisp clustering of these three points for small values of P is 
c = 2 groups, {Xj} u {X2, Xg}; as p increases, this becomes less and less 
obvious. 

To illustrate the effect of p on clustering, Rp was clustered with 
RFCM-AO for various values of p with m = c = 2. Initialization was 
at the (visually unnatural) crisp clusters {XJ^,X2}KJ{X.^}. Results for 

every value of p shown in Figure 3.7 and several others as well are 
listed in Table 3.11. 

The values shown in Table 3.11 are the terminal memberships of the 
three points in cluster 1 at each value of P. Cluster 2 memberships 
can be obtained by u = 1 - u k = 1, 2, 3. First observe that RFCM-
AO works for P = -0.25 and -0.50, even though R_Q 25 and R_Q Q̂ are 
non-Euclidean. This, as well as the failure of RFCM-AO at P = -1 will 
be explained below. 
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Table 3.11 Terminal RFCM -AO membership values in cluster 1 

p Iter. Ui(Xi) Ui(X2) UilXg) 

-1.00 0 Fails Fails Fails 
-0.50 4 1.000 0.002 0.001 
-0.25 4 1.000 0.002 0.002 

0 4 1.000 0.003 0.003 
1 4 1.000 0.006 0.005 

10 6 1.000 0.027 0.024 
50 11 1.000 0.094 0.078 
100 16 0.999 0.134 0.112 
500 46 0.995 0.207 0.177 

1,000 78 0.994 0.221 0.192 
5,000 336 0.992 0.230 0.210 
10,000 131 0.818 0.730 0.010 

For p > -0.5, terminal partitions become fuzzier and the work 
required (iterations to termination) increases as [J increases to 
5000. In all cases except (3 = 10,000 the final partition reflects a 
strong association of the center point Xo with the right point Xg; the 

hardened version of U in these cases is . For p = 10,000 the 

spread is finally great enough that RFCM-AO stalls near the initial 

0 
1 

partition {x^,x^}'u\ 
rowofTable3.11. 

as indicated by the memberships in the last 

Rp is non-Euclidean for any p < 0. To understand this recall the 
well-known result ( Mardia et al., 1979) that 

R is Euclidean <^ z'̂ Rz < 0 V z e 5t" with I z, = 0. (3.30) 
J=i 

With 1 and I as in (3.27), 
nxn n ^ ' 

P = L - l - l l (3.31) 

is the projector onto the n-1 dimensional subspace orthogonal to the 
n-vector 1^^^. A condition equivalent to (3.30) is 

R is Euclidean <=> PRP is negative semi-definite. (3.32) 
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In other words, R is non-Euclidean, and RFCM-AO may fail, 
whenever the matrix PRP has a positive eigenvalue. It is also well-
known in the literature on multidimensional scaling that for a 
Euclidean matrix R the number of strictly negative eigenvalues of 
PRP equals the (minimum) dimension s required for a realization of 
R. Example 3.12 illustrates this. 

Example 3.12 Consider the dissimilarity matrix R of equation (3.28) 
in Example 3.11 where n = 3. To determine whether R is Euclidean or 
not, we calculate the eigenvalues of 

PRP = 
2/3 -1/3 -1/3' 
-1/3 2/3 -1/3 
-1/3 -1/3 2/3 

0 81 100" 
81 0 1 X 
LOO 1 0 

2/3 -1/3 -1/3 
-1/3 2/3 -1/3 
-1/3 -1/3 2/3 

which are {0, 0, -364/3}. Since all eigenvalues are non-positive, PRP 
is negative semi-definite, and R is Euclidean. Now the minimum 
dimension required for a Euclidean realization of R is 1, since only 
one of the eigenvalues is negative. It is easy to verify that the real 
number s {y , y , y } = {0, 9, 10} c 9? are a one dimensional 
realization of R. (Another would be {25, 34, 35}.) We can always find 
a higher dimensional realization by adding constant components to 
a lower dimensional one. For example, a 3-dlmenslonal Euclidean 

realization of this R is {xj, Xg, X3} = Y 
9 
Y 

10 
Y y,Xe3i- If the 

eigenvalues of PRP had been, for example, (0, -4, 1}, then R would not 
have been Euclidean, and no Euclidean realization of it would exist 
in any dimension. 

A result that gives insight about the construction of a Euclidean 
relation using the p-spread transformation follows. 

Theorem HB (Hathaway and Bezdek, 1994b) 

Let R e St"'"'' satisfy (3.26), and let Rp and P be the matrices In (3.27) 
and (3.31) respectively. Then: 

(a) PRpP = P(R-pI„)P. 

(b) 1^^^ is an eigenvector, with corresponding eigenvalue 
0 for both PRP and PRpP. 

(c) w is an eigenvector of PRP if and only if it is an 
eigenvector of PRpP. 
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(d) if w is an eigenvector of PRP and PRpP other than a 

multiple of l„^j, then the corresponding eigenvalues 
X and A,p of PRP and PRpP satisfy X-p = X . 

This shows that adding P to the off diagonal elements of a matrix R 
satisfying (3.26) effects a shift of - [J to all the eigenvalues of PR„P. 

except the zero eigenvalue corresponding to the eigenvector l^^^j, 
which is left unchanged. Now, let a given non-Euclidean R satisfy 
(3.26) and let X be the largest eigenvalue of PRP. We must have X > 0 
by (3.32) since R is non-Euclidean, so it follows by (3.32) and 
Theorem HB that Rp will be Euclidean for all choices of [3 > ^. 

Figure 3.8 depicts the general case for any relation R that satisfies 
(3.26) and the additional constraint that R ^ T(ln>,n - !„) for any x in 

9t. Then there is some value p for which R^ is Euclidean and 

realizable by a set {x^,...x^} c 9t̂  for some s, 1 < s < n-2. Moreover, 

Rp is non-Euclidean for P < P, and Euclidean for p > P, but 
realizable only for s > n-1 . 

Realization in 3i^ for 
some s satisfying 

1 < s < n-2 

^ No Realization Y Realization in 9t" w 

P < P p p > p 

Figure 3.8 Minimum realization dimension for Rp 

In Example 3.11, the cutoff value is P =0, where R = RQ is realizable 
in 9?. For any choice of P > 0, the realization requires n-1 = 2 
dimensions, and for any p < 0, no realization exists and Rp is non-
Euclidean. Observe that rows 2 and 3 of Table 3.11 correspond to 
cases when RFCM-AO worked even though Rp was non-Euclidean. 
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Table 3 .12 The NERFCM-AO algorithms 

Store Relation matrix R = rjî  satisfying, Vi.J. 

r.. > 0 , r„ = 0 , r , = r . . and R 7̂ 11(1 - I 
ij 11 Ij ji ^ nxn n 

), t e9^ 

(•• number of clusters : 1 < c < n 
«*' maximum number of Iterations : T 

Pick <*- weighting exponent: 1 < m < 0° 
«•• termination threshold : 0 < 8 

Guess Initial partition Ug e M̂ .̂ ^ 

|3=0; t < - l 
Whl le( t<T) 

For 1=1 to c 

Next 1 
For i= 1 to c 

For k= 1 to n 

_,r (3.33) 

Next k 
Next 1 
If d, < 0 for any i and k, then 

ik 

(3.34) 

Ap = maxj-2 * d̂ ^ / (||vj ^ - e ^ l ^ (3.35a) 

Iterate 
l , k *• ' -' 

For 1= 1 to c 
For k= 1 to n 

Nextk 
Next 1 

(3.35b) 

(J = p + Ap 
For k = 1 to n 

If dik > 0 V 1 

(3.35c) 

"ik,t - / i ( d ^ , / d ) i / ' - " 
1=1 -̂  

(3.36) 

Else Ujĵ  ̂  = 0 if djk > 0 and u.^ ^ > 0 with 

Nextk 

If IK (U J - K (U, ,) < e Then Exit While 

t < - t + l 
End while 

1=1 

U ^ U t 



RELATIONAL CLUSTERING MODELS 175 

A straightforward way of using (3.27) with RFCM would be to simply 
compute (numerically) the largest non-negative eigenvalue >t ( = p in 
Figure 3.8) of PRP, and then cluster the Euclidean matrix Rg^ with 

RFCM-AO. Instead of doing unnecessarily costly eigenvalue 
computations, Hathaway and Bezdek (1994b) suggested an alternate 
approach that dynamically estimates in a computationally efficient 
way the p-spread needed to continue RFCM-AO. This approach is 
efficient because it depends primarily on by-products of the original 
RFCM iteration. Table 3.12 lists the NERFCM-AO algorithm 

NERFCM-AO and RFCM-AO are identical except for the 
modifications in (3.35) that are active whenever some negative value 
of 

^ik '̂̂  encountered. The duality theory asserts that dj,̂  values 
correspond to certain squared Euclidean distances if an object-data 
realization of Rp exists. It follows that a negative value of djĵ . signals 
the non-existence of a realization of Rp, which indicates that the 
current value of p should be incremented by some Ap > 0 so that the 
basic (RFCM-AO) iteration can be continued using the new shifted 
value P + Ap. Hathaway and Bezdek in (1994b) showed that the 
increment Ap in (3.35a) is reasonable in the sense that it provides a 
meaningful lower bound of the minimum increment needed to make 
the new Rp Euclidean. They also proved that NERFCM-AO was 
correct in that the updated d̂ ^ values in (3.35b) are non-negative and 
correspond to the djĵ  values for the newly updated p in (3.35c). 

To summarize, modification of the original RFCM-AO algorithm 
using (3.35) calculates a reasonable (under)estimate of the minimum 
shift required to transform the current Rp into a Euclidean matrix, 
and then implements this shift by updating the current djĵ  values 
and value of p. The quantities used to determine the shift are the 

original d̂ ,, values and the values {||vj - eĵ lj }. Since these are exactly 
the quantities needed to perform the updating of the djĵ ,̂ there is no 
wasted computation done in determining the new increment to Rp. 
Moreover, whenever an increment in the shift is not needed, which 
is in the large majority of iterations, the work requirements for that 
particular iteration of NERFCM-AO are no greater than that for a 
RFCM-AO iteration, except for the additional negativity checks on 
djjj., which are negligible in cost. 

Example 3.13 Table 3.13 lists the coordinates of the data set X^ 
produced by truncating the decimal parts of X^̂  in Table 3.7. 
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Table 3.13 Coordinates of X 
11 

Datum X y 
X l -5 0 

X 2 
-3 2 

^ 3 
-3 0 

X 4 -3 -2 

X 5 
-2 0 

Xe 0 0 

X 7 2 0 

^ 8 
3 2 

X g 3 0 

^ 1 0 
3 -2 

X l l 5 0 

Figure 3.9 is a scatterplot of X^j, which shows that X^j has the same 

basic structure as X^̂  (Figure 3.6). Visually, there are again clusters 

to the left and right of the bridge point x = (0,0)^. 

O C3—6—O O O X 

Figure 3.9 Data set X^ 

All runs of NERFCM-AO reported here used c = m = 2, a stopping 
criterion e= 0.0001, and the initialization shown at (3.21). Three 
transformations of X^̂  were made, resulting in three dissimilarity 
relation matrices R^t- Specifically, the entries of R|u|| were 

computed using: (i) squared Euclidean distances R 2 : fti) squared 1-
Irlb 

norm distances R o : â nd (iii) squared 1-norm distances with an 
Irlli 

off-diagonal shift of 48.0, R„ ,,9 . The third choice is motivated by 
^ HI?+48 ^ 

the eigenvalues of PR|U||P, all three sets of which are displayed in 
Table 3.14. 
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Table 3.14 Eigenvalues of PR||*||P for three cases 

^ I W l i ^ I M I ? W?+48 
0.00 48.00 0.00 
0.00 22.11 0.00 
0.00 4.94 -25.89 
0.00 0.00 -43.06 
0.00 0.00 -48.00 
0.00 0.00 -48.00 
0.00 0.00 -48.00 
0.00 -3.32 -51.32 
0.00 -47.12 -95.12 

-32.00 -80.00 -128.00 
-212.00 -278.79 -326.79 

The pair of negative eigenvalues for P R„ ,,9 P shown in column 1 of 

Table 3.14 imply that R„ ,,0 has a two-dimensional obiect-data 

realization. This is no surprise, since R„ ,,9 was derived using 
^ I ' l l 

squared Euclidean distances between two-dimensional vectors. 
Table 3.14 also suggests that using the 1-norm gives a non-Euclidean 
R (also no surprise) as indicated by three positive eigenvalues, the 
largest of which is 48. Apparently R 2 can be made Euclidean using 
a P-spread with (3 > 48. Using |3 = 48 in (3.27) with R = R 2 renders 

Irli 
Rp Euclidean, and this transformed matrix has a nine-dimensional 
object-data realization. This is seen in the third column of Table 
3.14; R„ 9 has 9 negative and no positive eigenvalues. 

Ml+48 ^ F & 
Terminal membership values in cluster 1 obtained by applying 
NERFCM-AO to the three relational data sets generated by 
transforming X^̂  are listed in Table 3.15. 

Membership values for R 2 ^.nd R n are relatively crisp and 
Irll I*l2 

similar to each other, the maximum difference being 0.05. 
Membership values for clusters in R 2 (corresponding to 
Euclidean distances for some object data set in ĝ 9) are much fuzzier, 
as expected. The shift needed for the R 0 data was only p = 3.56, 

Irll 
much less than the P = 48 required to have actual Euclidean 
dissimilarities. Note tha t bridge point Xg receives equal 
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membership in both clusters in all three cases; this is expected and 
desirable. 

Table 3.15 Terminal NERFCM-AO memberships in cluster 1 

Data Set ^ll*l|2 l̂l'llf R„ „2 

Iter. 11 11 9 
Final (3 0 3.56 0 

X i 0.93 0.90 0.75 

^ 2 
0.91 0.89 0.73 

^ 3 
1.00 1.00 0.77 

X 4 0.91 0.89 0.73 

^ 5 
0.81 0.76 0.62 

^ 6 
0.50 0.50 0.50 

X 7 0.19 0.24 0.38 

^ 8 
0.09 0.11 0.27 

X g 0.00 0.00 0.23 

^ 1 0 
0.09 0.11 0.27 

X l l 0.07 0.10 0.25 

NERFCM shares all the good properties of RFCM. If negative dj^ 
values are not encountered, then NERFCM is RFCM; and when they 
are encountered, a simple modification adjusts the "spread" of 
(implicit realizations of) the data just enough to keep the iteration 
sequence {U } in M^^^. 

3.6 Cluster validity for relational models 

Methods for validation of clusters found from relational data are 
scarce. Validity for partitions based on object data X was discussed 
in Section 2.5. When X c 9?P is transformed into relational data R 
using the techniques in Section 3.2, subsequent processing with a 
relational algorithm leads to a crisp or fuzzy c-partition of X. In this 
case many of the indices in Section 2.5 can be used for validation of 
U, since X is available. 

When the data are relational to begin with, validation methods that 
explicitly require numerical data (for example, all direct indices) 
are not applicable to the question of cluster validity. When a 
relational algorithm produces/uzzy partitions of O, indirect indices 
such as the partition coefficient and partition entropy can be used 
for validation. 
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Jain and Dubes (1988) cover several statistical h3qDothesis tests for 
validation of entire hierarchies (dendrograms) of clusters that are 
obtained from methods such as the linkage algorithms and Zadeh's 
decomposition of the transitive closure. Another validation 
strategy for linkage type algorithms is associated with the size of 

Jumps taken by the set distance 6 that controls merger or splitting 

(Hartigan, 1975). For example, when the procedure begins with 6=0 

at c = n and terminates at 6 = maximum at c = 1, the usueil strategy is 

to look for the largest jump in AS = 6(c -1) - 8(c). This is taken as an 
indicator that c is the most natural choice for the best number of 
clusters, on the presumption that the SAHN method works hardest 
to merge clusters that cause the biggest Jump. In Figure 3.4, for 
example, successive Jumps in the single linkage merger distances 
are 0.50, 0.50, 0.85 and 0.21. The largest jump, (0.85 from c = 3 to c 

=2) identifies the crisp partition X = {l, 2} u {3.4} u {5,6,7,8,9}, c = 3 

clusters at 5 . =1.00, as the most natural ones. The configuration of 
min =' 

the data in Figure 3.2 seems to confirm this visually, although a case 
can be made that c = 2 is Just as natural. 
The sequence of jumps for the complete linkage solution shown in 
Figure 3.4 is 0.50, 0.50, 0.75, 0.45 and 1.9, indicating that the 
clusters associated with c = 2 are the best choice, which is of course 
different than the solution offered by single linkage. One problem 
with this method is that the biggest jump can be severely influenced 
by the presence of a few outliers. 

Zadeh's algorithm decomposes a fuzzy relation into crisp partitions 
with different values of c at values of a corresponding to a-cuts of 
R°°. The scalars {a} are sometimes regarded as a rough indication of 
the validity of each hard clustering of O. In Example 3.7, we might 
assert that each object belongs by itself (c = 5) with confidence a = 1. 
But this is always true, and leads to the wrong conclusion - i.e., that 
the best clustering is one with all singletons. Continuing this 
reasoning, x and x would belong together with confidence a = 0.9, 

and so on. Since a is just the edge weight of the strongest adjacency 
link between each pair of nodes in R , the word confidence as used 
here has no statistical connotation, and this use of the values of a is 
pretty misleading, for they do not portray "better and better" 
partitions as a gets closer and closer to 1. Indeed, you might argue 
that the confidence in a partition by R should be inversely 
proportional to a, and we would not object. In view of Theorem M, 
we know that single linkage generates the same clusters as Theorem 
Z for fuzzy similarity relations. Consequently, the largest jump 
method can also be used for validation of clusters such as those 
associated with the dendrogram in Figure 3.5. In this figure, the 
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successive jumps in a are : 0.10, 0.10, and 0.40, indicating a strong 
preference for c = 3 clusters. 

p 
When R is clustered with convex decomposition, since X Cĵ  = 1, c 

k=l ^ 

indicates the "percentage" of R needed for convex factorization of R. 
In terms of cluster validity then, c can be loosely interpreted as an 
indicator of the relative merit of the associated c-partition induced 
on O by R . In Example 3.8, this leads to interpreting the 3-partition 
UQ 4 as the most valid choice, and the two partitions with c = 0.3 at 
different values of c are regarded as less but equally valid. 

3.7 Comments and bibliography 

The SAHN, transitive closure and convex decomposition techniques 
produce hard partitions from certain crisp or fuzzy relations. FNM, 
AP, RFCM and NERFCM all produce fuzzy partitions from 
particular classes of fuzzy relations by minimizing a relational 
objective function with alternating optimization. Kaufman and 
Rouseeuw (1990) discuss a method called FANNY that is closely 
related to RFCM. Sen and Dave (1998) show that using the method of 
LaGrange multipliers with the RFCM objective function in (3.25a) 
leads to the RFCM algorithm without making the assumption in 
(3.25b), but the derivation does not ensure that all of the 
memberships will be non-negative, because LaGrange multipliers 
only enforce equality constraints. Following Kaufmann and 
Rousseeuw's derivation of FANNY, these authors have very recently 
obtained an even stronger result using Kuhn-Tucker theory that 
proves that the memberships will satisfy the required non-
negativity condition. This result will be published in a forthcoming 
paper. The equations obtained in their Kuhn-Tucker approach are 
slightly different than the ones given in our description of the RFCM 
algorithm. 

Fuzzy partitions enable the user to quantitatively distinguish 
between objects which are strongly associated with particular 
clusters from those that have only a marginal (borderline) 
association with several classes. The AP algorithm assumes the 
existence of prototypical objects which should be good 
representatives of different clusters (but does not give a method for 
finding them, although the object with maximum typicality would 
be an obvious candidate), and has the least restrictions on relations 
that it can process. Runkler and Bezdek (1998b) give a relational 
version of the alternating cluster estimation method called RACE 
that explicitly finds prototypical object indices (and hence, 
prototypical objects too), even though the data are known only in 
relational form. RACE finds a fuzzy partition of the objects too, and, 
like its object data counterpart (ACE, Runkler and Bezdek, 1998a), is 
not objective function driven. 
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Using NERFCM-AO is in one sense like extracting clusters from a 
crisp relation by first computing its v - A transitive closure as in 
Example 3.2. Both methods group the n objects underlying the 
original relation by clustering in a transformed relational data 
matrix. For NERFCM-AO it is difficult to estimate of how closely 
clusters in Rjj might resemble those extracted from R by some other 
method. Intuitively, if the required spread is not too large, structure 
inherent in R should be mirrored by that in Rp. Hathaway and 
Bezdek (1994c) discuss a crisp version of this model called, 
naturally, non-Euclidean relational hard c-means (NERHCM). 

The usefulness of relational clustering methods is limited by several 
things. First is the matter of their computational complexity. O(n^) 
run times are flne if n = 150, as in the Iris data. But in large relational 
databases, n may be on the order of 10^, and CPU time becomes an 
important factor. On the other hand, some information retrieval 
problems, for example, are cast naturally in the form of relational 
clustering, and there may be little choice but to use one of these 
schemes. Another limitation with the methods in this chapter is that 
they are explicitly limited to square relations, while a real 
application may have rectangular relational data. 

Delgado et al. (1995) propose the use of hierarchical clustering 
algorithms such as single linkage for cluster validity. In their view 
the failure of cluster validity functionals such as the ones discussed 
in Chapter 2 can be ameliorated by pre-clustering data with a SAHN 
algorithm, and using the results to limit the range of c and provide 
good initializations for the "real" clustering to follow (presumably by 
a non-crisp clustering algorithm). Having said this, they try to 
address the topic of Section 3.6 - how to validate relational clusters -
by proposing several validity measures for their SAHN algorithms. 
In other words, they end up with the same problem in one domain 
they are trying to avoid in another domain! They give several 
numerical examples of their methods, including one with the Iris 
data. 

Sato et al. (1997) propose three relational clustering models they call 
additive clustering models. In the language of our book these 
correspond to crisp (ordered additive), fuzzy (simple additive) and 
posslbilistic (overlapping additive) clustering schemes. All three 
methods are regarded as relatives of the crisp relational model of 
Shephard and Arable (1979), extended using fuzzy data, fuzzy 
dissimilarity and multicriteria clustering. The basic objective 
function for Sato et al.'s three additive models is 



182 FUZZY PATTERN RECOGNITION 

m m •; K,cM(U,a) = 

n n / c 
I Z kkj - a I UjkU 

j=l k;=lV i=l 

I I fk j - r 
j=i k=i ^ ' 

, where (3.37a) 

n n 
X Z TkJ 

J=l k=l 

n(n -1) 
(3.37b) 

Sato et al. build three models (one each for U e Mĵ ^ .̂M^^ .̂M ^ )̂ based 
on variations of (3.37) that are used with ratio, interval and ordinal 
relational data. The relational data matrix in their models is not 
restricted to inner product norm distance relations or even 
symmetric relations. Sato et al. also discuss a "generalized fuzzy 
clustering model" for relational data that uses an aggregation 
operator in the objective function 

m m K„(U)= I S 
J=l k=l 

r , - I T , u ik U., (3.38) 

where T is any T-norm. Three choices are discussed and exemplified 
in Sato et al. : the minimum (T ), product (T ) and Hamacher T-norms 
(Klir and Yuan, 1995). Also given are methods for optimizing (3.38) in 
each of the three cases. They give several examples of clustering with 
each of these models using small relational data sets, but like their 
discussion of TFCM (Section 2.6), no numerical comparisons to other 
relational clustering models are offered, so we are again at a loss to 
make any assessment of the utility of these models. However, the 
work presented in this little book considerably extends the body of 
fuzzy clustering algorithms available for relational data, so if this is 
the type of data you have, by all means consider trying one or more of 
these approaches. 



4 Classifier Design 
4.1 Classifier design for object data 

In Section 1.1 we defined a classifier as any function D: St̂  i-̂  N . 

The value y = D(z) is the label vector for z in 91^. D is a crisp classifier 
if D[91P] = N ; otherwise, the classifier is fuzzy, possibilistic or 
probabilistic, which for convenience we lump together as soft 
classifiers. This chapter describes some of the most basic (and often 
most useful) classifier designs, along with some fuzzy 
generalizations and relatives. 

Soft classifier functions D: 9tP i-> N are consistent with the 
pc 

principle of least commitment (Marr, 1982), which states that 
algorithms should avoid making crisp decisions as long as possible, 
since it is very difficult (if not impossible) to recover from a wrong 
crisp classification. This is particularly true in complex systems 
such as an automatic target recognition system, or a computer aided 
medical diagnostician that uses image data, because there are 
several stages where decisions are made, each affecting those that 
follow. For example, pixels in a raw image need to be classified as 
noise points for preprocessing, objects need to be segmented from 
the preprocessed images, features must be extracted and the objects 
classified, and the entire "scene" needs to be labeled. While we use 
mostly simple data sets to illustrate some of the algorithms in this 
chapter, keep in mind complex scenarios such as the ones jus t 
described to appreciate the potential benefits of fuzzy recognition 
approaches. 

Many classifiers assign non-crisp labels to their arguments. When 
this happens, we often use the hardening function H:N f-> N, 

^^ '̂  pc he 

defined at (1.15) to convert non-crisp labels into crisp ones; for c 
classes, H o D(y) = H(D(y)) e {ê  e^}. 

Designing a classifier simply means "finding a good D ". When this is 
done with labeled training data, the process is called supervised 
learning. We pointed out in Chapter 2 that it is the labels of the data 
that supervise; we will meet other forms of supervision later in this 
chapter, and they are also appropriately called supervised learning. 

D may be specified functionally (e.g., the Bayes classifier), or as a 
comiputer program (e.g. computational neural networks or fuzzy 
input-output systems). Both types of classifiers have parameters. 
When D is a function, it has constants that need to be "learned" 
during training. When D is a computer program, the model it 
implements has both control parameters and constants that must 
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also be acquired by "learning". In either case the word learning 
means finding good parameters for D - and that's all it means. 

In supervised classifier design X is usually crisply partitioned into a 
training (or design) set X with label matrix U and cardinality 

X. = n , ; and a test set X = (X - X ) with label matrix U and 
I tr| tr te tr te 
cardinality X. = n, . Columns of U and U are label vectors in 

•̂  I te| te tr te 

Np(,. Testing a classifier designed with X means estimating its error 
rate (or probability of misclassification). The standard method for 
doing this is to submit X to D and count mistakes (U must have 

te te 
crisp labels to do this). This yields the apparent error rate 
E (X |X ). Apparent error rates are conveniently tabulated using 
the c X c confusion matrix C = [c ] = [ # labeled class j I but were 

i j •* ' 

really class i]. (Some writers call C^ the confusion matrix.) More 
formally, the apparent error rate of D when trained with X and 
tested with X is 

te 

E„(X, IX, ) 
D •• t e I t r ' 

# wrong 

te 

/ 
1-

^# right ̂  

te JJ 

f 
1-

tr(C) ' ' 

V " t e J 
(4.1) 

Equation (4.1) gives, as a fraction In [0, 1], the number of errors 
committed on test. This number is a function not only of D, but of 
two specific data sets, and each time any of the three parameters 
changes, E will in all likelihood change too. 

Other common terms for the error rate E„(X IX ) include test error 
D te ' tr 

and generalization error. Our notation indicates that D was trained 
with X , and tested with X . E is often the performance index by 
which D is Judged, because it measures the extent to which D 
generalizes to the test data. Some authors call E (X IX ) the "true" 
* D ' te' tr 
error rate of D, but to us, this term refers to a quantity that is not 
computable with estimates made using finite sets of data. 
E (XIX) is the resubstitution error rate (some authors use this term 
synonomously with apparent error rate, but we prefer to have 
separate terms for these two estimates). Other common terms for 
E {X|X) include training error and recall error rate. Resubstitution 
uses the same data for training and testing, so it usually produces a 
somewhat optimistic error rate. That is, E (X|X) is not as reliable as 
E (X IX ) for assessing qeneralization, but this is not an 

D te ' tr o •» 

impediment to using E (X|X) as a basis for comparison of different 
designs. Moreover, unless n is very large compared to p and c (an 
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often used rule of thumb is n e [lOpc, lOOpc]), the crediblhty of 
either error rate Is questionable. An unfortunate terminology 
associated with algorithms that reproduce all the labels (I.e., make 
no errors) upon resubstitutlon of the training data is that some 
authors call such a method consistent (Dasarathy, 1994). Don't 
confuse this with other uses of the term, as for example, a consistent 
statistic. 

A third error rate that is sometimes used is called the validation 
error of D. This idea springs from the increasingly frequent practice 
of using X to decide when D is "well trained", by repeatedly 
computing E (X | X ) while varying the parameters of D and/or X . 
Knowing that they want the minimum test error rate, many 
Investigators train D with X , test it with X , and then repeat the 

" tr te ^ 
training cycle with X for other choices (such as the number of nodes 
in a hidden layer of a neural network), until they achieve a minimal 
or acceptable test error. On doing this, however, X unwittingly 
becomes part of the training data (this is called "training on the 
testing data by Duda and Hart, 1973). 

To overcome this complication, some researchers now subdivide X 
into three disjoint sets: X = X, u X, u X , where X is called a 

J tr te va va 

validation set. When this is done, X̂ ^ u X^̂  can be regarded as the 

"overall" training data, and X as the "real" (or blind) test data. 
Some authors now report all three of these error rates for their 
classifiers : resubstitutlon, test and validation errors. Moreover, 
some authors interchange the terms test and validation as we have 
used them, so when you read about these error rates, just make sure 
you know what the authors mean by each term. We won't bother 
trying to find a sensible notation for what we call the validation 
error rate (it would be something like E„(X IX ; X )). For the few 

^ ^ D va' te tr 
cases that we discuss in this chapter that have this feature, we will 
simply use the phrase "validation error" for this third error rate. 
Finally, don't confuse "validation error" with the term "cross-
validation", which is a method for rotating (sometimes called 
Jackknifing) through the pair of sets X and X without using a third 
set such as X . 

va 
The small data sets used in some of our examples do not often justify 
worrying about the difference between Ejj(X|X) and E (X |X ), but in 
real systems, at least E(X |X ) should always be used, and the 
selection and manipulation of the three sets {X , X , X } is a very 
Important aspect of system design. At the minimum, it is good 
practice to reverse the roles of X and X , redesign D, and compute 
(4.1) for the new design. If the two error rates obtained by this "cross 
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validation" procedure are quite different, this indicates that the 
data used for design and test are somehow biased and should be 
tested and/or replaced before system design proceeds. 

Cross validation is sometimes called "1-fold cross validation", in 
contrast to k-fold cross validation, where the cross validation cycle 
is repeated k > 1 times, using different pairs (X , X ) for each pair of 
cross validation tests. Terms for these training strategies are far 
from standard. Some writers use the term "k-fold cross validation" 
for rotation through the data k time without "crossing" - that is, the 
total number of training/test cycles is k; "crossing" each tiraie in the 
sense used here results in 2k train/test cycles. And some authors use 
the term "cross validation" for the scheme based on the 
decomposition of X into {X , X , X } just discussed, e.g., (Haykin, 
1996). There are a variety of more sophisticated schemes for 
constructing design and test procedures; see Toussaint (1974) or 
Lachenbruch (1975) for good discussions of the "rotation" and 
"leave-one-out" procedures. 

There is another aspect to the handling of training and test data in 
the design of any real classifier system that is related to the fact that 
training is almost always based on some form of random 
initialization. This includes most classifiers built from, for 
example: clustering algorithms, single and multiple prototype 
decision functions, fuzzy integral classifiers, many variants of 
sequential classifier designs based on competitive learning models, 
decision tree models, fuzzy systems, and recognition systemis based 
on neural networks. The problem arises because - in practice -
training data are normally limited. So, given a set X of labeled data, 
the question is: how do you get a good error estimate and yet give the 
"customer" the best classifier. If the classifier can change due to 
random initialization (we will see this happen in this chapter), then 
you are faced with the training and testing dilemma: 

% If you use all the data to produce (probably) the best classifier 
you can for your customer, you can only give the 
resubstitution error rate, which is almost always overly 
optimistic. 

€ If you split the data and rotate through different training sets 
to get better test statistics, then which of the classifiers built 
during training do you deliver to your customer? 

Consider, for example, the leave-one-out estimate of the error rate, 
in which n classifiers {D,} are designed with n-1 of the data, and 

k ° 
each design is then tested with the remaining datum, in sequence, n 
times. Since the (D } can all behave differently, and certainly will 
have different parameters, it is not clear that the leave-one-out 
error rate is very realistic as far as estimating the performance of a 
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delivered system. Averaging the parameters of the n D 's, for 
example, may not give a system that performs anything like any of 
the tested classifiers. 

This is a real world trade-off that, many times, those of us who earn 
our keep by teaching and doing research tend to ignore. Do we know 
the answer to this perplexing problem? Nope. The real solution, of 
course, is to design the classifier with all the data available, and 
then have someone who is not associated with the design collect a 
separate test set to generate error statistics. In Section 4.9 we will 
discuss classifier fusion, one methodology that at least in principle 
can be used to ameliorate the training versus testing dilemma. Our 
objective here is to simply point out that constructing a training 
approach for classifier design is the first step in delivering a 
workable system, and doing it correctly so that error rate statistics 
have reliable meanings is far from a trivial consideration. 

Crisp labels assigned to data that are collected by domain experts 
are usually accepted at face value as being physically correct (aside 
from errors that can always occur), but in many instances the 
numerical representation of each object is not distinct from a 
computational point of view. Anderson's (1935) Iris data is a famous 
example of this. He assigned physical labels to Individuals from 
populations of three subspecies of Iris flowers (Sestosa, Versicolor 
and Virginica). But the four numerical features he chose to measure 
for each object (petal width, petal length, sepal width and sepal 
length) do not provide many algori thms with enough 
discr iminatory power to recognize and represent three 
algorithmically well-defined classes. 

Don't be surprised if your favorite algorithm wants to use a different 
number of classes than the number of physical labels. It may mean 
nothing more than the classes are inseparable (to your model, 
anyway) in the chosen numerical representation. Clustering is 
sometimes performed on labeled data for just this purpose - to detect 
whether or not the data do in fact seem to agree with their labels. A 
danger in doing this is, of course, that clustering algorithms always 
produce clusters, so algorithmic disagreement does not prove that 
the data have this disquieting property. On the other hand, 
agreement is reassuring, and establishing a class (such as 
"unknown" or "in-between") in labeled data with a clustering 
algorithm can be used to improve classifier performance by biasing 
it away from the objects whose representations fall in the overlap 
portions of the feature space. See House et al. (1999) for a nice 
application of this technique, where FCM is used with c = 3 to 
establish an intermediate class in data with c = 2 labeled classes 
(faulty and non-faulty states in an air handling unit). 

Another aspect of training is related to the (much overworked) word 
adaptive, which in our context refers to the style used to acquire the 
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parameters of D. So many authors have used this word in so many 
different ways that we cannot avoid a short discussion of it here. 
Indeed, we have already used adaptive in Chapter 2 in several ways, 
principally to distinguish between local cluster estimation (as the 
GK and adaptive FCV algorithms do) from global approaches such as 
the c-means models. In the current context we can distinguish three 
cases: 

Non-adaptive off-line training. X is used non-iterativelyjust once 
to find D, and is not revisited with a view towards improving it 
thereafter. This is the case, for example, when designing a Bayes 
classifier with labeled data under the assumptions of the normal 
mixture case discussed in connection with probabilistic clustering 
in Chapter 2. For i = 1 to c, labeled data X^^. are used to estimate the 
parameters of the i-th discriminant function by substitution into 
analytic necessary conditions, and the design is complete. 

Static off-line adaptive training. X is used to improve estimates of 
the parameters of D either iteratively or recursively. The most 
common example of this case is iterative training of a learning 
model such as a fuzzy system or neural network. In either case input 
vectors from X are used over and over while parameters are 
adjusted to improve some measure of model performance. Once 
trained, however, X is put aside during the operational phase of 
classification. A familiar example from calculus may help you to 
understand this case. Newton's method for estimating a root of the 
real equation f(x) = 0 adjusts Iterative estimates of the root at each 
step in the algorithm - this is "adaptive learning" in the same sense 
as it is often used in the literature of learning models. 

Dynamic on-line adaptive training. In this scheme the initial 
classifier might be found using either non-adaptive or adaptive off
line training. As time passes, (features of) the observed data may 
change, or new data may be available, and the classifier attempts to 
keep up with these changes by continuously reevaluating (adapting) 
its parameters in response to changes in the incoming data. Some 
authors refer to this as a temporally adaptive classifier. We all want 
classifiers that are temporally adaptive, but we are aware of only a 
very few cases that actually come close to this type of operation. 

Classifier performance depends on the quality of X . If X is large 
enough and its substructure is well delineated, we expect classifiers 
trained with it to yield small error rates. On the other hand, when 
the training data are large in dimension p and/or number of 
samples n, classifiers such as the k-nearest neighbor rule (cf. 
Section 4.4) can require too much storage and CPU time for efficient 
deployment. To circumvent time and storage problems caused by 
very large data sets, as well as to improve the efficiency of 
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supervision by X , many authors have studied ways to edit the 
training data (Dasarathy, 1990). 

Two common schemes for editing a labeled data set are selection and 
replacement. Selection means : find a proper subset X^ c X^ .̂ 

Replacement means : use a transformation fi:9^P|->9tP to find 
Xtj.=Q[Xtr]- Subset selection is a special case of replacement. 
Replacements are almost always labeled prototypes (such as V from 
one of the c-means clustering models) produced by Q. 

^ < ^ * • . . * > 

X "^ <f> 

*. 

A * ^ • * ^ * * ,<>- ^ 

^ * A ^ • & • ^ —^•' ^ * 
• 

• 

Figure 4.1 Ekliting by selection of labeled data in X 

Figure 4.1 depicts data selection. (Be careful to distinguish this from 
feature selection. Section 2.6.) The density of labeled data over each 
cluster in the left side of the figure is high. A selected subset (or 
skeleton) of the original data is shown on the right. This approach 
has many variants, and is well summarized in Devijver and Kittler 
(1982). The aim is to condense X while approximately preserving 
the shape of the decision boundaries set up by training D with it. 

. 1 ^ ' x̂ .̂ - V I jj o 
[• 

o ^ 
< > ' ^ > * / / ^ - ^ • • • • • - • 

Figure 4.2 Replacing X with multiple point prototypes 
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Figure 4.2 illustrates replacement by multiple point prototypes, 
where X is replaced by V, a set of labeled prototypes for classes 1 
(•) and 2 (O). There is more than one prototype per class in Figure 
4.2, but we will use the notation V for both the single and multiple 
prototype cases. The self-organizing feature map (SOFM) discussed 
later is one very good way to accomplish replacement (Kohonen, 
1989). It is also possible to replace the data in Figure 4.2 with non-
point prototypes (called B in Chapter 2) such as rings, lines, 
hyperquadric surfaces, etc., leading to more sophisticated 
classifiers that can match prototypical shapes to objects having 
similar representations. 

4.2 Prototype classifiers 

Prototype representation is based on the idea illustrated in Figure 
4.3. The vector v. is taken as a prototypical representation for the 
vectors in the crisp cluster X.. 

O 9 O ^ 

o 4̂ 1̂ ^ o 
o o ° 

Figure 4.3 Representation of many vectors by a point prototype 
For simplicity, our presentation of prototype classifier design is 
confined to the point prototype case, but you should bear in mind that 
many of the ideas discussed in this section generalize easily to non-
point prototypes. There are many synonyms for the word prototype: 
centroid, vector quantizer (VQ), signature, template, codevector, 
paradigm, exemplar, etc. In the context of clustering as in Chapter 2 
V. is usually called the cluster center of crisp cluster X, c X. 

A. The nearest prototjrpe classifier 

Once the point prototypes are found (and possibly relabeled to agree 
most usefully with the data if the training data have physical 
labels), they can be used to define a crisp nearest prototype (1-np) 
classifier D^ ^ g: 
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Definition 4.1 (1-np classifier). Let V be a set of c crisply labeled 
prototypes, one per class, ordered so that e. is the crisp label for v., 1 

< i < c; let 5 be any distance measure on 9?^, and let 
(V, E) = {(v., e.): i = 1 c} e Ŝ '̂ P X N^^ . The crisp nearest prototype {1 -

np) classifier D^ E § is defined, for z e ^^P , as 

Decideze i o D^gg(z) = e. <=> 5(z,v.) < 5(z, v.) V J?ii . (4.2) 

Equation (4.2) says : find the closest prototype to z, and assign its 
label to z. Ties are broken randomly. Note that HCM uses (4.2) to 
determine the crisp memberships shown at (2.6a). The most 
familiar choice of dissimilarity is the inner product induced norm 
metric shown in equation (1.6). The crisp 1-np design can be 
implemented using prototypes from any algorithm that produces 
them. It would be careless to call D^^g a fuzzy classifier, for 
example, just because fiizzy c-means produced the prototypes V. 

One of the most important classifier structures is the hyperplane H 

in 9̂ ^ defined, for any positive definite matrix A, as 

HA(w,a) = {xe9?P:(x,w)^ =x'^Aw = a;ae9?} . (4.3) 

As usual, when A is the identity, the inner product is Euclidean and 
we suppress the subscript A. Without loss of generality, we confine 
further discussion to the Euclidean case. 

H(w, 0) is a vector subspace of dimension p-1 through the origin of 

9?^, and g(x) = (x,w) is a linear function of x. H(w, a) is a p-1 
dimensional qffine subspace parallel to H(w, 0), and the function 
g(x) = (x, w) + a is an qffine function of x (linear plus a constant). 

The parameter a is the offset of the hyperplane H from the origin, 
and the vector w is called a (there are infinitely many) normal 
vector to H, because w is perpendicular to H in the given inner 
product, i.e., whenever a vector, such as ( x - x ) in Figure 4.4, is 
parallel to H (lies in H), ((x - x), w)^ = 0. 

These properties are illustrated in Figure 4.4, which shows the 
geometric structure of H in terms of its two parameters. Changing w 
rotates H, and changing a translates H parallel to itself. The effect of 
using a weight matrix A other than the identity in (4.3) can now be 
seen. Letting w' = Aw, (x, w)^ = x"̂ Aw = x"̂  (Aw) = (x. Aw) = (x, w'), 
so changing the inducing weight matrix rotates the normal vector w, 
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and hence, the hyperplane, keeping it perpendicular to w in the new 
inner product. 

t 
y 

X yaZ 

/ 7̂ w 

X - X > 

^ zH H"^(w,a):(w,z)>a 

0 = 9^P 
^ H(w,a):(w,x) = a 

H" (w a):(w y ) < a 

Figure 4.4 Geometry of hjrperplanes 

For fixed w a family of parallel linear varieties (hyperplanes) are 
generated by (4.3) as a runs through 9t. Hyperplanes are the "flat" 

sets in 5K ,̂ and consequently, g(x) = (x, w) + a is called a linear 
decision function even though it is by definition affine. 
Consequently, classifier functions defined by g are called linear 
classifiers whether g is linear or affine. When w is a unit vector, it is 
routine to check that, given any point in H(w, a) such as x in Figure 
4.4, the orthogonal distance 5 ,̂ from z to H(w, a) is 8 „ = (z - x, w). 

zH 2;ri \ / 

As illustrated in Figure 4.4, H divides 9̂ ^ into three disjoint sets, 

viz., 91P = H" uHuH"^. The set H"̂  is the positive half-space 
associated with H, so called because, as shown in Figure 4.5, every 
vector z that lies "above" H (and therefore in H"̂ ) yields a value for 
the dot product that is greater than a, (z, w) > a . Similarly, vectors y 
that lie in the negative half space H" yield (y,w) < a; and of course, 

for vectors x in H, (x,w) = a . H is called a separating hyperplane 
between its two half spaces, and when a labeled data set X with c = 2 
classes can be completely separated by H (so that all points from one 
class lie on one side of H, while all points from the other class lie on 
the opposite side), X is said to be linearly separable. 

The geometry of the crisp 1-np inner product norm classifier is 
shown in Figure 4.5, using Euclidean distance for 6. This 1-np design 
erects a linear boundary between the i-th and j - th prototypes, viz., 
the hyperplane H(w, a) through the midpoint of and perpendicular to 
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the line joining v, and v.. Figure 4.5 illustrates the labeling decision 
represented in equation (4.2); vector z is assigned to class i because it 
is closest to the i-th prototype. Some authors use the terms 
prototypes and neighbors interchangeably, but we will consistently 
call nearest prototypes new vectors made from the data or points in 
the data, while nearest neighbors are labeled points in the data. 

H(w, a 

Figure 4.5 The 1-np classifier for the Euclidean norm 

All 1-np designs that use inner product norms erect (piecewise) 
linear decision boundaries. Thus, the geometry of 1-np classifier 
boundaries is fixed by the way distances are measured in the feature 
space; and not by geometric properties of the model that produces 

the cluster prototypes. The location in 9t^ of the prototypes 
determines the location and orientation of the c(c-l)/2 hyperplanes 
that separate pairs of prototypes. The locations of the prototypes do 
depend importantly on both the computational model and data used 
to produce them. Hence, 1-np classifiers based on different prototype 
generating schemes can certainly be expected to yield different error 
rates, even though they all share the same type of decision surface 
structure. 

Example 4.1 Table 4.1 lists 20 vectors in 9̂  in c = 2 labeled classes, 
10 apples in class 1 (crisp label e ), and 10 pears in class 2 (crisp label 

e^). v^ = v^ = (1.22,0.40)"^ and Vp = V2 = (2.43,1.03)'^are the sample 
mean vectors for the apples and pears, respectively. These two 
prototypes are listed in the last row of Table 4.1 and appear 
graphically along with the 20 labeled data in Figure 4.6. 
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Table 4.1 Apples and pears data 

e 
i 1 

X 
i yi e 

1 
X 
1 

X 
i ^1 

e 1 1.00 0.60 s 11 2.00 0.70 

e 2 1.75 0.40 s 12 2.00 1.10 

e 3 1.30 0.10 & 13 1.90 0.95 

e 4 0.80 0.20 6 14 2.00 0.95 

e 5 1.10 0.70 & 15 2.30 1.20 

e 6 1.30 0.60 S 16 2.50 1.15 

c 7 0.90 0.50 S 17 2.70 1.00 

e 8 1.60 0.60 S 18 2.90 1.10 

e 9 1.40 0.15 S 19 2.80 0.90 

e 10 1.00 0.10 S 20 3.00 1.05 

V = V —> 
A 1 

1.22 0.40 ^ 2 - ^ 2.41 1.01 

y 

"^1.20 

10.80 

( 
0.40 

c 
<i <:t c 

C 
V = V 

e < e 

s £ 

1.00 1.50 2.00 2.50 

Figure 4.6 Data in Table 4.1 and their sample mean prototypes 

Once the prototypes - which in this example are the sample means 
V- are determined, (their physical labels are known since the set E 
is known, and each prototype is built from data with only one class 
label), we need only to choose a distance measure to implement the 
1-np classifier in (4.2). Choosing Euclidean distance, suppose that 
the vector z = (2.0, 0.5)'^ shown in Figure 4.6 is unlabeled, and we 
submit it to this 1-np classifier. The distances 6(z,Vp 

6(z, v^) = 0.79 then yield 5(z, Vp) < 5(z, v^) =» D^ j . g (z) = e^ 
0.68 and 
="pear". 
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The geometry shown in Figures 4.4 and 4.5 is illustrated by 
computing three parameters. First we calculate a normal to H, 
which is any scalar multiple of the intermean vector 

w r p - v ^ =(1.19, 0.61)"^ 

With 5 as Euclidean distance, we compute 

(4.4) 

- V , 

2 w 
M 
llwll = 1.94 (4.5) 

Since Vp > v^ , (4.5) 3aelds a = 2.59. To graphically construct the 
hyperplane H (w, a) Just found for the apples and pears data, we 
find a third parameter, the midpoint m of the line joining Vp to v^ , 

(4.6) m = (v^ + Vp) /2 = (1.82,0.71)T 

H.„(w,a) „+ AP' : '^ H ; P = " pears" 

W = V p - V ^ 

Figure 4.7 The 1-np classifier for Example 4.1 

The geometric structure of this classifier is shown in Figure 4.7. The 
decision that z be labeled a pear can be reached another way by 
simply calculating (z,w) = 2.69 > a = 2.59. This tells us that z has 
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landed in the pears decision region H^{w, a) as shown in Figure 4.7; 
similarly, the apples decision region is the negative half-space 
H" (w,a). Although you cannot see it in Figure 4.7 (because the data 
are not shown), H (w, a) is a separating hyperplane between the 
apples (A) and pears (P) regions - that is, these data are linearly 
separable. 

Geometrically, the 1-np classifier grows neighborhoods about the 
point z that take their shape from the topology induced by the metric 
5. The circles in Figure 4.7 remind you that the norm is Euclidean, so 
the shape of the neighborhoods is circular. Changing the metric 
changes the shape of the neighborhoods. For example, if the 1- norm 
had been used instead, the neighborhoods would be diamond shaped 
as shown in Figure 2.11, and the hyperplane structure illustrated 
here would be invalid, since the 1-norm is not inner product 
induced. 

B. Multiple prototype designs 

What can we do when a single prototype is not sufficient to describe a 
class accurately? This can easily happen when feature vectors that 
possess the same physical label for a particular class fall into two or 
more clusters, as in the famous "XOR" data that cannot be separated 
by a single hyperplane (Zurada, 1992). For example, defective parts 
may have oversized holes drilled into them or they may have 
surface defects in the material. If those two defects are manifested in 
the measured feature vectors, then the defective-part class could 
have three clusters, one where the "hole diameter" is big, one where 
the "material homogeneity" is low, and one where both problems are 
present . Single prototype classifiers will not provide good 
classification accuracy in this situation. Another situation that can 
require multiple prototypes for a single class is when two physically 
labeled classes overlap in the chosen feature space (as in classes 2 
and 3 of the Iris data). In this case, and for that matter, in almost all 
real data sets, it is advantageous to have several prototypes for each 
class. 

Definition 4.2 (1- nearest multiple prototype (1-nmp) classifier). 
(V ,E-) = {(v.,e.,.J: j = l,...,c;i(i) = l,.. . ,c}e9t'=PxNt. Here X has c 

c c J Uj) J ' ' ' ^J' ' ' ' he 

classes, c < c, V is a set of c crisply labeled prototypes, with more 

than one per class for at least one class if c < c, e.,., labels v as class i, 
and 5 is any distance measure on 9^ .̂ The crisp 1 - nearest multiple 

prototype (1-nmp) classifier D.̂  E- 5 ̂ ^ defined, for z e St^, as 
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Decideze i<^ Dy ^ g(z) = e.(.j o 5(z,v.) < 5(z, v j V s ^ j . (4.7) 

When c = c equation (4.7) reduces to (4.2). Two opportunities arise 
from this simple extension of the 1-np design. First, we now have 
more flexibility to generate prototypes, as will be discussed in the 
next section. Perhaps a bigger opportunity, however, afforded by the 
increase of exemplars from c to c, is the possibility of assigning 
fuzzy labels to the prototypes, and hence, to construct fuzzy decision 
rules with them. Instead of discussing this prospect here, we will 
postpone it to Section 4.4 on nearest neighbor rules since, in the 
"limit" case i.e., when c=n, we can consider each training vector as a 
prototype. In other words, the decision rules (crisp, fuzzy and 
possibilistic) that are described for the k-nearest-neighbor 
classifiers in Section 4.4 can be implemented in the multiple 
prototype framework. 

Example 4.2 This example demonstrates a novel use of multiple 
prototypes in a real world application: detection of landmines. The 
landmine problem has become a crisis in the world. It is estimated 
that more than 100 million active mines are scattered in 62 
countries, with an equal number stockpiled around the world jus t 
waiting to be planted. Landmines kill or maim approximately 
26,000 innocent civilians every year. 

Currently, landmines are detected individually by prodding, metal 
detection or dogs. Gently prodding the ground is slow, confusing and 
dangerous, especially when the mines are laid in hard-packed or 
stony soil. Metal detection works well with metal mines, but 
recently, metal has been increasingly replaced by plastic. Dogs are 
effective, but like humans, can become easily distracted. 

A variety of sensors have been proposed or are under investigation 
for landmine detection. In view of the life threatening nature of this 
application, it is desirable to have a very high detection rate with a 
low false alarm rate. However, many sensors can detect land mines 
reliably only at the expense of a high false alarm rate. 

Frigui et al. (1998a) and Gader et al. (1998a, b) consider the problem 
of detecting landmines with sensor data obtained from a novel, 
three-dimensional Ground Penetrating Radar (GPR) system 
developed by Geo-Centers, Inc. (Rappaport and Reidy, 1996). 
Following Frigui et al. (1998a), multiple prototypes of objects and 
background are first generated by fuzzy clustering of features 
generated from the GPR imagery. Rather than use the prototypes 
generated from the clustering algorithm to form a nearest (multi-) 
prototype classifier, the authors used them to provide a more 
reliable estimate of the strength of the radar return from a 
particular spatial location. 
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The Geo-Centers GPR system is mounted on the front of a moving 
truck. Every two inches of forward travel in the y direction, a scan is 
formed by sweeping the radar signals across 16 bins in the x 
direction perpendicular to travel (cross-track) and 64 bins down 
into the ground in the time = t direction, thereby producing a 64 x 16 
array of intensity values I(t, x, y). For fixed y, the array is referred to 
as a scan. A scan is formed every 2 inches, thereby producing a 
volume of data. Figure 4.8 depicts one such scan. 

Figure 4.8 A typical 64 x 16 scan from the Geo-Centers GPR 

We can look at the data from a different perspective by holding x 
constant and letting y and t vary, generating what we refer to as a 
vertical plane. A typical vertical plane from the Defense Advanced 
Research Projects Agency (DARPA) backgrounds data is shown in 
Figure 4.9. 

Figure 4.9 Vertical slice (down-track) 

A 6-dimensional feature vector f(t, x, y) is computed at each point (t, 
X, y) and then used to evaluate membership in fuzzy sets defined by 
feature prototypes. f(t, x, y) is a vector of edge magnitudes from 
points in a pattern around (t, x, y) that roughly resembles the 
signature of a mine in a vertical plane. Let E(t, x, y) denote the edge 
strength in the horizontal direction (down-track). Since the shape of 
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mine is variable and there is a considerable amoun t of uncer ta inty , 
the edge s t rengths are averaged in the vertical direction: 

A(t,x,y) = i ( iE ( t + k,x,y) 
7 Vk=-3 

(4.8) 

For the experiment d iscussed in Frigui et al. (1998a}, this value w a s 
clipped a t 150. The 6-D feature vector is given by 

f( t ,x ,y)^ 

^A(t + 5 , x , y - 5 ) ^ 
A(t + 3 , x , y - 3 ) 
A(t + l , x , y - l ) 
A(t + l , x , y + l) 
A(t + 3 ,x ,y + 3) 
A(t + 5 ,x ,y + 5) 

(4.9) 

The goal is to use the features generated from a "calibration lane" to 
de te rmine pro to types , a n d t h e n to apply those proto types in a 
classifier on tes t mine lanes . Generally, target pixels in GPR da t a 
cons t i tu te less t h a n 5% of the da ta . Hence, t radi t ional FCM-type 
algor i thms have problems due to the large difference in size of the 
t a r g e t a n d b a c k g r o u n d c l u s t e r s . I n s t e a d , t h e compe t i t i ve 
agglomerat ive or CA c lus te r ing a lgor i thm (cf. equa t ions (2.75)-
(2.81)) w a s r u n on the calibration lane. This choice may not be the 
bes t one for discovering clusters (because of greatly unequa l cluster 
popula t ion sizes, t he problem il lustrated in Figure 2.3(a) ), b u t t he 
a u t h o r s felt it was a good choice for finding multiple prototypes. 

One prototype w a s sufficient for the background, whereas several 
were needed to describe the variat ion in the mine responses . The 
algorithm was r u n us ing Euclidean distance for FCM with c = 6, m = 
2, and e = 0 .1 . The prototypes were initialized heuristically based on 
"expected" g rad ien t p a t t e r n s for b a c k g r o u n d a n d objects . The 
ini t ial izat ion w a s 

V=: 

^50 150 150 
50 150 150 
50 150 150 
50 150 50 
50 150 50 
50 150 50 V 

50 50 150^ 
50 150 150 
50 150 50 

150 150 50 
150 150 150 
150 50 150 

FCM w a s r u n for two i tera t ions to "prime" the par t i t ion matr ix . 
Then the CA algorithm was r u n to terminat ion (with a max imum of 
30 iterations). Instead of us ing the prototypes directly in a classifier 
with c = 2 a s in (4.7), Frigui et al. (1998a) used the non-background 
prototypes to supply partial evidence for the confidence t h a t a mine
like object is present a t a point (t,x,y). This is due to the high degree 
of u n c e r t a i n t y p r e s e n t in t h e l a n d m i n e de tec t ion p rob l em. 
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Specifically, the strength of the gradient values represented by the 
prototypes directly relate to the presence of an object reflecting the 
radar wave. Hence, in the test lanes, the inverse distance from each 
non-background prototype to a feature vector was calculated, and 
the mine confidence membership c(t, x, y) was generated as the 
weighted sum of the inverse distances, where the weights were 
proportional to the magnitudes of the prototypes. The confidence 
that a mine is present at a point on the surface was then computed as 

conf (x, y) = max(c(t, x, y)) . (4.10) 

The confidence map on the surface of a mine lane was then 
smoothed and a size-contrast filter applied to eliminate large 
"bright regions". Figure 4.10 shows the confidence and size-contrast 
filter outputs on part of Dirt Lane 17 containing the following 
mines: CULVERT (this is not a mine), M19, VS2.2, M15, TM46, VS2.2 
at the positions indicated in the size-contrast output. 

(a) Raw confidence map for a dirt test lane 

(b) Output of the size-contrast filter with the object locations marked 

Figure 4.10 Confidence and size -contrast filter outputs 

A threshold was generated on the training data (which gave 100% 
detection), and then it was fixed for all of the tests. The hits were 
then examined to produce final detection marks in the tests. This 
initial approach at using multiple crisp point prototypes generated 
by a fuzzy model was tested on data collected by Geo-Centers at Fort 
A.P. Hill in October 1996. The data was collected from four passes 
over two mine lanes by Geo-Centers (two passes over each lane). The 
standard approach for GPR-based mine detection was to threshold 
the energy signature produced by the GPR at each point (x,y) formed 
by summing the values over t. Table 4.2 shows the results of the 
standard approach, while Table 4.3 lists the multi-prototype 
confidence results. 
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Table 4.2 Results from standard approach on mine lanes 

No. of mines No. of No. of false 
Lane detected m i n e s a l a r m s 

1 13 19 49 
2 15 19 43 
3 16 20 49 
4 19 21 39 

The number of mines detected is not increased by using multiple 
prototypes, but the number of false alarms is significantly reduced. 
This is a good result, because false alarms caused by sensor noise, 
clutter, algorithmic processing, etc. are the major problem in mine 
remediation activities. 

Table 4.3 Results of Multi-prototype approach on the same data 

No. of mines No. of No. of false 
Lane detected m i n e s a l a r m s 

1 15 19 13 
2 13 19 9 
3 19 20 10 
4 18 21 12 

Much work continues to be done towards improving the sensing 
modalities and detection algorithms in this area. This example 
demonstrates the advantage that can be gained by a fairly simple 
application of multiple prototypes acquired by a fuzzy model over 
the simpler nearest prototype classifier. 

4.3 Methods of prototype generation 

Nearest prototype classifiers are simple, effective and cool. However, 
you got to pay your dues if you want to use (them). That is, you have to 
generate the prototypes, and you know that don't come easy! That's 
what this section is about. Roughly speaking, there are three 
approaches to prototype generation : (i) models such as the leader 
algorithm and sequential HCM (Hartigan, 1975), and batch models 
such as the c-means models (Chapter 2); (ii) network models such as 
learning vector quantization and its generalizations (Kohonen, 1989) 
and the generalized Lloyd algorithm (Gersho and Gray, 1992); and (iii) 
statistical models such as mixture decomposition (subsection 2.2.C). 

The common denominator in all prototype generation schemes is a 
mathematical definition of how well prototype v. represents X. Any 

measure of similarity on 9?̂  can be used. The usual choice is 
distance (dissimilarity), the most convenient is squared distance, 
and the most popular is squared Euclidean distance. Lx)cal methods 
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attempt to optimize some function of the c squared distances 
l|2 1 

X, - V. : 1 < i < c ^ at each x, in X. Global methods usually seek 
k I|IA J k i -̂  

extrema of some function of < jx^ ~ ''''i : 1 ^ i ^ c; 1 < k < n L i.e., all en 

squared distances. Don't confuse our use of the terms local and 
global methods with the local and global extrem.a found by a 
particular method. 

One of the simplest approaches to multiple prototype generation 
when crisply labeled data are available is to run any clustering 
algorithm (e.g., from Chapter 2) that generates prototypes on the 
training data X one class at a time. This generates one or more 

'^ tr,i '^ 

prototypes for class i - already labeled by e, - which can then be used 
for classifier design. All of the issues raised in Chapter 2 about 
clustering such as choice of distance and validation are relevant 
when clustering in X̂  . 

^ tr,i 

Another way to find prototypes with a clustering algorithm is to run 
e on the entire labeled training set X in an unsupervised mode (that 
is, simply ignoring the labels during training). When this is done 
using the knowledge that there are c labeled subsets in the training 
data, the result is (presumably) one prototype per class. Why do this 
if you have labeled data? We pointed out that the Iris data has 3 
physically labeled classes, but that most researchers regard it as 
having 2 geometrically well separated clusters in the 4 dimensional 
feature space that was chosen by Anderson (1935). From the 
botanical point of view then, c = 3 is certainly the most useful 
interpretation of Iris, but from the computational viewpoint, 
forcing three clusters on this data strains algorithms that want it to 
have but two. Ignoring the labels during clustering may enable C to 
discover geometrically better prototypes than the labeled sample 
means for the classes because this allows geometric properties of the 
data (which are not necessarily captured by their labeled 
representatives) to drive the model towards a more useful solution. 

A third possibility is to run any clustering algorithm (unsupervised, 
by definition) on all of X , again ignoring the given physical labels, 
but with values for c that are greater than the given number of class 
labels (c in Definition 4.2). This introduces the necessity for cluster 
validation, bu t with labeled test data and a well defined 
performance objective (viz., minimum apparent error rate), this is 
less of a problem than with truly unlabeled data. This leads to 
multiple prototypes for classifier design. 

The result of clustering X in the unsupervised mode at any value of 
c is a set of prototypes with algorithmic labels. Now the given labels 
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m N . for X must be put into play, usually by a relabeling 
algorithm that assigns physical labels to the algorithmic 
prototypes. So, the labels are used in any case, and the data itself 
will determine which method (clustering in X or in X ) is more 

° tr.i tr 

productive. Since X is available to test classifiers designed using 
both strategies, that is what we recommend - try both. 
There also are many, many prototype generation algorithms based 
on crisp and fuzzy models that are not, per se, clustering algorithms. 
Indeed, it would take an entire monograph to adequately discuss 
prototype generation methods. The best we can do here is review and 
illustrate a few methods not discussed in Chapter 2 that are fuzzy, 
have been generalized to a fuzzy case, or have appeared in 
connection with a fuzzy model in the literature. Many models of this 
kind are competitive learning models, the topic we now turn to. 

A. Competitive learning networks 

The primary goal for competitive learning (CL) models is to portray 
the input data by a much smaller number of prototypes that are good 
representatives of structure in the data for classifier design. 
Prototypes that are good for classifier design are not necessarily the 
same (even in form) as those that are used for other purposes. For 
example, prototypes good for compression, transmission and 
reconstitution of images may be quite poor as representatives of 
classes for pixel labeling in the same image. Identification of 
clusters is implicit, but not active, in the pursuit of this goal. 

Input Layer 

xe5RP 

Figure 4.11A general competitive learning network 
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The salient features of one general CL model are shown In Figure 
4.11. The input or fanout layer is connected directly to the output 
layer. The circles in Figure 4.11 are sometimes called nodes, and the 
prototypes are then called node weights. In this context the p 
components {v..} of v. are often regarded as weights or connection 

strengths of the edges that connect the p inputs to node i. The 
prototypes V= (v ,..., v ), v. e 9?P for 1 < i < c, are the (unknown) 
vector quantizers we seek. The norm used in competitive layer nodes 
is most typically Euclidean, but there is no overpowering reason to 
restrict the measure of distance this way. 

Sequential CL models update estimates of one or more of the {v.} at 
each of n input events during pass t (one iteration is one pass 
through X). Upon presentation of an x from X, the general form of 
the update equation is: 

V = v + a , (x, -V ) , i = l c;t=l,...,T . (4.11) 
i,t i,t-l lk,t k i,t-l ' 

See Figure 4.81 for an illustration of the geometric meaning of 
(4.11), which is Just vector addition, Avith the length of the side 
parallel to the difference vector between the input and the prototype 
controlled by learning rate ttik.f In (4.11) {« } is the learning rate 
distribution over the c prototypes for input x during iterate t. When 
X is submitted to this network, distances are computed between it 
and each v.. The output nodes "compete", a (minimum distance) 
winner node, say v , is found ; and finally, it and possibly other 
prototypes are then updated using one of many update rules that are 
most often of the form (4.11). There are at least four cases : 

(i) Only V, is updated (winner take all, LVQ, SHCM e.g.) 
(ii) Only one v. is updated (some vector takes all, ARTl, e.g.) 
(iii) Some v.'s are updated (elite updates, SOFMs, e.g.) 
(iv) Every v. is updated (all share updates, GLVQ -F, e.g.) 

The acronyms we Just used are : learning vector quantization (LVQ), 
sequential hard c-means (SHCM), adaptive resonance theory (ART), 
self-organizing feature maps (SOFMs) and generalized learning 
vector quantization - fuzzy (GLVQ-F). The prototypes that get 
updated (the update neighborhood} depend on the model chosen, and 
the update neighborhood can be imbedded in the definition of the 
learning rates for a particular model. A template that can be used for 
many CL models is given in Table 4.4. 



CLASSIFIER DESIGN 205 

Table 4.4 A general CL algorithm for unlabeled data 

A. Training phase : find V without U 

Store (Un)labeled Object Data X̂ ^ = {x ,̂ X2,..., x^} c 9^P 

U, e M, = Labels of vectors in X 
tr hen tr 

© number of nodes : 1 < c < n 
© max. # of iterations : T 

© distance measure : x, - v . , J 
II k i.t-l | |A 

Pick © termination measure : E = V - V 

© termination criterion : e 
t> special choices for a particular model 

Get © initial prototypes: V e 3^^^ 

t <— 1; Eg = high value 
DO UNTIL (t >T or Ê _ ^ < e) 

For k = 1 to n 
x e X . Xj^^x, X^X-{x^] 

Do Get distances llx.^ - v̂  j _ J ; 1 < i < c | (4.12a) 

Get learning rates {a^ j . ; 1 < i < c} (4.12b) 

Vi,t = Vi.t-i +aik, t (Xk - V j t . i ) (4.12c) 
Nextk 

t < - t + l 
END UNTIL 
V ^ Vt_i 

B. Pre )totype relabeling of V with Û .̂ using, e.g., equation (4.13) 

C. Optional (crisp) clusters if Ujj.is unknown.with, e.g., (2.6a) : 

" i k = 
1; • V j I K , l < j < C . j ; ^ i 
0; otherwise. Resolve ties arbitrarily 

X, - V . •Vi,k 

Several points need to made about Table 4.4. Notice that the data are 
considered to be unlabeled in step A, even if they are not. The labels 
for X are used in step B after the training phase is completed to 
assign a physical label to each prototype. Different ways to use the 
labels in the context of CL models such as LVQ1-LVQ3 are discussed 
by Kohonen (1989). In either case, notice especially that no partition 
is needed or generated in training step A. 

In the general CL model of Table 4.4, any norm can be used in (4.12a) 
and in Step C. Computation of the learning rates in (4.12b) is not 
specific in Table 4.4. Different models require choosing various 
parameters ( > special choices in the "pick" block of the table), and 
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all of them compute quantities which are functions of the distances 
in (4.12a). Thus, a good specific implementation might be laid out a 
little differently than the one shown in Table 4.4. We will identify 
the items needed for each model discussed in Chapter 4, and trust to 
your good Judgment as to how best arrange the code for an actual 
implementation. 

One of the main differences between various CL schem.es is the form 
for the learning rate distr ibution (including the update 
neighborhood) in (4.12b). Prototype updating in (4.12c) cannot be 
done until the learning rates are well defined. Generally - but not 
very often - a is a function of i, k and t, but in some models it is fixed 
for all k's during each pass through X, and then we write a. . Most 

frequently, a is fixed for both i and k, depending only on t; in this 
case we write a . Infrequently, only one pass is made through X, in 
which case we write a, . The sign of a determines whether the update 

in (4.11) moves v̂  ̂  ^ towards x (attraction) or away from x 
(repulsion). Most competitive learning models use only positive 
learning rates, but there are algorithms that use negative learning 
rates for vectors that are far from the update neighborhood (e.g., the 
so called "Mexican hat function" discussed in Kohonen, 1989). We 
will discuss this more in connection with Figure 4.81. 

The standard method of achieving stability for prototypes (we will 
make this notion specific in Section 4.8.A) is to begin with values 
for the {oCjk t) close to, but less than, 1; and then to decrease the {ttik t) 
towards zero as time (iteration number t) increases. If ajĵ  ̂  -^ 0, 
updates will become very small, and so will successive estimates of 
the prototypes. This is how termination of many (but not all) 
competitive learning algorithms is effectively achieved. But.-- this 
strategy causes a problem that Grossberg (1976a, b) recognized and 
called the plasticity problem. We will return to this idea in Section 
4.8.A. 

The optional clustering phase, Step C in Table 4.4, produces n crisp 
label vectors for the points in X . They are usually (usually, because 
there is no guarantee that each of the c classes defined by the nearest 
prototypes has at least one point in it) a crisp c-partition of X. This 
optional step, or one like it using some other strategy, often leads to 
semantic confusion. For example, Yager and Filev's (1994a) 
mountain clustering method, which does not produce clusters 
without using an equation such as (2.6a) after termination of the 
training phase, is incorrectly called a clustering algorithm. More 
precisely, it is a prototype generation algorithm whose terminal 
prototypes can be used to find clusters. 

http://schem.es
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This terminology is fairly pervasive however. Any c point 
prototypes V = {Vj v^} c 9̂ ^ can be substituted into (2.6a), and the 
result is a crisp partition, say U(V)eMhcn. which is sometimes 
called the nearest prototype (np) partition of X. When we want to 
emphasize this construction of U from V with (2.6a), we write U(V) = 
Uup(V). Moreover, subsequently applying (2.6b) to the rows of 

Unp(V) results in the sample means, V = V. Under these 

circumstances it is not incorrect to regard the prototypes V = V as a 
representation of the crisp partition U^pCV), and this is why many 
point prototype generator algorithms are called clustering 
algorithms. Recognizing this, we nevertheless reserve the term 
"clustering algorithm" for those models that actively involve a 
partition of X during training, and in this sense the CL models 
embodied as special cases of the general scheme in Table 4.4 are not 
clustering algorithms. 

A final comment: most CL models are not explicitly designed to find 
good clusters in the sense that partitions of the data are never 
examined during the training phase. Consequently clusters built 
"after the fact" by approaches such as step C of Table 4.4 may or may 
not be satisfactory in the sense of partitioning X for substructure. 
Forewarned, don't be surprised if a CL model produces 
unsatisfactory clusters in unlabeled data - that's not its job. 

B. Prototjrpe relabeling 

What should we do when the labels of points in X are not used 
during training to guide iterates towards a good V? In this case, at 
the end of the learning phase the c prototypes have algorithmic 
labels that may or may not correspond to the physical labels of X . 
The relabeling algorithm discussed next uses the labels in U to 
attach the most likely (as measured by a simple percentage of the 
labeled neighbors) physical label to each v.. 

Recall that c is the number of classes in X , labeled by the crisp 

vectors {e,,e„ e.} = N^- Now define p , i=l,2,..., c, 1=1,2,..., c, to be 
' 1 2 c he '^IJ . • . J . > . • 

the percentage (as a decimal) of training data from class i closest to 
V. via the 1-np rule. Matrix P = [p. ] has c rows in N .̂̂ , and c columns 
p in N .. We assign label e to v when H(p) = e , vidth ties broken 
arbitrarily, 

l a b e l i ^ v « H ( p ) = e ; i = l,2,...,c ; j = L2,.. . ,c. (4.13) 
J J i 
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We Illustrate the labeling algorithm at (4.13). Suppose X has c = 3 

classes, labeled with the crisp vectors {e^,e^,e^} = N^^. Let V = ( v , 
V , V V ) be four prototypes found by some algorithm. Let P be the 3 
X 4 percentage matrix shown in Table 4.5. Labeling algorithm (4.13) 
assigns v to class 1, v and v to class 3, emd v to class 2. 

Table 4.5 Example of a multiple prototsrpe labeling algorithm 

e^ 0.57 0.10 0.13 0.20 

^2 0.15 0.10 0.15 0.60 

Cg 0.05 0.40 0.40 0.15 

i 
H(p^)=e^ m,}=e. H(P3^=«3 

i 
H(p^)^e^ 

C. Sequential hard c-means (SHCM) 

The oldest model that can properly be identified as a CL model is 
probably sequential hard c-means (SHCM). As we shall see, the 
update rule of MacQueen's (1967) SHCM algorithm is very similar to 
the more recent and popular LVQ designs. MacQueen attempted to 

partition feature space 9?^ into c subregions, say (S^,...,S ), in such a 
way as to minimize the functional 

J M ( V ) = I 1-1 x - v . df(x] 
1=11 

(4.14) 

where f is an (unknown) probability density function (pdf), 
V = (v^ v^)e9?P, V. is the (conditional) mean of x estimated by 
the pdf f obtained by restricting f to S., normalized by the prior 
probability n, of class i, i.e., f (x) = f(x) | /n.. 

In MacQueen's SHCM algorithm to approximately minimize Ĵ ,̂ the 
weight vectors are initialized with the first c samples in the data set 
X. In other words, v „ = x , r=l,. . ,c. Let q „=1 for r=l,..,c (q ^ 

r.O r ^ r ,0 r , t 
represents the number of samples that have so far been used to 
update V ). MacQueen's process terminates when all the samples 
have been used once (i.e., take V = Vafter one pass through X). For 
this implementation, we need only indices k and i in Table 4.4. 
Suppose X, is the current input and that v , is closest to it, as in 

^ ^ k i,k-l 
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Figure 4.11, i = arg minj Xĵ  - v^ ^-i (• MacQueen's algorithm updates 

the V 's as follows : 
r 

(4.15a) 
(4.15b) 

(4.15c) 

(4.15d) 

Other versions of SHCM pass through the data set many times 
(Forgy, 1965). Rearranging (4.15a), we can rewrite Macqueen's update 
equation for the winning prototype as 

\ k = V i + ^ W i ^ / V (4.16) 

Equation (4.16) takes the general form shown in equations (4.12b) 
and (4.12c) by setting af^^^ = 1 / q. j^ in (4.16). 

If crisp clusters are desired, the sample points can then be labeled 
using HCM necessary condition (the 1-np rule) in equation (2.6a). 
This usually produces a hard c-partition Ugj^^j .̂ Since the {Vj = Vj} 
are conditional means, the partition obtained this way may not be 
desirable from the point of view of clustering. Moreover, this 
method does not eliminate the possibility of slow but indefinite 
oscillation of the centroids (limit cycles). Nonetheless, this is a 
historically important and still popular method of prototype 
generation, and the terminal prototypes can be used for nearest 
prototype classifier design. 

D. Learning vector quantization (LV9) 

The learning rate distribution for LVQ that is used in equation 
(4.12b) of our CL template is well known: 

<9 = ̂  
jk.t 0 , j = l,2,...c ; J ^ i 

(4.17) 

Equation (4.17) shows that, like SHCM, this form of LVQ is a winner 
take all strategy - that is, the update neighborhood is Just a single 
point. In (4.17) learning rate a is usually: (i) independent of i and k; 
(ii), initialized to some value in (0, 1); and (iii), decreased 
nonlinearly with t, usually a^ oc (1 /1) . There are some differences 
between our version of unsupervised LVQ and MacQueen's 
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algorithm: (i) in LVQ sample points are used repeatedly until 
termination is achieved, while in MacQueen's method, sample 
points are used only once; (ii) in MacQueen's algorithm aĵ "̂̂ *̂  is 
inversely proportional to the number of points found closest to v. 

so it is possible to have â "*̂ "̂  < â "*-̂ ^ when t > t„. 
^ i , t , i . t j 1 2 

So much has been written about supervised and unsupervised 
versions of LVQ (there are many variations to the form embodied by 
using (4.17) in (4.12c)) that our discussion of it here will be limited to 
several examples that compare it to several soft generalizations of 
it. But before we leave this subsection, we point out that LVQ is a 
special case of a more general model due to Kohonen (1989) called 
the self-organizing feature map (SOFM), which will put in an 
appearance in Example 4.26. 

We give a very brief description of the SOFM scheme, again using t to 
stand for iterate number (or time). In SOFM each prototype 
Vjj e 9tPis associated with a display node.say dj^ e3{^. Usually q = 
1 or 2, but the display "space" could have more dimensions, and it is 
not really a space, but a set or lattice D of integers (addresses) in 91'̂ . 
The purpose of the display set is to establish a topological 
neighborhood for the address or index associated with each 
prototype vector, so there are exactly as many cells in the display 
space as there are prototypes. For example, if you have 100 

prototypes for the Iris data, then V = {Vj,... VJOQ} C'-K^, SO a natural 
display set for these prototypes would be a linear array, the integers 
D = {1 100}. On the other hand, if the prototypes had spatial 
identities in two dimensions, they might be doubly indexed, as, for 
example V = {Vij,...Vio,io} c: ̂ f*, and then a natural display set 
would be the 100 pairs of integers D = {(1,1),..., (10,10)} arranged in a 
square lattice. Topological neighbors in D are neighboring 
addresses - the cells in D are only indices, and do not possess 
numerical features (like pixels in images in Chapters 4 and 5, for 
example, which contain at least intensities at their addresses). In 
the SOFM scheme, each address is associated with a unique 

prototype in 3i^. 

In SOFM the winning vector Vj j that best matches (usually, but not 
necessarily, in the sense of minimum Euclidean distance) an input 
vector X]ĵ  is found. Next, a topological (spatial) update neighborhood 
7\/(dj j) c D centered at dj ̂  e D is defined in D, and the winner node 
neighbors are located in D. This means that you must define what a 
neighborhood is in D, and this requires two concepts - shape and 
size. For linear arrays, the shape of A/(djj.) is usually adjacent 
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indices to the left and right of D out to a specified rad ius ; for 2D 
disp lay se t s , it could m e a n the 4-connec ted ne ighbors of dj t 
diagonally or parallel to the axes of D, or the 8-connected neighbors 
of dj t t ha t su r round it in D, etc. Along with the shape of A'(dj ^) there 

m u s t be a concept of order or size, usually defined through its radius, 
which will decrease with time (iteration). 

Final ly, Vjt a n d o ther prototype vectors in t he inverse image 

[A/(dj j r ^ o f t he spa t ia l ne ighborhood A'(djf) are u p d a t e d us ing 
equation (4.12c). We mentioned tha t the update neighborhood could 
be i m b e d d e d in to the l ea rn ing ra te s chedu le (the {ajĵ t̂}) in 

connect ion viath equat ion (4.11), and SOFM is an example of the 
need to do th is . For t he cu r ren t s i tuat ion, we accomplish th i s by 

sett ing ttjij^t = 0 for all Vj^ i[N{dn)]~^, a n d u s e whatever learning 
ra tes are defined a t this set of subscr ipts to update the prototypes in 
t he u p d a t e neighborhood. The u s u a l way to operate SOFM is to 
decrease both the values of the learning ra tes and size of the upda te 
neighborhood over time. When the upda te neighborhood is reduced 

to the w i n n e r a lone (Vj^ = (Mdj t)!"^). SOFM becomes the LVQ 
algori thm. The re la t ionship between a n d manipula t ion of V and 
y\/(d. J.) can a pret ty difficult concept to grasp for first time reade r s 
abou t SOFM; please refer to Kohonen (1989) for amplification. 

E. Some soft versions of LVQ 

SHCM and LVQ a t tempt to minimize objective functions tha t place 
all of the i r emphas i s on the winning prototype for each da ta point. 
However, s t ruc tura l information due to da ta point x is carried by all 

c of t h e d i s t a n c e s < x - v . h ' . Many a u t h o r s have sugges t ed 

modifications to winner take all models tha t upda te all c prototypes 
dur ing each upda t ing epoch, thereby eliminating the need to define 
a n u p d a t e neighborhood. We will d i scuss three CL models of th i s 
type, GLVQ-F (this subsection), SCS (subsection 4.3.G) and FLVQ 
(subsection 4.3.H). The model underlying GLVQ-F contains LVQ a s a 
subcase a n d is d i scussed extensively in Karayiannis et al. (1996). 
GLVQ-F is based on minimizing the functional 

'GLV9-. „ ^^^ JGLV9-F(^k :V)=Iu^K-Vj | 

|,2/(m-l) 
c I 

r=l 

c 
1 
J=l 

V 

X, - V 
k r 

k J 

2/(in-l) | |X^-V^ | , m > l . (4.18) 
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In (4.18) the vector u = (ui,U2,...,U(.) G N^ is a fuzzy label vector 
whose entries take the form of FCM necessary condition (2.7a). The 
real number m > 1 in (4.18) is the same fuzziness parameter that 
appears in FCM and PCM. The value of m affects the quality of 
representation by the terminal prototypes it finds. And m also 
controls the speed of termination of the GLVQ-F algorithm, which is 
just steepest descent applied to JGLVQ-F • '^^^ GLVQ-F update rule for 
the prototypes V at iterate t in the special (and simple) case m=2 
gives the following learning rate distribution for use in equation 
(4.12b): 

f ( II l|2 A V ^ 

„GLV9-F(m=2) ^ 2ca , 
ik.t t 

r = l 

k i.t-1 

k r,t-l|| 

l<i<c . (4.19) 

)) 
,2 
-'ik.t-1 

Equation (4.19) has the same singularity condition as FCM in its 

denominator. When no Xj^-v^.^ J = 0 , (4,19) produces a learning 
rate for each value of i, so all c prototypes are updated at each input. 
As in (4.17), a in (4.19) - now one factor of the learning rates {a } -
is usually proportional to 1 /t , and the constant (2c) is absorbed in it 
without loss. Limiting properties of GLVQ-F are : (i) as m approaches 
infinity, all c prototypes receive equal updates and the v.'s all 
converge to the grand mean v of the data; whereas (ii) as m 
approaches 1 from above, only the winner is updated, and GLVQ-F 
reverts to LVQ. Finally, we mention that the winning prototype in 
GLVQ-F for m=2 receives the largest (fraction) of a at iterate t; and 
that other prototypes receive a share that is inversely proportional 
to their distance from the input. The GLVQ-F learning rates satisfy 

c 

the additional constraint X ocŷ  t - 1 • 
i=l 

F. Case Study : LVQ and GLVQ-F 1-ninp designs 

This subsection abstracts part of an example discussed in Bezdek et 
al. (1998b). Here Anderson's (1935) Iris data is used to illustrate 1-
nmp classifier design with prototypes found by LVQ and GLVQ-F. 
Figure 4.12 scatterplots the third and fourth features of Iris 
(hereaifter called Iris ) and the subsample means (listed in Table 4.6) 
for each of the three classes. Class 1 is well separated from classes 2 
and 3 in these two dimensions; classes 2 and 3 show some overlap in 
the central area of the figure, and this region contains the vectors 
that are usually mislabeled by nearest prototype designs. The 
dashed boundaries indicate the physically labeled 2D cluster 
boundaries. Thus, c = 3 in the terminology of Definition 4.2. 
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Petal Width 

-2.5 

-1.5 

\J^ = Mean of class 1 

"W' = Mean of class 2 

2 db = Mean of class 3 

3 = Virglnica 

-0.5 

1 = Sestosa 

• •JL i 

.... + 
• 1 1 I 

. . . . • 
I • 

>. • I I I 

JS**' 

2 = Versicolor 

Xg = Petal Length 

t > 

Figure 4.12 The Ms data : {(feature 3, feature 4)} = MSg^ 

The resubstitution error rate for the supervised 1 -np design that uses 
the class means (listed in Table 4.6 and shown on Figure 4.12) as 
single prototypes is 11 errors in 150 submissions using the 
Euclidean norm, i.e., E {Iris|Iris) = 7.33% (see the confusion 

"V,E,82 

matrix for this case in Table 4.14). 

Table 4.6 Labeled sample (mean) prototyi}es V in 9t̂  for Iris 

Symbol Name X , X n X , 

+ 

5.01 3.43 1.46 0.25 

5.94 2.77 4.26 1.33 

6.59 2.97 5.55 2.03 
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The "hyberbox diagonal" method is used to generate an initial set of 
c prototypes V for this example. To build the hjqserbox compute 

Minimum of feature j : m - min{ x , }: 1 = 1,2 p ; (4.20a) 
J J ^ ^ jk J 

Maximum of feature i : M = max{ x , } : j = 1,2 p . (4.20b) 
•> I - — ^ — ' ik -̂  '• 

k 

The se t hb(m,M) = [mj,Mj]x...x[m ,M ] is a hyperbox in 3<^. The 

main diagonal of hb(in, M) connects m and M with the line segment 
{m + a(M - m); 0 < a < 1}. Initial prototypes for LVQ and GLVQ-F in 
this example were: 

Vio = m + [ ^ — ^ W - m ) ; i = l , 2 , ...,c (4.21) 

Thus , V j Q = m = (mj,m2 m^)"^ ; v^^ = M = (Mj,M2,...,Mp)'^; and 

the r ema in ing (c-2) initial prototypes a re uniformly d is t r ibu ted 
a long t h e d iagona l of hb(m,M). A usefu l va r i a t ion of t h i s 
ini t ial izat ion s t ra tegy is to choose c po in t s randomly from the 

diagonal {m + a ( M - m ) ; 0 < a < 1}. For the p resen t case , Table 4 .7 
shows the initial prototypes produced by uniform draws as in (4.21) 
with the Iris data at c = 6. 

Table 4.7 Initial prototypes for Iiis at c = 6 computed with (4.21) 

v^ Q = (4.30 2.00 1.00 0.10) = m 

V2'Q = ( 5 . 0 2 2 . 4 8 2 . 1 8 0 . 5 8 ) 

V3Q = (5 .742 .96 3.36 1.06) 

v^ Q = ( 6.46 3.44 4.54 1.54) 

V5Q = ( 7.18 3.92 5.72 2.02) 

Vg Q = ( 7.90 4.40 6.90 2.50 ) = M 

The Euc l idean n o r m was u s e d in (4.12a), a n d the n u m b e r of 
prototypes generated ranged from c = c = 3 t o c = 30. The termination 
threshold e had one of the three values e= 0 .1 , 0.01 and 0 .001 . The 
pr imary te rmina t ion criterion t h a t was compared to e was the 1-
n o r m be tween success ive e s t ima te s of t h e c p ro to types , i.e., 

c P 
E = V - V = y y V. ^ - v . , , jr.t j r , t - l if t h i s failed to s t o p a n 

algorithm, secondary terminat ion occurred a t the i terate limit T = 
1000. The initial learning rate was a = 0 . 4 and a w a s decreased 

° 0 
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linearly, viz., a^ =aQ((T-t)/T) for both algorithms. For the results 
displayed, (4.19) was used for GLVQ-F. 

Samples were drawn randomly from X = Iris without replacement. 
One iteration corresponds to one pass through Iris. Each algorithm 
was run 5 times for each case discussed to see how different input 
sequences affected the terminal prototypes. For the less stringent 
termination criteria ( e= 0.1 and 0.01), different terminal 
prototypes were sometimes obtained on different runs. For e = 0.001, 
this effect was nearly (but not always) eliminated. Most of the runs 
using e = 0.001 were completed in less than 300 iterations through 
Iris. 

Unsupervised nearest prototype designs for Iris that seek c= 3 
prototypes report resubstitution errors ranging from 5 to 20. Table 
4.8 exhibits the terminal prototypes found by each algorithm for c = 
6, as well as the resultant 1-nmp error rates they produce when used 
in (4.7) on all of Iris. Each of the three physical clusters is 
represented by two prototypes for both LVQ and GLVQ-F, and the 
overall error rate produced by these two classifiers is 9.33% - 14 
mistakes, not really much better than any unsupervised design at 
c= 3, and not as good as the supervised sample means design. 

Table 4.8 Typical prototypes, confusion matrices and l-nmp 
resubstitution error rates for c = 6 prototypes (Iris data) 

LVQ 
labe ls 

LVQ 
prototypes 

GLVQ-F 
labels 

GLVQ-F (m=2) 
prototypes 

1 
1 
2 
2 
3 
3 

4.69 3.12 1.39 0.20 
5.23 3.65 1.50 0.28 
5.52 2.61 3.90 1.20 
6.212.84 4.75 1.57 
6.53 3.06 5.49 2.18 
7.47 3.12 6.312.02 

1 
1 
2 
2 
3 
3 

4.75 3.15 1.43 0.20 
5.24 3.69 1.50 0.27 
5.60 2.65 4.04 1.24 
6.18 2.87 4.73 1.56 
6.54 3.05 5.47 2.11 
7.44 3.07 6.27 2.05 

C = 

Erro 

^50 0 0 ^ 
0 50 0 

^ 0 14 36^ 

r rate = 9.33 "/ 6 

C = 

Erro 

["50 0 0 '̂  
0 50 0 

^ 0 14 36^ 

r rate = 9.33°/ h 

The third and fourth features of the prototypes in Table 4.8 are 
plotted in Figure 4.13 against a background created by roughly 
estimating the convex hull of each physical class in these two 
dimensions by eye. Some of the prototypes are hard to see because 
their coordinates are very close in these two dimensions. The LVQ 
and GLVQ-F prototypes that seem to lie on the boundary between 
classes 2 and 3 are highlighted by enclosing these points with the 
Jagged star sQ. These prototypes are the ones that incur most of the 
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misclassifications that are committed by the LVQ and GLVQ-F 1-
nmp classifiers. 

X , 

'2.5 

-- 2 

1.5 

-- 1 

-- 0.5 

© 6 : LVQ 

H 6 : GLVQ-F 

Figure 4.13 Tenninal prototypes in Ms at c = 6 

Table 4.9 lists the same information as Table 4.8 for typical runs 
made at c = 7. There is a sharp drop in the error rate for both the LVQ 
and GLVQ-F 1-nmp designs. Be careful to note that the seventh 
prototype is not "added" to the previous six; rather, seven new 
prototypes are found by each algorithm. The error rates in Table 4.9 
are very low for designs that do not use the labels during training. 
Note that LVQ and GLVQ-F continue to use 2 prototypes for each of 
classes 1 and 2, and add a third representative for class 3 at c = 7. 
Thus, neither LVQ nor GLVQ-F provides an efficient representation 
of the data because only one prototype is needed to represent the 50 
class 1 points with no resubstitution errors. This point is brought 
out in Bezdek et al. (1998b), where the so-called "dog-rabbit" 
prototype generation algorithm is used to achieve this somewhat 
more desirable result. 
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Table 4.9 Typical prototypes, confusion matrices and 1-nmp 
restibstitution error rates for c = 7 prototjrpes (Ms data) 

LVQ LVQ GLVQ-F GLVQ-F (m=2) 
Labels prototypes Labels prototypes 

1 4.68 3.11 1.39 0.20 1 4.74 3.15 1.43 0.20 
1 5.23 3.65 1.50 0.28 1 5.24 3.69 1.50 0.27 
2 5.53 2.62 3.93 1.21 2 5.57 2.613.96 1.21 
2 6.42 2.89 4.59 1.43 2 6.26 2.92 4.54 1.43 
3 6.57 3.09 5.52 2.18 3 6.62 3.09 5.56 2.16 
3 7.47 3.12 6.312.02 3 7.50 3.05 6.35 2.06 
3 5.99 2.75 5.02 1.79 3 6.04 2.79 4.95 1.76 

f 50 0 0 ^ f50 0 0 ^ 
C = 0 47 3 C = 0 46 4 

^ 0 1 4 9 j 1̂  0 1 4 9 j 

Erro r rate = 2.66 «/ D Error rate = 3.33 % 

«!'2.5 

O 7: LVQ 
7 : GLVQ-F 

-- 1.5 

1 

-- 0.5 

Figure 4.14 Terminal prototjrpes in Ms at c = 7 
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Figure 4.14 shows that the crucial "boundary" prototypes from LVQ 
and GLVQ-F in the c = 6 case have roughly "divided" into two sets of 
new prototypes, enclosed again by the jagged star. These two pairs of 
prototypes have moved away from the apparent boundary of the 
lower left part of the convex hull of class 3. Both new pairs move 
further into the convex hulls of their respective classes. 

When these two CL algorithms are instructed to seek c = 8 prototypes, 
the resubstitution error rate for both designs typically remains at 
2.66%, and at c = 9 the results are quite similar. TTiese results suggest 
that the replacement of Iris with 8 or 9 prototypes found by either 
LVQ or GLVQ-F results in a 1-nmp design that is quite superior (as 
measured by the resubstitution error rate) to the labeled 1-np design 
based on the c = 3 subsample means V. It is reasonable to assume 
that this trend would also hold for apparent error rates computed 
with test data reserved from Iris - i.e., that the 1-nmp designs would 
generalize better than classifiers based on 1-np designs - reasonable, 
but certainly not guaranteed. 

How few prototypes are needed by the 1-nmp rule to achieve good 
resu l t s? And conversely, at what point does prototype 
representation become counter-productive? Table 4.10 shows the 
best case results (as number of resubstitution errors) reported in 
Bezdek et al. (1998b) using each algorithm at various values of c. 

Table 4.10 Best case resubstitution errors 

c-> 3 4 5 6 7 8 9 15 30 
LVQ 

GLVQ-F 
17 
16 

24 
20 

14 
19 

14 
14 

3 
5 

4 
3 

4 
4 

4 
4 

4 
4 

Observe that on passing from c = 3 to c = 4, even the best case error 
rate increased, followed by a decrease on passing from c = 4 to c = 5. 
Table 4.10 shows that the Iris data can be fairly well represented in 
the sense of minimal resubstitution error by 7 or 8 labeled 
prototypes (see Kuncheva and Bezdek (1998) for a non fuzzy design 
that yields zero resubstitution errors using 12 prototypes). At the 
other extreme, increasing c past c = 7 has little effect on the best case 
results. Taken together, these observations suggest that Iris (and 
more generally, any labeled data set) has upper and lower bounds in 
terms of high quality representation by multiple prototypes for 
classifier design. There seems to be little hope, however, of 
discovering this on a better than case-by-case basis. 

Finally, some comments on the sensitivity of each CL model to 
changes in its control parameters. Bezdek et al. (1998b) did not 
experiment with changes in m for GLVQ-F. Certainly this parameter 
affects terminal prototypes. However, we doubt that small changes 
in m will cause radical changes in the results given above. The 
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initial learning rate a was varied from 0.4 to 0.6 in both LVQ and 
GLVQ-F without noticeable changes in tj^ical results. 

G. The soft competition scheme (SCS) 

Yair et al. (1992) proposed two vector quantization models, a 
stochastic relaxation scheme (SRS) and a soft competition scheme 
(SCS). Like GLVQ-F, algorithms for these two models eliminate the 
need to define an update neighborhood by extending the update to all 
c nodes; and they use learning rates that are functions of the c 

distances | z - v. [. Our discussion here is limited to the SCS model 
and algorithm. 

SCS is a deterministic algorithm (the algorithm is deterministic 
because its steps are not stochastically controlled, but it does use 
probabilities as part of the learning rates). In SCS all c prototypes 
are simultaneously updated by a scheme which directs them - like 
LVQ - towards the current training vector. The step size of each 
update is scaled by the probability of that prototype being the 
winner. At time (iterate) t, the probability of the i-th prototype 
winning is defined as 

-Ptl|rk-Vit_il|2 
p..=~ ^ , (4.22) 

j=l 

where lim|P|.| = oo. The probability p^^ ^ is one factor in the SCS 

update equation. The choice for p specified by Yair et al. is 

p^_yt/c^rp^ J jg regarded as an initial "temperature", and y is a 

constant which Yair et al. stipulate should be greater than 1. The 

quantity (1/Pj) is regarded as the temperature T at time t, so as 

t -^ o°, Pj-> o°, and T - ^ 0 . Hence, this procedure is analogous to 
simulated annealing. 

Next, let n. ^ = n. ^_-^ + p^ ^ [approximately the total number of times 
that V. has been updated). This parameter is reset to 1 whenever 
iteration counter t is a perfect square. Yair et al. use this to define 
the other factor of their learning rates as 

^ik,t = 

r ^ 
1 

n. . n . ^ , + p „ 4 
(4.23) 



220 FUZZY PATTERN RECOGNITION 

The overall learning rate for SCS that Is substituted into (4.12c) is 
the product of these two factors, 

a 
SCS 
ik.t - "Hik,! • Pik.t (4.24) 

Table 4.11 gives the implementation of SCS that was used by Bezdek 
and Pal (1995) for the results presented in Example 4.3. 

Table 4.11 The SCS algorithm (Yair et al., 1992) 

Store (Un)labeled Object Data X^̂  = {x^, X2 x^} c 9tP 

U^ eM^^^ = Labels of vectors in X (if available) 

© number of nodes : 1 < c < n 
© max. # of i terations : T 

© distance measure : x. - v , . , 
11 k i . t - l | | 

Pick © termination measu re : E = V - V 

© terminat ion criterion : e 
© y > 1 
© T = initial t empera ture 

Get © Initial prototypes: V e 9t'̂ P 

t ^ 1; EQ = high value 
DO UNTIL (t >T or E^ J < e) 

For k = 1 to n 
X e X, X, <r-x, X <- X - {x, } 

k k For i = 1 to c 

Do / J=i 
If (t = a perfect square) n. = 1 

E l sen . ^=n .^_ j+p^^^ 

ilik,t = ^ l / n u ) 
V., = V., , + ri,, . p . , , (x, - V,, ,) 

i,t i,t-l 'ik.t ^ik.t^ k i . t -1 ' 
Next i 

Next k 
t < - t + l 
END UNTIL 
V ^ Vt_i 
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We call attention to the handling of n in Table 4.11, which 
i.t 

necessitates further modifications to the standard CL model set out 
in Table 4.4, but reports what Yair et al. used in their original paper. 
Since SCS is an unsupervised method, optional blocks B and C of 
Table 4.4 are applicable to this scheme too. SCS starts with a low 
value of P (i.e., wath approximately uniform {Pjĵ j} ), and then (5 
slowly increases with time. As a result, at the beginning of the 
procedure no prototype is strongly attracted to a particular class. 
With time (i.e., as the number of iterations increases) prototypes 
become more strongly separated from each other as p̂ ĵ  ̂  begins to 
peak around the Euclidean winner, but at the same time r\^ + "^ ^ • 
Thus in the limit (as iterate t goes to infinity) SCS behaves like a 
winner-take all (LVQ type) competition. 

The c numbers (Piĵ ^} are probabilities, so they satisfy 0 < p,j^j < 1 

and IP j j^ j= l . Consequently, PtC î̂ ) = (Pikt'P2kt Pckt^^ ^̂  ^ 
1=1 

probabilistic label vector for x , Pj(Xĵ ) eN .̂̂ . Since TÎ Ĵ .̂ : 
1 

n, , 
< 1 . 

the sum of the learning rates for a fixed input vector x at any iterate 

t satisfies the constraint 0<ya^ '^f < l . Bezdek and Pal (1995) 

showed that there is a strong relationship between SCS and 
mixtures of normal distributions as discussed in Section 2.2.C. 
Bezdek and Pal made two simplifying assumptions about the 
mixture of normals obtained by substituting (2.18a) into (2.17). For 
each class i, 1 < i < c, they assumed that 

71. = 1/c ; and (4.25a) 

X. = a^l . (4.25b) 

In other words, all classes are equally likely and all classes have a 
population covariance matrix which is a scalar multiple of the 

identity. Then Xj"^=—jl and Jdet(i;.) =a for every class, so the 

Mahalanobis norm becomes a multiple of the Euclidean norm, 
II l | 2 1 II | | 2 

x - j i . _i =—2" x - j i . . For this special case Bayes rule at (2.19) 

takes the form 
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71 1 X = 

2( j 211^-^'i 
/ ( (27 i )P /2a ) 

j = i U 

2a 
2ir-H 

I e ^2c 
J=i 

-i^^lr^^jl 

/ ( (27c)P/2o) 

(4.26) 

For a given x this becomes 

7t(i|Xj^)= e 2a^ (4.27) 

If we define Pj.=l/2a^ and v^^.^ =)ij for i = 1 to c, then p.j^^ and 

7c(i|Xĵ ) are identical. Thus the component p^^ of the SCS learning 
rate used by Yair et al. can be interpreted as an estimate of the 
posterior probability of x being from class i under the assumptions 

in Section 2.2.C and (4.25). However, Pj=l/2a^ does not ensure 

limjp } = °°. To achieve this Yair et al. use t in the definition for (i , 

i.e., Pj =(7*̂ '̂  / TQ). Thus, at time t we take o^ = (T^ j'*-/'' / 2) . Then 

Pjj^^and 7i(i|x^) are still identical, and p̂^ = V^^t ^ l ini |pJ = oo. 

In summary, p^^^ can be interpreted as the posterior probability 
that X is from class i when all classes are equally likely, and class i 
is modeled as a p-variate normal distribution with parameters 

FLVQ, the next CL model we discuss. 
Xjj. =(Toy- ' /V2)l) . Example 4.3 will compare SCS to 

H. Fuzzy learning vector quantization (FLVQ) 

A possible connection between batch FCM and sequential LVQ was 
first discussed by Huntsberger and AJjimarangsee (1990), who 
suggested fuzzification of LVQ by replacing the learning rates {ttjî ^} 
in (4.12c) with the fuzzy membership values {u } computed with 
FCM formula (2.7a). While this approach was innovative, it was to 
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some extent unmotivated. Moreover, their method still required 
choosing m, and it seemed to improperly mix the objectives of LVQ 
(vector quantization) and FCM (clustering). 

Tsao et al. (1993) proposed a batch prototype generator model that 
required the use of fuzzy partitions that was initially called a fuzzy 
Kohonen clustering network (FKCN). Like fuzzy ISODATA, this 
initial name seemed inappropriate, so the model and algorithms for 
it have subsequently become known as FLVQ (Bezdek and Pal, 1995). 
FLVQ has three objectives: (i) to overcome the two problems we 
identified for LVQ (which nodes to update and how to use the non-
winner prototypes in the determination of learning rates); (ii) to 
circumvent (to some extent) the problem of how to choose m for 
FCM-AO; and (iii) to provide a substantial link between the batch c-
means and sequential LVQ families of prototype generators. 

As noted in Section 2.3, the choice of m for the FCM model is very 
important. When m is small (close to 1), (2.7a) tends to produce 
almost crisp label vectors. If prototype updates in equation (4.12c) 
use learning rates based on (2.7a), and u is close to 1, the update for 
node i may be very large compared to the other updates because of 

c 

the column constraint X u . = 1 . If, additionally, the current 
1=1 "^ 

prototypes have an unfavorable geometry compared to the central 
tendencies of clusters in the data, some prototypes may move 
rapidly towards a cluster, while others may move but little. This 
effect is illustrated in Figure 4.15 for the data set X = X u X 

o o 

Figure 4.15 A low value of m may produce bad prototypes 
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In Figure 4.15 prototype v is closer to every point in X than v is. 
The result of this is that for any m at c = 2, the class 1 memberships 
{u } of every point in X computed with (2.7a) will be higher than the 
class 2 memberships {u }. Since u + u = 1 for all k, the two rows 
of membership matrices produced with (2.7a) for any m will look 
like this: 

U(m)^ 
<-••• ( > 0 . 5 ) - - 4 " 

< - • • • ( < 0 . 5 ) • • • - ^ 
->i 

•^U(l) = 

So, when m is close to 1, memberships of points in both X and X in 
class 1 will be close to 1. The effect of this is that the sequential 
updating strategy (4.12a) with learning rates based on (2.7a) will 
force prototype v in Figure 4.15 to migrate towards the grand mean 
V of X, and v will not change much. 

On the other hand, if m is large (say > 7) all of the û ĵ  's will be nearly 
1/c. In this case both prototypes in Figure 4.15 will be pulled towards 
the data very slowly because (û ĵ  ^)™ = 1 / c™. So when m is large, for 
any competitive learning scheme whose update rate is a monotonic 
function of the (u }, every prototype will be updated to almost the 
same very small extent (e.g., with c = 3 and m = 7, every 
u ^ ^ - 0 . 0 0 0 4 ) . 

Thus, if the memberships at (2.7a) are to be used in (4.12c), neither 
low nor high values of m seem desirable. However, if we start with a 
high value of m, and then slowly reduce it during iteration, this 
undesirable situation is avoided. Motivated by this, Tsao et al. 
(1993) defined the batch fuzzy learning vector quantization (FLVQ) 
algorithm via the heuristic learning rates 

ik,t lk,t 

c 

I 

N - m j 

l.tllA •^j.tlL 
V i, k; (4.28a) 

^i,t = '^i.t-i + ^ "Sl^^^k - '^i.t-i^ / S<J:^® ^ i • ^l^ere (4.28b) 
k = l 

m^ =mQ + t [ (mf-mQ)/T] = mQ + tAm ; m^.m^ > l ; t= l T. (4.28c) 

FLVQ Equation (4.28b) can be rewritten as Vj^= X "uTt ^k' ' ^"ist • 
k=l ' s=l 

Comparing this to (2.7b), equation (4.28c) asserts that when m = m 
= m is fixed, FLVQ is FCM-AO. Since m in (4.25c) is variable, we can 
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have three families of FLVQ algorithms, depending on the choice of 
the Initial (m^) and final (m^.) values of m. For t e {1,2,..., T}, 

m^ > m^ => {m J i mj.: Descending FLVQ = i FLVQ (4.29a) 

m^ < m^ =* {m^} t m .̂ : Ascending FLVQ = t FLVQ (4.29b) 

mo=m^ m^ = m^ = m: FLVQ = FCM (4.29c) 

We have included a discussion of T F L V Q here for completeness, but 
its properties as functions of m seem opposite to the intuitively 

desirable properties shared by SCS and O F̂LVQ. Here we concentrate 

on and describe in Table 4.12 the implementation of J'FLVQ based 
on equations (4.28) and (4.29a), which is used in Example 4.3, and 
with modifications as set out in Baraldi et al. (1998), Example 4.26. 

Table 4.12 Descending F1.VQ ( iFLVQ), Tsao et al. 1993 

Store (Un)labeled Object Data X^̂  = ^ . ^ 2 ^ n } < = ^ ' 

Uj^ e Mj^^^ = Labels of vectors in X (if available) 

© number of nodes : 1 < c < n 
© max. # of i terations : T 

Pick 

© distance measure : x, - v . , , 
II K i . t - lJ lA 

Pick 
© terminat ion measure : E = V - V 

© terminat ion criterion : e 
© 7 > m^ > m .̂ > LI 

Get © initial prototypes: V e St'̂ P 

t <- 1; EQ = high value 
DO UNTIL (t >T or E^ ^ < e) 

Do 

m^ = m^ 4 
For k = 1 t 

N e x t k 
For i = 1 tc 

- t [ ( m j - m o ) / T ] 

o n 

V 

) C 

2 ^ 

J 

-™t 

Next i 
t ^ t + 1 
END UNT 

^ i , t - l ^ , ^ , "ik,t ^' 
k=l 

IL 
U ^ Ut_i 

k i , t - l ' •^, is.t s=l 
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As with LVQ and SCS, -l FLVQ prototypes can be used with equat ion 
(2.6a) to p roduce a cr isp part i t ion of X. Notice, however, t h a t a t 
te rminat ion a fuzzy part i t ion is also available, and it will be pa r t of 
a n opt imal pair (U^.VJ for t he FCM objective function J ^ at the 

terminal value ofm. In either case, the final prototypes can be used 

to define a 1-np or 1-nmp classifier. Our implementat ion of 4-FLVQ 
is necessari ly ba tch , and this preserves its relationship to FCM-AO. 

Another difference wor th not ing is t h a t unl ike FCM-AO, ^FLVQ 

does not optimize a fixed objective function. All we can say about 

this is t ha t since si FLVQ uses equations (4.28) at each iteration with 

m = m , every full s tep of 4-FLVQ finds a pa i r (U , V ) t h a t are 
necessary for a local extrema of J . 

Observe the cons t r a in t s 7 > m^ > nij. > 1.1 in our specification of 

iFLVQ. These empirically chosen limits may prevent numer ica l 
instabi l i ty - in o ther words , s tay away from 1 and infinity ( see 

Baraldi et al., 1998 for more discussion on this aspect of VIFLVQ). 

The vector u^(Xj^) = (u^j^ j,U2,^^j '-'ckt^^ ^̂  ^ fuzzy label vector for 

X, , U J X ^ ) G N J . ^ . This m e a n s tha t the s u m of the 4-FLVQ learning 

ra tes for input vector x a t any iterate t satisfies the same constraint 

a s the SCS learning rates: 0 < Zaf^^^Q < 1. 
i=l 

To u n d e r s t a n d how m acts to control the distr ibution and values of 

t he l ea rn ing r a t e s {ot̂ ŷ̂ ®} in FLVQ, we d i scuss si FLVQ in more 
detail. The general s i tuat ion can be unders tood by examining the 
learning ra tes a t (4.28a) for fixed c, {v̂  J and m^. In this case, 

ik.t l̂ il k i.tll^ J 

c / „ ^2/(nn-l) 
where K = Z 1 / 

j=iv 
(4.30) shows tha t the contribution of Xĵ  to the next update of the node 
weights is inversely proportional to their d i s tances from it, so the 
winner for th is k is the v. . , closest to x , . Larger values of m lead to 

i , t-l k => t 

fuzz ie r v a l u e s of u , ( v a l u e s c l o s e r to 1/c) , a n d 
i k . t 

X. - V.. is a positive cons tant . Equat ion 
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l u . ^ ^ =l=>Iaf^^y9 <1 . So, in the initial stages of i FLVQ large 
values of m^ (near ITIQ) yield updates with lower individual learning 
rates. 

In the initial stages of SCS (for low values of t) p.̂ ^ ^ = 1 / c, and since 
the counters {n. } all start at 1, at the beginning of the SCS learning 
process each prototype is (more or less) updated to the same extent. 
In other words â ^̂ f = [r\^^ Pik.t)==('nj,t Pjk.t) = «fk!? for all i and j at 

low values of t. What happens for 4̂  FLVQ? In this case we start with 
a high value of m = m . For high values of m, û ĵ  j. = 1 / c V i, and as a 

result a^l^ = {u.^^^^ = a J'^S = (Uji, j)™* for all i and j at low values 

of t. Thus, in •l FLVQ all c prototypes will have about the same 
importance at the beginning of iteration, with learning rates at each 
X. that are roughly unifonnly distributed across the c nodes during 

updates. Thus, -J'FLVQ and SCS start with similar learning rates. 

As iteration continues p.j^ ̂  for SCS and u.j^ ^ for 4- FLVQ both tend 

to peak at the winner. For SCS, p.ĵ  t "~̂  ^ when node i is the winner, 

but ri .ĵ  t ~̂  ̂ ' ^o if the iteration is allowed to continue indefinitely 

the overall SCS learning rate riŷ  ^ • pjĵ  ^ -^ 0 almost everywhere -

that is, except on a set of measure zero in 3i (recall that ri^^^ = 1 is 

reset at all the perfect squares in 5R). On the other hand, u^^ ̂  -> 1 for 

•I FLVQ when node i is the winner but since m̂^ —> 1, the overall 

learning rate for this method also goes to 1, af^^^ -> 1. As m^ k̂ m .̂ 
(m̂ ^ gets closer to 1), more and more of the update is given to the 
winner node. That is, the lateral distribution of learning rates is a 

function of t, which in -I- FLVQ sharpens at the winner node as m̂ . v 

m ,̂. Indeed, the learning rate characteristics of J^FLVQ are roughly 
opposite to the usual behavior imposed on them by other 
competitive learning schemes. In LVQ and SCS all c learning rates at 
Xĵ  decrease towards 0 (everywhere for LVQ, and almost everywhere 
for SCS) as t increases (this imbues them with stability and 
improves the chance they will satisfy the termination condition), 

but in iFLVQ, the winner learning rate tends to increase towards 1 
during learning, while the other c-1 rates tend towards zero. So, SCS 

behaves more like LVQ as iteration proceeds than -i FLVQ does. 

Nonetheless, l- FLVQ seems to terminate rapidly in the literature 
that illustrates its use. 
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Example 4.3 We abbreviate some results given by Bezdek and Pal 
(1995) to illustrate and compare LVQ, SCS and FLVQ by again using 
Anderson's (1935) Iris data. Two initializations, shown in Table 
4.13, are used: 1 is the set V of subsample means; and 1 is computed 
with (4.21). 

Table 4.13 Two initializations for the numerical experiments 

Init. Ij = (Means) 

5.01 3.43 1.46 0.25 
5.94 2.77 4.26 1.33 
6.59 2.97 5.55 2.03 

^ ^1,0 - ^ 

^ ^3,0 - ^ 

Init. 1̂  via (4.21) 

4.30 2.00 1.00 0.10 
6.10 3.20 3.95 1.30 
7.90 4.40 6.90 2.50 

None of the algorithms used class information (that is, are 
supervised) during learning. Table 4.14 shows the results of 1-np 
classification (with 8 the Euclidean metric) of Iris using the 
(relabeled) terminal centroids recommended by LVQ, SCS and FLVQ. 

Table 4.14 Sample Mean, LVQ, SCS and FLVQ 1-np classifiers 
on the Iris data when initialized with I, 

Initial Prototypes 1 Confusion Matrix 

5.01 3.43 1.46 0.25 50 0 0 
5.94 2.77 4.26 1.33 0 46 4 
6.59 2.97 5.55 2.03 0 7 43 

Final Prototypes : LVQ 
T=50, aQ=0.6 Confusion Matrix 

5.00 3.42 1.46 0.25 50 0 0 
5.87 2.74 4.37 1.41 0 47 3 
6.81 3.08 5.68 2.08 0 13 37 

Final Prototypes : SCS 
T=50, Y=L3,T^=40 Confusion Matrix 

5.01 3.42 1.46 0.25 50 0 0 
5.88 2.74 4.370 1.41 0 47 3 
6.78 3.05 5.63 2.03 0 13 37 

Final Prototypes : I FLVQ 
T=50, mQ=5, m^= 1.5 Confusion Matrix 

5.01 3.42 1.47 0.25 50 0 0 
5.88 2.75 4.37 1.41 0 47 3 
6.82 3.06 5.70 2.06 0 14 36 
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The confusion matrix associated with D„ „ ,, when V, = V =1 shows 
V,l£,o I 0 1 

that the sample means yield a 1 -np classifier that commits 11 
errors; 4 class 2 points are labeled class 3; and 7 class three points 
are labeled class 2. All three algorithms produce very similar 
prototypes. The confusion matrices for the LVQ and SCS based 1-np 
designs are identical, showing 16 resubstitution errors. FLVQ is very 
nearly the same, committing one more error than LVQ and SCS on a 
class 3 data point. 

SCS seems very sensitive to the choice of and interaction between y 
and T^. Table 4.15 

parameters y andT . 

and T . Table 4.15 studies the effect on SCS outputs to the 

Table 4.15 Some outputs of the SCS 1-np Classifier on Iris 

Init. Y=l 30 T =40 Confusion Matrix 
' • ' 0 

5.006 3.425 1.465 0.247 50 0 0 

^ 1̂ 5.884 2.743 4.370 1.414 0 47 3 
6.776 3.047 5.634 

Y=1.15,T^=40 

2.031 0 13 37 
Confusion Matrix 

5.843 3.057 3.758 1.199 50 0 0 
B \ 5.843 3.057 3.758 1.199 50 0 0 

5.843 3.057 3.758 

Y=1.30,T^=40 

1.199 50 0 0 

Confusion Matrix 

5.006 3.425 1.465 0.247 50 0 0 
C 2̂ 5.884 2.743 4.370 1.414 0 47 3 

6.776 3.047 5.634 

Y = 1 . 1 5 , T Q = 4 0 

2.031 0 13 37 

Confusion Matrix 

5.843 3.057 3.758 1.199 50 0 0 
D I2 5.843 3.057 3.758 1.199 50 0 0 

5.843 3.057 3.758 

Y=1.30,T^=60 

1.199 50 0 0 

Confusion Matrix 

5.008 3.378 1.548 0.284 50 0 0 
E h 6.272 2.884 4.945 1.690 3 0 47 

6.292 2.884 4.945 

Y = 1 . 3 0 , T Q = 7 0 

1.690 0 0 50 

Confusion Matrix 

5.843 3.057 3.758 1.199 50 0 0 
Î  5.843 3.057 3.758 1.199 50 0 0 

5.843 3.057 3.758 1.199 50 0 0 
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All runs used T=50; rows A are repeated from Table 4.14. First 
compare A, B, C and D, all of which have T =40. Changing y from 
1.30 to 1.15 using either 1 or I has the dramatic result of forcing all 

three SCS centroids to terminate at v = (5.843,3.057,3.758,1.199^ 
- the grand mean of Iris. This has the very predictable bad effect on 
the 1-np design based on these prototypes of it committing 100 
mistakes in both cases. 

Next, compare sets C and F in Table 4.15 to see that it is not Just a 
change of y that has this effect on SCS, for in this case you will see 
that the same result occurs with y fixed at 1.30 but T increased from 
40 to 70. Finally, look at sets C, E and F for Î  and y=1.30 fixed. 
Intermediate between the good result at T =40 and the worst result at 
T =70 is the case T = 60, for which SCS terminates with a good 
estimate of the first centroid, but identical vectors for the second 
and third prototypes, resulting in a 1-np error rate of 50 mistakes. 
Table 4 . 1 5 - and many other experiments with other values for y 
and T not reported here - suggest that SCS is very sensitive to 
choices for these two parameters. 

Another set of runs (not shown here) for all three algorithms that 
used the same parameters but which were started at initialization !„ 
yielded prototypes that were identical (to three decimal places) to 
those shown in Table 4.14. This does not establish that these three 
algorithms are insensitive to initialization, but it gives us some 
confidence that the Iris data are (in the eyes of these algorithms) 
rather well structured. The important point is that there are 
combinations of initializations and algorithmic parameters for all 
three algorithms that produce very similar and predictable results. 
This is usually the case for competing algorithms - given enough 
time, most models for a particular class of problems can be made to 
yield pretty similar results. 

I. The relationship between c-Means and CL schemes 

In (2.7a) and (2.7b) the weighting exponent m for J is fixed, but in 
(4.28a) it is a variable. Since m is replaced by a parameter whose 
value depends on the number of iterations that have elapsed, m 

plays a role that is somewhat analogous to a^^^ in LVQ. To see this, 
c 

remember that X u.j^ ^ = 1 for each x in X. Consequently, the 

learning rates in (4.28a) that are applied to all c nodes via (4.28b) for 
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each x^ are dependent on each other, and themselves must satisfy 

the condition Xa^y^9<l. The effect of controUing the learning 
i=l 

rates this way is best understood by considering a simple example. 
Suppose c=5 and m =4 at some iterate. Two label vectors for x for 
the five nodes, and the resultant learning rate distribution vectors 
they induce via (4.28a) are shown below: 

u { X k ) •• 

^0^ 
1 
0 
0 

a 
FLVQ 

^0^ 
1 
0 

0 

for any m. ; and (4.31a) 

u(Xk) 

^0.1^ 
0.6 
0.0 
0.2 
0.1 

«. 
FLVQ _ 

r 0.0001^ 
0.1296 
0.0000 
0.0016 
0.0001 

, (m = 2 is illustrated). (4.31b) 

In (4.31a) node 2 is the crisp winner since it receives all of the 
membership of this data point in the five clusters. From (4.25a) it 
follows that for any value of m the learning rates applied to this 
data point will also be crisp, and will be the same as the labels used 
to compute them, as shown in (4.31a). Thus, when a single node can 
win all of the membership, none of the non-winner nodes are 
allowed to influence the update in (4.28b) for that data point. In this 
special case, FLVQ reverts to an LVQ - like strategy - but only for data 
points that have crisp memberships. 

On the other hand, if the distribution of memberships for x is truly 
fuzzy, as in (4.31b), exponentiation of the membership values by m 
has a noticeable effect on the role played by each node in the update 
scheme. The winner node in (4.31b) in the sense of maximum 
membership (which is, as previously noted, also the minimum 
distance prototype) is still node 2. But in this second case, non-
winner nodes with non-zero memberships will also participate in 
the determination of how much to change their corresponding 
weight vectors for that data point. Finally, if m =m then clearly 
FCM=FLVQ. 

If all n membership columns in U from the FCM formula (2.7a) were 
crisp, (4.28b) would become a batch version, LVQ-style update, with 
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V. ^ = V. ^ J + X (^k ~ ''̂ i t - J / "i t' where n. ^ is the number of points in 

the i-th crisp cluster of X at iterate t. The previous estimate for v. 
can be eliminated from this last equation by distributing the sum 
over the minus sign, leaving the HCM update formula (2.6b). Suppose 
we replace equation (4.12c) with this batch update formula and 
require the calculation of U with the nearest prototype rule (2.6a) 
or (4.2) at each pass through X (remember that LVQ does not do so). 
Call this extended batch LVQ (EBLVQ). Then FLVQ reduces to EBLVQ 
whenever U is crisp, and further, EBLVQ is precisely HCM. In this 
sense FLVQ is a true generalization of both LVQ and HCM that 
integrates their models in perhaps the strongest possible way. 

A somewhat more formal analysis of the relationship between FLVQ 
and FCM is elaborated in Karayiannis and Bezdek (1997). 
Karayiannis (1997a) provides a fairly comprehensive survey of 
learning vector quantization that includes not only FLVQ, but a 
number of more general formulations that have interesting 
connections to generalizations of all three c-means families. 

J. The mountain "clustering" method (MCM) 

Yager and Filev (1994a) developed a prototj^e generation algorithm 
for unlabeled data that is very different in spirit than all of the 
previous methods discussed in this section. In their scheme a very 
large finite set of candidate prototypes are specified and fixed, and 
the MCM objective function is then used to select c good prototj^es 
from the fixed set of candidates. In short, prototypes are not 
initialized and then iteratively updated, but simply chosen 
iteratively from a (very large and fixed) discrete set. 

MCM begins by specifying a lattice of coordinates that capture the 
unlabeled data X = (Xj, X2 x^} c SRP . Without loss of generality we 
describe a simplified version of MCM that uses an integer lattice. We 
construct the lattice by first enlarging the hyperbox hb(m, M) using 
the floors and ceilings of the features instead of the given values in 

equations (4.20). Thus, with x,, and X . , denoting the integer 

floor and ceiling of x.j^, respectively, we compute hb(LmJ,[M]), 
which is the smallest hyperbox with corners having integer 
coordinates that contains X as a proper subset. 

For 1 < J < p, the J-th edge of hb([mJ,[M]) is composed of, say, r 

integers that run from the floor of the minimum. 
.™J. 

J 

, to the 

ceiling of the maximum, M . The lattice Lhb(|_mJ, [M]) = Lhb of 
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integer grid points (or nodes) In hb(LinJ, [M]) comprises the set of 
candidate prototypes for the MCM model. We will use our usual 
notation for the point prototypes in this set, i. e., v^ e Lhb, and ask 
you to remember that their coordinates are Integers in this 
subsection only. 

Next, calculate the n r ^ r a rp distances |8{Vj,Xj^}. Yager and 
Filev (1994a) discuss using only Minkowski metrics (1.11) for this, 
but it is clear that inner product metrics in the family at (1.6) are 
equally applicable. Unlike, say, any of the c-means models, the 
MCM objective function is not fixed. Instead, the model begins with 
an initial objective function J ^ C M I ' ^^^ then uses the current set of 
values in subsequent iterations to define a new objective function 
"̂MCM t ^* each t > 1, very much like the objective function Ĵ ^̂  used 
by FLVQ. The initializing objective function is 

JMCM,I(VJ:X) = I e - " ' " J ' ^ ' ' ' , Vj e Lhb , (4.32) 

where a is a positive constant. If we regard e J' '' as the 
"potential" at v due to x , then JMCMIVP^) measures the total 

J k J 

potential at v due to the data. Thus, the total potential J^Q^[V^;X) 

will be high when many data points are concentrated near v . Yager 
and Filev thus argue that maxima of (4.32) identify good prototypes. 

Put another way, for a fixed v eLhb, the maximum (minimum) 

value of J^„„ occurs at the minimum (maximum) value of 5(vj, Xy.) 

over 1 < k < n. Since J„„., sums up the n values |e " ''i-^^ I at node v , 
MCM ^ L J J 

J will be proportional to the density of points in X in the 
neighborhood of v . A plot of the values {JMCM^^J!-^)} O^^J" ^J ^ Lhb 
should, for compact well separated clusters at least, be a digital 
surface with (mountain) peaks at nodes where the density of the data 
is highest - i.e., where there are clusters. Hence the term "mountain 
function" for (4.32). 

Maximization of J^^^^ ĵ over v. eLhb is accomplished by simply 
enumerating its values and finding the largest one, ties being 
resolved arbitrarily. We let the set of initial mountain function 
values (MFVs) be 
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MFV, = 1 = IJMCM,I(^J:X^^ '̂ j ^ Lhb, 1 < J < n r j j . (4.33) 

If Vj = argmaxj Jj^^j^j(v.;X)>, lattice point v^ is taken as the first 

j 

prototype. The next step in MCM is to "destroy" the peak at v^, 
redefining the mountain function by subtracting from each 
J»j^m(v,;X) a fractional amount of J , „ . , ,(v -X) that is also 

MCM.P J MCM.l 1 ' 

inversely proportional to the distance 8(Vj, v.). This results in a new 
set of values MFV^ ĵ of the modified objective function J^^QM > 
which after t >1 steps, take the form 

JMCM,t.i(Vj;X) = J^CM,t^:X)-fe-P'"'"^')(jMCM,t(^t;X)). (4.34) 

p 
for V. e Lhb,l < J < U.r , where p is a second user-defined positive 

J J=i ^ 

constant and v̂ . is the t-th prototype. Maximization over MFV 
produces a second winning node, say V2, and v^ is a candidate to 
also become v^, an occurrence which is called "node reuse" by 
Barone et al. (1995). In any case, v^ is the second MCM prototype, 
etc. Equation (4.34) thus defines an iterative procedure that 
continues to select nodes from the lattice as prototypes for the data 
until a user-defined termination criterion is met. Yager and Filev 
(1994a) recommend termination when the ratio of successive 
maximum values of the mountain function is small, i.e., at the first 
i for which 

J , „ . . .(v. -X) 
MCM.t̂  ' • * ' . < £ , (4.35) 

MCM.t-l ^ ^ l - l , t - l ' ' 

for some termination threshold e > 0. At this point MCM has 

produced the set V^^ ĵ̂  = | v j , . . . , v j c Lhb, which are taken as 

prototypes for t (as yet undefined) clusters in X. 

This method is simple, and like all algorithms, has some 
parameters to pick. As mentioned above, it may happen that MCM 
uses the same node more than once, since the amount subtracted 
from each mountain value in (4.34) depends on p, and for the wrong 
choice, may not be enough to flatten a particularly strong peak. 
Barone et al. (1995) provide an in depth analysis and empirical 
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recommendations for choosing a, p and e, and also discuss the issue 
of peak reusability. Our simplified description of MCM uses an 
integral grid size, but the lattice of prototypes could be either finer or 
courser than this. Barone et al. (1995) consider the issue of grid size, 
and also discuss the choice of a metric for the distance calculations. 
Table 4.16 summarizes the MCM method of prototype generation. 

Table 4.16 MCM prototype generation (Yager and Filev, 1994a) 

Store Unlabeled Object Data X = {x^,x^,. . . , x }ci9^P 
n ' 

» positive constants a and [3 
J- 11 tl 
• distance measure : Xĵ  - v. ^_A\ 

Pick » termination measure : 

^ t "= ^MCM.t (^l . t ' ^ ^ / ^MCM.t-

» termination criterion : 8 
- i ( V i : X ) 

Get i Lattice Lhb(LmJ, [M]) = Lhb 
E = high value 

Vj=argmax{j^c^j(v.;X)} 
Vj eLhb 

Do 

t f - 1 
DOUNTlL{E^<8): 

v^^j =argmax{j^c^^^j(v.;X)} 
ViSLhb 

t < - t + l 
END UNTIL 
V,,^,, = |v , "vA c: Lhb 

MCM I 1 t j 

If no peak is reused before MCM terminates, then c = t, that is, the 
number of distinct prototypes corresponds to the last value of t in 
Table 4.16. On the other hand, when one or more peaks is reused, the 
number of distinct prototypes determined by MCM is, say, c < t. In 
either case, MCM starts with c = 1 prototype, much like a divisive 
hierarchical clustering method, and continues to add (possibly non-
distinct) prototypes until its termination criterion is met. At first 
glance, this seems to bypass the cluster validity problem. However, 
the number of prototypes determined by MCM depends on a, (3 and e, 
so validation is still a problem - Just not an explicit one. Barone et 
al. do discuss cluster validity, and suggest validating the number of 
prototypes selected by a novel application of singular value 
decomposition applied to the t x p matrix V . They recommend 
looking for one or more "breaks" in the list of singular values (very 
similar in spirit to Hubert's knees in Chapter 2), and basing the final 
estimate of c on this procedure. 
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The clustering part of MCM amounts to using V to compute, for 
example, the crisp neares t prototype labels of X. Some 
computational experiments report finding good clusters this way, 
but it is easy to construct data for which this method fools the user 
badly. This disclaimer aside, MCM has been used some for one 
important application, and that is as a simple and often successful 
way to initialize other clustering and /or prototype generator 
algorithms. Indeed, Barone et al. (1995) advocate this themselves, 
and offer several examples to support their claim that terminal 
MCM prototypes are often very similar to those found by other 
methods. 

Example 4.4 (Barone et al., 1995). Table 4.17 juxtaposes the terminal 
prototypes found by MCM and FCM on the data set Iris shown in 
Figure 4.12. The first column in Table 4.17 also shows the symbols 
used for the 2D means shown in Figure 4.12 

Table 4.17 Terminal MCM and FCM prototypes for Iris, 
34 

Means v V, XM V 
MCM 

# "34,1 1.46 0.25 1.46 0.25 1.66 0.37 

- ^ ^34,2 4.26 1.33 4.28 1.35 4.28 1.43 

4 ^ ^34,3 5.55 2.03 5.62 2.05 5.59 2.23 

Barone et al. used the Euclidean norm for both algorithms, and set c 
= 3 for FCM. They state that a was set at 4 for MCM, but do not 
speciiy P and e, or any of the other processing parameters for FCM 
that give the results in Table 4.17. Since the MCM values in Table 
4.17 are non integral, we know that the lattice used by MCM for 
these calculations was considerably finer (at least fine enough to 
have grid points with coordinates to two decimal places) than the 

unit lattice Lhb(LmJ,[M]) used in our specification of MCM. 

The conclusion we draw from Table 4.17 is that, given the right 
choices for MCM, it can produce prototypes that are reasonable 
initializers for FCM. Notice that the MCM estimate of v^^ ^ seems to 
be the worst of the three, but the 50 points which it represents are 
very compact and well separated from the remaining 100 points in 
Iris (cf. Figure 4.12). 
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because |Lhb(LmJ, fM])!: 

Perhaps the biggest and certainly most evident problem with MCM 
is computational complexity. If p is more than two or three, and/or 
the range of the data set X in any of its p dimensions is large, the 
lattice Lhb used in our description of MCM will be very large indeed, 

• rg rp. For the two dimensional data 
set IriSg^, this amounts to (700)(300)=210,000 initial prototypes to 

cover the lattice Lhb((0,0)^, (7,3)^). In a non-specific setting, suppose 
X contains data points in 10 dimensions - a not uncommonly large 
number of features. If each of the 10 axes is subdivided by 10, the 
unit lattice Lhb([mJ, [M]) will have 10^° candidate prototypes - too 
many to make MCM computationally tractable. 

Chiu (1994, 1995, 1997) proposed a modification of MCM wherein 
the lattice of candidate grid points is abandoned, and replaced with 
X, the unlabeled input data. Chiu called his modification of MCM 
the subtractive clustering method (SCM), and it is not sufficiently 
novel or different from MCM to warrant a separate discussion here. 
(We will, however, discuss SCM again in Example 4.18.) 

Since the candidate prototypes in SCM now coincide with the data, 
there are only n of them, and the complexity issue would seem to 
resolved. However, Dave and Krishnapuram (1997) have shown that 
the complexity of SCM is still O(n^), while the complexity of FCM is 
0(n). They further discuss the relationship between SCM, PCM and 
other clustering algorithms, including the potential function 
approach (Tou and Gonzalez, 1974). 

Velthuizen et al. (1997) discussed a different set of modifications to 
MCM, and called the resultant algorithm the modified m.ountain 
method (M3). Noting that MCM is useful only if "good" values are 
chosen for the MCM parameters a and |3, they suggest computing a 

based on a sample statistic of X. Letting S = X (x. - v)^(x. - v ) / n 
k=l 

_ n 

be the sample covariance matrix with v = J^ K / n the grand mean 
k=l 

of n input points X in 9t^, Velthuizen et al. suggest computing a as 

a : 
pc 

mVtrace(S) 
where (4.36) 

J. ^ n - l / ( p + 4 ) 
2P+2p 

p + 2 

(p + 2)'P''2'+i 

p + 4 

(4.37) 
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Unlike MCM, the M3 model fixes c, the number of prototypes to seek, 
in (4.36). Velthuizen et al. also present a method for eliminating the 
sensitivity of MCM to p. The essence of this part of M3 is to pick a 
"reasonable" (3 - presumably by trial and error (|3 = 0.06 in 
Velthuizen et al.), isolate a neighborhood of the current winner 
prototype v^ by finding the 5 nearest prototypes to it, and then 
introducing a finer local subgrid Just in some enlargement of this 
neighborhood, over which the distribution of the data in the 
neighborhood is then fit with a multivariate normal distribution 
(you have to wonder a little about a fit to 5 points). Finally, 
Jĵ ĵ ĵ  Jv^;X) in (4.34) is replaced by the value of the Gaussian 

density jus t found in the neighborhood of v^. The authors assert 
tha t this modification overcomes the sensitivity of MCM to 
parameter p. 

The application domain of interest to Velthuizen et al. is magnetic 
resonance (MR) image segmentation. Let Tl , T2 and p denote, 

ij ij ij 
respectively, the spin lattice relaxation, transverse relaxation, and 
proton density of pixel (i,j) in an MR slice (three images at the same 
location in time and space) of size m x n. If we aggregate these 3 
numbers into a pixel vector x = (Tl , T2 , p ), the data set X = (x,,, 

ij ij ij f^ij 11 
Q 

X,_,..., X,, ..., X } is in 5R ; we will meet this 3D pixel vector data in 
12 ij, mn '^ 

several other examples in Chapters 4 and 5. The basic algorithm 
used by Velthuizen et al. proceeds as follows. Let X stand for a set of 
pixel feature vectors derived from any MR image, and denote the 
prototypes found by M3 as V,,^ to distinguish them from V . Then 
^ -̂  ^ •' M3 '^ MCM [M3.1] run M3 on (unlabeled) X to find V ; 

[M3.2] construct U, a crisp 1-np labeling of X with D^ ^g with 

equation (4.2): the label assigned to pixel vector x,. is the 
algorithmic label (index) of the closest prototype; 

[M3.3] physically relabel each cluster in U as a tissue class by 
matching the pixels in each algorithmic cluster to one of the 
ground truth tissue clusters. Assign the algorithmic cluster 
to the tissue class that enjoys maximum pixel matching (this 
is a different relabeling method than the one given in 
Section 4.3.B); 

[M3.41 artificially color the labeled image. 
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Example 4 .5 (Velthuizen e t al., 1997) Vel thuizen et al. (1997) 
evaluated segmentat ions of 13 MR Images us ing two types of ground 
t ru th . Three of the test images had manua l ground t ru th (GTl) for c = 
10 t i s sue classes derived by visual inspection and marking of each 
image by a t rained radiologist. Segmentat ions were produced by four 
me thods : a supervised 7-nearest neighbor (k-nn, see Section 4.4) 
rule, which was used to construct type GT2 ground t ru th for the other 
10 images ; a n d u n s u p e r v i s e d M3, u n s u p e r v i s e d FCM(V^) a n d 

u n s u p e r v i s e d 

quan t i t a t ive ly . 

FCM(V ). Compar i sons were m a d e visually a n d 

S e g m e n t a t i o n of a n MR image by FCM w a s done wi th two 
initializations: a "standard" initialization V (cf. (9) in Velthuizen et 

1997); and wiih V^^. We write FCM(V) to indicate FCM initialized 
of X which 

al. 
with V. FCM generates a terminal fuzzy c-partition U 
is h a r d e n e d us ing equa t ion (1.15), and finally, s teps [M3.3] a n d 
[M3.4] are performed on the resul tant crisp partition. 

Figure 4.16 shows the T l (weighted) input da ta for a patient tha t h a s 
a b ra in tumor . Figure 4.16(b) is the color key for the images: csf = 
cerebro spinal Jluid; w m = white matter, gm = gray matter, gm-2 = 
(falsely labeled) gray matter. Edema is an abnormal accumula t ion 
of t i s sue fluid resul t ing in swelling. 

m 

^̂ m̂. 

• c s f 

wm 

gm 

gm-2 

tumor 

edema 

(a) T l Weighted MR Image (b) Color Legend 

Figure 4.16 MR segmentations CVelthuizen et al., 1997) 

A supervised k - n n segmenta t ion is shown in Figure 4.16(c). This 
image resu l t s from a n operator choosing labeled subse t s of pixels 
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from each tissue class, and then using the standard k-nn rule to 
label the remaining pixels. This is repeated until a panel of 
radiologists agree that the k-nn segmentation is good enough to be 
used as type GT2 ground truth. Ten of the thirteen images discussed 
in this study used this method (GT2) as a basis for comparing the 
results of the three algorithms (unsupervised M3, unsupervised 
FCMCV ) and unsupervised FCM(V.,J. 

o M3 

(c) 7-im (type GT2, c = 5) (d) FCM(VJ 

(e)WB (f)FCM(VJ 

Figure 4.16 (con't.) MR segmentations (Velthuizen et al., 1997) 
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Figure 4.16(d) shows a segmentation achieved by FCM(V ). The 
tumor is not detected. Instead, FCM(V ) finds two false gray matter 
regions that do not correspond to anatomical tissues. The M3 
segmentation in Figure 4.16(e) is much better - it finds many of the 
tumor pixels and does not have false gray matter tissue regions. 
Panel (4.16f) shows a segmentation resulting from the initialization 
of FCM with the output of M3. This view should be compared to 
Figure 4.16(c). It's hard to see on a printed copy, but there is excellent 
correspondence between the tumor regions in these two views. 
Table 4.18, adapted from Velthuizen et al. (1997), shows the average 
performance on pathological t issues for segmentations of the 
thirteen images made by unsupervised M3, unsupervised FCM(V ) 

and unsupervised FCM(V ). 

Table 4.18 Average true and false positive pixel counts (in %) 
for pathological tissues (Velthuizen et al., 1997, Table 1) 

Fal 3e Positives True Positives 
FCM(V ) 

0 
M3 FCM(Vj^g) FCM(V ) M3 FCM(V ) 

T u m o r 
Edema 

10.3 
5.9 

5.6 5.2 
5.9 8.7 

59.4 66.1 75.5 
75.9 77.9 81.2 

When FCM is initialized with V , segmentation is not as good as M3 
o 

it has nearly 5% more false positives and about 7% less true 
positives in tumor. In edema, the recognition rates are about the 
same. When FCM is initialized with V M3' there is substantial 
improvement in the true positive rate for both tissue classes and a 
slight decrease in edema false positives. 

MCM, SCM and M3 are not really clustering methods - they generate 
prototypes in the feature space. Sometimes they find good clusters, 
but like LVQ and SCS, partitions of the data are not involved in the 
iterative procedure that produces the prototypes. Nonetheless, the 
examples of this subsection suggest that MCM, SCM and M3 are 
useful for initializing clustering algorithms such as the c-means 
families. 

4.4 Nearest nei^bor classifiers 

Another widely used classifier design is the k-nearest neighbor (k-
nn) rule, which requires labeled samples from each class. Figure 
4.17 displays the geometry of this scheme. All that is needed is to 
choose k, the number of nearest neighbors to find in the 

neighborhood of any unlabeled vector z in 9^^; and some measure of 

distance between pairs of vectors in 3i^, usually Euclidean distance. 
The metric 6 defines the shape of the capture neighborhood for the k 
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nearest neighbors to z. The easiest voting scheme to justify and 
implement is to accept a simple majority of the votes for any class 
represented by points in the k-nn neighborhood. In this case, k is 
usually taken as an odd integer, precluding ties in the c = 2 class 
case. 

The labeled data shown in Figure 4.17 consist of 11 objects, each of 
which has one of the c = 3 crisp labels shown in the upper portion of 
the figure. With the Euclidean norm and k = 6 nearest neighbors 
having c = 3 class labels, the point z will be labeled (and 
subsequently colored) as a class 2 point, because 3 of its nearest 6 
Euclidean neighbors (the ones inside the circular disk centered at z) 
have this crisp label. 

Class 1 

© 0 
10, 

CI ass 5 2 (0) 
1 

loJ 

Class 3 rQ\ 
0 

Figure 4.17 Geometric idea of the crisp k-nn rule classifier 

Let (x.̂ i x„ .} be the nearest neighbors of z, arranged in order of 

ascending distance, i.e., 5(z,x,j,) <,...,< 5(z,x„ ,); and let n...(z) be the 
number of neighbors of z with label e , i = 1 c. Then the crisp k-nn 

rule classifier D 
hnn;k,S 

can be written formally as 

Decide z e (i) o Dj^^.j^ g(z) = e,j, o n,.)(z) = rnax{n(j^,(z)}. (4.38) 
(k) 

In (4.38) ties are broken arbitrarily. Generalization of the crisp k-nn 
rule vote begins with an alternative way to compute (4.38). First we 
consider the weighted sum 
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D nn;k,5 iz)-
Inm(z)e 
1=1 

(1) 

In(j,(z) 
(4.39) 

c 

Since Xn(j)(z) = k, D^^.j^g(z) is a convex combination of crisp label 

vectors, so it is a point in N . In our view formula (4.39) always 
produces fuzzy label vectors, but statistics aficionados will disagree, 
interpreting (4.39) as a probabilistic label vector because Cover and 
Hart (1967) proved that these labels converge to Bayesian labels. 
Regardless of your bias, D^ .̂ĵ g is, formally anyw^ay, either a 
probabilistic or fuzzy classifier function, even though the labels and 
reasoning leading to it are crisp. For example, equation (4.39) for the 
situation in Figure 4.17 yields 

D ^Az) = -

0 + 3 
^0> 

1 + 1 0 
vly ^0.33^ 

0.50 
0.17 

(4.40) 

Notice that n,̂ ){z) max{n„ j(z)}= 3 is jus t the coefficient that 

multiplies the crisp class 2 label vector, the majority class in the 
neighborhood of z shown in Figure 4.17. The decision rendered by 
the crisp k-nn rule can be realized by applying H at (1.15) to the 
result in (4.40). Thus, 

hnn;k,5^ ' H(D ^Jz)) (4.38'] 

is equivalent to (4.38). Formula (4.40) is not needed to crisply label z; 
it is simply convenient for computer implementation of the crisp k-
nn rule (convenient, but at the cost of more computation, so if you 
are only interested in the crisp k-nn rule, this is not the most 
efficient way to implement it). However, the construction at (4.40) 
shows how to arrive at a truly fuzzy k-nn design. Suppose the six 
neighbors of z shown in Figure 4.17 had fuzzy label vectors as 
follows: 

class 1 class 2 class 3 

^1 
ro.9^ 
0.0 

lo.ij 

^2 
fO.9^ 

0.1 

^ 3 
^0.3^ 
0.6 

f0.03^ 
0.95 

^0.02 J 

^5 
ro.2^ 
0.8 

to.oj 

^6 
ro.3^ 
0.0 (4.41) 
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The generalization of simple majority voting in the crisp case is to 
assign z to the class in which it has the highest membership. Using 
formula (4.40) with these labels results in 

Dft.n:k,5(^) = -

ro.9^ 
0.0 
O.lJ 

^0.9^ 
0.1 
0.0 

ro.3' 
0.6 
0.1 

0.03 
0.95 
0.02 

+ 
0.2 
0.8 
0.0 

0.3 
0.0 
0.7 

^0.44^ 
0.41 
0.15 

(4.42) 

and D, g is a fuzzy label vector produced by fuzzy labels. 

Consequently, Dj, g is a fuzzy k-nn rule classifier. There are 
many other ways to generalize (4.38), so this cannot be interpreted 
as the fuzzy k-nn rule - rather, it is one of many possible designs. 
Applying H at (1.15) to the label vector in (4.42) results in this fuzzy 
6-nn rule assigning z the crisp label for class 1 instead of class 2, the 
label produced by the crisp 6-nn rule for the data in Figure 4.17. 

If any label vector in (4.41) were possibilistic, the calculation at 
(4.42) would result in a possibilistic label vector for z. Consequently, 
we have described fuzzy (Dj.^.j^ g) and possibilistic (D .̂  g) versions 

of Dj^^.j^g. Since there are many other implementations that can 
also be called fuzzy and possibilistic k-nn designs, we call the 
algorithms summarized in Table 4.19 a set of "basic" k=nn rules. 

Table 4.19 Basic crisp, fuzzy and possibilistic k-nn rules 

Store 
Labeled data X = X c 9^ ,̂ IXl = n 

tr ' 1 

Label matrix U. of X, , U. . e N , i = 1, 
tr tr tr,j pc J 

...,n 

Pick 
w k = # of nn's to find 
*• 6:5RP X 9̂ P h^ 91+ = metric on Si^ 

Given To label: z In 91^ 

Compute The distances {8. s 8(z, x.): j = 1 n} 

Rank 
S,i,^S,3,<...<5,,,<5,,^,,<...<5,„, 

k-nn indices 

Compute Dpnn:k.6(z) = ^ f IUt,,,i,J e Np, (4.43) 

Optional 
(Harden) H(pnn);k,S \ pnn;k,S j he 
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Example 4.6 We illustrate the basic k-nn rules with the apples and 
pears data listed in Table 4.1 and plotted in Figure 4.6. Figure 4.18 

shows a shaded disk with radius x, „ - z = 0.46 centered at z using 
II l̂ i Il2 ° 

Euclidean distance for 5. The disk captures three neighbors - x , x 
^ ° 11 13 

and X - labeled pears and two neighbors - x and x - labeled apples 
in Table 4.1. The crisp 5-nn rule labels z a pear, 

nn;5,62 ( Z ) : 

2 ri^ + 3 
fo.4^ 

5 
fo.4^ 

D hnn;5,S2 {z) = H 
70.4^ 
_to.6. = 

1.00 1.50 2.00 2.50 
Figure 4.18 A crisp k-nn nde on the apples and pears data 

To see that k and 5 affect the crisp decision, Table 4.20 shows the 
distances from the point z = (2.0, 0.5)^ in Figure 4.6 to each of the 20 
data points listed in Table 4.1 (whose coordinates and labels are 
repeated here for convenience). 

Distances from z to each of its five nearest neighbors in the three 
norms are shown in Table 4.21, where x,., is the i-th ranked nearest 

(j) •' 

neighbor to z and U(x,.,) is the crisp label for x, ,. Whenever there is (J) (J)" 
a tie, the label assigned to z is arbitrary. There are two possible 
kinds of ties: label ties (U-ties), and distance ties (6-Ties). 
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Table 4.20 Distances from z to the 20 points in Table 4.1 

e, t̂ X ŷ  5^(z.x) 5̂ (z, x) 5Jz , x) 
(i 1 1.00 0.60 1.10 1.00 1.00 
^ 2 1.75 0.40 0.35 0.27 0.25 
l i 3 1.30 0.10 1.10 0.81 0.70 
ct 4 0.80 0.20 1.50 1.24 1.20 
^ 5 1.10 0.70 1.10 0.92 0.90 
C 6 1.30 0.60 0.80 0.71 0.70 
(i 7 0.90 0.50 1.10 1.10 1.10 
ct 8 1.60 0.60 0.50 0.41 0.40 
<i 9 1.40 0.15 0.95 0.69 0.60 
<i 10 1.00 0.10 1.40 1.08 1.00 
£ 11 2.00 0.70 0.20 0.20 0.20 
g 12 2.00 1.10 0.60 0.60 0.60 
^ 13 1.90 0.95 0.55 0.46 0.45 
5 14 2.00 0.95 0.45 0.45 0.45 
5 15 2.30 1.20 1.00 0.76 0.70 
S 16 2.50 1.15 1.15 0.82 0.65 
5 17 2.70 1.00 1.20 0.86 0.70 
S 18 2.90 1.10 1.50 1.08 0.90 
5 19 2.80 0.90 1.20 0.89 0.80 
S 20 3.00 1.05 1.55 1.14 1.00 

Table 4.21 Crisp labels with Dĵ .̂ĵ  ^ (z) as a function of k and 5 

1 Xj^ S 0.20 S 
2 x^ Ct 0.35 U-Tie 
3 ^,, S 0.45 S 
4 Xg e 0.50 U-Tie 
5 ^13 S 0.55 g 

1 \ , 6 0.20 S 
2 x^ C 0.27 U-Tie 
3 x^ <i 0.41 C 
4 Xĵ  5 0.45 U-Tie 
5 x^3 g 046 S 

^ ^(k) U(^(k)) SJz. x,^,) L(z) 

1 Xji £ 0.20 5 
2 x^ e 0.25 U-Tie 
3 Xg e 0.40 5 
4 x^^ 5 0.45 5-Tie 
5 x^3 5 0.45 ^ 
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The nearest neighbor, x.j.= x is closest to z in all three distances, 
and labels it a pear. All three rules yield a label tie using k = 2, so 
either label may be assigned to z by these three classifiers, 
depending on the outcome of the tie-breaking rule employed. For k = 
3 the 1 and sup norm distances label z a pear, but the 2 norm labels it 
an apple. At k = 4 the sup norm has a distance tie between x,^, and 

x,g., but both points are labeled pear so the decision is pear 
regardless of how the tie is resolved. This illustrates that the label 
assigned by Dj^^.j^g depends on both k and 5; the five nearest 
neighbors are not ranked in the same order by all three distances. 

If we apply FCM and PCM to these data (c = m = 2, both norms 
Euclidean, e = 0.01, initialization random for HCM and FCM, PCM 
initialized with the terminal prototypes from FCM, PCM weights w 
= 0.15, w = 0.16), we get terminal label vectors for each of the 20 
points that are fuzzy or possibilistic, respectively. Using the FCM 
labels for the five nearest neighbors to z yields 

&m;5,82 

0.33 
0.67 

0.77 V 
O.23J + 

0.41 
0.59 

0.10 
0.90 

0.84 
0.16 0.49 

0.51 so 

H 
0.49 
0.51 62 ^ z = pear. 

PCM labels for these five points would result in the same decision 
here but this is not always the case. The 20-nn rules based on all 20 
crisp (given or HCM, which produces the given labels), FCM and PCM 
labels yield 

H nHCM f-̂  ^ J _ 
hnn;20,82 ^ ' 2 0 

20 

HCM(j) 

H nFCM f ) _ J _ 
"fnn;20.82 ^'> 2 0 

20 
l U 

FCM(J) 

= H 

= H| 

H D^CM (z) = — 
pnn;20.52 2 0 

20 

J=l 
PCM(J) = H 

0.50 
0.50 

0.52 
0.48 

0.33 
0.31 

tie (4.44a) 

z = apple (4.44b) 

z = apple (4.44c) 

Equations (4.44) show that using all 20 nn's to z results, for all three 
classifiers, in the label switching from pear for k = 5 to apple for k = 
20 (up to resolution of the tie in (4.44a)). An important point is that 
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if all 20 labels are used, the rule-based on crisp labels is ambiguous, 
while the fuzzy and possibilistic based rules both label z an apple. 

Terminology Even though the final outputs in {4.44b) and (4.44c) are 
crisp, some writers refer to the overall crisp decision as the result of 
a fuzzy or possibilistic k-nn rule. More properly, perhaps, a fuzzy k-
nn rule is an algorithm that produces the fuzzy labels which are 
subsequently hardened. Similarly, we regard the input or argument 
of H in {4.44c) as the output of a possibilistic k-nn rule. 

Example 4.7 As an example of the utility of the k-nn rule on a real 
problem, we revisit the segmentation of MR imagery to demonstrate 
that excellent classification results can be obtained from a very 
simple algorithm such as the crisp k-nn rule. 

Views {a)-(c) of Figure 4.19 show three MRIs of the Tl, T2 and p slices, 
respectively, of a patient who has a tumor in the upper right-central 
portion of the brain. The circular dot in the lower right side of these 
views is for color registration. 

Figure 4.19{d) is a segmentation of the images made by having a 
human operator select training sets {X .) of pixels in each of i=l,...,7 
tissue regions, and then assigning each vector in the training 
subsets a crisp tissue label. An operator usually labels a very few 
pixels from each tissue class {on the order of 100 pixels per class). 

... . - • * * 

^ 

S " ^ 

3 
1 \ 

v:' J' 
^ 

) 
x ' " ^ v j ™ ' W ' ' * -

A 

(a) MR Data-Tl Image (b) MR Data - T2 Image 

Figure 4.19 Segmentation of an MR Image with the crisp 5-nn rule 
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(c) MR Data - p bnage (d) Segmentation via 5-nn rule 

Figure 4.19 (con't.) Segmentation of an MR Image 
with the crisp 5-nn rule 

The remainder of the pixels were then labeled us ing the crisp 5-nn 
rule (4.38). The tumor , comprising the regions of lightest gray and 
white in Figure 4.19(d), is visually well defined in th is segmentat ion 
of the three dimensional data . It may seem surpris ing tha t the k -nn 
rule yields good segmenta t ions with a relatively smal l s u b s e t of 
labeled da ta , b u t th is method is often rated as the bes t of m a n y 
supervised techniques for image segmentation (Bezdek et al., 1997a). 

There are many generalizations of the k-nn rules (Dasarathy, 1990). 
One impor tan t c lass of extensions is the inverse distance weighted 
(IDW) k - n n algori thms which modify D ^^,^ g by replacing the fixed 

weights of 1/k in Table 4.19, equation (4.43), which simply average 
t h e k - n n labels , wi th (normalized) weights t h a t a re inversely 
proportional to the dis tances of the k neighbors to z. The idea is tha t 
ne ighbors t h a t a re closer in feature space (as m e a s u r e d by the 
dis tance metric) should exert more influence in the generation of the 
m e m b e r s h i p vector for t he point being labeled. The IDW k-nn 
algorithm (Keller et al., 1985) is typical of th is type of extension and 
u se s the following equation instead of the one given in (4.43), 

D IDW.m 
pnn;k.8 (Z) = 

k 
I 
J=l 
l(5(z,X,j,))r- -v.tr.,j) 

-2 
)m-iu , 

k 

z 
s=l 

-2 6 N 
l(5(Z,X(„))m-l 

pc 
(4.45) 
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Equation (4.45) contains a fuzzifier value, m > 1, a s in the FCM, PCM 
a n d GLVQ-F models , a n d is the b a s i s of t he cr isp, fuzzy and 
possibilistic IDW k-nn rules. Like (4.43), equation (4.45) will produce 
a fuzzy label vector even when the t raining da ta have crisp labels. 
The choice m = 3 simplifies (4.45) considerably. For example , 

suppose the 6 nea res t neighbors to z = (0,0)^ in Figure 4 .17 are 
= (-1.5,1)"^, X =(1,2)'' X 4 = ( l , - 2 ) ' X j - ( 2 , 0 ) , - 2 ~ ^ - " . - > . ^ g - V ^ , - , , - 4 - I - , - , , «>g 

and Xg =(-0.5,3)"^. Using (4.41) and B^^^,^\ ins tead of D 

(4.42) with m = 3, we calculate 

(-l,-!)"^ 

fnn;6,8o 

0.5 

0 .9 

0 .0 

0.1 

+ 0 .56 

^0.9^ 

0.1 

O.Oj 

+ 0.42 

^0.3^ 

0.6 

0.1 

ro.03^ 
0.95 
0.02y 

+ 0.71 
ro.2^ 
0.8 

0.0 

+0.33 

^0.3^ 

0.0 

0.7 

0.5 + 0 .56 + 0 .42 + 0 .42 + 0.71 + 0 .33 

s o D ^ ° w ^ J z ) 
fnn;k,5 

^0.45^ 
0 .44 
0.11 

(4.46) 

As in (4.42), the inverse weighted distance fuzzy 6-nn rule will assign 
z to class 1 upon hardening of (4.46). The class memberships in (4.46) 
for c lasses 1 and 2 are a little closer t h a n they are in (4.42), so the 
IDW rule indica tes t h a t z is in a region of uncer ta in ty between 
classes 1 and 2 a little more strongly t h a n simple averaging does. 

Example 4 .8 To il lustrate the difference between the basic and IDW 
vers ions of t he k - n n rules , we repeat some of the calculat ions of 
Example 4.6 using (4.45) instead of (4.43) for various m's and 5's. 

Table 4.22 D IDW,3 
hnn;k,8 

on the apples-pears data using crisp labels 

H( Dip^;^ ̂  ) with m = 3 and 5 = 1-norm 
hnn:k,6 

(M U(x ) §r'(z.X(^)) u(5,z) u ( e , z ) U(Z) 
1 

2 

3 

4 

5 

X, 
11 

14 

13 

s 5.00 1.00 0.00 s 
e 2.86 0.64 0.36 s 
s 2.22 0.72 0.28 s 
e 2.00 0.60 0.40 £ 
s 1.82 0.65 0.35 S 
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Table 4.22 (con't.) D!°^f, on the 
' hnn;k,5 

apples-pears data using crisp labels 

H( D?°^'^ - ) with m = 3 and 6 = 2-nonn 
nnn;k,62 

U(z) 
1 

^ 1 s 5.00 1.00 0.00 & 

2 
^ 2 e 3.70 0.57 0.43 s 

3 
^ c 2.44 0.45 0.55 e 

4 
^ 1 4 ^ 2.22 0.54 0.46 S 

5 
^ 1 3 s 2.17 0.60 0.40 S 
H( Dj™f̂ 3̂  ) with m = 3 and 5 = sup-norm 

'(k) ^K) ^^'^'-'(k)) u(g,z) u(e.z) U(z) 
1 

^ 1 s 5.00 1.00 0.00 s 
2 

^ 2 e 4.00 0.55 0.45 s 
3 

^ 8 c 2.50 0.43 0.57 <^ 

4 ^ 1 4 ^ 2.22 0.53 0.47 s 
5 

^ 3 ^ 2.22 0.59 0.41 s 
Table 4.22 shows the results of applying the IDW k-nn rules to the 
apples and pears data with the Euclidean norm for m = 3. Hardening 
in the last column of the tables in this example is done via (1.15), 
although the memberships themselves could be used in later 
processing. Notice that the ties that were recorded in Table 4.21 for 
the crisp k-nn rule using the same three norms disappear because 
the memberships induced by inverse distance weighting are distinct, 
even in the situation where the training data has crisp labels. With 
the 2-norm, the resultant class memberships are closer, even though 
the final crisp label for z is the same as in the crisp k-nn. 

The results of using IDW k-nn classification with the 2-norm fixed 
for two values of m other than m = 3 are displayed in Table 4.23 to 
give an idea of the effect of this parameter in the membership 
calculations. Compare the two blocks in Table 4.23 with the center 
block in Table 4.22 to see changes as m goes from 2 to 3 to 5. For a 
relatively small value of m, i.e., m = 2, all hardened class 
assignments are to class S, even in the 3-nn case where two of the 
closest neighbors (a majority!) are from the C class. Table 4.23 
shows what is expected - that smaller values of m tend to magnify 
the effect of the closer points, whereas larger values of m produce the 
opposite result. 
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Table 4 .23 Dj°̂ ĵ ™ on the apples-pears data using crisp labels 

H{ D ! ° ^ ' 2 ) with m = 2 and 5 = 2-norm 
^ inn;k,52 

k ^od ^^^(ki^ ^ f^ ' ' ^ (k ) ) u ( ^ , z ) u ( e , z ) U(z) 
1 ^11 S 25.00 1.00 0.00 s 
2 ^2 •i 13.69 0.65 0.35 s 
3 ^8 e 5.95 0.56 0.44 s 
4 ^ 1 4 S 4.93 0.60 0.40 s 
5 ^ 1 3 S 4.71 0.80 0.20 s 

H( D?"*;^^ ) with m = 5 and 6 = 2-norm 
^ fhn;k,62 

(̂W ^K) ^2-^^ '^(k)^ u (^ , z ) u{e.z) U(z) 
1 ^ 1 1 s 2.24 1.00 0.00 s 
2 

^2 c 1.92 0.54 0.46 s 
3 ^8 c 1.56 0.39 0.61 c 
4 ^ 1 4 ^ 1.49 0.52 0.48 S 
5 ^ 1 3 s 1.47 0.60 0.40 s 

Finally, there is no reason tha t the t ra ining da ta m u s t have crisp 
labels. In fact, the use of fuzzy or possibilistic labels for the t raining 
da ta is pe rhaps the real advantage of the soft k -nn rules. Table 4.24 
gives a s imple example of th i s where the ne ighbors have been 
assigned (subjectively, by us) the fuzzy labels in columns 3 and 4. 

Table 4 .24 Using fuzzy labels : O^^,^^ with m = 3 and 5 = 2-nonn 

k (̂ki ^^ -̂̂ (k)) ^^ '̂̂ (kî  ^2'('-^(k)) u(g ,z) u(C,z) U(z) 

1 Xjj 0.70 0.30 5.00 1.00 0.00 ^ 

2 x^ 0.20 0.80 3.70 0.49 0.51 C 

3 x„ 0.25 0.75 2.44 0.44 0.56 C 
8 

4 X 0.75 0.25 2.22 0.49 0.51 <£ 
14 

5 X 0.70 0.30 2.17 0.52 0.48 K 
13 ^ 
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For the 2-nn and 4-nn cases in Table 4.24, the final crisp label for z 
switches from 6 to (^. This is due to the stronger memberships for x 
and X in the C class and the "weakening" of the effect of the closest 

8 ° 
neighbor, x , in the S class. While this example is contrived, it 
points out that if meaningful fuzzy labels can be assigned to the 
training data of a nearest neighbor classifier, the resultant fuzzy 
labels for unknown points will reflect that partial commitment. 

Section 4.7.1 will describe one way that soft labels can be generated 
for training data. Of course, you can run any clustering algorithm 
such as FCM or PCM on the data and simply ignore the given crisp 
labels. This yields fuzzy or possibilistic labels for the points in X, 
but it is arguable whether this is a plausible strategy. Some feel that 
rejecting given crisp labels constitutes a loss of known information, 
while others support the idea that the structure of the data itself (as 
discovered by a "reliable" clustering algorithm) is more important 
in determining useful labels for k-nn designs. Both camps have good 
points. 

4.5 The Fuzzy Integral 

The fuzzy integral is a numeric-based approach which has been used 
for both pattern classification and image segmentation (Keller et al., 
1986, Tahani and Keller, 1990, Keller and Krishnapuram, 1994, 
Keller et al., 1994a, Grabisch and Nicolas, 1994). It uses a 
hierarchical network of evidence sources to arrive at a confidence 
value for a particular hypothesis or decision. A distinguishing 
characteristic of the fuzzy integral is that it utilizes information 
concerning the worth or importance of the sources in the decision 
making process. 

The fuzzy integral is a nonlinear approach to combining multiple 
sources of uncertain information as often happens in automated 
pattern recognition. In these applications the integral is evaluated 
over a set of information sources (sensors, algorithms, features, etc.) 
and the function being Integrated supplies a confidence value for the 
object under consideration in a particular hypothesis or class from 
the standpoint of each individual source of information. 

The fuzzy integral relies on the concept of a fuzzy measure (Sugeno 
(1977), Dubois and Prade (1982), Wang and Klir (1992)) which 
generalizes the concept of a probability measure. K fuzzy measure 
(FM) over a set X with power set /̂ (X) is a function g: P{X] i-> [0,1] such 
that VA.B.A. ePOQ, 

g(0) = O;g(X) = l . (FMl) 
g(B)>g(A)ifB3A ; (FM2) 
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If {Aj}~ J is monotonic, then lnn{g(Aj)} = g( U Aj) . (FM3) 

When X is finite, (FM3) holds trivially. A particularly useful class of 
fuzzy measures is due to Sugeno (1977). A fuzzy measure ĝ^̂  is called 
a Sugeno or X-Juzzy measure if it satisfies (FM1-FM3) and the 
following additional property for some X > - 1 : 

If A n B = 0 , then g^ (AuB) = ĝ (A) + gy[B} + Xg (̂A)g (̂B). (4.47) 

If X = 0 in (4.47) then gy is a probability measure. Suppose X is a 

finite set of information sources, X = {x ,..., x }, and let g' = g,({x}). 
I n A, 1 

The values g \ g^,..., g", are called the fuzzy densities associated with 
X 

These densities are interpreted as the importance of the individual 
information sources. The measure of a set A of information sources 
is interpreted as the importance of that subset of sources toward 
Emswering a particular question (such as class membership). 

Using these definitions we can show that g,(A) can be constructed 
from the fuzzy densities of the elements of A for any subset A of X. 
Given the set of densities, the value of X can be easily found as the 
unique root greater than -1 of the simple polynomial in (4.48) 
obtained from (4.47) and the fact that g(X) = 1 (Sugeno, 1977), 

X + l=Ua + Xg') . (4.48) 
1=1 

Thus, estimating the densities is a core problem when using Sugeno 
(and some other classes of) fuzzy measures. 

Sugeno measures are a large subset of all fuzzy measures. All belief 
and plausibility measures (Shafer, 1976) are Sugeno measures. 
Sugeno measures are useful because (4.47) provides a way to 
calculate the measure of a union of two sets from a pair of 
component measures. Other classes of fuzzy measures exhibit a 
similar computational advantage. For example, the traditional 
possibi l i ty measu re h a s the defining proper ty t h a t 
gposs(AuB) = gpos3(A)vgpog3(B). A similar fuzzy measure can be 
defined with any T co-norm. 

Still, there are many fuzzy measures which do not fit into nice 
classes, but which are useful in pattern recognition. The trick is to 
find a way to choose a measure that is "optimal" for a given problem. 
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Grabisch and Nicolas (1994) give some methods for learning useful 
general fuzzy measures from training data. 

Let Z = {zj,..., Zjj} denote the objects to be classified. For each class 
hypothesis c , let hj,,: Z x X h^ [0,1]. The value h^[zp Xj) is called the 

partial evaluation or support for object Zj in class k from the 
perspective of information source x . When the context is clear, we 
suppress the object name and class label from the partial support 
function. 

The information sources X = {x̂  x̂ }̂ could be a set of individual 
feature types or simple classifiers. The fuzzy measure, g, supplies the 
expected worth of each subset of sources for a classification 
hypothesis. The Sugeno fuzzy integral Sg(h) of a function h over X 

with respect to g is defined using a-cuts of h, h = {x: h(x) > a} as 
(Sugeno, 1977), 

S fh)= jh(x)og= sup{aAg(h )} . (4.49) 
^ 0<a<l 

In applications to pattern recognition, the computational cost of 
computing the confidence value Sg(h) can be reduced significantly 
since the set of information sources is finite. If X = (Xj,..., x̂ }̂ is 
arranged so that h(x^) > h(x2) >... > h(x^), then Sugeno (1977) showed 
that 

Sg(h) = v[h(x,)Ag(X.)] , (4.50) 

where Xj = {Xj Xj} for i = 1 n. This reduces the number of subsets 
needed to evaluate the fuzzy integral for each function h from 2" to 
jus t n. Also, for a Sugeno measure g , the values {g,{Xj)} can be 
determined recursively from the densities as 

gx(Xi) = gx({xi}) = gi ; {4.51a) 

g,(X,) = g,{Xi_i u {x,}) = g;,(Xi_i) + g' + Xg;,(X,_i) • g'. (4.51b) 

Sorting the function h adds some complexity to the evaluation. For 
a general fuzzy measure, it is still possible to use look-up table 
methods to extract the appropriate n subsets to compute the integral. 
The reader is referred to Dubois and Prade (1982), Sugeno (1977), 
Grabisch et al. (1992), Wang and Klir (1992), and Grabisch et al. 
(1995, 1998) for more extensive theoretical background on fuzzy 
measures and the fuzzy integral. 
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The definition given by Sugeno (1977) for the fuzzy integral is not a 
proper extension of Lebesgue integration, in the sense that the 
Lebesgue integral is not recovered when the measure is additive. To 
avoid this drawback, Murofushi and Sugeno (1991) proposed the 
Choquet integral as an alternative, referring to a functional defined 
by Choquet in a different context. Let h be a function on X with 
values in [0,1] and g be a fuzzy measure. The Choquet integral C (h) is 

Cg(h)= Jh(x)og = }g(hJda . (4.52) 
X 0 

where again h^ ={x:h(x)>a}. If X is discrete, X = {Xj,..., Xĵ } and 
arranged so that h(Xj) > h(x2) >... > h{x^), then C (h) can be computed 
as 

Cg(h)=ig(X.)[h(Xj)-h(x.^j)] , (4.53) 

where h(x^^J is defined to be 0, and Xi= {Xj,..., Xj} for i = 1,..., n. It is 
also informative to write the discrete Choquet integral as a 
(nonlinear) weighted sum of these values in which the weights 
depend on their order. For i = 1, 2,..., n, assume g(X ) = 0 and define 

«i(g) = g(Xi)-g(Xi_i) . (4.54) 

Combining (4.53) and (4.54), 

Cg(h)=|:h(xi)cOi(g) . (4.55) 
1=1 

In the general case, the sum in (4.55) is a nonlinear function of h 
because the ordering of the arguments depends upon the relative 
sizes of the values of the function h. This ordering can determine the 
values of the weights (cojg)}, and which products, h(Xi)cOi(g), will 
be formed. As for the Sugeno integral, calculating the Choquet 
integral for a ^̂ -̂fuzzy measure requires only the fuzzy densities. 
Assigning densities (on the entire fuzzy measure) appropriately is 
crucial for successful application of the fuzzy integral to pattern 
recognition. 

Example 4.9 To display the mechanics of S and C , we compute the 
integrals for an object, z, whose class confidence (the h function) 
from the standpoint of 4 sources of information (perhaps features or 
other classifiers) is given in Table 4.25. Also listed are the densities 
assigned to each source for a Î -fuzzy measure. 
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Table 4.25 Class confidences and densities for fuzzy integrals 

Source Xj Confidence h(xi) Density ĝ  

1 0.9 0.2 

2 0.7 0.2 

3 0.4 0.2 

4 0.3 0.2 

Notice t h a t X = {x^,x^,x^,x^] is a lready sor ted by decreas ing h 

va lues . Even though all densi t ies are equal, the fuzzy measu re g is 
not a probability measu re since the s u m of the densities is less t h a n 
1. Solving equat ion (4.48) (by, for example, Newton's method) for X 
gives X = 0.746, and so, the 4 values of the measure that are needed to 
compute either fuzzy integral are generated by (4.51) a n d given in 
Table 4.26. 

Table 4.26 Measure values to compute S and C 
for the data given in Table 4.25 

Source Set Xj Measure g(Xj) 

Xi 0.200 

X2 0.430 

X3 0.695 

X4 1.000 

For these values the two fuzzy integrals are 

Sg(h)= V(0.9 A 0.2, 0.7 A 0.43, 0.4 A 0.695, 0.3 A l.o) = 0.43; and 

Cg(h)=(0.9-0.7)(0.2)+(0.7-0.4)(0.43)+(0.4-0.3)(0.695)+(0.3-0.0)(1.0) 

= 0.54. 

In c o m p a r i s o n wi th p robab i l i t y theory , t h e fuzzy i n t eg ra l 
co r responds to the concept of expectation. Fuzzy integral va lues 
provide a different m e a s u r e of cer ta inty in a classification t h a n 
posterior probabilit ies. Since the integral evaluation need not s u m 
to one, lack of evidence a n d negative evidence can be dist inguished. 
Dempster-Shafer belief theory (Shafer, 1976), can also d is t inguish 
be tween lack of evidence a n d negative evidence. A concep tua l 
difference be tween t h e fuzzy in tegra l a n d a Demps te r -Sha fe r 
classifier is in the frame of discernment . For the fuzzy integral, the 
frame of d iscernment conta ins the knowledge sources related to the 
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hypothesis under consideration, whereas with belief theory, the 
frame of discernment contains all of the possible hypotheses. The 
fuzzy integral can assess the importance of all groups of knowledge 
sources towards answering the questions as well as the degree to 
which each knowledge source supports the hypothesis. 

We can view the action of a single fuzzy integral as a local filter on a 
set of values. For example, if the h function is just the scaled gray 
level in an image window, then applying the fuzzy integral to the 
window and replacing the gray level of the center pixel with the 
integral value induces a filter on the image. (Note that while we 
discuss filters on image windows - we can't help it because we like 
image processing - this discussion holds for any sequence of data 
values, for example, in signal processing). Selection of different 
fuzzy measures yields different types of filters. Several examples of 
fuzzy integral filters are given in the literature (Grabisch, 1994, 
Grabisch and Schmitt, 1995, Hocaoglu et al., 1997, Keller et al., 1998, 
Hocaoglu and Gader, 1998). We note a few for the Choquet integral. 

Assume that all neighborhoods are of size n (neighborhoods are 
usually square regions of odd length centered at a point ^). Here, n 
represents the total number of points in the neighborhood). If the 
measure g is an additive measure with all densities equal to 1/n, 
then the filter is the simple local average. Suppose n = 2k+l. If the 
measure, g, is defined for any subset A of the window to be 

g^(^^ = {o' ' ' ' ' 'e1s'e • ^^-'^^ 

then the Choquet integral is the median filter. This is easy to see 
using equation (4.55) because co. will be nonzero for only one value of 
the index, which is the index required to "pick off the median of the 
input values. In fact, replacing k with any i between 1 and 2k+l in 
the above definition yields the i-th order statistic (including the 
maximum for i = 1 and the minimum for i = 2k+l). More generally, 
all stack filters (a class which includes the median filter and all 
other order statistic filters) can be represented by Choquet integral 
filters (Shietal. , 1998). 

Choquet integral filters can also represent combinations of linear 
order statistic (LOS) filters defined by the convex sum 

LOS„(h)=icOih(Xi) , (4.57) 

n 
where the weights satisfy X K>I = 1 and the function values are sorted 

1=1 
in descending order. This operator can be seen as a Choquet fuzzy 
integral filter by defining the measure g according to 
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If |A| = i, then g(A) = Ico, . (4.58) 
J=i ^ 

These filters can also be referred to as ordered weight average (OWAj 
filters since they implement the operator given that name by Yager 
(Yager, 1988). They have also been referred to as generalized order 
filters by Grabisch. They are useful for implementing robust 
estimators (Huber, 1981, Rousseeuw and Leroy, 1987), such as the 
alpha-trimmed mean (Shi et al., 1998). 

Example 4.10 This example shows the use of a Choquet integral 
noise filter in an automatic target recognition application 
(Hocaoglu et al. 1997, Keller et al., 1998). (OK, this really belongs in 
Chapter 5, but hey, it seems like a good place to demonstrate the use 
of the fuzzy integral as a data filter.) Figure 4.20 shows a portion of a 
LADAR range image where the scaling has been performed 
artificially to give a clear picture of the convoy located in the 
middle. The figure shows 6 of the 9 targets in the image. The white 
rectangles enclosing the vehicles in the convoy in the image were 
inserted manually. 

^^jTT~~r~'r^'- -.^ ,.^ • ^ ; ; ! ' • \ , ; yy^jirfT] 

Figure 4.20 A (nonlinearly scaled) LADAR range image 

Notice the noisy background caused by sensor dropout as well as 
other phenomena (although it may be somewhat hard to see the full 
extent of the noise in these small images). The original image was 
processed by three filters: (a) a standard 5 x 5 median filter, (b) a 3 x 
3 OWA filter with weights 0, 0, 0, 0.25, 0.5, 0.25, 0, 0, 0, and (c) a 5 x 5 
Choquet integral filter based on a A,-fuzzy measure with the densities 
described in Hocaoglu et al. (1997). Basically, the density for a given 
pixel, i.e., for the singleton set containing the pixel, in a window 
measures how similar this pixel's range value is with its neighbors. 
In all cases, the center ptxel's range value is replaced by the value 
obtained from the filter. The Choquet integral filter preserved edge 
s t ructure better than the other filters while smoothing the 
background more. (Note: a 3 x 3 OWA was used because the 5 x 5 OWA 
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filter "looked" the same as the 5 x 5 median). Detailed discussion is 
provided in Hocaoglu et al. (1997). 

Figure 4.21 shows the output of the three filters on the LADAR range 
image (nonlinearly scaled for display purposes to show the convoy). 
It's hard to see, but there is texture in the background for the OWA 
and median filters. The background in Choquet-filtered image is 
flat. The Choquet filter managed to remove some of the noise pixels 
that otherwise caused 3 false alarms. In any case, these examples 
illustrate the wide range of behaviors that can be obtained with 
Choquet integral filters by choosing different measures and classes 
of measures. 

(a)3x3 0WAfilter 

(b) 5 X 5 median filter 

(c) 5 X 5 Choquet filter 

Figure 4.21 .^plication of filters to LADAR range image 

The fuzzy integral can be used in pattern recognition problems as 
follows. Information sources are identified. These sources could be 
individual features, pattern classifiers, context information, etc. A 
fuzzy measure is generated subjectively or estimated from training 
data for each pattern class. Generation of the measures is the 
training phase for the fuzzy integral approach. Given a pattern to be 
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class i f ied, a n ev idence func t ion h (x) is eva lua ted for e a c h 
i J 

information source x, and each class i. The functions {h } are then 
integrated with respect to their corresponding class fuzzy m e a s u r e s 
resu l t ing in one confidence value for each class . These confidence 
va lues are used to make a final classification decision, e.g., ass ign 
the p a t t e r n to t he c lass wi th the h ighest confidence. The fuzzy 
integral approach is summarized in Table 4. 27. 

Given 

Table 4 .27 A fuzzy integral-based classifier 

*• A set X = {x,,..., X } of information sources 
1 n 

••• To label : object z 
«•" For 1< i < c, a function h ;X -^ [0,1] which evaluates 

the strength of object z in class i with respect to x. 

Get Densit ies {gj : 1< i < c; l< j < n} for measures {g.}, or the 
entire measu re s {g.}. 

Find h.(x) for each source j and each class i for object z 

Sort X: {h (xp > h.(xj >... > h.(xj : l<i<c} 

Compute 
S fh.)= v[h , (x , )Ag,(X.) ] Vi ; or (4.59) 

Si 1 j=l 1 J I J 

h . (x . ) -h . (Xj^ j ) ]g (Xj ) Vi (4.60) 
8i j=i 

Array Dfg (z) = (fgj (hi(z))...., f ĝ  (h,(z)))T e Np, 

where f = S or C and g = (gj, • • • > g^) 

(4.61) 

Optional 
(Harden) 

H(D^ (z)) = e, ofg^(h.(z))>fg^(hj(z)) V j ^ i (4.62) 

Notice t h a t the calculat ion in (4.61) resu l t s in a possibilistic label 
vector for z us ing either the Sugeno or Choquet fuzzy integral, so D^ 

is, in ou r terminology, a possibilistic classifier t h a t d e p e n d s on 
either the Sugeno or Choquet fuzzy integral. And when the option to 
h a r d e n is used, the resu l tan t classifier at (4.62) is crisp. As with the 
k -nn rules , other au thors sometimes call (4.61) a fuzzy classifier, b u t 
we feel tha t our terminology is technically correct. 

Example 4 .11 Tahan i a n d Keller (1990) describe a fuzzy integral-
based classifier t h a t they developed for automatic target recognition 
(ATR). The classifier was developed and tested us ing /o ru ia rd looking 
infrared (FLIR) images conta in ing two t a n k s a n d a n armored 
personnel carrier (APC), Three sequences of 100 frames each were 
u s e d for t ra ining. In each sequence the vehicles appea red a t a 
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different aspect angle to the sensor (0°, 45°, 90°). In the fourth 
sequence the APC "circled" one of the tanks, moving in and out of a 
ravine and finally coming toward the sensor. This sequence was 
used to perform the comparison tests. The images were preprocessed 
to extract "object of interest" windows. 

Classification level integration using S with A,-fuzzy measures 

was performed on four statistical features calculated from the 
windows, that is, the sources {x , x X , X } represent the {"mean" 

variance 
the partial evaluation, h ix 

"skewness", "kurtosis"} of image neighborhoods. To get 
(for k= tanks, armored personnel 

carriers = APCs), for each feature, the FCM algorithm with c = 2 was 
used on the training data. Normalized inverse distances to the 
terminal cluster centers produced memberships for the test objects. 

The fuzzy densities - the degree of importance of each feature - were 
assigned by how well each feature separated the two classes (tank 
and APC) on the training data. These are shown, along with X 
values, in Table 4.28. 

Table 4.28 Computed Densities and lvalues 

^' i i ^' ^ 
Tank 
APC 

0.16 
0.15 

0.23 
0.24 

0.19 
0.18 

0.22 
0.23 

0.760 
0.764 

Table 4.29 compares the output results for three classifiers; the 
Sugeno fuzzy integral design Dg ; the standard Bayes classifier D ; 

and Dj^g, a classifier that uses Dempster-Shafer theory for 
integration of information (Wootton et al., 1988). 

Table 4.29 Classification results for three classifiers 

Fuzzy 
Integral Dg 

Bayes 
Classifier D, 

Dempster 
Shafer D DS 

Tank APC Tank APC Tank APC 
Tank 
APC 

175 
17 

1 
49 

176 
22 

0 
44 

176 
22 

0 
44 

92.6% right 90.9% right 86.4% right 

Each 2 x 2 block of cells in Table 4.29 is the confusion matrix 
obtained by the classifier when applied to the test data (the fourth 
image sequence), hardened in the usual way. In this test at least, the 
classifier designed with fuzzy integrals did slightly better than the 
two probabilistic designs. In Tahani and Keller (1990) and Keller et 
al. (1994a) it was demonstrated, on the above data, that the fuzzy 
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integral had the ability to fuse the outputs of three classifiers: a 
Bayes recognizer, a nearest prototype design based on exemplars 
from fuzzy c-means clustering, and a feature-level fuzzy integral. 
The densities were chosen heuristically based on individual 
classifier performance on a training set. The integration process 
was able to "correct" mistakes made by one of the classifiers, while 
maintaining the correct classifications for those objects where 
there was no confusion in the algorithmic outputs. In Keller et al. 
(1994a), the value of the fuzzy integral to fuse outputs of several 
neural network classifiers was nicely demonstrated on a very 
difficult handwritten character recognition problem. We will return 
to the issue of classifier fusion, or multistage classifiers, in Section 
4.9. 

The behavior of the fuzzy integral in a real problem is heavily 
dependent on the densities, or more generally, on the individual 
fuzzy measures. Therefore, estimation of the densities or the 
measures is very important. In some applications of the fuzzy 
integral the densities can be supplied subjectively by an expert. This 
subjective assignment approach may be the only method to assess 
the worth of non-numeric sources of information, such as context or 
"intelligence" reports. In most pattern recognition problems, it is 
preferable to estimate the densities directly from training data. 

Given a set of n information sources, we either need to specify 2" 
values directly (one for each subset), or for "nice" classes of 
measures, such as Sugeno ?i-measures or possibility measures, we 
need only to generate n fuzzy densities. In some instances the 
measure can represent subjective information only. Hence, 
heuristic methods have been used to specify either the full measure 
or the densities. They can be directly produced by human experts, or 
can be inferred from training data in numerous ways. No general 
theory applies here. For example, Keller et al. (1986) and Qiu and 
Keller (1987) used the relative amount of overlap between the 
histograms of a feature for the various classes (on training data) to 
generate densities. Chiang and Gader (1997) used the percentage of 
cases for which input feature values contributed towards correct 
decisions on training data for each hypothesis. 

In many applications, the number of knowledge sources is 
considerably less than the number of hypotheses, or classes. For 
example, in handwritten word recognition (Gader et al., 1995c, 
Gader et al., 1996a) the number of classes (i.e., words) is "essentially 
Infinite", and so, for any test image, the potential classes must be 
dynamically assigned. 

Example 4.12 This example, taken from Gader et al. (1996a) and 



264 FUZZY PATTERN RECOGNITION 

Gader and Mohamed (1996) shows the use of the fuzzy integral as a 
match function in a dynamic programming-based word recognition 
application. The details can be found in Gader et al. (1996a) and its 
references. Here, we only wish to demonstrate how the fuzzy integral 
can improve word recognition, a domain where the class labels 
change dynamically with each object (image). Let I be a word image 
and let L = {W , W ,..., W } be a set of possible words or strings for the 
particular image. The top of Figure 4.22 shows an image of the actual 
word "Richmond". The set L represents the dictionary or lexicon of 
all possible words. One version of the word recognition problem is to 
find the word in L that matches I better than all other words in L. In 
the baseline dynamic programming algorithm (see Gader et al., 
1996a), a match between a string W e L and I is computed by 
maximizing the average match between segmentations of I and the 
individual characters of the word W. In the fuzzy integral algorithm, 
it is used to compute the match score. 

Let W = CiC2-- Cn where c, is the ith character in W. The basic idea 
is as follows: We assign a density to each character class represented 
in the string W, C; -> g^ using some method. Given these densities, we 
can generate a ^-fuzzy measure g. Thus, each string has a measure 
associated with it. Assume we have a segmentation of the word 
image I into n segments. Basic character recognition algorithms 
(neural networks, usually) provide confidence values that the ith 
segment represents the ith character in the string. Denote these 
confidence values by h(xi), h(x2), •••h(Xn). The baseline system 
computed the match between the segmentation and the string by 
averaging these confidence values. Alternatively, they integrated 
these confidence values with respect to the measure g to arrive at a 
different match score. 

Figure 4.22 illustrates the basic process. The word image is broken 
into small pieces (no bigger than one character) called primitives. 
Then the primitives are Joined together to get the "best" match to 
each word in the lexicon using djmamic programming. The match of 
the image of the actual word "P^chmond" to the strings "Richmond" 
and "Edmund" are shown near the bottom of the figure. For the two 
segmentations, the character confidence values are shown below 
each segment. The average of the character confidence scores (on a 
scale from 0 to 1, but note that the displayed values in the figure are 
multiplied by 100) in the correct match is 0.57, whereas for the 
incorrect match it is 0.58. For each segmentation, a Choquet 
integral was computed using all densities equal to 1/(1.4n) where n is 
the string length. The parameter 1.4 was found through analysis of a 
set of training data. In this case, the Choquet integral assigned a 
score of 0.54 to the correct match and a score of 0.52 to the incorrect 
match. 
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Figure 4.22 Dynamic programming approach to word recognition : 
(numbers below each letter are scaled by 100 for display] 

All testing was performed on Images of handwritten words taken 
from the standard SUNY CDROM data set described in Hull(1994) 
Specifically, they used the 317 word "bd city name" test data set, and 
presented results for the lexicon set with average length 100. 

The segmentation algorithm (Gader et al. 1995) was initially 
developed on National Institute of Standards and Technology (NIST) 
character data. Later, the algorithm was adapted to images of 
handwritten words obtained from the United States Postal Service 
through the Environmental Research Institute of Michigan (ERIM) 
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using a data set referred to as the bha data (Gader et al., 1995, Gillies 
et al., 1993). The character recognition and compatibility neural 
networks were trained on characters and pairs of characters 
extracted from the bha data. 

Table 4.30 shows the increase in recognition rates obtained by 

setting all densities equal to the same value, g' = , where s is a 
s n 

parameter and n is the length of the string W. This method reduces to 
the baseline system (averaging) for s = 1 but produced better results 
than the existing system for larger values of s. 

Table 4.30 Recognition Rates obtain from initial experimentation 

Baseline System Equal densities (s=1.4) 
83.9% 86.1% 

One interesting property of the fuzzy integral is that it seems to be 
less susceptible to single outliers in the partial evaluation functions 
than many other methods. To illustrate, consider the match of the 
image of the word "plain" to the strings "Erin" and "Plain" as 
summarized below. In the match of plain to "Erin", the match of a 
wrong group of primitives within the image to "i" is very high (bigger 
than any other character match). This big value dominates the 
averaging method, causing the wrong classification, bu t is 
compensated for by the Choquet integral. 

MATCH OF Plain TO STRING Erin 
Character confidence function h: 0.06 0.35 0.84 0.23 
Old Match Score 0.554 
New Integral Match Score 0.309 

MATCH OF Plain TO STRING Plain 
Character confidence function h: 0.29 0.30 0.21 0.67 0.36 
Old Match Score 0.542 
New Integral Match Score 0.337 

When desired outputs of the integrals are available for each class for 
a large enough training set, Grabisch has shown that the entire 
measure for each class can be learned via an optimization problem 
(Grabisch et al., 1995, Grabisch and Nicolas, 1994) using quadratic 
programming. This methodology is quite useful but requires a least 
squares objective function in order to derive a quadratic program. If 
the number of information sources is large, this optimization may 
be computationally prohibitive, and in noisy applications, least 
squares is known to be non-robust. However, Chen et al. (1997) used 
the quadrat ic programming methodology to define optimal 
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measures for computing word recognition confidence from 
character confidence values in handwritten word recognition with 
excellent results. 

The process of determining the densities for fuzzy integrals can also 
be thought of as a random search activity when training data is 
available. Theoretically, an exhaustive search will always find the 
best density set. But when the number of classifiers is large, this 
approach is impractical. Yan and Keller(I996) suggested a modified 
random search and a form of simulated annealing, both motivated 
by heuristics, to find densities for possibility integrals used in 
image segmentation. 

Genetic algorithms provide an efficient alternative to exhaustive 
search. They have been utilized by some researchers to obtain 
various parameters of neural-fuzzy pattern recognition systems, 
including density values for fuzzy measures (Wang et al., 1997, 1998, 
Pham and Yan, 1997). Densities corresponding to multiple 
classifiers are coded as chromosomes in the genetic algorithm, and 
the classification rate is used as the objective function to be 
maximized. They combine "survival of the fittest" of strings and 
special ways of information exchange between generations of 
strings to form a search algorithm that is neither gradient search 
nor a simple random walk. In a genetic algorithm, each possible 
solution is coded as a binary string and a set of candidate solutions 
called a population is maintained. A genetic algorithm uses the 
three operators: reproduction, crossover, and mutation, operating 
in cycles (generations), returning the string with best fitness. One 
advantage of this type of search algorithm is that the densities for 
all classes are updated at each step, allowing for better comparison 
of fuzzy integrals values. See Geyer-Schulz (1998) for a complete 
treatment of crisp and fuzzy genetic algorithms. 

Keller and Osborn (1996) described a novel fuzzy density training 
algorithm (for Sugeno fuzzy measures) which was similar to 
training algorithms employed in neural network research. It was 
based on a "reward/punishment" scheme to adjust the fuzzy 
densities for each class. Initially the densities for each class start 
out at the same value, for example, 1/n. For a given labeled object 
instance, the integrals are calculated for each classification 
hypothesis. If the largest integral value does not correspond to the 
correct classification, training must be done. The offending fuzzy 
integrals are punished by decreasing the densities that directly 
contributed to their integral values while the correct class has its 
contributing densities increased. This tended to raise the integral 
value of the correct class integral and lower the value of those that 
were misclassifying the input. This process is continued until all 
objects in a training set were correctly classified. This approach was 
used to train fuzzy integral classifiers in a target recognition 
application (Keller and Osborn, 1991). 
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In the methods discussed above, you need to compute membership 
values (confidences) in different classes from observed feature data. 
Several methods can be used for this purpose (Section 4.7.1). You are 
probably getting tired of hearing this, but for any fuzzy classifier to 
work, fuzzy sets must be generated. This is equivalent to estimating 
conditional probability density functions and prior probabilities in 
statistical classifier design. 

There are several extensions of the given fuzzy integral pattern 
recognition algorithm both in terms of the class of fuzzy measures 
utilized and in the formulation of the equation to generate the 
values ( i.e., generalizing equation (4.49). The reader is referred to 
Keller et al. (1994a) for a discussion and real examples of these 
extensions (as well as a good bibliography of fuzzy integral 
approaches to pattern recognition). 

4,6 Fuzzy Rule-Based Classifiers 

Fuzzy rule-based systems have gained a wide degree of acceptance in 
control, where output signals are almost always continuous. In 
pattern recognition, rule-based systems are less evident, since crisp 
classifiers are discretely valued. One advantage of using a fuzzy rule-
based classifier, however, is that the labels can be soft during the 
operation of the rule-base, and hardened as the last step of 
classification. 

There are many, many ways that rules can be extracted from data 
(Weiss and Kulikowski, 1991, Lin and Lee, 1996, Jang et al., 1997, 
Nguyen and Sugeno, 1998). We will discuss rule extraction methods 
based on decision trees, clustering and heuristics in this section, 
and on neural networks in Section 4.7. Our intention is to begin in a 
gentle, non-traditional way, with some simple examples based on 
crisp decision trees. We hope this will pave your way towards 
understanding some useful connections between three apparently 
disparate fields of classifier design : neural network classifiers, 
machine learning (classification trees), and (fuzzy) rule-based 
systems. 

Like neural networks and fuzzy systems, decision trees can be used 
for approximation and classification. Since this is a book on 
pattern recognition, our interest is in the use of trees as classifiers, 
which in our context are sometimes called classification trees. 
Many writers and readers are used to the more general term decision 
tree, but we will use these two terms interchangeably unless there is 
a need to be more specific. 
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A. Crisp decision trees 

Decision trees (DTs) are a simple and intuitively natural way to 
introduce the idea of rule-based network approaches to classifier 
design. Let D^^ be a decision tree classifier, z be a point to be 
labeled, and let D(z) represent any of the classifiers we have studied 
so far ("single stage" classifiers). Advocates of decision trees list the 
following as advantages of the decision tree approach: 

^ . Dp^ approximates global, complex decision regions by 
constructing the union of simpler local ones. 

ft. Calculation of D(z) involves all c classes, whereas Dp^(z) is 
often obtained using a subset of the c classes, so D^̂ ^ may be 
faster than D. 

5 . Calculation of D(z) uses all p input features for all decisions 
regardless of their actual values, whereas the features used in 
computing Djj.j,(z) may be used in various combinations -
different nodes in decision trees may use different feature 
subsets to get good discrimination between the classes that 
arrive at particular nodes. 

Proponents of decision trees also concede some disadvantages: 

ft. Overlapping data classes (for example, from mixture 
distributions) can cause the tree to have many leaves (and, as 
we shall see, this means many rules), thus increasing 
memory requirements. And when the decision tree is soft 
(fuzzy, probabilistic or possibilistic), this can lead to large 
evaluation time during operation. 

ft. Decision trees typically overfit the training data, so a good 
pruning algorithm is needed to make the tree generalize well. 

ft. Classic decision trees have a parallel axis bias (this can be 
overcome by "oblique code 1", Murthy et al, 1994). 

5 . Decision trees grow larger with more training data, but their 
accuracy on test data rarely shows a concomitant increase. 

f5- Decision trees generally don't afford incremental learning 
(but IDS is incremental, Utgoff, 1989). 

We can summarize these two lists succinctly: as with all other 
classifier designs, you take the good with the bad. As usual, the real 
question is how to find a good classification tree? Unlike previous 
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classifiers we have studied, D^̂ ^ involves more than just choosing a 
family of classifier functions and training D by some method for 
parametric estimation. Finding an (error rate) optimal Dĵ ^ is not 
so easy. The design process, on the other hand, is fairly 
standardized: build it, prune it, and test it. First we develop some 
terminology, then we discuss strategies for building a crisp decision 
tree, and finally, we review most of the work that has been done 
towards fuzzifying crisp structures. 

A tree T = (V, E) is a directed graph (or digraph) which has a root node 
v^ e V with the property that there is a unique path p(Vj, v) from v 
to every other node v e V, and no path from v to itself. In this 
section we denote nodes of T as V={v}, v standing for vertex, v is the 

J ° 1 
only node without a parent. Terminal vertices, the only nodes 
without children, are called leaves. Non-terminal nodes are also 
called internal nodes, denoted as V • and we denote the leaves by V . 
Thus, V = VL u V|, and VL n VJ = 0 . T is binary when each non
terminal node V e Vj has two exit edges ( or equivalently, two 
children, usually called the left and right children of v). Thus, 
internal nodes can have one or more children but only one parent -
figure that out!. 

Learning the structure of a decision tree, or equivalently, the rules it 
represents, is called rule induction (from our viewpoint, this means 
training D ). A classification tree D^^covers the given cases 
(inputs) in crisply labeled input-output (lO) data set X if and only if 
the rules it corresponds to are consistent in the pattern recognition 
sense, i.e., the resubstitution error rate E„ (X|X) = 0. Any finite 

"DT 
data set can be covered by at most n consistent crisp rules (i.e., by a 
classification tree with n pure leaves). In general, the number of 
leaves required to consistently cover c classes is V >c.The 
smallest tree that covers the training data is desirable, but often 
does not provide good generalization. 

Figure 4.23 shows a crisp decision tree classifier D^^ whose job is to 
decide which of three crisp labels, chicken (e^), crab (e^) or fish (Cg), 
a particular object should be given. 
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Figure 4.23 A decision tree that covers three classes 

We can't just drop a fish into the computer and ask for an answer 
(OK, some computers are pretty fishy, as are many of our comments). 
As usual , we have two choices for representation of objects: 
numerical features (either continuously valued features such as 
weight, length; or discretely valued features such as number of fins, 
etc.); or categorical attributes (color, skin texture, etc.). In Figure 
4.23 the only numerical feature needed to make correct 
classifications is the integer n,, the number of legs: n ,̂  , = 2, n 

" L '^ chicken c 

= 8 (we don't count the claws of the crab as legs - they are hands), n 
= 0. When the computer considers a question such as " # legs?", it 
must make a computation or comparison to answer the question. 
This happens at all the internal nodes, and at none of the leaves. 
The set of leaves Tĵ  = (Vn. VJ^2''^L3^ ^^ Figure 4.23 provide a crisp 3-
partition of the data, with label vectors as shown to the left of each 
leaf. 

crab 

Classification is accomplished just as you see it: each internal node 
in the tree poses one question (here the root is the only internal 
node), and, based on the response, the object traverses T from root to 
some leaf. When a leaf consists of objects from just one crisp class, 
we say it is pure; and when all the leaves are pure, we say T is a pure 
classification tree. Following tradition, the leaf nodes are indicated 
by rectangles (well, ours are almost rectangles - apropos don't you 
think?), while the internal nodes are shown as ellipses. Also notice 
that the root node v^ processes examples of all three classes - this is 
why they are shown "in" the node in Figure 4.23, but they don't reside 
there - they are just passing through. In this example, there are 3 
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classes and 3 terminal nodes, but usually, each class will have 
several leaves that bear the same crisp label. 

Up to this point object and relational data have been continuously 
or discretely real valued, and in all cases the measurements 
(numerical features) can be ordered (this property results in the 
alternate name ordinal data for these two kinds of data). Decision 
trees can also deal with categorical (nominal) data - i.e., data whose 
features or attributes take values that have no ordering. Many sets 
of objects can be described nicely by categorical data. 

Categorical attributes (nominal variables) are in some sense similar 
to the semantics of fuzzy descriptions in rule-based systems, where 
linguistic variables can take linguistic values. Categorical variables 
are not associated with membership functions, while linguistic 
variables take values that are in turn represented by fuzzy sets, that 
is, by (tj^ically continuous) membership functions. In the domain 
of fuzzy systems models, we call words such as scaly, feathery, hard 
linguistic values, say {(], of a linguistic variable J = skin texture. 
Linguistic variables in the fuzzy sets context are somewhat more 
general than categorical variables. First, the membership function 
that represents a linguistic value serves to modify the extent to 
which a particular observation should be considered to exhibit the 
linguistic attribute. Second, most linguistic values (e.g., low, 
medium, high) of linguistic variables (e.g. speed) have an unspecified 
but semantically clear ordering, as, for example, low is less than 
medium which is less than high. We will write vectors that have q 

linguistic variables for entries as J = (,jf^ J! )'^ eufl. The number 
of possible values that can be taken by a categorical or linguistic 
variable is called the granularity of the variable. For example, when 
texture is smooth, scaly, feathery, hard or leathery, its granularity 
is 5, whether each of these words is represented by a crisp or soft 
membership function. 

The three objects in Figure 4.23 could be equally well described with 
a nominal variable such as skin texture as they are by counting the 
number of legs: the skin of chickens is feathery, of crabs is hard, and 
of fish is scaly, smooth or leathery. The tree built using the 
numerical feature "number of legs" and one built using the 
unordered categorical attribute "skin texture" will be identical in 
this simple example. The question shown at the root in Figure 4.23 
becomes "is skin scaly, hard or feathery? The three crisp labels, 
chicken = feathery = (e^), crab = hard = (e^) or fish = scaly = (e^) still 

apply, and the tree covers the three given cases, now described by 
values of a categorical variable. 
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B. Rules from crisp decision trees 

The simple example in Figure 4.23 introduces the idea of using a DT 
for classification. What is ostensibly different with this approach 
from those previously discussed is the representation of the 
classifier function. If we designate the set of objects as X, the crisp 
decision tree classifier Dj^.j,:X-> Nĵ ^ in Figure 4.23 can be 
represented by three crisp rules : 

If (nL=2) Then DDT{nL) = ei ; (4.63a) 
If (nL=8) Then DOT(nL) = e2 ; (4.63b) 
If (nL=0) Then DOT(nL) = e3 . (4.63c) 

Unlike our previous classifiers, there is no functionally compact 
way to represent "O^y^.. Moreover, rule-based systems like (4.63) will 
almost always be embodied as computer programs. This is our first 
example of a "learning" model that leads to a computational 
representation of D. To emphasize the structure of classification 
trees as rule-based functions, we will denote the set of rules in a rule-
base as /€ = {Rj ^M^' and the output of/€ for input x e St^as the 

vector R[x]. This emphasizes that the rules are Just a computational 
representation of a transformation, f?:5KP i-> 9^i. 

Why use rules at all? The classifiers discussed so far make decisions 
based on mathematical models that have little or no "physical" 
meaning to most users. Generally, decisions rendered by a computer 
are based on reasoning that is not readily apparent (even to the 
designer of the system!). This can lead to a lack of confidence by 
humans in decisions made by the computer. Arguably, one of the 
primary advantages of rule-based classifiers is their ability to 
provide humans with understandable explanations of label 
assignments. Certainly system (4.63) satisfies this criterion : each 
rule is easily understood by us. 

DDT(ni 

ft 

0 
HL legs 

Figure 4.24 Geometric representation of (4.63) 
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Another nice aspect of rule-based classifiers is that they have a 
simple geometric interpretation. System (4.63) is illustrated in 
Figure 4.24, which depicts the functional action of each rule in 
terms of its numerical input (n ) and output e., represented here 
simply as integer i. The 3 discrete points in the plane represent these 
three rules completely. 

The system in Figure 4.23 based on the numerical input "number of 
legs" has no rule for inputs that are not 0, 2 or 8. That is, it has no 
generalization capability at all. For example, some crabs come out 
of the water with only 7 legs, and the tree in Figure 4.23 will fail to 
classify crabs with this misfortune. Moreover, if a human was 
submitted to the tree in Figure 4.23, she or he would be classified as a 
chicken. The alternative tree based on skin texture would perform 
equally badly: turtles (hard skin) would be classified as crabs, and 
humans, perhaps, as fish. This is a problem that is particularly 
acute for crisp decision tree classifiers - it is not hard to train them 
to have zero resubstitution error rates, but they often generalize 
badly. 

We can ameliorate this problem in the numerical case by erecting 
crisp membership functions along the horizontal axes that capture 
the training inputs in continuous intervals. The domains shown in 
Figure 4.25 are fish = [0,1), chickens = [1,3] and crabs = [7,9]; the ends 
of the intervals are called cutpoints. Geometrically this creates 
three crisp rule patches, as shown in Figure 4,25. (Actually they are 
not patches, since they have no vertical extent, the outputs being 
singletons; we show them with finite heights in Figure 4.25 so you 
can see them.) 

DDT(nL) 

A 

fish 
63 ~~irzZZ2 

-E 
crabs 

chickens 

• > " L legs 

mi 
1 3 7 9 

Figure 4.25 Crisp rule patches associated with (4.63) 

The usual way to generalize a tree for continuous variables is to 
simply place a cutpoint at the midpoint of each pair of adjacent. 
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distinct values taken by any continuous attribute in the training 
data. The updated version of Qulnlan's classic tree-building 
algorithm (IDS, Quinlan, 1983) for continuously valued inputs 
called C4.5 (Quinlan, 1993) uses the feature values in the data as 
cutpoints. We have done it a little differently in Figure 4.25 so you 
can see the general idea, because several fuzzy generalizations of IDS 
depart from the midpoint strategy used by C4.5. In any case, we refer 
to extensions of this kind that imbed the n discrete, observed values 
of feature i, i = 1 p, in some real interval (often the interval 
[mi,Mi] shown in equation (4.20)) as cutpoint quantization. 

Now any input between 1 and 3, for example, would evoke the 
response "label 1" = (most like a) chicken, and 7-legged crabs will be 
classified correctly. This may seem nonsensical for discrete inputs, 
but it makes this important point: when we cover the training data 
with crisp rule patches, the patches allow us to have outputs for non-
training inputs - i.e., the patches provide generalization capability 
to Dp.j,. When the input variables are continuous, this makes a lot of 
sense. 

Suppose we add humans (crisp label = e^) to the three classes in 
Figure 4.23. Since humans have 2 legs, the rules in (4.63) no longer 
cover the four classes - we need another feature. Let x = number of 
legs, y = number of hands for the object represented by x = (x, y)^, 

x\ (2\ (S\ (0^ (2 
and count the claws of crabs as hands. Thus i v I ~ I 0 I'I 2 I'I 0 I'I 2 

are, respectively, the discrete-valued, numerical feature vectors for 
all representatives of the four classes chickens, crabs, fish and 
humans. One decision tree that covers these four classes is depicted 
in Figure 4.26. 

During training, we try to pick questions at the internal nodes in 
Figure 4.26 so that they act like a set of sieves, separating more and 
more training cases as we move down through the tree, until all the 
examples in each terminal node are in a single class. Here, as in 
Figure 4.23, the number of leaves equals the number of classes, but 
again, this is coincidental (in fact, unusual). Unlike our previous 
classifiers, the DT in Figure 4.26 uses the input features 
hierarchically (one at a time), rather than jointly. This is not a 
general property of all decision trees. All of the internal nodes in 
some decision tree classifiers process the entire input vector. 
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> | f o. ^ o r ^ o. ^ 

Figure 4.26 A binary decision tree that covers four classes 

Crisp rules corresponding to the tree in Figure 4.26 are: 

^ B D T W ^ If {x = 2andy;4 2) Then 
If (x = 2 a n d y = 2) Then D^^^ 
If (X9i2andy = 2) Then 
If (x^2andy5^2) Then 

:^) 

(4.64a) 
(4.64b) 
(4.64c) 
(4.64d) 

Figure 4.27 shows a different solution to the problem in Figure 4.26. 
Which tree, Figure 4.26 or Figure 4.27, is "best"? Both represent zero 
error rate solutions, but their topology is slightly different. Thus, 
the tree in Figure 4.26 has three internal nodes, while there are but 
two in the tree in Figure 4.27. Figures 4.26 and 4.27 illustrate that 
even in the simplest cases there is usually more than one covering 
decision tree, and data of any appreciable size will often have many. 
In machine learning, the node splitting principle chosen for 
building the tree produces a covering tree that is optimal with 
respect to the training criterion; and then most of the effort is placed 
on pruning the tree so that it generalizes well. 
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Figure 4.27 An alternate solution to the tree in Figure 4.26 

When a crisp decision tree uses only rules in disjunctive normal 
form and the Vciriables are continuously valued, DQ^ is a piecewise 
linear classifier whose decision boundaries are hyperplanes that 
are parallel to the coordinate axes (hence the parallel axis bias in 
classical decision tree learning). In the special case in Figure 4.24, 
the three rules are points on vertical hyperplanes passing through 0, 
2 and 8, because values on the horizontal axis are discrete. 

If the constraint at each internal node is an inequality on a 
continuously valued feature, then a set of covering rules represents 
an lO relationship corresponding to capturing the training data in 
crisp rule patches or hyperboxes with sides parallel to the 
coordinate axes. This situation is depicted in Figure 4.28, which 
shows crisp rule patches capturing training data for two linearly 
separable classes (e = ducks and e = llamas). 
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Figure 4.28 Geometry of rules on continuous numerical domains 

The geometric interpretation of crisp rule patches is strictly correct 
for numerical inputs. For categorical inputs, we can imagine 
clusters in the input space corresponding to each categorical value 
(ducks are feathery, llamas are furry (fuzzy?), but there is no way to 
construct a graphical representation. The covering rules for the data 
in Figure 4.28 are 

If ( a < x < b a n d e < y <f) Then Dj5^(x) = e^ , and (4.65a) 
If ( c < x < d a n d g < y <h) Then Tt^^[x) = e^ . (4.65b) 

Although Murty's (1994) oblique code 1 can sometimes capture a lot 
of training data with a few crisp rules, this is generally not the case 
unless the data are linearly separable. On the other hand, n distinct 
inputs can always be covered with n crisp rules by making the 
hyperboxes (or parallelepipeds) small enough. 

C. Crisp decision tree design 

Methods for decision tree design can be put into four main 
categories: (i) bottom-up approaches, some of which are very similar 
to unsupervised hierarchical clustering as discussed in Chapter 3; 
(ii) top-down methods; (iii) growing emd pruning approaches; and (iv) 
hybrid methods. Top down approaches with subsequent pruning 
comprise the large majority of currently popular induction 
methods. All of the papers we discuss that develop fuzzy decision 
trees for classification fall into this group. Top down approaches 
involve node splitting rules, stopping criteria, and leaf labeling. 
Splitting rules are based on node splitting functions and 
termination criteria with constraints. 
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We want a decision tree that minimizes the generalization error 
Ejj (X|^g|Xj^). Most machine learning algorithms find a tree that is 

consistent, Ep (X̂ .̂ | X^̂ ) = 0, and then prune it. Typical tree design 

starts with a crisp partition of the training data, and uses the labels, 
in conjunction with some node splitting criterion function i, to 
determine a tree structure that is optimal with respect to i. In the 
training process X is repartitioned into subsets of cases. In 
machine learning this is called partitioning the training examples 
(the prefix "re" is dropped). Once the tree is built, we abandon i, and 
use the structure it provides to define decision functions {^} at the 
internal nodes {v}. In the trees shown so far, we have indicated the 
decision functions at the nodes after the tree is built - not the node 
splitting functions used to build the tree. 

Deciding how to split the cases at an internal node v is guided by a 

node splitting or impurity function i^ at v . Impurity functions are 
often functions of relative frequencies of crisply labeled cases 
"arriving at, or in" the node to be split. Using relative frequencies 
amounts to deriving a numerical feature from the labels of the 
training data to cluster the cases, and it can be done for both 
numerical and categorical data. The basic objective is for the cases 
that are sent to each child of v to be "purer" (more well separated) 

than the cases that were sent to v . A function i: Nj.̂  i-> [0, oo) is called 
an impurity function when 

i ( e j = 0, j = l c ,and (4.66a) 

i(l / c) = maximum . (4.66b) 

Recall that N̂ ^̂  = {ej,...,e^} are the vertices of N , and that 1/c is its 
centroid (refer to Figure 1.2). Equation (4.66a) requires impurity 
functions to vanish at nodes where all the cases are in one class. 
Equation (4.66b) requires impurity functions to maximize at the 
centroid of N , i.e., at nodes where the cases are equally distributed 
among the c classes. In short, impurity functions vanish at pure 
nodes, and maximize at the most impure nodes. 

Let p = (pj,...,p^)^ ^'^fc' where p̂  = n . / n , i= 1 c for n crisply 

labeled dataX = U Xj, X^ = n^ t̂ 0. The two most common impurity 
i=l 

functions (Breiman et al., 1984) are (Shannon's) entropy and the 
Gini diversity index of the vector p = (pj Pc )^ ̂  
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^nt(P) = - 1 Pi log2 Pi . and (4.67a) 
1=1 

^Gini(p) = i - i p f = i p i - i p f = i p i ( i - P i ) • (4.67b) 
1=1 1=1 1=1 1=1 

The last form of (4.67b) is the way the Glni index appears when it is 
called Vadja's quadratic entropy (Vadja, 1970). The Gini index can 
also be viewed as an approximation to Shannon's entropy in (4.67a) 
because (-log p ) can be approximated by (1-p) for small p. Safavian 
and Landgrebe (1991) list many other optimality criteria for tree 
s t ructure design, including minimum expected path length, 
minimum number of nodes, minimax path length, etc. For example, 
Sethi and Sarvarayudu (1982) base their impurity function on 
average mutual information gain. 

Once an impurity function is chosen, it is used to measure the 
impurity of internal nodes before and after splitting them into 
children. Candidate splits are postulated, and the decrease in 
impurity due to the split is calculated. The attribute selected for the 
next split is the one that maximizes the decrease in impurity at that 
node. Maximizing the change in entropy essentially minimizes the 
expected number of tests needed to classify an object. The overall 
impurity 1(T) of any tree T with M leaves is defined as 

M 

I(T)=Ii(PLk) , (4.68) 
k=i ^'^ 

where p ,^ is the vector of relative case frequencies in leaf v . When 
the leaves are all pure, each leaf has a crisp label vector attached to 
it, p^^ -e for some J, the impurity of the tree is 0, and so the 
training error of the tree is also 0. 

The two most widely used algorithms for building crisp decision 
trees are Quinlan's (1983, 1986) IDS (interactive dichotomizer) 
method and its extension to C4.5; and CART, the classijication and 
regression tree approach described in Breiman et al. (1984). IDS was 
originally designed to deal only with pretty small sets of categorical 
data. The machine learning community has essentially abandoned 
IDS for Quinlan's (199S) much improved C4.5, which takes care of 
this deficiency, and which is much more widely used than CART. In 
statistical circles, however, CART is favored because of the 
"regression trees" it can build. 

CART and IDS are fairly similar: both models try to represent a 
crisp partition of the training data in a decision tree structure; both 
are top-down, node splitting approaches, and both attempt to 
minimize tree size while simultaneously optimizing some 
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performance measure . The main differences between C4.5 and CART 
are t h a t C4.5 u s e s entropy while CART u s e s the Gini index for node 
splitting, a n d CART is p r u n e d by exhaustive search of all sub t rees 
(Breiman et al., 1984), while C4.5 u se s a more efficient pessimistic 
p run ing strategy, especially for small da ta sets (Quinlan, 1993). 

Since all of the fuzzy models we discuss in the sequel refer to IDS, we 
summar ize it in Table 4 . 3 1 , even though it h a s been supplan ted by 
C4.5 in the machine learning community. The inpu t da ta to 1D3 are 

a se t of n categorical d a t a vectors , {l^^czJ^. For example , t h e 
a t t r i bu t e l ist or l inguist ic var iables for t he da t a given might be 
(color, t ex ture a n d size). Color might be divided into (red, green, 
blue), t ex ture into (smooth, rough), and size into (small, med ium, 
large). Each such d a t u m is described by a 3-tuple such as e^= (red, 

smooth, small), so ^ = 3. Our specification of 1D3 t reats the root node 
as a leaf in the first pass through the WHILE-DO loop. 

Table 4 .31 The IDS algorithm (gukilan, 1983) 

In 

Crisply labeled category da ta X^̂  = t'l > '2 ' n ' •- -^ 

Xt. - U X t , , . n^ = | X ^ , | a n d p ^ . = n , / n V i 

Do 

X, ; V, 
tr L 

: 0 ; 

While I(T) > 0 ; % create child nodes p = relative 

class frequencies of cases a t node J 
Pick a leaf node v,, at which i J p , , ) > 0 

Lk ent •̂'̂  Lk' 

For all a t t r ibutes {.̂ j} not in pa th p(Vi, VLJ 
For all a t t r ibute values {Q of ^ j , compute 

w. = relative # of cases at child node for e. 
^^ent.iJ|Lk = ^ent(PLk) " ^ Wjl^^,(Py|Lk) • 

Choose the split(s) t h a t maximize(s) (4.69) 

(4.69) 

Update leaf node set V̂  
End While 

Out 

A fully expanded crisp classification tree T with 
|V j | internal nodes; M =|Vj^| leaves, and overall 

M 
impuri ty 1(T) = I v_(PLk) = 0 . 

k=l 

S o m e w h a t ana logous to HCM, which favors c lus te r s wi th m a n y 
points (see Figure 2.3a), IDS is biased towards a t t r ibutes with m a n y 
values, b u t th is can be partially compensated for by altering the basic 
formula in (4.69) - see Quin lan (1993) for the details. Since m a n y 
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applications depend on continuously valued numerical data, IDS has 
experienced many generalizations since Quinlan's original 
formulation (Fayyad and Irani, 1992, Cios and Liu, 1992, 
Seidlemann, 1993, Quinlan, 1993). Most of these updates take the 
form of discretizing the input range of each numerical variable into a 
number of subintervals or outpoints. To appreciate ID3, we (like so 
many before us), repeat Quinlan's most well known example of the 
original algorithm. 

Example 4.13 This example, adapted from Quinlan (1983), illustrates 
his original 1D3 algorithm for growing a classification tree. 
Everybody repeats this example, so we have changed the objects from 
"a" and "o" to "r" and "e" just to be different. The entropy impurity 
function is used to determine a crisp classification tree that is 
optimal in two ways: its nodes maximize the information gain at 
each split of cases in the training data, and it is a consistent tree (the 
resubstitution error rate is zero). The training data are listed in Table 
4.32. There are 8 objects, indexed for brevity by the integers 1 to 8, 
and these 8 training data are labeled as belonging in one of c = 2 crisp 
classes named "r" and "e". We let R denote the crisp cluster of 5 "r"s and 
E denote the crisp cluster of three "e"s in X. 

Table 4.32 Training data for Quinlan's ID3 example 

label 
object 

r 
1 

r 
2 

r 
3 

r 
4 

r 
5 

e 
6 

e 
7 

e 
8 

height 
ha i r 
eyes 

tall short tall short tall 
dark dark blond blond dark 
blue blue brown brown brown 

tall tall short 
blond red blond 
blue blue blue 

Each object is represented by three attributes that are particular 
values of three categorical variables: ^ = height, .̂  = hair color, and 
•̂ o = eye color. Categorical values taken by the categorical variables 
are {( = tall, 6 = short} for height, k = dark, ( = blond, ( = red} for 
hair color, and {(, 

31 blue, L = brown} for eye color. Visual inspection 
of the attributes of objects in R and E does not lead to an obvious 
decision tree that covers the training data. 

Since each object is characterized by three attributes, and the number 
of possible attribute values are 2, 3 and 2, this categorical feature 
space will support at most 2 • 3 • 2 = 12 crisp rules, all of which have 
the general form, for a particular input z submitted to the (as yet to be 
determined) rule-base 

lf{J^{z)=e^. and (.̂ (̂z) • L ) -2J2' ^ ^ K̂ ^̂ = ( )then DDT(z)="r"or"e". 
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Figure 4. 29 Illustrates the initial configuration of the training cases 
at the root node. Think of the "r"s as rabbits and the "e"s as elephants. 

Root node v. 

Figure 4.29 Training data set X prior to splitting the root node 

The relative frequencies of cases in R and E are 5/8 and 3 /8 , 

respectively, yielding 1(T) = - — logg — - - logg - = 0.954 as the 

initial impurity of the system (in bits). Since there are three 
attributes, there are three possibilities for splitting the cases at v , 
and IDS defines the optimal split as the one which maximizes the 
gain of information (or gives the largest entropy decrease); the 
possible splits are shown graphically in Figure 4.30. 

Height Eyes 

Figure 4.30 Possible case splits at the root node 
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Table 4.33 shows the proportions of cases that occur for each cluster 
in Figure 4.30 for each of the possible splits. 

Table 4.33 Relative frequencies of clusters for each 
of the three splits of cases at the root node 

A = height J = hair J = eyes 

tall = e dark = ( blue = ( 

p(^ij) = 5/8 pU^^) = 3/8 p (^3 j -5 /8 

p(rUji) = 3/5 p(r|^2i) = l p(r|^3j) = 2/5 
p(e|^^i) = 2/5 p[e\(2,) = 0 p(e|^3j) = 3/5 

short= e^^ red = e^ brown= (^^ 

p{̂ 2̂) = 3/8 pU22)-l/8 p(̂ 32) = 3/8 

p(rUj2) = 2/3 p(rk22) = 0 p(r|^32) = l 
p(eUj2) = l/3 p{e\e^^) = l p(eU32) = 0 

blond = 2̂3 

p(̂ 23) = 4/8 

p(r|<;23) = l/2 

p(e|^23) = l/2 

Next the entropy of each split cluster is computed. For example, the 
entropies of the tall and short clusters for the height split are 

2 , 2^ fl, 1 
t^^Jshort) = i^je^^) = - - log^ 7̂ - o l°g2 o I = 0.918. 

Now we use the prior probabilities of the tall and short clusters to 
compute the overall entropy of the height split as 

W K ) = P K l H e n t K l J ^ PK2Hent(' ' l2) = | ( 0 . 971) + | ( 0 . 9 1 8 ) = 0 . 9 5 1 . 

In a similar manner we find the overall entropies for the other two 
splits as i^^^(haiT) = i^^^U^) = 0.5 and v^^Jeyes) = i^^J.^3) = 0.607. 
Finally, each of these three entropies is subtracted from the initial 
system entropy to get the overall entropy decrease for that split: 
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Ai^^Jheight) = I(T) - i^„t(^i) = 0.954 - 0.951 = 0.003 

Ai_, (hair) = I(T) - 1 ^ ( ^ ) = 0.954 - 0.500 = 0.454 . 
ent ent 

Aî  . (eyes) = I(T) - 1 , [J.) = 0.954 - 0.607 = 0.347 
ent 

Since the split of the root node by the attribute "hair" results in the 
largest decrease in system entropy, this is the first split made by 1D3 
for this data set. This split gives the root node 3 children. The 
children of v are the three nodes shown in the middle of Figure 4.31: 
two of them are "pure" - they contain samples from only one class -
and will thus be leaves in the final tree. The only node left to split is 
the 'blond" cluster, which contains 2 cases each from the labeled data. 
This node offers two possible splits, one on hair and one on eyes. 
Repeating the procedure just completed for this split, you will find 
that the preferred split is on eyes, and for this simple example, the 
final tree has been reached. Figure 4.31 shows the final tree. 

^ 

S)i!S ̂ 
\ ) 

Figure 4.31 Crisp IDS classification tree for data in Table 4.32 

Since the leaves of the tree in Figure 4.31 are all pure, this is a tree 
with zero resubstitution errors, and is thus optimal Avith respect to 
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the training data, as it correctly classifies all of them. However, this 
tree may or may not respond well to inputs that don't have the four 
combinations of attributes that are missing in the training data. In 
fact, without some sort of extension, the rules /? from this tree won't 
even process the four missing cases. 

There are four pure leaves in this tree, so the rule-base uses M=4 crisp 
rules to cover the c=2 classes labeled e and e in Figure 4.31. Notice 
that values of the height attribute J are not used at all. The four 
rules, written out with words, in order, from left to right by the 
ordering of the leaves in Figure 4.31 are: 

R : If (hair= blond) and (eyes = brown) then z = rabbit ; (4.70a) 
R : If (hair = blond) and (eyes = blue) then z = elephant; (4.70b) 
Rg : If (hair = red) then z = elephant; (4.70c) 
R^ : If (hair = dark) then z =rabbit. (4.70d) 

Thus, it takes two elementary rules to cover each class. Another point 
to notice about Figure 4.31 is that the three levels in this tree 
correspond quite nicely to the levels in dendograms that represent 
top down hierarchical clustering procedures. Compare Figures 3.4 
and 4.31 to see this, but flip Figure 3.4 "upside down", since it was 
built with a bottom up procedure. At the first level of T in Figure 4.31 
all 8 data are in c = 1 crisp cluster; at level 2, there are c = 3 crisp 
clusters, two of which are pure; and at level 3, there are c = 4 crisp pure 
clusters. So, it's no surprise that hierarchical clustering has played a 
role in several tree growing methods - indeed, ID3 is top down 
hierarchical clustering for categorical data; bu t unlike the 
algorithms in Chapter 3, ID3 is supervised - it gets to use the crisp 
labels to construct pure clusters for classifier design. 

There are many methods for termination of node splitting before 
reaching a fully expanded tree, and just as many methods for pruning 
fully expanded trees (Safavian and Landgrebe, 1991; Weiss and 
Kulikowski,1991). These two aspects of the erection of D^^ have not 
received much attention from fuzzy classifiers. We are content here to 
note that termination of node splitting affects the performance of 
Djj.j, Just as surely as termination of, say, any prototype generation 
algorithm, affects the quality of a 1-np classifier that uses the 
prototypes. Expansion can be terminated before completion, or fully 
expanded trees can be pruned back to subtrees. In either instance, the 
tree that remains will in all likelihood be impure. This is done in 
hopes that the (guaranteed) increase in training error due to 
abandoning a pure tree will be rewarded by a concomitant decrease in 
testing error (i.e., better generalization). 
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When leaf v in the final tree contains cases of more than one type, 

the relative percentages of each label, Pĵ  e N .̂̂ , can be regarded as 

the consequent output for inputs that travel the path p(v , v ), i.e., 

Dĵ .j,(z) = PL e Nj^. For example, if the node labeled "eyes" in Figure 

4.31 is, after pruning that tree, a leaf in a subtree of T, since it 
contains 2 cases each of classes 1 and 2, p = (0.5,0.5)^ e N, is the 
probabilistic label vector attached to this node. We still get exact, 
unique matches to training data on the left sides of the crisp rules 
(the firing strength is still 1 along the unique path p(v , v .)), but the 
classifier output is now soft at impure leaves. A strategy such as 
hardening by equation (1.15) can be used to convert soft output labels 
to crisp ones. By our convention Dĵ ĵ, is now a soft (decision tree) 
classifier, but hardly anyone would call the tree that produces such 
decisions a soft decision tree. This terminology is reserved for the 
more general situation discussed in Subsection F. 

If each of the objects in Figure 4.31 was represented by a numerical 
feature vector, then each of the four leaves would have a (sample 
mean) point prototype v^^ associated with the data in leaf Vĵ . (don't 

confuse the vector v, .e9^P with the vertex v , , e V , ) , and the 
Li Li L 

classifier tree in Figure 4.31 would be similar to a 1-nmp classifier as 
discussed in Section 4.2. 

While it is nice to exhibit the rules with their semantic meanings 
(after all, this is one of the attractive features of rule-based 
classification - easy to understand reasons for the labels assigned -
you've never seen a blond elephant with blue eyes? Too bad!), we need 
to become comfortable with the symbolic notation for rule-base /?. 
Here is system (4.70) in terms of linguistic variables, linguistic 
values, and the classifier function it defines: 

^ 1 
If (J^= y and Ĉ3 = y =̂  DOT (z) = Ci ; (4.71a) 

If U^ = y and Ĉ3 = (fgj) => DOT (Z) = 63 ; (4.71b) 

If 1̂ 2 = y ^ DOT(Z) = 62 ; (4.71c) 
If{^2=y=>DOT(z) = ei . (4.71d) 

This form for /€ is a step towards the fairly compact general 
formulation of fuzzy rule-based systems given in the next subsection. 
We need to add a few things here and there (most importantly, 
membership functions for the linguistic values { Ĵ), bu t (4.71) 
contains most of the elements we need. 

Once DQT is trained (and in practice, almost always pruned), it is 
ready to classify test data. One or more components (numerical 



288 FUZZY PATTERN RECOGNITION 

feature values or categorical attribute values) of an unlabeled input 
datum z are assessed by a crisp decision function at each internal 
node as z traverses through the Internal nodes in T, until it arrives at 
a leaf. For crisp decision trees with M pure leaves, each leaf is 
associated with exactly one of the c labels ê  e Nĵ ,̂ and, as in (4.71), a 
crisp decision can be made without further consideration. In this 
case the path, call it p(v , v ,) from the root v to leaf v . corresponds to 
crisp rule R in /?, and when z traverses p(v , v ), we say that rule R 
"fires" with firing strength = 1, meaning that this is the unique rule 
whose precedent arguments exactly matched the components of the 
input datum. The fact that the consequent of R in this case is a single 
label is due to the purity of the leaf v .. Even when the leaves are not 
pure (and in C4.5, this is the usual case after pruning), classical 
decision trees identify each leaf with the crisp class having the 
majority of cases at the leaf. 

D. Fuzzy system models and function approximation 

This subsection contains a short description of the two main types 
of fuzzy rule-based systems: the Mamdani-Assilian (1975) model 
and the Takagi-Sugeno (1985) model. We abbreviate these as MA and 
TS hereafter, without reference to the original papers, and when we 
say fuzzy system, we mean fuzzy rule-based system. 

LetX ={Xi,...,Xn}c9^P and Y ={yi,...,yn} c9^'i. We suppose an 
unknown function S:9tP|-^9t^ for which y^ = S(x^), k=l,...,n, so 
Y = S[X]. We call X and Y input-output (10) data, and let 

XY = {(Xk,yk)^=(Xik Xpk.yik yqk)""-- k = l n}c=9lP^^bethe 
concatenation of each input and output vector in X and Y. Finding a 
good estimate S of S using XY is variously called interpolation, 
collocation, function approximation, or most commonly, 
supervised learning. In pattern recognition we are interested in 
approximating classifier functions D: 9tP h^ N cz'Hi'^. We will use S 
to emphasize the role of MA or TS systems as approximators to 
vector fields in a more general setting. When p=l, S is called single 
input, and when p >1, it is multiple input. When q=l, S is called 
single output, and when q >1, it is multiple output. We abbreviate 
these four cases in the usual way: multiple-input multiple-output is 
MIMO, and similarly for MISO, SIMO and SISO. 

There is some confusion in the literature about the difference in 
meaning between the terms interpolation and extrapolation. In 
numerical analysis interpolation and collocation are synonyms 
that mean "through the training data", while extrapolation means 
values taken a t " any points not in the training data". However, some 
writers use interpolation to mean values taken "at points not in the 
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training data that lie 'in-between' points in the training data"; for 
these authors, extrapolation means values taken on "points not in 
the training data, and 'beyond it'". This is fine for real valued 
functions, where interpolation would mean in the interval bounded 
by the minimum and maximum points in the training data, and 
extrapolation means outside this interval. When the data are p-
dimensional however, defining the notions of "inside" and "outside" 
or "within" and "beyond" (the convex hull of the training data, for 
example?) become problematical. In this book approximating 
functions always extrapolate, and may or may not interpolate. 
Since other writers use these terms in different ways, Just be careful 
to check the writer's definition of how the term is used in a 
particular book or paper. 

There are two basic approaches to approximation. The classical 
approach assumes a functional form for S that has a vector 9 of 
unknown parameters, indicated as S(x;9). Then we use XY with a 
principle of inference (and possibly, an algorithm to optimize the 

model) to estimate some optimal parameters 9 of S(x;9). This gives 

us S(x;9), an approximation to S that is optimal in the sense of the 
model used to obtain it. Examples in this category include 
regression analysis, collocating polynomials, and least squares 
estimation with, for example, radial basis functions. 

The second approach to approximation by supervised learning is to 
find a computational transformation (a computer program) that 
represents S. The computer program also depends on parameters 9 
that must be acquired using XY, and there is no harm in again 
writing S(x;9), now meaning a computer representation of S, so that 

S(x;9) is again an approximation to S that is optimal in the sense of 
the model used to obtain it. This group of techniques is sometimes 
subdivided into "parametric estimation" and "linguistically 
descriptive" methods. Neural-like networks, decision trees, and 
rule-based systems are examples of computational transformations 
that are used to represent S. (Indeed, in many instances these three 
model styles can be transformed into each other.) If the learning 
involves more than just a few numerical parameters - e.g., if the 
basic structure of the network, number of rules, and so on - are also 
learned, this field is sometimes regarded as (part of) model or system 
identification. System identification covers a lot of ground; we will 
discuss some aspects of it only in the context of decision trees, rule-
based systems and neural networks. 

We divide approximation into three major steps: (i) structure 
definition, (ii) parameter estimation and (iii) system validation. 
Structure definition specifies the general architecture of S. For 
example, if we choose a regression model, structure definition 
includes decisions about whether to use linear or non-linear 
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regression, and the exact form of the objective function to be used. If 
the model is a decision tree, structure refers to the number of levels, 
nodes per level, number of leaves, edge weights, and so on. For 
neural models we choose the type of network architecture, number 
of layers, number of nodes, integrator and transfer functions for the 
nodes, etc. For fuzzy models, s t ructure definition involves 
specification of items such as the number of linguistic values for 
each linguistic variable, forms for the antecedents and consequents 
of rules, operators for the reasoning system, etc. Parameter 
estimation in these three cases means, for example, finding the 
regression coefficients or decision function parameters or network 
weights or parameters of the membership functions of different 
rules or nodes in the tree. Optimization and validation test the 
system against performance requirements. This last step can 
include fine tuning of either the initial structure or estimated 
parameters. 

Once the structure of S(x;8) is defined, we use XY to estimate 8. 

Finding a good 9 is the "learning" done by the model; using Y (as 

target outputs for S(x;8)) provides the "supervision". Finally, system 

validation tests S(x;9) against performance requirements. 

Roughly speaking, approximations are good in the traditional sense 
when they can be evaluated on (or extrapolate, or generalize to) 
inputs other than points in X with some degree of confidence. In 
pattern recognition, good is almost always defined as low apparent 
error rates on test data; in other functional approximation contexts 
(e.g., control), good usually means an acceptable mean squared error 

^ t e II " II2 
on test data, EMSE(Xte|Xti.) = I Ft - S(Xk;9) / n^ . 

k = l " " 

Conceptually, fuzzy models approximate S with the set of rules 
/? = {Rj ^M^' These rules are if-then rules whose outputs are 
combined by some form of approximate reasoning to produce an 
output for each input to the rule-base. Each rule R. has a premise 
[antecedent or left hand side, LHS) with premise parameters, and a 
consequent {right hand side, RHS) with consequent parameters. 
These parameters, which may include M, the number of rules in /?, 
are the items we seek to estimate or need to define. Since the overall 
action of /€ as a function is to approximate S, we may write the 

input-output relationship represented by /? as l«(x;9) = S(x;9) to 
indicate this explicitly; and when S is a classifier function, we may 

write K{x;B) = D(x;9). The basic MA and TS models are summarized 
in Figure 4.32. 
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O 
Input 

Xi - ^ 

Xk •-> 

Fuzzify 

mli-K 

mi, - -mj 
kl kr 

LHS 

T:[0,lpi-^[0,11 

ai(x) = n(mnx)) 

M, aMW = n(m^(x)) 

0 Output /e(x)e5R^ 

TS Model 

{u,(x);l<i<M} 

M 

® T S ^ ^ ^ " M 

Iaj(x)u.(x) 
i=l 

Ia,(x) 

MA Model 
zMx) = ^(a, (x), moM; i = 1,..., M 

u mou--mois 

IXXXXl D„, o j^^ 
u 

mOqi- -mOqs 

[i IXXXX D„̂ <̂ „̂̂  

i D. 

S^(x) = 0(o<.(x},Z(x),u,Dp) 

Figure 4.32 Architecture of the MA and TS Models 

In step O, either model takes x e 9?̂  as an input vector. Step @ 
begins with the identification of the numerical range of each input 
variable. For k =1 to p, a numerical domain D, is associated with a 

'^ k 

linguistic variable A that provides a semantic description of (r ) 
subdomains of D . The number r is the granularity of .^ . The 
maximum number of distinct LHSs that can be formed as rule 
antecedents from the r, 's is M = r, • r„ r . When M = M 

k max 1 2 p max 
we call t? a maximal rule-base. Generally r can be a function of k, but 
we wiU usually use the simpler case r = r for k = 1, ..., p. 
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The J-th subdomain of^ represents an attribute value or linguistic 
value, say ( , which is represented by a premise membership 
function (PMF) m|̂ ,: Dĵ  i-> [0,1]. The membership function m|̂ . in 
Figure 4.32 is indexed on i to associate it with rule R. We will drop 
the superscript unless it is explicitly needed. 

In Figure 4.32 the membership functions all have symmetric 
triangular graphs, but this need not be - and very often is not - the 
case. Assume that each input variable has the same granularity r. 
The PMF set for the i-th rule, {mĵ jil < j < r}, that represents the 

linguistic termset {̂  :1 < J < r} associated with variable k, 1 < k < p, 

has many names in the literature: some writers call these functions 
cognitive landmarks; others call them a membership termset, but 
we prefer the more explicit name premise membership functions, 
which seems to be an accurate description of what they are. We 
assume that the union of positive supports of the {m^j:l< j< r} 
covers D . When each of the p input domains is covered by a set of r 
unimodal, identically shaped, equally spaced PMFs that have the 
additional property tha t at each input value the sum of 
memberships is one, the systemi is called a regular fuzzy system, and 
the r'' rules in /? are called a complete rule-base. Step © is often 
referred to as fuzztfication of the input domains. 

Many w r i t e r s call the posi t ive s u p p o r t s of the 
{m^j! 1 < k < p ; l < j < r ; l < i < M } a fuzzy partition of the "input space" 

DjX--xD c9tP. This can be very confusing, as this terminology 
clashes directly with our earlier and quite different use of the same 
term in Section 2.1 concerning clustering, which produces a fuzzy 
partition U e M̂ ,̂ ^ of a finite data set. We will use fuzzy partition as 
it is defined in equation (2.2). 

Step © comprises the action of the LHS of the rule-base, which is 
composed of the antecedent or premise parts of M rules /€ = {R.}. The 
premise parts of the rules operate on x and take the general form: 

Rĵ HS; ai(x) = T(m'(x)) = T(mlki(xi),...,m|,kp(Xp)) , 1 < 1 <M. (4.72a) 

m'(x) e 9?P 

In (4.72a) a.(x) is the firing strength (confidence level, degree of 
satisfaction) of rule 1 and T is any T-norm (intersection = n in 
Figure 4.32 or AND) operator on T: [0,1] x [0,1] h^ [0,1]. T norms can 
be extended by associativity to p arguments, so the calculation in 
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(4.72a) is well defined, and because T is valued in [0,1], 0 < a,(x) < 1. 

Our notation is a little sloppy because in'(x) is not the value of a 
fixed vector field m ' on x. Instead, the membership functions that 
yield the p values of rnHx) for a particular x depend on different 
membership functions among the {m } as x runs through its 
domain. We use a similarly careless notation for consequent 
membership functions (CMFs) on the output or RHS of MA models, 
viz., mo ' (x) e 'Si^, "o" meaning output. 

The action of T on in.'(x) is to <AND> its p arguments; this is one 
aspect of approximate reasoning in the fuzzy system. The most 
common choices for T are the minimum, or T norm, and the product 
or T norm that we met in Chapter 3, and will meet in Chang and 
Pavlidis (1977) in their seminal paper on fuzzy decision trees. For 
these choices (4.72a) is, more explicitly, 

Rj-HS; ai(x) = T3(in'(x)) = mlki(Xi)A...Am;,kp(Xp) , 1 <i<M; (4.72b) 

Rj-H :̂ ai(x) = T2(m'(x)) = mlki(xi)-...m|,kp(Xp) , l < i < M . (4.72c) 

If, say, the j - th component in rule R. is zero, mjĵ  (Xj) = 0, then 

a jx ) = T(m'(x)) = 0 in (4.72b) or (4.72c). More generally, the same 
thing is true in (4.72a) using any T-norm, because T(a, 0) = 0 for any 
a in [0, 1]. We say that R fires (or is active, or is satisfied to the extent 

of the value) whenever a.(x) > 0. A given input vector x in 9̂ ^ will 
probably never fire all M rules - instead, most of the ai(x)'s will be 
zero. If care is taken during fuzzification, it will never happen that 
all of the firing strengths are zero for any input x. This is called 
completeness of the rule-base /€, a property that depends on the rules 
as well as the membership functions being used. Crisp decision tree 
rule sets are never complete because in a crisp decision tree which 
only interpolates its training data, when a non-training input is 
processed, there is no path for it to follow from the root to any node -
that is, the firing strengths of all M crisp rules are zero. 

Many (probably most) discussions about LHSs as in (4.72a) use a 
somewhat different terminology than ours. When A j^ is a fuzzy set 

such as "high", "tall", "long", etc. the premise clause it refers to is 
often stated as "if x, is A,, ". Our preference is to use m.. whenever 

k Jkj ^ Jkj 
we can, because the function - and only the function - is the fuzzy set. 
We will often state the LHS of rule i succinctly as " If a.(x)". 
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understanding this to mean that the full structure of (4.72a) is used. 
This emphasizes the mathematical action of (4.72a), whereas its 
semantic interpretation allows users to provide a linguistic 
prescription for each rule. 

Figure 4.33 illustrates the idea of T-norm aggregation for rule R.. 
Shown there are two identical sets of 3 premise membership 
functions that represent two linguistic variables, A = temperature, 
and J = Speed. The linguistic values for temperature are ( = Low, ( 
= Med(ium), and ( = High; the linguistic values for Speed are ( = 
Slow, e = Med(ium), and ( = Fast; m is the membership function for 

^^ -AitJ Ij 

(..,i= 1,2 andj = 1,2,3. 

mj2(x) = a j ^ 

m (y) = b (: 

y Speed 

Figure 4.33 How inputs to the LHS of R are coupled by a T-norm 

Let X = (x,y)^ denote an input vector for the p = 2 dimensional 
numerical domain associated with [J , ^ ) , and suppose that the 
antecedents of rule R in /€ match this input pair as highlighted in 
Figure 4.33. There are three other possible matches in Figure 4.33 
for the same x, because there are two active PMFs for each variable. 
This means that three other rules besides R will fire if these rules 
are in /€. The linguistic terms and membership function values that 
would be produced by these three rules are (Low, Medium) = (c, b), 
(Med, Fast) = (a,d) and (Low, Fast) = (c,d). 
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Here is how the LHS of R reads in words for the highlighted 
situation in Figure 4.33: "If {L = Medium) and [e = Medium)"; here is 

how your computer reads the same thing: "If (mj2(x)) and {m^^[y))". 
But you need to tell the computer what "and" means. So, choose a T-
norm to represent intersection. This joins the two atomic clauses in 
the premise. If we use T = minimum, the linguistic statement "If U 

s " iji 

= Medium) and [( = Medium)" is translated, for the highlighted case 
shown in Figure 4 . 3 3 , into the firing s t r e n g t h 
ttjfx) = T3(mj2(x),m22(y)) = a A b = a. If you choose the product for 
"and", ai(x) = T2(mi2(x),m22(y)) = a b = ab. 
Step 0 in Figure 4.32 produces the output vector S(x). For the TS 
model, the functions {Uj: 9tP i-> ^R'l: 1 < i < M} comprise the RHS of the 
rule-base. Each u is a vector field whose components are scalar 
fields of some specified form (e.g., constant, linear, affine, 
quadratic, polynomial, Gaussian, exponential, etc.). It is common -
but not necessary - to specify that all the u 's have the same 
functional form. 

When the u ' s are all polynomials of the same order (i.e., all the 
components of the output functions are, respectively, constant, 
affine, quadratic, etc.), we refer to the TS model as a 0-th, 1-st, 2-nd, 
... etc., order TS model. Within this class - as is the case in many 
other branches of applied mathematics - the first order (affine) 
models are by far the most popular and heavily used. For example, 
rule extraction by clustering in XY makes sense for exactly this case 
when the clustering model can produce flat (affine subspace) 
prototypes (lines, planes, etc.), because these prototypes match the 
shape of the graphs of the affine output functions being estimated as 
the RHS's of a 1-st order TS model. 

The output of the TS model is a convex combination of its M output 
functions and firing strengths, 

M 

I a j ( x ) u . ( x ) 
S.j^{x) = isi-^;^ . (4.73a) 

l a i ( x ) 
J=i ^ 

There is an important 0-th order variation of the MISO TS model 
that replaces u.(x) in (4.73) with a fixed number. When the number 

u.(x) = hj is the center of gravity (of the independent variable of 
consequent membership function mo) of a single Mamdani style 
CMF, this is called the method of height defuzzijication in the MA 
model, and (4.73a) takes the simpler form 
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S^(X) 

M 

i=l 
M 
l a 

J=i ^ 

(4.73b) 

When the output function of R is a crisp singleton as in (4.73b), it 
easier to find the parameters of the ensuing model, but the price of 
simplicity is that it weakens the approximation capabilities of the 
model. See Sugeno and Yasukawa (1993) for a nice method of 
training the 0-th order TS model. An even simpler case arises when 
the LHS membership functions are regular (for each of the p input 
variables, all PMFs are symmetric, triangular membership 
functions which cross each other at 0.5), for in this case the sum of 
firing strengths in the denominator will always be 1. 

Rj LHS : If (^ii=Med) and (̂ 22= Med) 

Med Med 

^ Speed y 

Temiperature x 

Figure 4.34 How the left and ri^t sides of R are coupled in the 0-th 
order TS model for the highlighted input case shown in Figure 4.33 

using the minimum and product for the T-norm 
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Figure 4.34 illustrates how the clauses in the left side of rule R in 
^ i 

Figure 4.33 are coupled through Takagi-Sugeno implication for the 
0-th order model, where the i-th output function is a constant 
surface, Uj(x) = k.. Let KJ{X.) denote the denominator of (4.73), 

M 

KT-(X) = X oCitx). The value of KX(X) depends on your choice for the T-
1=1 

norm; here we consider T = Tg = A or T = Tg = •. When R. fires, the 
effect of using the T norm to compute the firing strength is to lower 
the corresponding surface u. (x) = kj (remember that a and b in 
Figure 4.33 are < 1, a = a A b , and note that a/K^{x) < 1 because a is 
one term of the denominator K (X)) to the new, smaller constant 
aki/K^(x) ; and for the T = product T-norm, the surface may move 
even further down (or up, depending on the relationship between 
a/K^(x)andab/K,(x) ),to abkj/K,(x). 

If f? is maximal (i.e., contains 9 rules here) and each input value is 
evaluated by two membership functions, there are 3 other pictures 
like Figure 4.34 for the other three rules that would fire for this x, 
that is, for the three pairs of membership values from the currently 
active PMFs shown in Figure 4.33. Suppose that the other three rules 
that fire are R , R and R. Applying equation (4.73) with the 
minimum and product T-norms results in the outputs 

M 

I a i ( x ) u i ( x ) 
- M . ST^(X) = ^ 

J=i 

akt + dkj- + ckg + dk^ 
a + d + c + d 

;and 

M 

Ia.(x)Uj{x) abk .+adk +cbk +cdk, 
1=1 1 r s t S. j .g (x ) - j ^ 

laAx) ab + ad + cb + cd 
J = i •• 

T=« 

As the input x to Figures 4.33 and 4.34 changes, there is no change in 
the values of the constants {k̂ }, but a, b, c and d may change for 
different inputs that fire the same rules; the four k s and a, b, c and d 
may all change when different rules in /?fire. You would be correct to 
imagine that the upper surface in Figure 4.34 is fixed (once k is 
chosen), and that for M rules, there will be (at most) M such constant 
surfaces at the heights {k}. As the input changes, the rules fired 
select which subset (of four or less) of these surfaces to use, the firing 
strengths decrease the heights of the surfaces chosen above the 
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horizontal (input) plane, and (4.73) combines the current set of 
heights to get the resultant output. This is illustrated in Figure 4.35, 
where the four rules R, R , R and R are the ones selected as matches 

i r s t 
on the LHS (that is, the ones that are fired). We emphasize that this 
figure illustrates the action of the TS rule for just one input - it does 
not illustrate how the output of the TS system "looks" over all of X. 

aM)K S^W 

Figure 4.35 An output for the 0-th order TS model 

It gets pretty hard to draw figures like 4.35 for more complicated 
output functions, but the principle is identical. If the output 
functions in a TS system were all quadratics in two variables, for 
example, the i-th of the M surfaces would be the graph of the 

function u.(x) = x'^A^x. + (bj,x\ + k^. For a given input, the fired rules 
would again select subsets of these surfaces, and as in Figure 4.35, 
the selected ones would be scaled down by their corresponding firing 

strengths, and then their values at this point in 9t added in 
accordance with equation (4.73) to get the TS output. In the most 
complicated TS model, each of the M surfaces could be a different 
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type; one might be constant, one a quadratic, another a Gaussian, 
and so on. As you can see, the approximation we are building with 
fuzzy systems can have pretty complex components - and the 0-th 
order TS model is the easiest case to understand! 

Step back from Figures 4.33 and 4.34 and ask - what things do we 
need to learn from training data to make this easiest of all TS 
systems work? On the LHS, we need 6 PMFs. For this example there 
are 4 trapezoidal fuzzy numbers, but they are special trapezoids -
each one needs 2 parameters for its "shoulder", so there are 8 
parameters needed for the 4 trapezoids. There are 2 triangular fuzzy 
numbers (each needs 3 peirameters). So we must estimate or (at least 
adjust for optimal performance) 14 parameters for the premise 
membership functions. Each consequent k. is also needed. Since 

there can be at most r^ = 9 rules for this system, we need 9 
parameters for the CMFs, so there are 14+9 = 23 parameters 
associated with the membership functions. And we have already 
decided that both LHS granularities are r = 3, that we will use the 
types of membership and output functions shown, and that we have 
chosen some T-norm. All of these choices face the system designer 
for the 0-th order TS model. And it is the simplest form of fuzzy 
system we discuss - now you can see why it is so popular! When we 
design fuzzy decision tree classifiers (which are often equivalent to 
such a system), many of these decisions are eliminated from the 
user's view. We will return to the geometry underlying this model 
when we get to subsection F. 

Step 0 in the MA model is considerably more complicated than for 
the TS model. The LHS works just as we have illustrated in Figures 
4.32 and 4.33 - it is identical to the LHS of the TS rule-base. But the 
RHS of the MA model is very different. Roughly speaking, the 
sequence of operations on the RHS is (i) fuzzification; (ii) 
inferencing; (iii) aggregation; and (iv) defuzzification. We briefly 
discuss each of these steps. 

As shown in Figure 4.32, each output variable z , k =1 q, is 

fuzzified by assigning it a linguistic variable .^o , a linguistic 

termset {(a } and corresponding set of consequent membership 

functions (mo' } of, say, granularity s, i = 1 M, k = 1 to q, j = 1 to s. 
These CMFs reside at the RHS of every rule. When an input is 
submitted to this system, the LHS of the MA model produces a 
positive firing strength a^{x) for each rule fired. Now the role of the 
firing strength is somewhat different, for we use it to enter the CMF 
set on the RHS of the rule-base. This is illustrated in Figure 4.36, 
which depicts defuzzification by the center of gravity (COG) method. 
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Rj : If {̂ 12= Med) and (̂ 22= Med) Then t»^ = Low 

Med Med 

R : If (̂ , = Low) and (̂ „ = Med) Then &,= High 

Low Med 

Figure 4.36 One of the million ways to defuzzify MA rules : 
area COG defuzzification 

Rules R and R , fired for the input x shown in Figure 4.33, are shown 
in the top portion of Figure 4.36. The case illustrated uses the 
minimum for the T-norm, so rule i has firing strength a and rule s 
has firing strength c. These firing strengths are carried to the RHS of 
the MA rules, where the single output variable is the linguistic 
variable ^ ="engine wear". The domain of J has been partitioned 

(in the fuzzy systems sense) into 4 linguistic values: ( ="Very Low 
(VL)", ( ^ = "Low (L)", ( ^ = "High (H)", and ^ ^ = 'Very High (VH)", with 
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corresponding consequent membership functions mo , mo , mo , 
mo spread across the expected numerical output range, whose 
variable name is z in Figure 4.36. For the two rules fired the 
memberships we will look up correspond to the linguistic values 
that appear on the RHS of the rules. Suppose the rules are: 

R : If k = Med) and {( = Med) Then Jt (=Englne wear) = Low 
R : If [( = Low) and (e = Med) Then J» (=Engine wear) = High 

Then we pick out the CMFs corresponding to these two output 
linguistic values, and operate on them at their respective levels of 
firing strength, i.e., at the values z(a^(x)) = a and z(a^(x)) = c. We say 
operate on them because what happens next depends on the 
inferencing operator you choose. In Figure 4.32, the output of rule i 
is denoted as z'(x) = 4'(a,(x),mo'), where the symbol *P stands for 
the operator used to produce the output, which is "some function of 
the arguments shown, which are the firing strength a.(x) from the 
LHS of rule i, and the q membership functions that fuzzily the RHS 
of rule i. 

There are two methods for combining MA rules. Rule-based 
inferencing uses all M rules without segregation by linguistic values 
(unfired rules will make no contribution to the output, however). 
Each rule is represented by a relation, £md the union of all the rules 
gives a composite relation for the entire rule-base. Then inferencing 
produces a single output fuzzy set which is defuzzified by one of 
many methods such as the COG. This scheme is somewhat analogous 
to TS inferencing in that both use the entire rule-base. Composition-
based inferencing is more complicated. In this scheme each fired 
rule produces a clipped (modulated) version of the associated CMF. 
The modulated CMFs belonging to each (fired) linguistic output are 
then aggregated with a union operator, again resulting in one output 
membership function which is defuzzified by any of the various 
defuzzification schemes. 

More specifically, the M firing strengths a.(x) = (aj(x) aj^(x))^, 
a.(x)e[0,l] for all i, and the M consequent membership function 

values Z(x) = (z^(x) z'^(x))^, z'(x)e9^'' for all i, are defuzzified 
with D , typically a center of gravity (COG) type calculation such as 
shown in Figure 4.36. In Figure 4.36 the selected membership 
functions are clipped, and their areas A and A are found. These 
areas can be treated separately, summed, unioned, intersected, etc.; 
and, they need not be trapezoidal - some writers make them 
triangular, etc. In Figure 4.36 we illustrate the union method, where 
the area centroid (h,„,v,„) of the union of Â  and A,̂  is found, and 

L,rl. L/ti L H 
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the horizontal coordinate ĥ ^̂ ^ is taken as the MA output Sj^^{x) for 
input X. An important special case of Figure 4.36 occurs when the 
MA system has singleton CMFs. If centroid defuzzification is used in 
this case, the MA system is equivalent to a TS system with constant 
RHS output functions - that is, a 0-th order TS system. 

This brief description of the MA model will almost surely leave you 
gasping - how can it, how does it work? Our brief treatment of fuzzy 
systems hardly does this topic justice, but other volumes in this 
Kluwer handbook series have extensive discussions of both models 
(Nguyen and Kreinovich,1998, Tanaka and Sugeno, 1998, Yager and 
Filev, 1998). Additional references on this topic that we have found 
helpful include Driankov et al. (1993) and Klir and Yuan (1995). For 
us it suffices, at least initially, to write the output of the MA model 
as Kj^^ix) = 0(a.(x),Z(x),u,Dp), where operator 0 depends on choices 
made by the system designer. We do have examples of the MA scheme 
to present, and when we discuss them we will try to explain each one 
explicitly, case by case (or, at least, reference by reference !). 

When either type of fuzzy system is used to approximate a classifier 
function, its outputs will be label vectors. Hardening non-crisp label 
vectors as in (1.15) may be done after defuzzification when the 
output of f? is a soft label vector, i.e., when K represents a soft 
classifier function, and a crisp classification is required. 
Summarizing, we now have a formal model of both the LHS and RHS 
of each rule in /€, which takes the general form 

^ r « .W=^{S; :0 !Sx ) .Z (x ) ,u ,D , ) - l ^ ^ ^ M • ^ .̂74) 

We cannot write the rule-based system in (4.70) or (4.71) using the 
formalism of (4.74) because the linguistic terms used there are not 
related to measurable numerical variables (and so, fuzzification of 
the input domains is not possible), but decision trees that handle 
numerical variables will fit nicely into this framework. For 
example, the simple set of rules in (4.63) can be made much more 
mysterious looking by defining a set of 3 crisp premise membership 
functions over, say, the extended input domain [0, oo) as follows: 

meh.ken(nj = m , ( n , ) = |^ ; ""^^^^^^ ; 

m , (n,) = m,„(n, ) = <^ }i crab̂  L̂  12̂  L̂  |0 ; Otherwise 

fl; nL = 0 
mfl„u(nr ) = m,o(nT ) = i „ hsĥ  L' iji L' Q. otherwise 
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With these PMFs, the crisp rule-based classifier at (4.63) becomes 

If (mjj(nL)) Then Dj3^(nL) = ej ; (4.63a') 
If (nij^dij^)) Then D^[n^) = e^ ; (4.63b') 

If (mj3(nL)) Then D^^[n^) = e^ . (4.63c') 

This isn't a very exciting system, but it's simple, and displays the 
relationship between the rules and the notation we will use for more 
complicated models. We will return to several aspects of the use of 
the rule-based system in (4.74) for approximation of functions in 
subsection F. 

E. The Chang - Pavlidis fuzzy decision tree 

Fuzzification of decision trees follows two paths; softening the 
training process (how to build the tree), and softening the decision 
functions at internal nodes (how to use the tree). Chang (1976) was 
apparently the first person to write about fuzzy decision trees. Chang 
and Pavlidis (1977) is the seminal archival paper on fuzzy decision 
trees, and it was one unknowing precursor of the now widely known 
fuzzy systems approach discussed in subsection 4.6.D. The origin of 
probabilistic decision trees is much older; a specific reference for this 
depends on what you regard as a probabilistic decision tree. Suffice it 
to say that Duda and Hart (1973) mention this topic in connection 
with sequential decision theory in statistics, which dates to the early 
part of the 20th century. 

We begin the exposition oi fuzzy decision trees (FDT) by returning to 
the case of the fully expanded crisp decision tree. When [Vĵ l = M, each 
of the M > c paths from the root to a pure leaf corresponds to a crisp 
rule in /?. Two aspects of this need discussion: representation of the 
choice of path by node decision functions; and aggregation of the edge 
weights along the path to compute the firing strength of an activated 
rule. 

Figure 4.37 depicts an input z traversing the path p(v ,v , v ...,v , v ) 

from root v to leaf v which bears crisp label e , with the result that 
1 Lj J 

crisp rule R fires with firing strength=l, labeling input z as class J, 

DDT-(Z) = Cj. We have appended I's to each edge along this path, which 
can be interpreted as weights assigned to the chosen edges by 
functions residing in the internal nodes that select the correct edge 
for this z. The firing strength value of 1 for rule R can be calculated as 
either the minimum or product of the I's along the path. The 
untraveled paths have O's on their edges for this z, so the firing 
strengths along these M-1 paths will be zero when intersection is 
done with any T-norm. 
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DDT(z) = e j 

Figure 4.37 Firing strength in a crisp decision tree 

In Figure 4.37 internal node v„ has 3 children, internal node v has 5 
3 6 

children, etc. Let T have n nodes, M < n-1 leaves, and thus, n-M 
internal nodes. Without loss of generality, suppose that internal node 
V has p children. Chang and Pavlidis (1977) let X represent the 
domain of node inputs (and are not explicit as to the data type, which 
seems implicitly to be numerical feature vectors), and call any 
function ^^ = (Oĵ ^ '-'^k )'^^^l^< IP 3. fuzzy decision function for v . 

The p values {<t)ki(x):i = l,...,p} produced by this function can be 
thought of as edge weights or path indicator values associated with v 
for this X. 

Chang and Pavlidis use this idea as a basis for defining fuzzy decision 
trees as decision trees with fuzzy decision functions at each internal 
node. They did not exclude the zero vector from the range of Internal 
node functions, but we think they meant to, for otherwise the 
possibility of x being trapped at an internal node exists if no exit edge 

has a positive weight. In any case, we call •j^iX [-> [0,1]P -{0} = N 

(see equation (1.1)) a soft node decision function at internal node 
v^ 6 Vj. We use the notation of Chapter 1 here because it is correct 
and convenient, but •k i^ '^o* ̂  classifier function in the sense used 
in this book. The Job ^k ^^S- ^^ crisp decision trees, is to identify the 
outgoing edge from v that an input should take as it makes its way 

towards a leaf - in other words, ^^. is a crisp membership function 
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that represents the output of the internal computation or comparison 
made by the crisp decision function at or in this node. 

If the range of ^y^ is N for k = 1,..., n-M, the fuz2y decision tree 
reduces to a crisp decision tree, so crisp decision trees do have 
decision functions at their internal nodes, but they are usually 
represented differently, as for example, in the stipulation of a 
hyperplane condition. To illustrate. Figure 4.38 shows an expanded 
view of the situation at node v of Figure 4.37. The node function 

•e'-X i-> Nh5, so it produces, for any input in its domain, a crisp label 

vector fglxjeNj^^. In Figure 4.38, fglx) = (0,0,1,0,0^. 

/ (t)63(x) = l ' ^ 

(3) 
Figure 4.38 A node decision ftinction in a crisp decision tree 

Don't confuse internal node decision functions such as •k with 
internal node splitting functions such as i^^^^^^ in ID3: decision 
functions make decisions (assign edge weights) at internal nodes 
during classifier operation, while splitting functions make decisions 
about how to split internal nodes during tree construction. 

Returning to Figure 4.37, we can now write the crisp rule for the path 
shown there as 

IF (l)i3(z) = 1 and(t)36(z3) = 1 and-• • (t)6s (Ze) = land(!)s,L, (^s) = 1 
THEN DDx(z) = ej , (4.75) 

where arguments of the different node functions are subscripted to 
indicate that they may not all be the same. Recognizing that "and" 
can replaced by any intersection operator (T- norm), equation (4.75) 
can be written more compactly as 

T((!)i3(z),(^36(Z3),--,(|)6s(Z6).<t's.L,(Zs)) =* D D T ( Z ) = ©j . (4.75') 
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Equation (4.75) represents the action taken when the input vector 
matches the premise of rule R - in other words, it is rule R, which is 
seen by noting the subscript L on the last argument of T in (4.75). Now 
define 

tti (Z) = T((̂ 13(Z), ^36 (Zg )-•••. *6s (^6 Us.L. (Zs )). l ^ l ^ M . (4.76) 

Because of the boundary property T(a, 1) = 1 <=> a=l of any T-norm, 
T((t)i3(z),(l)36(Z3),---,(])6s(Z6),(l)s.L|(Zs)) = l<=><|)„(z.) = l V * . I n ViCW of 

this, we see that a. (z) = 1 when, and only when, all of the arguments 
of T in (4.76) are 1. That is, rule R fires if and only aj(z) = l. 
Conversely, if any of the arguments of the T-norm are 0, then 
aj(z) = 0 and rule i will not fire - that is, the path p(v ,...v ) from the 

1 

root to leaf i will not be used in a crisp decision tree unless the firing 
strength of its rule is 1. As an historical aside, the term firing 
strength was not well established, and Chang and Pavlidis called 
a.(z) the fuzzy decision value of the path P(VI,VL ) from the root to 

leaf i in the tree. We call a. (z) the firing strength of R for input z. 

(a^(z),e.^) (a . (z) ,e . , ) {ajz),e^j 

Figure 4.39 The fuzzy decision tree of Chang and Pavlidis (1977) 

Now suppose, as Chang and Pavlidis do, that a fully expanded tree has 
been developed, and that the internal node decision functions are 
valued in N . What path does z take in this case? Conceptually z can 
traverse all n-M paths, and can arrive at all M leaves in the tree. 
When this happens, we may imagine that all M of the rules fire, each 
producing a firing strength 0 < a jz ) < 1. Chang and Pavlidis discuss 
two cases. They call the decision tree that uses the T -no rm (the 
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minimum) to produce firing strengths a fuzzy decision tree, and when 
the edge weights along a path are multiplied together (so the T-norm 
is the product or T-norm), they call the tree a probabilistic model. 
Figure 4.39 summarizes the structure we henceforth call the Chang-
Pavlidis (CP) fuzzy decision tree. 

Each leaf of the decision tree in the lower part of Figure 4.39 has two 
pieces of information attached to it: a^lz), the firing strength or 
decision value along the path from v to VL̂  in the chosen T-norm, 

and e , one of the c crisp label vectors for the classes in the training 
Ji 

data. Chang and Pavlidis did not aggregate firing strengths across the 
M leaves, nor did they collect leaves with like labels and aggregate 
these, etc. Instead, they defined the output of the tree in Figure 4.39 as 
the crisp label associated with the largest firing strength, 

Dg^(z) = e. o a k ( z } = max{ai(z)} . (4.77) 
•"' l < i < M 

This is a crisp classifier even though the tree that defines it is a soft 
decision tree. D§T simply assigns z to the class that has the highest 
firing strength in /?. There are some obvious generalizations of this 
structure. For example, the tree in Figure 4.39 is pure, but it is well 
known that pruning decision trees improves them. Some of the 
leaves in subtrees obtained this way will not be pure, and the crisp 
label vectors for these leaves will be replaced by soft label vectors. 
Each of these could of course be hardened in the usual way, and then 
(4.77) would still apply. A more interesting possibility is to aggregate 
the evidence residing in the firing strengths of all the rules with a T-
conorm or some other form of aggregation such as a weighted mean. 

Chang and Pavlidis spend the bulk of their paper on theoretical 
results about algorithms to search a given fuzzy decision tree for the 
path that leads to the solution shown in (4.77) without enumerating 
all the paths (remember, this was 1977 - computers were still tiny in 
power - but huge in physical size!). They defined top dov«i search of a 
fuzzy decision tree as a search from the root to a leaf that always 
makes the greedy choice - that is, takes the highest value available -
at each edge in the path. They give the simple example shown in 
Figure 4.40 to illustrate the failure of top down search to find the 
solution of (4.77). Taking the greedy path from the root accumulates 
the decision values 0.6 and 0.5, leading to leaf 2 with decision value 
0.30 in the T^ norm, which is not the solution of (4.77). Using the T 

norm, the greedy path leads to one of two equally correct solutions. 
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T2 = . 0.18 0.30 0.45 0.05 

T3 = A 0.30 0.50 0.50 0.10 

Figure 4.40 Top down search failure (Chang and Pavlidis, 1977) 

Top down search of a tree for c classes is almost always 0(c), and as 
in Figure 4.40, can lead to the wrong leaf. There Is also a guaranteed 
0(c) bottom up search. Chang and Pavlidis, wanting a faster method, 
discovered a branch and bound backtracking (BBB) algorithm that 
finds the path of maximal firing strength in 0(c) time, worst case, 
and in O(log2c) time in the best case. You may think these 
complexities trivial in 1999 and beyond, and for many problems 
(Iris, for example, with c=3 classes) perhaps they are. On the other 
hand, Wang and Suen (1987) process labeled character recognition 
data with c = 3200 character classes, so evaluation time can become 
important. Moreover, the number of leaves can be far greater than 
the number of terminals (Wang and Suen, 1984), as we demonstrate 
in Example 4.14, so this is a good result. 

A fairly clever and interesting secondary result in Chang and 
Pavlidis is that any linear classifier defined by a set of hyperplanes 

in 9t for a c-class problem can be approximated arbitrarily well by 
a CP fuzzy decision tree with trivial comparisons alone (i.e., 
comparisons such as z < k) . They do not give any methods for 
finding or pruning trees, nor are they very specific about internal 
node decision functions. They do, however, compare their method 
with both crisp and probabilistic (i.e., using the product of the edge 
weights Instead of the minimum to get firing strengths) classifier 
trees on the problem of discriminating between handwritten 
numerals "5" and "9", and their fuzzy decision tree does a little better 
than the other two. 

F. Fuzzy relatives of IDS 

Most of the recent papers on fuzzy decision trees are related to either 
ID3 or some other Induction algorithm (how to get trees) ; or they 
generalize the CP tree (how to define soft decision functions and 
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approximate reasoning along paths in trees). Some of the fuzzy 
generalizations of ID3 discussed below replace the impurity 
function i^^ with a measure of fuzziness to assess potential splits at 

internal nodes, while others continue to use 1̂^̂^ for node splitting, 
but apply it to fuzzy quantities instead of probabilities due to 
relative frequencies. 

Wang and Suen (1983, 1987) proposed a set of modifications to the 
basic CP decision tree, and Suen and Wang (1984) introduced a new 
crisp hierarchical clustering algorithm called ISOETRP (roughly, 
ISODATA driven by an entropy objective function) that essentially 
competes with IDS as a crisp decision tree building algorithm. These 
three papers together provide a way to construct decision trees, 
make them fuzzy, prune them, and infer decisions in a slightly 
different way than by equation (4.77). The clustering algorithm is 
interesting and has some nice wrinkles, so we provide a brief 
discussion of it first. 

The basic premise in Suen and Wang (1984) is that node splitting can 
be viewed as top down crisp hierarchical clustering. Tliey argue that 
the clustering objectives of the SAHN type algorithms that were 
discussed in Chapter 3 are not relevant to good node splits from the 
standpoint of decision tree design. Their method acknowledges the 
importance of Quinlan's (1983) use of i^^^ for node splitting, and 

their objective function ("GAIN") for node splitting uses î ^̂ ^ as a 
building block. The overall node splitting function in ISOETRP is a 
ratio of a function of node entropy to a measure of cluster overlap 
for potential splits (clusters) of the cases at the node at hand, and 
this function plays the role of Aî ^̂  j^(S;Pj^) in ID3 equation (4.69). 

The basic idea is to create an initial set of clusters at a node. Then 
their "GAIN" function uses the labels of these cases to measure the 
entropy reduction due to this split, normalized by a measure of 
cluster overlap. Following this, the clusters are adjusted using a 
number of ISODATA-like operations - INITIALIZE, DIVIDE, LUMP, 
CREATE, DROP, DISTRIBUTE, RETRIEVE, UPDATE - that alter (sets 
of) clusters in the node with the aim of improving the split from the 
decision tree point of view. The adjustment of clusters by 
application of the ISOEH^RP operations is done interactively by an 
operator viewing dynamically updated overlap tables for the splits 
being adjusted. The end result is a crisp clustering of the cases in the 
node that determines the number of children nodes as well as the 
children in them. The issue of cluster validity is solved here by the 
operator, who simply picks the best looking result by viewing the 
visually displayed overlap tables. 

Suen and Wang compare ISOETRP as a clustering algorithm, to both 
HCM and ISODATA on some fairly small 4D data sets derived from 
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noisy handwritten Chinese characters. In a refreshingly candid 
summary, they concede that HCM and ISODATA are both faster, and 
both do better at minimizing J than ISOETRP. But, they argue that 
this is to be expected, since ISOETRP has a different objective - viz., 
the construction of a good classifier tree. They also reported trying 
various hierarchical algorithms such as single linkage to crisply 
partition the cases passing through the nodes, and state that this 
approach met with little success. 

The papers by Wang and Suen (1983, 1984, 1987) begin with the 
assumption that a crisp classifier tree for continuously valued 
numerical feature data has been built by whatever means (they use 
ISOETRP of course, but C4.5 or CART would do). Then they introduce 
internal node decision functions that attempt to approximate 
Bayesian decision functions for the clustered regions in each 
internal node. The diagonal norm is used to create statistically 
meaningful elliptical regions in the feature space to measure 
distances between the input datum and within node cluster centers. 

Specifically, after training each internal node contains one or more 
crisp subsets of labeled samples. Suppose c classes are represented at 
internal node k. Compute the subsample means {Vĵ  ^,..., Vĵ  }, where 

Vĵ  J is the mean of cases (vectors) labeled class i in node k. For an 
input z, Wang and Suen compute the c diagonal norm distances (see 

(1.8)), 8 k,I ||z-Vj^ Jl J f-, and then order them in ascending rank, 

5,, , < 5,, „<. . .< 5,, ,. Then Wang and Suen define the node decision 
(k,l) (k,2) (K,C) ° 

function as 

<t',w(z) = 

52 - 5 2 

max-^0. 0.5 
rx2 ?2 A 

"(k.l) "(k.l) 

K 

(4.78) 

; i > l 

where K is a user-defined parameter. These are the fuzzy decision 
functions Wang and Suen use in (4.76), and like Chang and Pavlidis, 
they may obtain a firing strength (again called a fuzzy decision 
value) for every path in the tree. At this point, however, Wang and 
Suen depart from the strategy shown at (4.77). Instead, they regard 
the firing strengths as heuristic evaluations that can aid in finding, 
but possibly not point to, the final label assigned to z. 

Choosing a threshold t, they accumulate all the leaves, say L , with 
firing strengths greater than x by conducting a depth first search 
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which abandons paths in subtrees rooted at internal nodes if the 
fuzzy decision value along that edge is less than T. Then a global 
training algorithm prunes the tree by creating a set of "extended" 
leaves by considering, for each leaf in L , only its immediately 
"adjacent" terminals (see Wang and Suen, 1987, for specification of 
the adjacency criterion). At the end of pruning, the extended leaves 
all have firing strengths above the threshold, and each is equipped 
with a probabilistic measure of similarity between z and the mean 
vector VL of the samples in it (assumed pure) that gauges the 
relevance of each leaf to a given input. 

In the recognition mode, top down search (which might miss the 
solution of (4.77)) finds the maximal firing strength for input z. If 
the probabilistic similarity of z to the leaf found is greater than a 
second threshold y, the crisp label of that leaf is assigned to z. 
Otherwise, they commission a heuristic search in the extended 
leaves to find a terminal that does satisfy a. (z) > y, and if one can be 
found, they use the crisp label residing there. Such a terminal might 
satisfy (4.77), or it might not, but Wang and Suen argue that the label 
of any leaf such that a, (z) > y is a good decision because it is (i) 
related to the Bayes classifier through (4.78), and (ii) the tree has 
been pruned with the fuzzy decision values. 

Wang and Suen (1987) give results of applying their fuzzy decision 
tree classifier to three sets of noisy Chinese characters having c = 64, 
450 or 3,200 classes, 15 samples per class. They derive 64 features 
for each datum, and trained the trees for each case using 2 / 3 of the 
data for training, and the remaining 1/3 for testing. In the 
experiment with 3,200 classes, the average level of terminals was 
5,415. By their analysis, the tree building phase, using the 
interactive clustering algorithm ISOETRP, is O(clog c). They 
estimate that the pruning phase they call global training takes 
about 1/10 of this time. Time consuming, but in their view, worth it. 
Their best result on the 3200 class problem is an error rate of 0.07% 
- that is, they miss 10 or 11 characters in 16,000 test cases. 

Maher and St. Clair (1992) inject fuzzy sets into the ID3 framework, 
and then generalize the inference procedure of Chang and Pavlidis 
in equation (4.76). They assume continuously valued real inputs, 
fuzzify each input datum in both the training and test sets, and use 
this alteration of the data to create interval valued decision 
functions. Their algorithm, called UR-ID3, thus builds a new type of 
fuzzy decision tree, since it creates a support interval for each 
possible classification of any test sample. 

UR-ID3 first constructs a fully expanded crisp ID3 tree which 
contains crisp decision functions at its internal nodes. This 
construction is based on real-valued data, but quantization of each 
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input datum using outpoints (like C4.5) is not done. Thus, the IDS 
tree will not be able to classify any non-training input. To 
accommodate generalization, each point in the training data is then 
spread across each of its feature values by determining a support 
interval for the similarity of its value to each of the other n -1 
feature values of the same coordinate in the data. Support intervals 
are computed with possibility theory using triangular membership 
functions centered at each feature value pair. 

The result of softening the numerical features is to replace each edge 
weight in the IDS tree, which is either 0 or 1, with an interval of the 
form [nSj^.pSjj^] c [0,1], nSj[ ,̂pSjĵ  being, respectively, the necessary 
and possible supports of a feature at node k for class i. In other 
words, the node decision function •j^iX H> [0,1]P-{0} = N is 

replaced by an interval-valued function, ^^-.Xh^PdO,!]^), where 

P[[0,1]P) is the set of all p-tuples of subintervals of [0,1]. Thus, edge 
weights in the Chang-Pavlidis model are replaced by intervals. 

When an input datum traverses the tree to its leaves, the result will 
be a "firing strength interval", which is constructed by taking 
intersections of path intervals. The interval arithmetic operations 
used are 

[aj ,bjv[a2,b2l = [ a j + a 2 - a j a 2 . b j + b 2 - b j b 2 ] ^479^) 

The application of (4.79a) along a path results in an interval, say 
[a"®(z),aP®(z)] at leaf VL . Since each leaf is pure, it contains, say, n 
crisply labeled samples from one of the c classes in the training 
data. The relative frequency of samples in leaf VL is used to 
normalize the firing strength interval by multiplying each endpoint 
of the interval with the fraction njn, so leaf VL is now associated 
with the interval 

ir 
n.af^(z) 

n 

n^gP^z) 

n 
(4.80) 

Maher and St. Clair then collect all the leaves in the tree that have 
crisp label e., j = 1 c, and aggregate the support intervals for label j 

into one overall support interval IJ'̂  for the terminal block 
associated with class j . This is done by applying (4.79b) to all the 
intervals of form (4.80) that support each class. Figure 4.41 
pictorially illustrates the soft decision tree of Maher and St. Clair. 
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Figure 4.41 The soft decision tree of Maher and St. Clair (1992) 

At the end of the training step, each of the c classes is represented by 
one support Interval of the form IJ" = V{A{[*,*]}}, j = l,...,c, as shown 
in Figure 4.41. Now the tree is ready for operation. Input datum z 
passes through the tree, and arrives at its bottom supported by 
(possibly) c different firing strength intervals {IJ'̂ }. Of the many 
possible ways to extract a final label, Maher and St. Clair opt for the 
most conservative choice, by assigning z the label of the terminal 
block associated with the support interval having the largest 
necessity value for its left endpoint. Three sets of data are used by 
Maher and St. Clair (1992) to illustrate UR-1D3. Here is an 
adaptation of their presentation of classifier design wath the Iris (?) 
data. 

Example 4.14 Maher and St. Clair (1992) compare four classifier 
designs using 75% of the Iris data for training and the other 25% for 
testing. They repeated this for three different sets of randomly 
drawn test cind training data. UR-ID3 was compared to the standard 
1D3 tree, a 1-nn variation of IDS due to St. Clair et al. (1992), and a 
standard feed-forward back-propagation (FFBP, Section 4.7) neural 
network. The 1-nn variant of IDS differed from IDS only during 
testing; in this phase of operation, if a path in the IDS tree did not 
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exist, then the "nearest neighbor" path in the tree was taken. Table 
4.34 repeats the test results of their experiments as percent correct 
on the test sets. 

Table 4.34 Percent correct classification on 3 Iris test sets of 
25 points each with four classifiers (Maher and St. Clair, 1992) 

1D3 lD3-nn UR-ID3 FFBP 
Iris 1 75.7 89.2 94.6 91.9 
Iris 2 71.1 92.1 94.7 94.7 
Iris 3 78.9 94.7 94.7 92.1 
Ave. 75.2 92.0 94.7 92.9 

The average number of internal nodes for IDS was 5, and the average 
number of leaves (or crisp rules developed on 112 labeled data) was 
45. Since UR-ID3 and ID3-nn use the same trees, these statistics are 
valid for all three decision tree designs. This agrees with the general 
belief that if nothing else, decision trees get big - fast. 

The last row of Table 4.34 indicates that, for these trials, the fuzzy 
interval-based decision tree classifier was much better than ID3, 
and it was slightly better than the crisp ID3-nn approximation. 
According to these statistics UR-ID3 was also slightly better than 
the FFBP classifier network they used in this comparison. 

We add three remarks about these results. First, the values displayed 
in Maher and St. Clair for illustration of interval building with an 
input datum from Iris lead us to believe that they actually processed 
an integer valued data set that might be Iris with every value 
multiplied by 10 (see "will the real Iris data please stand up" in the 
preface). Second, it is pretty easy to train a feedforward network to 
be consistently achieve 100% success with various data selection 
schemes when applied to (the) Iris (we use). We illustrate this in 
Example 4.21. 

Finally, crisp decision trees built with C4.5 on Iris are slightly 
better than any of the decision trees illustrated in Table 4.34. For 
example, Hall et al. (1998) report that release 8 of C4.5 run with the 
default parameters builds crisp decision trees on Iris that achieve an 
average error rate of 4.7% - that is, 95.3% correct classification -
when trained and tested by 10-fold cross validation. This scheme 
uses 90% percent of the Iris (?) data for training (135 samples) and 
the remaining 10% (15 samples) for testing in each of 10 cycles, 
rotating through the entire data set so that the union of the 10 test 
sets is Iris, and their pairwise intersections are empty. This is a 
somewhat more pessimistic error rate estimate than the 75/25 split 
used by Maher and St. Clair because individual tests are closer to the 
leave one out method, and averaging the error rate over 10 trials 
produces a better estimate. The average tree size over 10 runs in Hall 
et al. (1998) was 5.3 nodes (leaves and internal nodes). Thus, the C4.5 
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crisp tree size is an order of magnitude smaller than the trees built 
by Maher and St. Clair's fuzzy decision tree methods. 

Umano et al. (1994) present a fuzzy extension of 1D3 that can deal 
with both real and categorically-valued attributes. Their scheme, 
like that of Maher and St. Clair, uses the basic 1D3 algorithm to 
build a tree, and then they extend its crisp decision functions at 
internal nodes so that each training datum is captured by a larger 
domain. Rather than cover each point with a possibly different 
interval, they impose a set of discrete, user-defined premise 
membership functions on each input variable. 

Umano et al. assume that the input data have c classes, but that each 
class is fuzzy. This is represented by attaching what is in essence a 
user-defined possibilistic c-partition U(X) e M ^^of X = {Xj,...,x^} 
to the input. Umano et al. use the fuzzy cardinalities of X computed 
on the entries of U(X) to replace the relative frequencies used in 1D3, 
and the IDS node splitting function is converted into one that 
attempts to maximize information gain based on probabilities of 
membership values. These authors present an example that is very 
much like Example 4.13. To impart the flavor of their method 
without filling several pages with fairly routine details, we abstract 
it here as our Example 4.15. 

Example 4.15 Umano et al. (1994) illustrate their fuzzy 1D3 method 
on the following set of data (we have reordered it for clarity), 

X 
f 160 ^ 

60 
^ blond ̂  

r i 75^ 
60 

Uedj 

f 180 "i 
70 

^ blond ̂  

( 180 "l 
80 , 

^black^ 

( 170 ^ 
75 

^black^ 

f 160 ^ 
75 

^black^ 

fl75^ 
60 

Iredj 
f 165 ^ 

60 
^blond^ 

P o i n t ® ® ® O © © @ © 
Class 
Memb. 

1 
1.0 

1 
0.7 

1 
0.5 

2 
0.8 

2 
0.2 

2 
1.0 

2 
0.3 

2 
1.0 

The first two components of each data vector are the p = 2 numerical 
features height and weight of 8 objects (presumably humans), while 
the third component is the variable "hair color", with q = 3 values: 
blond, black and red. Directly beneath the data are the crisp class 
labels attached to the 8 points by the authors, and directly below the 
crisp labels is another value associated with these 8 data, which is a 
subjectively defined set of fuzzy memberships. The authors are not 
clear about the source or meaning of these memberships, so we 
interpret them as a measure of confidence in the crisp label 
assigned, and represent them as a possibilistic 2-partition of X, 
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U(X): 1.0 0.7 0.5 0 .0 0 .0 0.0 0 .0 0.0 
0 .0 0 .0 0.0 0 .8 0.2 1.0 0 .3 1.0 

By our interpretation, the first datum definitely belongs to class 1 
and not at all to class 2, the second belongs to class 1 to the extent 0.7 
and not at all to class 2, and so on. Umano et al. don't describe the 
fuzzification of the Input data quite this way. They simply identify 
the first 3 points as "being in" class 1, and the last 5 points as having 
a class 2 label. In their paper the non-zero values we show in the 
matrix U are simply called membership grades given to the 8 
examples. This is an example where each datum comes with a crisp 
label, and other information is used to augment the original label 
structure of the problem. In effect, each point in the training data 
has both a crisp and possibilistic label. 

Compare the first and last vectors in X to see that the two classes are 
pretty mixed, since datum 1 is, by its memberships in U, definitely 
in class 1, while datum 8 is definitely in class 2, but the only 
difference between these two objects is in the first feature, 5 (cms ?) 
in height. This is even more pronounced in points 2 and 7, which 
have identical representations but, according to U, object 2 prefers 
class 1, while object 7 has a small amount of membership in only 
class 2. 

The authors then define three sets of discrete premise membership 
functions over the three input variables. As a first example of the 
notation we use for fuzzy systems, we list each of these PMFs as a set 
of ordered pairs in the general form (x, m (x)): 

'• ^ i ij i 

PMFs (m .̂(Xj)} for height: 

= {(160, 1), (165, 0.8), (170, 0.5), (175, 0.2)} 
= {(165, 0.5), (170, 1.0), (175, 0.5)} 
= {(165, 0.2), (170, 0.5), (175, 0.8), (180, 1.0)} 

PMFs {m (x )} for weight: 
2j 2 

2̂J = Ught m^j = {{60, 1), (65, 0.8), (70, 0.5), (75, 0.2)} 

2̂2 = middle m^^ = {(65, 0.5), (70, 1.0), (75, 0.5)} 
2̂3 = heavy; m^^ = {(65, 0.2), (70, 0.5), (75, 0.8), (80, 1.0)} 

PMFs {m (x )} for hair color 

(^^ = light m^j = {(blond, 1.0), (red, 0.3)} 
3̂2 = dark m^^ = {(red, 0.6), (black, 1.0)} 

( = low 

( = middle 

m 
11 

™12 
^13-high 

"^13 
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Notice that our parameter r, the granularity of the sets of PMFs in 
Figure 4.32, is variable here: r ^2 = 3- V2- Also notice that while 
the PMFs shown in Figure 4.32 are continuous, these authors use 
discrete PMFs (but they do not limit their version of fuzzy ID3 to 
this). Subsequent calculations using Umano et al.'s node splitting 
functions and several additional heuristics lead to the fuzzy 
decision tree shown in Figure 4.42, which is our adaptation of 
Umano et al.'s Figure 1. 

hair: . 

Light Dark 

j ^ 

low' 

"6 - I 0.84 

middle heavy 

^' ~ ' 0 . 8 4 j u^ 
0.71 
0.29 

middle high 

u. 
0.61 
0.39 

u - I 0-03 "2 - 1 0.97 " 3 \ 0.84 j 

Figure 4.42 Umano et al.'s fuzzy decision tree for the data set X 

This tree has 3 internal nodes and the training data are used to 
produce fuzzy label vectors at the 6 leaves; Uĵ  e Nj.̂  is attached to 
leaf VL for k = 1 to 6. Compare this to the CP tree in Figure 4.37, 
where each leaf contains a path firing strength and crisp label. 
Umano's tree is equivalent to the rule-base /€ 
rule, 1 < i < 6, has the form 

{R,,. R } whose i-th 
6 

a j ( x ) ^ D ; ^ ^ ( x ) = Uj (4.81) 

In (4.81) the LHS has 3 premise clauses, but some of the rules have 
less than three. When an input datum is submitted to this tree, its 
values may partially match all 6 of the fuzzy rules (that is, may 
arrive at all 6 leaves in the tree in Figure 4.42). The firing strength 
along each path is computed with the left side of (4.81) using the 
product for tiie T-norm, T =T . Each edge in the Umano et al. tree has 
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a fuzzy label vector attached to it (this is not shown in Figure 4.42), 
which stands in sharp contrast to the edge weights in the CP tree 
(numbers in [0, 1]), and edge intervals in UR-ID3. Umano et. al also 
apply the product to each component of the fuzzy label vectors along 
the edges. And finally, aggregation of the evidence developed at each 
leaf for the input datum is done with addition, which can lead to 
certainty values greater than 1. Umano et al. say that when this 
happens. Just normalize them. They call the overall inferencing 
method (x x +). The output of Umano et al.' s fuzzy decision tree is a 
fuzzy label vector for each input, so this design is a fuzzy classifier 
in the sense used by us - that is, H(z) = DDJ(Z) = U E NĴ , . If desired, 
this output can be hardened in the usual way. 

Finally, Umano et al. give a numerical example using n = 220 
samples of transformer data which have two labeled classes of 
causes of failure, which are themselves subdivided into 4 and 17 
subclasses. Half of the data were used to train the fuzzy decision tree, 
and the other half were used to test it. They give some error rate 
statistics for their tests, but since this method is not compared to 
any other method, it's hard to guess what the statistics tell us about 
the method. But we like this as an example of generalization of both 
the fuzzy CP tree, as well as crisp 1D3. 

light middle heavy 

u 
® 

r- / ^ 
f l i eight ^ 

" 4 Hi] 
L ® J 

low mic die high 

I > 

M^\ "3-[0.3j 
© ® 0 

V -/ ^ J 

u 
0 

Figure 4.43 Zeidler et al.'s fuzzy decision tree for 
Umano's et al.'s data set X in Example 4.15 

Zeidler et al. (1996) discuss an interesting modification of the fuzzy 
IDS approach of Umano et al. (1994) that seems to extend its utility 
in that some of the subjectivity in Umano et al.'s design is removed. 
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These authors give an algorithm for automatic generation of 
continuous premise membership functions tha t span each 
numerical input variable (recall that the user simply defined 
discrete premise membership functions In Umano et al.). The PMFs 
are all trapezoidal, and are adjusted dynamically during the 
construction of the tree. Zeidler et al. process the data shown as X in 
Example 4.15 with their algorithm, and obtain the decision tree 
shown in Figure 4.43, which is our adaptation of their Figure 3. 

Compare Figures 4.42 and 4.43 - there are some striking differences. 
Umano et al.'s tree is rooted on the linguistic variable "hair color" 
and has 6 leaves, all associated with rather fuzzy labels. Zeidler et 
al.'s tree doesn't even use hair color, is rooted on the numerical 
variable "weight", has only 5 terminals, and 4 of the 5 terminals are 
associated with crisp labels - that is, they are pure leaves. The two 
objects labeled 2 and 7 in the original data end up in the only leaf 
that doesn't have a crisp label. Recall that these two objects had 
identical features, but different class labels. We think that Zeidler et 
al.'s approach produces a clearer picture of the structure of the data 
than Umano et al.'s. Unfortunately, Zeidler et al. did not try this 
method on any real data set, so it is even more difficult to make any 
assessment of its relative utility than the classifier tree of Umano et 
al. These authors do give a very clear example of processing an 
unlabeled input vector z with their tree: 

R[z] = K 

r 62 ^ r 62 ^ . ^ „ 
^0.68 162 

red 
- n^ 
- • '^DT 

162 
red 

0.32;"^^' 

The last method we discuss in this subsection is due to Janikow 
(1996a, 1998). Janikow fuzzifies both the construction and 
inferencing procedures for decision trees. His model has many of the 
same elements as the fuzzy systems shown in Figure 4.32, although 
he prefers to regard the fuzzy rules aspect of his decision trees as an 
artifact, rather than the reason for the trees. Janikow gives a nice, 
clear discussion of most of the previous work on fuzzy decision 
trees, and their relationship to fuzzy systems. He uses the 
methodology of ID3 as a template for his fuzzy tree building 
algorithm, which, in his words, "is the same as that of 1D3. The only 
difference is based on the fact that a training example can be found 
in a node to any degree." 

Janikow's (1998) fuzzy ID3 is not a complicated algorithm, and 
while he illustrates it only with numerical data, it is equally 
applicable to nominal data. The node splitting function is formally 
an entropy function, but the arguments of v̂ ^̂  depend explicitly on 
the PMFs of the linguistic variables chosen to fuzzily the input 
domains. The central idea is that memberships {m..(x )} of the 
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attribute values that occur along paths from the root to the current 
node play an active role in the determination of which cases arrive 
at a node, and how much each should be weighed in the split. Values 
of {T({m (x )}} accumulate as incremental firing strengths along 
each path, using a T-norm of choice, and these contribute to the 
overall case count at the current node. At termination the leaves of 
the tree may not all be pure, and further, the same case may occur 
with partial membership in more than one leaf. These terminal 
memberships are possibilities (they don't have to sum to 1). 

Janikow (1998) points out that once the tree is built, there are any 
number of possible choices for inferencing with it, some of which 
are interpolative (if the data are numerical); and some of which are 
not (necessary if the data are nominal). When operating as a 
classifier, all the leaves with paths of positive firing strength can be 
found, and these consequents can be aggregated using a T-conorm 
and then defuzzified, or simply combined using a weighted mean. 
Janikow discusses four methods of inferencing based on the 
weighted fuzzy mean or simplified max-gravity method (Mizumoto, 
1988). Two of them use information about the most common label in 
terminal blocks, and the other two try to account for within-leaf 
label inconsistencies. Janikow also discusses four reasoning 
procedures based on finding a dominant leaf with the center of, sum 
of and maximum gravities defuzzification strategies. Then he gives 
the numerical example repeated here as our Example 4.16. 

Example 4.16 Janikow (1998) illustrates his fuzzy ID3 method on 
the following set of data, which is strikingly similar to the one used 
in Example 4.15 (and not just because, like Quinlan and Umano et 
al.,n = 8). 

Y _ fro.20^ fO.aO'l f0.90~] fO.60'] f0.90\ fO.lO^ f0.40\ fO.85 
^-^^ 0.15 ' 0 . 2 5 ] ' 0 . 20 j ' 0 . 50> 0.50 •0 .85J ' 0.90 ' 0 . 8 5 

Point ® ® (D ® @ ® & © 
Class 
Weight 

1 
1 

1 
1 

1 
1 

1 
1 

2 
1 

2 
1 

2 
1 

2 
1 

Figure 4.44 is a scatterplot of X c= 9t^. The point z shown in Figure 
4.44 is not one of the training data - it's a test input that we will 
classify with the fuzzy decision tree after it has been built. Janikow 
imagines that the classes represented in the data are related to 
decisions a lender must make about borrowers : class 1 = not 
creditworthy, and class 2 = creditworthy. In our standard notation 
these two classes would be represented by the crisp label vectors 
Cj =(1,0)^^ and e^ =(0,1)'^. 
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Employment 
A 

H(w,a} 

Medium High 
- ^ ^ Income 

Figure 4.44 Janikow's data and premise membership functions 

Since this is a c = 2 class problem, Janikow arranges his decision 
system outputs so that they are numbers in [0, 1] instead of label 
vectors, so we write this classifier function as Dp^:9t^ i-> [0,1]. 
Janikow uses the labels 0 = not creditworthy and 1 = creditworthy 
for the two classes, and regards fuzzy outputs of his system as 
numbers between 0 and 1 (instead of fuzzy label vectors in N ). Since 
there are only two classes, hardening a fuzzy output corresponds to 
using 0.5 as a threshold on the output of the system. For example, 
0.47 is hardened to yield 0 = class 1 (non-creditworthy), and 0.64 is 
converted to the class label 1 = class 2 (creditworthy). 

The simplest way to classify anyone on this basis would be to plot 
their coordinates and see which side of the hyperplane through the 
corners (0,1) and (1,0) the datum fell on: above would presumably 
correspond to an acceptable risk, and below, to a person not to be 
trusted to repay a loan. The data shown are not linearly separable by 
this hyperplane, which would commit three training errors. There 
are separating hyperplanes, however, such as H(w, a) shown in 
Figure 4.44, which will produce no errors on resubstitution. 
Consequently, from the point of view of classifier design, one of the 
things we will want to know is whether a decision tree approach 
offers more than this simple solution, which can be found by eye. 

Examination of Figure 4.44 tells us - without computation - that 
horizontal splits (along the employment axis) will be more effective 
at the root of any tree covering these 8 cases than vertical splits 
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along the income axis. Cases 1-3 and 6-8 can be isolated from 4 and 5 
with jus t two cutpoints along the employment axis, and the eight 
training data can be easily covered with 4 crisp rule patches that 
jrield no training errors. But we know that such a classifier will not 
generalize well. 

Janikow defines termsets of three linguistic values, {low, medium, 
high}, for each of the linguistic variables income and employment. 
Figure 4.45 shows the general form of these functions for the first 
linguistic variable (income), which are limited in Janikow (1998) to 
trapezoidal fuzzy numbers. The same functions are used for the 
variable employment. 

Low Medium High 

m 11 "3><o^XF\, Income 

Figure 4.45 Janikow's premise membership functions 

Janikow leads the reader through sample calculations for all the 
functions used during node splitting in his fuzzy 1D3 tree building 
algorithm, and arrives at the final tree shown in Figure 4.46. 
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Figure 4.46 Complete decision tree for Janikow's data 
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As expected from the geometry of the features for the training cases 
seen in Figure 4.44, the terminal tree is rooted in employment, with 
cases 1-3 and 6-8 immediately splitting from the root to terminal 
nodes VL and v^ . The second linguistic variable is used to split the 
remaining cases, and although there are (presumably) only 2 cases 
left, notice that Janikow's method also pushes case 2 into a second 
terminal leaf, VL . Case 4 acquires its own terminal leaf v and 

2 Ivg 

also moves into v. , which it shares with case 5. Also shown in 

Figure 4.46 are the firing strengths along the paths from the root to 
the leaves. This tree corresponds to a 5 rule fuzzy system, but note 
that rule 4 has two possible consequents, since the cases are mixed. 
And conversely, object 2, which has a crisp case 1 label, arrives at 
VL with a firing strength of 0.5, and at VL with a firing strength of 
0.33. In other words, rules 1 and 2 in the fuzzy system represented by 
this tree both support a match to training data point 2, but with 
different levels of confidence, whereas rule 4 supports a match to 
several outcomes, the strength depending on the matched label. 
Similarly, object 4 is also labeled class 1, with equal firing 
strengths of 0.5 in 2 different leaves. 

Janikow's avowed purpose is to focus on decision trees, not fuzzy 
rules, so he spends little time distinguishing MA and TS type rules 
that might be equivalent to this tree. Janikow does talk about using 
the firing strengths that arrive at terminal nodes in conjunction 
with defuzzification to make subsequent classifications. So, we 
assume that each of the possible consequents (class 1 = too risky, 
class 2 = creditworthy) has a fuzzy set associated with it. 

Janikow shows how the classifier represented by the tree in Figure 
4.46 operates using the center of gravity method of inferencing on 
six new test data. Since the input space is [0,1] x [0,1], the rule-base 
will always have an output in [0,1] with the defuzzification being 
used, we expect that Dp.j,(0) = 0,D^(1) = I. And indeed, Janikow 
shows how the input vector y = (0,0)^ causes the response 
«.(y) = (1,0,0,0,0)^, where (x(y) is the (ordered) set of firing strengths 
of the paths leading to the 5 terminal nodes in Figure 4.46. Only rule 
1 is fired for this input, and this input will be unequivocally labeled 
class 1 (too risky). This certainly agrees with the location of this 
datum in the feature space. In words : "IF employment is low and 
income is low THEN no credit". What would our simple hyperplane 
H(w,a) shown in Figure 4.44 do for this input? The same. 

The test input z = (0.32,0.70)^ plotted on Figure 4.44 results in the set 
of firing strengths <x(z) = (0,0,0.3,0.67,0.40)"^. Now three of the five 
rules have positive support, and it is necessary to combine them 
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with some form of disjunctive aggregation. Janikow, using the 
center of gravity defuzzification, arrives at an overall value of 0.71 
for this input, that is, D^.j, (z) = 0.71. Recall that hardening here 
corresponds to rounding off, so 0.71 corresponds to the label 1 = 
creditworthy, that is, H(D^(z)) = Cg = 1, so we will happily allow z 
to go into debt. Our hyperplane H(w, a) would too. 

Janikow (1998) goes on to process three input data with missing 
values, the inputs (unk, 0.75), (0.5, unk), and (unk, unk), where unk = 
"unknown". The test data used do not illustrate the efficacy of this 
tree as a classifier, however, since none of them has a crisp label. 
Now the hyperplane fails, but Janikow's tree produces the outputs 
0.63, 0.59 and 0.51, respectively for these three points - that is, upon 
hardening (rounding off to 1 = class 2), all three of these inputs 
represent people that will be granted credit. 

The last input point is particularly interesting; the defuzzified 
output value is not exactly 0.50, even though the input datum (unk, 
unk) would suggest a coin flip to make the ruling in this case, since 
nothing is known about the input and the sample priors are both 
0.5. Janikow says the value 0.51 occurs because the case counts in 
the leaves is different from those in the root. Thus, the root starts 
with 4 examples of each class, but the leaves contain 3.13 in-leaf 
cases for class 1, and 3.20 cases for class 2 (these counts are the sums 
of the firing strengths in the leaves), so the training method imparts 
a slight bias towards class 2. Tuning the CMFs and PMFs might be 
used to balance the in-leaf counts so that they matched the root 
priors to solve this problem, but Janikow does not mention doing 
this in his 1998 paper. See Janikow (1996b) for a discussion of 
optimizing the initial tree found by this method. As an aside, we 
remark that this seems to be the model used by many (at least 
American) bankers, who cheerfully let anyone who wants to go into 
debt, with consequences following the truth of their situation - only 
later. 

The last thing we mention is that Janikow (1998) does a creditable 
job of comparing the utility of his method to another scheme for the 
function approximation problem we introduced in subsection 4.6.D. 
Janikow builds a fuzzy IDS tree using the same data that was used by 
Suh and Kim (1994) in connection with approximation of the 
Mexican hat function. Let x = (x,y)^, and consider the function 

h (x) 
40 sin{nJx^ + y^ / 35) 

"X 7t O 
V x ^ ^ y V 3 5 '^^^ • (4.82) 

407C ;x = 0 
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Suh and Kim sampled h over the domain [-120, 120] x [-120, 120] 
'^ mex 

13 times in each direction to obtain the training data X . They 
^ mex -̂  

then used the 169 lO triples {{x , h (x )} to build a fuzzy 
"^ ij mex Ij •' 

membership function neural network to approximate h . In brief, 
'• "̂  ^ m e x 

Suh and Kim manually generated 13 sets of fuz:^ rules (one for each 
set of data along a line of constant y value on the sampling grid), 
partitioned each of the two input variables with 13 triangular 
premise membership functions and 7 consequent membership 
functions, trained the 13 networks, and then combined their outputs 
to produce approximations K(x;6) ~ h (x), where B represents the 
parameters of the networks acquired during training. 
Janikow (1998) trains 1D3 based trees on the same data, and shows 
the output of two trees on the training data and at test points in 
between them. The approximating rules (as represented by the fuzzy 
decision trees) differed only in the method of inferencing. Visual 
comparison of the surfaces recovered by Janikow's fuzzy decision 
trees and the neural network approximations appear to favor the 
neural network approach. Janikow (1998) seems to concede this by 
referring us to his (1996b) paper on optimizing the membership 
functions as a means of improving the approximation. In favor of 
his method - and we tend to agree with him - are the facts that his 
trees were not tailored to this particular problem, and the fuzzy ID3 
rules were not generated manually. 
We have one more fuzzy decision tree methodology to discuss (Chi 
and Yan, 1996, Chi et al., 1996), but we defer discussion of these 
papers to the section on classifier fusion, because these authors 
combine their version of fuzzy classifier trees with other techniques 
such as nearest prototype and Markov chain classifiers to 
(hopefully) improve the overall performance of either individual 
classifier. 

G. Rule-based approximation based on clustering 

Since a fuzzy decision tree is equivalent to a set of fuzzy rules, 
building a fuzzy decision tree amounts to extracting a set of fuzzy 
rules from numerical or linguistic data. Tree induction (and 
consequently, the rules a tree represents) from numerical data using 
algorithms such as ID3, C4.5 or CART does not depend primarily on 
structure in the data; rather, it depends most heavily on the relative 
frequency information that resides in the crisp labels of the data. 

In this section we develop an alternate approach to rule extraction 
from numerical data that does just the opposite; it tries to focus on 
geometric properties of the data as captured by clustering 
algorithms. In a few cases we find the method of this section used 
directly for classifier design, but most of the important work in this 
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area is aimed at approximating functions used in prediction and 
control. In any case rule extraction by clustering is a nice 
application of the material in Chapter 2 on clustering, now used as a 
tool in a very different context than its original domain. We begin 
with a discussion of the feasibility of approximating functions with 
fuzzy systems. 

The Mexican hat example presented by Janikow (1998) that we 
discussed in subsection 4.6.F was our first example of using fuzzy 
rules to approximate functions. While Janikow's example shows the 
feasibility of using a fuzzy decision tree (and therefore, a fuzzy 
system) for function approximation, there can be problems with 
this approach. For example, computational complexity can be very 
high, and further, Janikow's results - the first we have seen for 
approximation by fuzzy decision trees - are visually inferior to 
those obtained by Suh and Kim (1994). The first question that comes 
to mind is - why should we expect a fuzzy rule-based system to do 
well at all? A theoretical answer to our question comes from the 
field called universal approximation (UA) theory. 

We won't spend much time on this topic, because we do not explicitly 
rely on the results of UA theorems to design and construct a good 
classifier. But like many before us, we take some psychological 
reassurance from such theories, and as an old friend of ours once 
told us , "nothing is so practical as a good theory." Universal 
approximators are sets of functions {W(x;9):X cSt^ i-> SR̂ îG e Q}, 
where Q is a parameter space for 9, that provide arbitrarily good 
approximations to every element in other sets of functions, say 3 = 

{f: X c 91P i-> 9t''}. The measure of goodness is a norm on SR'', 
typically X is compact, and every function in 3 is continuous. The 
approximation to f is uniform by such families; i.e., once e is given, 

for any f e 3 , you can find a set of parameters 9 for which 

f(x) -l?(x;9) < e for every x e X. For example, Fourier series are a 
set of universal approximators for square integrable functions on 
[0,271]. 

There are any number of theorems guaranteeing that various MA 
and TS rule-based systems are universal approximators. The 
conditions on X and f vary, and there are usually other special 
conditions or constraints on the result that depend on the particular 
system you have in hand. This answers one question we raised in 
Example 4.17; in principle, a fuzzy system designed with any 
method - clustering included - may provide a good approximation to 
well enough behaved functions. Unfortunately, none of these UA 
theorems is constructive - that is, none of them tell us how to find 
the approximating system. That's why their value to the designers of 
a working pattern recognition system not high. 
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There are also many UA theorems for neural networks. Figure 4.47 
depicts a 21 point lO data set that Narazaki and Ralescu (1993) 
obtained by uniformly sampling the function 

S(x) = 0.2 + 0.8(x + 0.7 sin(x)}, 0 < x < 1 (4.83) 

over the base points X^^ = {0.00,0.05,.... 1.00}, which comprise a set 
of input training data, with corresponding output training data 

S(l.OO)}. Y2j={S{0.00), S(0.05), 

S(x) 
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Figure 4.47 Data set X̂ Ŷ̂ ^ is 21 samples from (4.83) 

Narazaki and Ralescu used X^^Y^^ to illustrate the approximation 
capabilities of five different feed-forward neural network 
architectures. Approximation of S by the five schemes they describe 

yielded an average Ej^gg(XjQjX2j): PI:K -s(xj^:e) 7.42% 

on 101 test inputs uniformly distributed over [0,1]. The 
approximation capabilities of NNs are well known, so this is not 
surprising. Notice that these test data include the 21 training inputs, 
so this error is a little optimistic; nonetheless, this is a nice result. 
We will use these data to illustrate several rule extraction methods 
in Example 4.17. 

To appreciate the relat ionship between smoothness and 
approximation, recall that the lO data available for identifying S 
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are XY = {(x̂ ^ ,y^f: k = l , . . . .n}c9tP+i. Roughly speaking, XY is the 
"diagonal" of the Cartesian product XxY. The discrete set XY is also 
assumed to be a subset of the graph G of S, which is in turn a subset 

s 
of 9tP X 5R1. Figure 4.48 shows these relationships. 
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Figure 4.48 The sets X, Y, XY, X x Y and G 

Rule extraction can be done by clustering in X, Y or XY, resulting in 
c-partitions U^.U^.orU^^, respectively. The superscript shows 
which of the three data sets is the basis of clustering. We assume that 
the clustering method also produces either point prototypes 
y x ^ r.yX| yY _ S^yjl o r V ^ = {(v^, v ^ ' ^ } ; or non-point prototypes 

B^={bf} ) . BY={b^} or B ^ = { ( b f , b f r } . Many of the rule 
extraction methods depend on projections of these prototypes from 
XY to X and/or Y, and they also rely (almost always implicitly) on 
the smoothness of S. 

When S is very smooth, as the sine curve in Figure 4.47 is, we will be 
able to find nice approximations to it with fairly course, low order 
fuzzy systems - in particular, with first order TS systems. When S is 
"bumpy" but still smooth (the graph of S in Figure 4.48 is like this at 
one spot), we will need a higher order approximation, more rules, 
finer premise membership function structure, and so on, to get 
decent approximations to the lO data. 

Since we use rule-based systems in classifier design, it's nice to 
know these UA theorems exist. That's really all we need to say about 
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this aspect of approximation to classifier functions by fuzzy 
systems, except for this very important point. Crisp classifier 
functions D: 5RP I-> N^^^ cannot be continuous, because their range is 
discrete, so UA theorems in this special case lose some of their 
appeal. However, be careful to distinguish what function you are 
approximating when you worry about this statement. In equation 
(4.2) we show the crisp classifier function Dygg(z) = ej, which 
cannot be a cont inuous function of z, but the function 
f (x) = (x, w) + a that defines H(w, a) is certainly smooth, and can be 
used to implement D^ E 5' ^° ^^^ situation for classifier design is not 
as bad as it might seem. When classifier functions are soft, UA 
theorems directly underlie our attempts to approximate them with 
rule-based systems. 

If you want more information on universal approximation, start 
with Kreinovich et al. (1998). Jus t to give you a taste of what you will 
find there, we report some statistics about this paper: (i) UA 
theorems due to no less than 13 different named authors for the 
three year period 1990-1992; (ii) 220 references, clustered usefully 
into categories (numbers in ( ) are number of references) such as: 
basic results (37), TS m,odel (8), fuzzy rule patches (8), "complicated" 
implications (3), hierarchical systems (9), distributed systems (4), 
discrete systems (9), stability (9), neural networks (23), fuzzy neural 
networks (4), and our favorite, "how to choose the best variant of 
fuzzy rule-based modeling methodology (21). We are not making fun 
of these papers - we love them. (Our only complaint is that there 
aren't any references in the category "how to design a good rule-
based classifier".) 

Kreinovich et al. (1998) emphasize that there are at least three 
performance criteria besides the observed mean squared error 
(MSE) on test data that a good UA should possess; stability, 
computational simplicity, and smoothness. These authors present a 
really nice discussion that compares fuzzy systems to neural 
networks using each of these criteria. For us, perhaps the most 
important aspect of their discussion on this topic is that fuzzy 
systems are inherently less smooth than neural networks because 
the T-norms and T-conorms used during reasoning are - with rare 
exceptions - not smooth themselves. Arguably, this means that 
classifier functions represented by fuz2y systems will be, on average, 
less smooth than those built with neural networks. We think that 
the architecture and membership functions on the LHS of fuzzy 
systems are also very important when considering the overall 
smoothness of these two kinds of systems. In any case, this is a good 
thing to keep in mind when you set out to design that perfect 
classifier. 
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When XY appears to have no clusters, can we expect rules extracted 
by clustering to afford good approximations? Look again at X2jY2j 
in Figure 4.47 - how many clusters do you see? Most observers would 
say either "none" (no substructure), or "one" (all of the data, viewed 
as a single curvilinear arc), so your initial reaction might be "No 
way [can you get rules with clustering]". How well would single input, 
single output rules for a simple MA model that are extracted by 
clustering in X2jY2^ represent this system? Pretty well. Our next 
example also shows that the lack of smoothness in fuzzy systems 
approximations can sometimes be offset by replacing the usual 
PMFs such as triangular and trapezoidal fuzzy numbers with non
standard PMFs such as polynomials. 

Example 4.17 Referring back to Figure 4.47, recall the data set X Y 
of Narazaki and Ralescu. Figure 4.49 shows these data, along with c 
= 5 point prototypes {A =v.} in 9t that lie on 5 prototypical line 

segments {L : x = v^ + t d j extracted by clustering X2jY2j with the 
fuzzy c-elliptotypes (FCE) algorithm (see equation (2.32)), 
implemented in the ACE interface (Runkler and Bezdek, 1998c). The 
lines have infinite extent, but the PMFs extracted from the data only 
provide each of them with support over a subinterval of [0, 1]. 

I S^(x) 

Figure 4.49 TS approxiination of S in (4.83) using FCE-AO 
in tlie ACE interface with trapezoidal and triangular PMFs 
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The approximating fuzzy system is a first order TS system whose 1-
th output function is a line (written here in point slope form), 
Ui(x) = Si(x - Xj) + yj. Clustering with FCE provides estimates for the 

parameters of each Uj(x) as v. =(Xj,yj), ŝ  =bfi/bfi, where b^j and 

bĵ j are the components of b ^ in the x and y directions. To 
understand exactly how FCE produces these estimates, we repeat 
equation (2.32) 

D^ =aD^ +{l-a)U^ ; 0 < a < l • (2.32, repeated) 

lines points 

We did not provide a geometric interpretation for this measure of 
distance in Chapter 2, but think it useful here. Figure 4. 50 shows the 
geometry of the distance Dj^ jj^used by the FCE objective function. 

, ^ 

Bf = the i-th "elliptotype" 

Figure 4.50 Geometric inteipretation of FCE distance (2.32) 

The distances s and t and the location of the "foot" of the line with 
length D̂ Q ^ in Figure 4.50 are controlled by a. When a= 1, s = 0 and 
FCE becomes FCL with pure line prototypes. When a = 0, t = 0 and 
FCE becomes FCM with pure point prototypes. For 0 < a < 1, the 
prototypes are not geometric entities with recognizable names (and 
in particular, they are not ellipses, as we pointed out in Chapter 2). 
But for any a > 0, the lines component of FCE as shown in Figure 
4.50 can be used to find linear prototypes. That's how Runkler and 
Bezdek (1998c) used FCE in the current application, and more 
importantly, that 's how you can get lines from any clustering 
algorithm that associates a covariance matrix with each cluster. 
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Parameters for FCE in this example are m = 2, a = 0.001, and the 
Euclidecm norm was used in the objective function. This choice for a 
focuses most of the objective function's attention, when computing 

u , , on the distance D. = x, - v. . This choice makes FCE seek 
ik Lo.ik II ^ '11 

almost "all points", which forces the cluster centers into the data. 
The direction vector b for the i-th line is the principal eigenvector 
of C , the i-th fuz2y covariance matrix in FCE (see Figure 4.50 and 
equation (2.27)). Rule i in the system under construction takes the 
simple form (don't confuse a in (2.32) with firing strength a (x) in R) 

IFa.(x) THEN Ui(x) = s j x - x j + yj; i= 1, 2, 3, 4, 5. 

The premise membership functions {m.(x) } in Figure 4.49 are built 

by projecting the 2D point prototypes V̂ 2i"*̂ 2i from FCE onto the x 
axis. This is shown in full notation in Figure 4.49 for only the 

projection v^ î 21 _^ y^ î _ Then triangular membership functions 

are centered about v^ .v^ .v^ ; and trapezoidal membership 

functions are shouldered at v^, v^. The domains of positive support 
are chosen so that each PMF is zero at the same x at which the next 
PMF (to the right) is 1; because of this construction, the sum of PMF 
values at any input is 1. 

In this SISO system each x e [0,v^2l]^_J[v^2l i] fjj-es jus t one rule 

with firing strength 1. Each x e [ v^ 21, Vg 21 ] will yield two values, say 

m.(x) and m^^(x) from adjacent PMFs, and we know that 

m.(x)-i-m.^j(x) = 1. Equation (4.73) produces the output, which for 

this simple system becomes, for j = 1, 2, 3, 4, 

^ _ [m.(X) • (Sj(x - X.) + y.)] + [m^Jx) • [s^Jx - x^J + y^^ )̂] 
o_olxj — - - - -

^̂  mj(x) + mj^j(x) 
= [m.(x) • (s.(x - X.) + y.)] + [mj^j(x) • (Sj^i(x - x^^j) + y^^j)]. 

The approximation function S (x) produced by these 5 rules is 
plotted on Figure 4.49. Notice especially that this function is NOT 
smooth at the local maximum and local minimum of the underl3ang 
function S at (4.83) - it has cusps, so this TS model is not so smooth. 

Runkler and Bezdek (1998c) give a second method for approximating 
S based on finding piecewise polynomials for the premise 
membership functions, and the result is a much smoother fit, both 
to the training data, and to test sets not in the training data. Table 
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4.35 reports the training and testing errors obtained with both 
schemes. The test data X Y were generated by evaluating S(x ) at 

101 input base points x^ = Xj^^+ 0.01; k = l 100: x^ = 0. We omit 
the Y factors of the data sets in Table 4.35 for brevity. 

Table 4.35 Training and testing errors (in percent) for 
approximations to S(z) extracted from X Y with FCE clustering 

Triangular PMFs Polynomial PMFs 

# rules El(^2llV ^l^^oJV ^^\l\\? ^P^10ll^2l) 

2 
4 
5 
11 

36.30 37.60 
15.30 15.50 
6.40 6.03 
4.64 4.03 

28.40 28.70 
11.90 11.40 
5.01 4.98 
3.85 3.50 

The measures of test and training errors for these results were mean 
absolute relative errors (converted to % for the Table 4.35 values by 
multiplication by 100), 

I |S(X^)-S^(X,) | 

E, (X, IX J = ^^^^^^ ; and (4.84a) 
1 t'̂ ' ^ lO lS(x^) 

Ei(Xt , |Xt , )= '^ ' '^% . (4.84b) 

Several observations about these results are in order. First, training 
and testing errors drop as the number of rules increases (i.e., as c, the 
number of clusters found in X Y increases). Also notice that the 
improvement afforded by polynomial PMFs is highest when c is 
lowest. As the number of triangular PMFs increases, the 
conventional TS system becomes relatively better, but is never as 
good as the polynomial based system. Both of these trends will 
generally occur, and are due to the fineness of the fuzzy rule patches 
used by the approximating system. 

Second, the generalization error is about half of that reported in 
Narazaki and Ralescu (1995) using various neural network 
approximations. This does NOT tell us that either TS model is better 
than the neural network models in any sense - it tells u s that 
approximations of the same order of magnitude are easily obtained 
using both approaches. Finally, the use of polynomial membership 
functions in the antecedents of the rules smoothes out the 
approximation considerably. 
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= S,pc,(x) 

Figure 4.51 TS approximation of S in (4.83) using FCE-AO in 
the ACE interface with piecewise polynomial PMFs 

The solid curve in Figure 4.51 is the graph of the function S that 
generates the training and test data, and the dashed curve is a pretty 
smooth approximation to it by the TS model with polynomial 
premise membership functions. Several of the PMFs, which are now 
piecewise polynomials, have cusps, but the cusps at the local 
minimum and maximum of the approximating function S in 
Figure 4.49 have been eliminated. 

Runkler and Bezdek (1998c) also present a second approach to the 
approximation problem in this example that is based on clustering 
with an algorithm built by selecting hyperconic membership 
functions and prototypes from the ACE toolbars (Section 2.6) that 
are not AO matched (that is, are not necessary conditions for 
minimization of an objective function by alternating optimization). 
Results from this second method are slightly better than those 
shown in Table 4.35, but the algorithm used was not discussed in 
Chapters 2 or 4. 

How do we fix the size of the rule-base when we cluster to extract 
rules (cluster validity, hiding again)? In view of Table 4.35 in 
Example 4.17, tendency assessment and cluster validity seem 
relatively unimportant for rule extraction by clustering, because 
good approximations to S do not rely primarily on cluster 
substructure in the pattern recognition sense for their success. For 
reasonable functions, simply increasing c will almost always 
improve the approximation accuracy, as the clustering model 
responds with finer substructure (more rules). This is analogous to 
choosing smaller and smaller s tepsizes for functional 
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approximation as is done in classical numerical analysis. Many 
authors, however, do use validity functionals V when clustering for 
rules, and in this application V becomes essentially a pruning 
mechanism for the underlying fuzzy decision tree that maps to the 
fuzzy system. This trend probably began with Sugeno and Yasukawa 
(1993), who introduced V expressly for this purpose. Other validity 

Ox 

functionals that have been used this way include V^^ and V^^ (Pal et 
XB GG 

al., 1997b). Babuska and Kaymak (1995) use the compatible cluster 
merging (CCM) algorithm (Section 5.6.A) to find the number of 
linear clusters automatically. 
Example 4.17 shows that extracting various parameters of a fuzzy 
system with clustering works. It is easy to find other examples in the 
literature of data that do not possess visual cluster structure but 
which, when clustered for rules, produce fuzzy systems that afford 
excellent approximations to the generating function. For example, 
Kim et al. (1997) discuss approximation of the MISO function 

S(x,x) = fl + ̂  + ̂ l ; l < x , x < 5 , (4.85) 

with rules extracted by clustering samples from (4.85). Sugeno and 
Yasukawa (1993) used samples from this function to illustrate 
function approximation for the 0-th order TS model. Sugeno and 
Yasukawa report a resubstitution MSE of 0.079 on 50 triples of lO 
training data using 6 0-th order fuzzy rules. 

Kim et al. use the same lO data with fuzzy c-regression models 
(FCRM) clustering as discussed in Section 2.4 to extract 3 fuzzy rules 
for a first order TS system. The i-th rule, i = 1, 2, 3 is 

R,: IF [ml(x)Am^(x)] THEN Ui(x) = a i+ biX + CiX, (4.86) 

where the PMFs are Gaussian. „ ; , . , = e - ( ' - ' i ' / " ; r . p , ^ , „e t e r s Of .he 

LHS PMFs {Xj =(1^5,0')} and RHS output functions (pj = (aj,b;,c.)} 
are estimated by clustering in XY with FCRM. Specifically, FCRM 
fuzzy partition U yields initial estimates of the Gaussian PMFs as 

n 
2 UikXkj 

,-. I _ k=l 1 . ;;.i 
l̂ J 

I ^ l k 

; o • = I 
I U,k{Xkj-Aj)^ 

k=l  (4.87) 
l u 

k=l k=l 
ik 

Initial parameters for the RHS output functions are obtained 
directly from FCRM as linear regression functions (that is, local 
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linear models of the 10 data). The final step in Kim et al.'s approach 

is to fine tune both sets of parameters {(A' p )̂} using gradient 
descent. They report that the final set of three fuzzy rules produces a 
resubstitution MSE of 0.0551 - an improvement over the error 
reported by Sugeno and Yasukawa (1993). 

The models used by Runkler and Bezdek (1998c) and Kim et al. (1997) 
have two important things in common, and one important 
difference. The big difference between these two approaches lies in 
the use of the clustering outputs. Both methods use the lO data XY to 
find estimates for (U-^, B-^), and in both cases the {b̂ ^̂ } are linear 
prototypes. However, Runkler and Bezdek essentially ignore the 
fuzzy partition IJ-^ e M .̂̂ ,̂ and use only the prototypes {b^} during 
construction of the rules. Kim et al., on the other hand, chose to use 
everything the clustering algorithm provides them, viz., (U^^,B-^). 
There is no reason to prefer one scheme to the other, and more 
generally. Pal et al. {1997b) survey many other schemes besides 
these two that use the information extracted from XY by C in other 
ways. We are not willing to say that there is a "best way" to use the 
information you can get from clustering XY to extract rules; we 
think the choice is dictated by a number of factors, one of the most 
important of which, and the one you have the least control of, is the 
data itself. However, the similarities between Runkler and Bezdek 
(1998c) and Kim et al. (1997) do give us one clue. 

In both Runkler and Bezdek (1998c) and Kim et al. (1997) the 
underlying fuzzy system is a first order TS model, and the clustering 
algorithms used can both generate linear prototypes. Thus, G 
produces direct estimates of the TS output functions for this case. 
Functional approximation with linear models is hardly new. After 
all, the geometric meaning of the derivative of any real function at a 
point is that its value gives us the slope of the line tangent to the 
graph of the function at this point, and the tangent line provides the 
best local linear approximation to the curve. Our supposition is that 
clustering algorithms most effectively extract TS rules when their 
prototypes match TS output functions. If this is correct, then the 
best choice for G if you are building a first order TS system would 
seem to be any clustering algorithm that is capable of generating 
lines in the product space. This includes, for example, the GK, GMD, 
FCL, FCE, RFCM, and FCQS algorithms discussed in Chapter 2, and 
any other Q that involves hyperellipsoidal clusters with covariance 
matrices (such as the model of Nakamori and Ryoke, 1994), whose 
principal eigenvectors can be used to supply lines through the 
corresponding cluster centers. 

Extending this idea, if you wanted local quadratic approximations, 
then a second order TS model would be appropriate, and you would 
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have a somewhat more hmited set of natural choices for the 
clustering algorithm C, which in this case would have to be able to 
generate quadratic prototypes. Thus, you might try RFCM or FQRS. 
We will discuss several other ways to build fuzzy systems for 
function approximation with clustering, but the fact that some 
clustering non-point prototype algorithms can produce direct 
estimates of first and second order polynomials, coupled with the 
fact that first and second order TS models have exactly these 
functional forms on the RHS of the rule-base, suggest to us tiiat this 
is probably the best combination of fuzzy systems and clustering for 
function approximation. 

Having some examples of function approximation by rules extracted 
with clustering under our belts, we ask some general questions about 
the use of clustering in this domain. What tasks in the design of a 
rule-based fuzzy system can be relegated to clustering? Where should 
we cluster, X, Y, XY, or all of these? What clustering algorithm 
should we use? How do we use the clustering outputs in c-partitions 

U^,U'',orU-^''; point prototypes V^,V' ' , or V^" ; and non-point 
prototypes B^ , B^, or B^^ to create pieces of a fuzzy system? What 
might go wrong when clustering is used for rule extraction? We 
address these questions, but like many topics in this book, 
functional approximation by clustering is an area of right-now 
research, so don't expect definitive off-the-shelf answers. Instead, 
look for the general ideas, and think of ways to improve them. 

What tasks in the design of a rule-based fuzzy system can be 
relegated to clustering? Table 4.36 shows nine tasks involved in the 
establishment of /€ that seem most amenable to clustering. 

Table 4.36 What humans (!£^0) and clustering (>#0 
can do for the MA and TS fvazy systems 

Left Side of the Rule Base 

a 1 Select input variables x x 
1 P 

2 For i = 1 to p: choose or find: 
?o 2a numerical range D for x 

a 2b linguistic variable J, 

a in 2c the # r of linguistic values for J 

?e Ik 2d linguistic values {(} for J 
& ' It i a in. 2e PMFs {m },1 <J < r 

?D in 3 Select the number of rules, c 

f) in 4 Define the structure of each rule 

a 5 Select T-norm T = n 
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Table 4.36 (con't.) What humans {^^) and clustering (tlO 
can do for the MA and TS fuzzy systems 

Right Side of the Rule Base 

a 6 Select output variables z z 
^ l a 

!© 7TS Select forms of u , l<i<c 

a ^ 8TS Determine parameters of the (u.} 
7 MA For k = 1 to q: choose or find: 

50 7MAa numerical range Do, for z, 
'̂  k k a 7MAb linguistic variable ^o, 

'^ k 
50 Ik 7MAc # s of linguistic values for Jo 

?o 7MAd linguistic values {(o, } for Jo, 
^ ki k a Kk 7MAe CMFs{mo. },1 <J < s 

KI 
55) 8MA Select T-conorm u 

a 9MA Select defuzziflcation operator D 

5[) i*t 10 Couple LHS-RHS (choose =>) 

Steps 1, 2a, 2b, 2d, 5, 6, 7TS, 7MAa, 7MAb, 7MAd, 8MA and 9MA in 
Table 1 are always done by the modeler, perhaps with the help of an 
expert. For example, although each cluster may correspond to a 
linguistic value in the LHS or RHS of a rule-base, linguistic values 
are words such as "high", "fast", "light" that must be chosen by 
humans, but the PMFs and CMFs that correspond to each of these 
words can be chosen by humans, or discovered by clustering. The 
first column of the table shows you that humans can (and often) do 
all of the remaining tasks too. The hypothesis for this subsection is 
that clustering may be able to do some of them more reliably, and 
perhaps more efficiently. We will discuss some clustering methods 
that have been used to replace intuition and/or trial and error in 
one or more of steps 2c, 2e, 3, 4, 7MAc, 7MAe, 8TS and 10 in Table 
4.36. 

Where should we cluster: X, Y, XY, or all of these? This interesting 
question has no easy answer, since it's easy to give examples where 
each domain is needed, and other examples where each domain 
fails. Figure 4.52 illustrates a situation where c = 4 in XY, c = 3 in Y 
because Y, and Y, will be mixed into one cluster, and c = 2 in X 

1 4 
because of the mixing of X with X and X with X . (We have "lifted" 
the projections of X Y onto 5RP and X Y onto 9t̂  so you can see 
them.) If you had a reliable cluster validity function or other means 
for discovering the "right" number of clusters, you would not obtain 
consistent results when comparing the rules suggested by clustering 
in these three domains. 



CLASSIFIER DESIGN 339 

9̂ q 

XoY 3 ^ 3 

X2Y2 

• • • 

• • • • 

Y 1 U Y 4 
X4Y4 

• * • • • * • « • * • • • • 

X 1 U X 2 X 3 U X 4 
> 91P 

Figure 4.52 Different numbers of clusters in all three domains 

Figure 4.52 illustrates an important point that often causes 
confusion when clustering is used to build fuzzy systems. The tacit 
assumption in the pattern recognition use of clustering (chapter 2) is 
that some unlabeled data set has "clusters", and all we want to do is 
find them. The data in Figure 4.52 do have visually apparent 
clusters in each of X, Y and XY. The problem here, however, is that 
the clusters don't seem to properly reflect the additional 
information we have in this application - viz., that the labels tell us 
there is a functional relationship between the input and output pairs 
in the training data. There may be rules that cover the data in Figure 
4.52, but our point in this figure is that discovering the rules hy 
clustering might be difficult, if not impossible in this situation. 

We have already discussed the principle of matching prototype 
shapes to TS output functions. Another point about Figure 4.52 
concerns the shapes of the clusters in the data. We know from 
Chapter 2 that one of the principal desires for clustering algorithms 
when used in the context of pattern recognition is that the model 
underlying them match the geometric shapes of the clusters. In 
Chapter 2 we discussed models that attempt to match ellipsoidal 
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shapes - volumetric or cloud clusters. Most cloud seeking models are 
point prototype models that looked for central tendencies in X, and 
represent structure with point prototypes. Shell clusters, on the 
other hand, are best matched by non-point prototype models. You 
see the shapes of the clusters in XY in Figure 4.52. A single clustering 
model would have a hard time matching the variety of shapes in the 
clusters you see in Figure 4.52. Moreover, in this illustration it 
looks like the clusters in X and Y are linear, but this is an artifact of 

the drawing - X and Y are sets in 9t^ and 9^'', and they can also have a 
variety of shapes, perhaps all different. And finally, for p, q > 3, you 
have very little information about cluster shapes in any of the three 
domains. Nonetheless, to the extent possible, the choice of C should 
also be dictated by any knowledge you can glean about cluster 
shapes. 

Figure 4.53 illustrates a case where there appear to be c = 2 clusters 
in XY, and c = 4 clusters in both X and Y. 

9^q 
A. 

Y4j 

Y 3 * 
• 

XY 

* 

^ ' 5 

• • • • » • • • • • • • • 

X, Xo 
• • • • • • • • » • • • > • 9^P 

X Q X A 

Figure 4.53 Different numbers of clusters in the product and fkctors 

Trying to extract rules for function approximation from the data 
shown in Figures 4.52 or 4.53 by clustering may lead to very 
confusing results. When we want to build a classifier with rules, the 
training outputs are usually crisp label vectors, and this presents a 
somewhat different situation. Figure 4.54 illustrates a case where 
there are c = 2 crisply labeled classes in the training data. In the 
upper view in Figure 4.54, the input data X lie along the horizontal 
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axis, a n d the ou tpu t da t a (crisp labels or label vectors) lie along the 
vertical axis. 

• Class 1 
o Class 2 

Figure 4 .54 An XOR-like data set for classifier design 

We can arrange the scales of the data so that there are c = 1, 2, 3, 
clusters in X. For example, with p = 1 we might have 

Xj = {1, 2, 3, 4, 5, 6, 7, 8, 9. 10, 11, 12} 
X^ = {1, 2, 3, 4, 101, 102, 103, 104, 105, 106, 107, 108} 
Xg = {1, 2, 3. 4, 101. 102, 103. 104, 201, 201, 203. 204} 

etc 

{1, 2. 3, 101, 102, 103, 201, 201, 203, 301, 302, 303} 
etc.... 

., 12 

:c=l 
;c=2 
:c=3 
:c=4 
etc. 

Now suppose we append the label 0 to the class 1 feature vectors and 
the label 1 to the class 2 feature vectors - tha t is, the target output set 

is Y = {0, 1}. In the product space 9tP^\ shown in the lower view of 
F igu re 4 . 5 4 , t h e lO d a t a XY will h a v e t h e g e n e r a l form 

X = (Xj,.. . , X , 0)^ for class 1, and x = (Xj x ,1)^ for class 2. There 

are either c = 1 or c = 2 clusters in Y: your assessment will depend on 
the relationship of Y to X. For example, if the input da ta were 

X = {11. 11.1. 11.11 11.1111111111} c=l 

a scatterplot of XY at equal resolution along each axis would suggest 
t h a t there was c = 1 cluster in X, 2 in Y, and 2 in XY. On the other 
hand , for the input da ta 

X = {1, 102, 103, 104, 201, 202, 203. 204. 301 . 302. 303, 304}, : c=4 
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a scatterplot would suggest 4 clusters in X, 1 in Y, and most likely 3 
in XY. The point here is that lO data for classifier design is 
somewhat different than for functional approximation, because the 
outputs are not continuously valued, nor do they necessarily satisfy 
any "smoothness" criterion as they might in the functional 
approximation problem. 

Figures 4.52-4.54 illustrate the difficulty of proposing a guideline 
about where to cluster that reliably covers all possible cases. In a 
recent survey by Pal et al. (1997b) of 14 papers on rule extraction by 
clustering, the authors of the papers studied used either MA and TS 
models (or both), or some hybrid of one of them. Of the 14 authors, 
11 advocated clustering in XY, 3 clustered in X, and 2 clustered in Y. 
One set of authors (Delgado et al., 1997) clustered in all three spaces, 
and one set (Nakimori and Ryoke, 1994) clustered in part of XY. 

Another important consideration when choosing the proper 
domain for clustering is the relationship of p to q. In every example 
we know of where functions are approximated by fuzzy systems that 
are derived by clustering, the input and output domains have 
roughly the same (order of magnitude of) dimensions. We know of at 
least one industrial application at Siemens in Germany where p is 
about 220 and q = 1 (this application is proprietary, so we can't give 
you a reference). What if, for example, p = 200, q = 1? Do you think 
this would have any effect on the efficacy of clustering to extract 
rules? Most clustering algorithms eventually rest their cases on 
distance calculations. For example, if you cluster in XY with any of 
the c-means models in this situation, you will need to make 

calculations that entail distances like ||(s:k,yk)-Vi| . Using the 
Euclidean norm, for instance with p = 200, q = 1, we can write this 
distance in component form as 

^ k - y k J - ' ^ i 
200 - ^ 

U=i J 
input 

+ (yw-V2m.) ' • (4.88) 

output 

If the scales of values in the input and output features are about the 
same, the input feature values will certainly dominate the distance, 
essentially masking the contribution of the output values to the 
location of cluster centers in the product space 9t^°^. The same 
remark applies to the opposite scenario, when p = 1, q = 200. Clusters 
discovered in XY's with such imbalance may be a poor choice for 
representing lO relationships. We are not aware of any studies that 
investigate this problem in relation to rule extraction by clustering, 
and what to do about it, but we think it is a problem that deserves 
careful attention if and when the dimensions p and q differ by more 
than a handful of integers. To shoot from the hip (risking a total 
miss, of course), we suggest trying Joint statistical normalization, so 
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that each feature in XY has sample mean 0 and sample variance 1 
when p and q differ by more than a half dozen or so integers. This 
will at least partially offset the effect of inequitable domination of 
the joint distances by one set of variables or the other when making 
calculations like those in (4.88) during clustering in XY. 

Chiu (1997) unequivocally states that when the rules are for 
approximation of functions with continuous outputs, clustering 
should always be in XY, and when the function being approximated 
is a classifier function (as would be the case in Figure 4.54), 
clustering should be in each of the crisply labeled subsets of X alone. 
Since each of the c subsets of X can be separately clustered into say, c 
rules, /€ will be subdivided into c subsets of rules (one set for each 
class in XY) using this scheme. We tend to agree with Chiu's advice 
about where to cluster when the labels are crisp, because this 
strategy is in line with our general belief that the RHS of the TS 
model should be chosen to reflect the geometry of the function being 
approximated. Here, the function is not continuous (many inputs 

from 9?^ may cause the same response in N c 9?̂ )̂. However, if the 
training data have soft labels they cannot be subdivided and 
clustered separately, and we are back to the question of where best to 
cluster, X, Y or XY. 

Suppose X = XjW--uX^ cSRP has c crisply labeled classes with 

IxJ = Uj for i = 1 to c. Chiu applies the SCM clustering algorithm to 
each X. separately, obtaining, say, c clusters for X, i = l,...,c. Each of 
the clusters thus contributes c. rules to the rule-base, and the total 

c 
number of rules is M = X c,. Since there are c subsets of rules 

1=1 
corresponding to the c subsets in X, we add an index to the rules that 
indicates which class they pertain to: let R , a and u denote the i-th 

ij y ij •' 

rule, its firing strength, and its output function for the i-th class, 
respectively, j=l , . . . ,c ; i=l,...,c. Chiu uses a variation of the zero-th 

order TS model for which the ij-th rule has the general form 

R.y a..(x)=»u..(x) = i , i= l , ...,c;j = l,..., c. . (4.89) 
Chiu uses the T norm (product) to compute the LHS firing strengths 
in (4.89), and departs from the standard TS model by abandoning 
the general TS output formula in equation (4.73). Instead, Chiu 
computes the output of fZ[x) for a given input x e SRP as 
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Although many writers have used other methods to design fuzzy 
rule-based classifiers, only a few have used clustering towards this 
end. Here we abstract an example presented by Chiu (1997) on- japes! 
- the Iris (but which one ?) data. 

Example 4.18 Chiu (1997) advocates the use of clustering to extract 
rules for classifier design based on his subtractive clustering 
method (SCM), which is related to the mountain clustering method 
of Yager and Filev (1994a, b). Since this is an example of classifier 
design, the crisp labels of Iris play an active role in the development 
of the fuzzy rules. 

First, like many before him, Chiu drops the first two features in Iris, 
so the data set for which results are discussed is really the 2D data 
set X = Iris (Figure 4.12). This simplification not only makes the 
classifier work better, but more importantly, means that we are 
looking for a 2 input, single output system. Chiu says he normalizes 
the input data, but does not give the method of normalization. 
However, the domains of the extracted rules suggest that he 
multiplied Iris by 10. The output training data consist of the 
integers 1, 2 £ind 3, corresponding, respectively, to the crisp labels of 
the three classes in Iris. Consequently, the model being developed is 
a 0-th order TS model - that is, a TS system with crisp singleton 
output functions, u.(x) = i, i=l, 2, 3. Remember that here u(x) is 

simply a label to identify a class; the rule-base /? does not attempt to 
approximate the numerical values 1, 2 or 3. 

Chiu subdivides Iris into its three 50 sample components, and 
separates each subset into 40 training data and 10 test data (the 
method of subdivision is not specified). Recall that the MCM and 

SCM objective function is J M C M I ^ ^ I ' ^ ^ " ^ ^ ^' ^ . Chiu defines 
k = l 

a constant r = •\J4/a that he calls the SCM cluster radius for all 
prototypes. In the example being discussed r = 0.5 (so a = 16). 

Chiu clusters the 40 points in each subtraining set, and finds that c = 
1 cluster (i.e., one SCM prototype per class) is sufficient to produce a 
training error of 3/120 = 2.5% on the training data, and 0/30 = 0% 
apparent error on the 30 test data. This is a somewhat curious 
reversal of the usual case, where the resubstitution error is lower 
than the test error. But that's pattern recognition - it all depends on 
the points you happen to use for training and testing! Each of the 
three rules found by this process started with a set of two PMFs, 
which were "two-sided" Gaussians, and the PMFs were optimized by 
the gradient descent method given in Chiu (1995). 
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Figure 4.55 is our adaptation of Chiu's (1997) Figure 9.5, which 
shows the three rules extracted by this process in a pleasant 
graphical style. Chiu does not identify linguistic values for the two 
sets of three premise membership functions shown vertically in 
Figure 4.55, so we have assigned them the values "Low", "Medium" 
and "High" simply to make this example more uniform with 
previous illustrations. Chiu does not give functional forms for the 
PMFs either, and although the two sets are not visually identical, 
they are certainly very similar. 

IF 
petal length x is 

AND 
petal width x is 

THEN 
class is 

R. 

R„ 

R„ 

69 1 

69 1 

Figure 4.55 SCM rules for classifying Iris^ (Chiu, 1997) 

According to Chiu, Figure 4.55 shows the linguistic aspect of rule-
based classification to good effect. For example, he asserts that the 
first rule essentially states that flowers with small petals (small 
petal length and petal width) are Iris Sestosa; that medium size 
petals are class 2 (Iris Versicolor), and the Iris Virginica (class 3) 
have relatively large petals. Although it might take you a while -
say, 10 minutes - this conclusion can be reached by simply looking 
at the values of features three and four of Iris (try it - look at the 
third and fourth columns of Iris in Appendix 2, or at the scatterplot 
in Figure 4.12). This is not to take away from Chiu's example, for if 
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the data had, say, 100 variables, an exercise like this would be an 
exercise in sheer folly. 

Now we return to the remaining questions on our checklist about 
using clustering to extract fuzzy rules. The main questions 
outstanding are: what clustering algorithm G should we use? ; and 
how do we use the clustering outputs in c-partitions U^,U^,orU^^; 
point prototypes V^,V^, or V^^ ; and non-point prototypes B^ , 
B^, or B *̂̂  to create pieces of a fuzzy system? We have already 
provided one answer for these questions - viz., match the prototypes 
B to TS output functions, and the answers to them are almost 
inseparable, so we tackle them together here in a little more detail. 

The most important distinction (after the types of functions being 
approximated) between various approaches to rule extraction by 
clustering seems to be whether the clustering algorithm generates 
point prototjrpes or non-point prototypes. When C produces point 
prototypes, they are usually used to locate central tendencies in the 
input and output domains, and the memberships from U are used to 
(somehow) produce at least initial estimates of the PMFs and CMFs 
(or output functions in the TS model) which are "centered" about the 
prototypes. This case is best understood by first studying the 
situation for crisp partitions of the data. 

Let U^ <^{Xj,...,X^} be any crisp c-partitlon of X. When Y=S(X), 
under the assumption that S is a 1-1 function, each cluster Xj e X is 
carried to a crisp subset Yj = S[Xj ] c Y, and the labels of points in Y. 

c 
are inherited from those in X. Moreover, Y = UYj and Yj n Y. = 0 

' 1=1 

for i ?!: j . Consequently {YJ is a crisp c-partltlon of Y with the same 
partition matrix as X, U'^ = U^. We say that U^ is S-induced on Y by 
the pair (S, U^), and indicate this by writing U^lU"^. (S, U^) also 
Induces (the same) crisp c-partltion {XYj}<->U''̂  on XY, viz., 

U'^^sU^^. Similarly, if we start with a crisp partition U^ of Y, the 
pair (S, U^) Induces the same crisp partition on X and XY (but if the 
relationship of lO pairs is not 1-1, the same x e X or y e Y may end 
up with more than one label vector). And if the beginning partition 
is of XY, it Induces, using the forward and inverse algebras of sets, 
the same partitions on X and Y. Thus, our assumption that S is 1-1 
and tha t y = S(x) for every (x,y)eXY Insures a unique 
correspondence between crisp partitions and sample means of the 

sets X, Y and XY, namely, (X, U^, V^) <^ (Y, U^, V^) o (XY, U ^ , V ^ ) 
with U^iU '^ iU^. 
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Many authors correctly call (LJ-'̂ .V^) and (U^,V^) "projections" by 
S of (U^^, V^^). These operations and this terminology carry over to 
fuzzy, probabilistic and possibilistic parti t ions created by 

clustering in X, Y or XY. Thus, the projection of a fuzzy U-'^ e Mj.̂ t̂o 

X and Y, for example, simply means (X,U^) <^ (Y,U^) o (XY,U^) 
with U'^iU^iU'^. On the other hand, we are aware of papers that use 
the values in one or more of these three partitions in a functional (as 
opposed to partitional) role, and in some cases the authors again 
refer - incorrectly - to the use of an induced U as projection. So, be 
careful about this term. 

The situation illustrated in Figure 4.52 - where S is not a 1-1 
function - makes it clear that U^^, for example, may partition XY in 
a "nice" way, but this does not imply that the S-induced partitions 
U^ and U^ are equally "nice" partitions of Y and X. Thus, in Figure 
4.52 a natural partition of XY into 4 clusters would induce quite 
unnatural partitions on X and Y in the input and output domains. 
This comment applies as well to partitions induced on the other sets 
starting from Y or X, and it bears importantly on the question of 
which of the three sets, X, Y or XY, is the appropriate domain for 
clustering in the context of rule extraction. 

From the approximation point of view, S should be at least 
continuous, and if it is a 1-1 function it will be invertible. Figure 
4.56 shows the (ideal) relationship between the input and output 
data that seems to underlie many methods based on point prototype 
clustering algorithms. The assumption of continuity (which cannot 
be verified for computational representations of S anyway, but 
which is important to recognize from the analytical point of view) is 
the key one. Continuous functions bind neighborhoods in the three 
domains together (but continuity alone is not enough to guarantee 
that disjoint sets are carried to disjoint sets); and contained in these 
neighborhoods, we hope, will be the crisp clusters in X, Y and XY 
found by C, and the sample means of the crisp clusters give us their 
central tendencies. The likelihood that our hope will be fulfilled 
depends on many factors, the principal one of which is that the data 
actually come from a smooth process. 

Consider the sample means | v f | <-> |Vj^ | of the clusters in a pair of 

crisp partitions of X and Y where U '̂̂ sU^. If S were linear we would 

have v^ = sfv^j for each i. This is far too strong for our purposes, 

but if S is continuous, every neighborhood of vf̂  will map to a 

neighborhood of vj as shown in Figure 4.56. 
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Output 

4 
# 

Input 

Figure 4.56 Relationships between neighborlioods, crisp clusters 
and sample means in X, Y and XY data when S is continuous 

Continuity means that for any e > 0 there is a 5{e) > 0 so that 
^x <5(e) Fk - """i < £ • Consequently, it is reasonable to 

assume that when Xĵ  - Vj is small, y^ - Vj will be too (this is an 

assumption because 5(e) could be very large for a very smadl e). This 
assumption enables us to (conceptually) translate the i-th cluster 
into an i-th fuzzy rule : 

MA models : If x is close to v^ then y is close to v 

TS models : If x is close to v^ then y = Uj (x) 

(4.90a) 

(4.90b) 

Point prototypes are almost always used for 0-th order TS models. 
Usually the antecedent part (LHS) of either form in (4.90) is written 
as a conjunction of p atomic clauses, 

If( Xi is dose to v^ and • • • Xp is close to v^) (4.90c) 
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As soon as we m a k e the t e rm "close to" precise, equa t ion (4.90) 
ext rac ts rules from crisp c lus ters in X, Y or XY us ing their sample 
m e a n s . For convenience we refer to th i s me thod a s crisp rule 
extraction (CRE). One role played by the crisp membership functions 

in CRE is to identify the points from which { v ^ j <-> {v^} A {vf^ j 
built . Once th is is done, the PMFs {m } (and for the MA model, 

y 
CMFs {mo }) can be erected in 3{^ and '!K^ in several ways, 

y 

are 
the 

Cr isp m e m b e r s h i p funct ions defined by the rows of any cr isp 
p a r t i t i o n a re s u p p o r t e d by d i sc re te s e t s of po in t s , a n d t h e 
membersh ip values (there are c of them over each suppor t point, b u t 
c-1 of t hem have the value 0) are O's and spikes of height 1. This is 
i l lustrated in Figure 4.57 for c = 2 and p = q =1, where X X ^ u X ^ , 

Y = Yj u Y2 a n d XY = X^Yj u X2Y2 all share the identical crisp 2-
p a r t i t i o n 

u^iu^iu^ - ^ 1 
0 0 

1 0 
0 1 

cluster 1 
(ducks) 

0 
1 

0 
1 

cluster 2 
(llamas) 

(4.91) 

X in 

S(x| out 

m o j =ch(Uj'^)) mj=c l i (U(^) ) 

Figure 4.57 CRE for the MA model from 2 crisp clusters and sample 
means (not shown : zero values of V^^ and V^^ 

A c o m m o n way to m a k e cr isp membersh ip functions from these 
rows is to take the convex hull of the data corresponding to each row 
in t he projected cr isp par t i t ions U^ a n d U'^ a s the numer i ca l 
domain of i npu t and ou tpu t membersh ip functions. For example, 
the convex hull of the first row of U^ yields the domain for the crisp 
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PMF nij = ch(U^j) shown in Figure 4.57, etc. Graphs of the PMFs 
{ml and CMFs {mo.} for linguistic termsets of granularity r = s = 2 
are the rectangular functions defined over domains {D} and {Do}, 
which are the convex hulls of X^, Yj, i = 1,2. 

We have displaced the CMFs and PMFs in Figure 4.57 so you can see 
them as the two rows of the matrix in (4.91), and thus can extend 
your imagination to a similar figure for any value of c. In reality, all 
c membership functions will be distributed along a single axis, that 
is, the c rows of U^ and U^ will result in c crisp membership 
functions in the input and output domains along each input and 
output variable axis. Figure 4.57 depicts the ideal case, where the 
clusters are well separated so their projections don't overlap. Often, 
however, the cluster substructure is mixed (overlapping), and then 
the nice clean picture shown in Figure 4.57 can deteriorate into a 
real mess. 

There can only be 2 rules for Figure 4.57 and because mj n ma = 0 , a 
given input fires jus t one of them. Since the membership functions 
are crisp, any T norm in the antecedents of the rules will return the 
number 1 as the firing strength for any input. For the MA model 
shown in Figure 4.57, y = SMA(X) depends on the choice of D . If we 
use the center of gravity approach, and let COG , COG denote the y 
coordinate of the COG of the rectangular functions mo and mo , 
respectively, we get : IF x e Dj THEN y = Sj^(x) = COG., j = 1,2. 
Thus, the implemented MA approximation for S would be a 
function, but not 1-1, and would not generalize well at all. In the TS 
model, the result of firing rule i, i=l, 2 is simply y = STS(X) = Ui(x). 
This is a pretty uninspired use of the clustering outputs: we can do 
much better. 

Understanding Figure 4.57 leads to an appreciation of how the rows 
of projected non-crisp partitions can be used in various ways to 
soften crisp rule extraction. Please compare Figure 4.57 to Figure 
4.28 to see the relationship between the crisp rules extracted by 
clustering and crisp rules that you might get from a decision tree 
approach. Figure 4.28 shows you the same crisp rule patches that 
you see in the product domain in Figure 4.57. The crisp rule patches 
extend beyond the training data so that the rule-base can produce 
outputs for non-training inputs. This immediately shows us why 
rule extraction based on (4.89) with crisp clustering algorithms is 
not very robust - the rules suffer from exactly the same problem as 
crisp decision trees. Thus, we follow path similar the one taken by 
Chang and Pavlidis (1977). Here, the failure of crisp patches leads us 
to the use of fuzzy or possibilistic clustering algorithms for rule 
extraction in function approximation. 
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There are many soft rule extraction (SRE) methods based on 
clustering ( e.g., Sugeno and Yasukawa, 1993, Yoshinari et al., 1993, 
Sin and deFigueiredo, 1993, Yager and Filev, 1994b, Nakamori and 
Ryoke, 1994, Chiu, 1994,1995, Babuska and Kaymak, 1995, Cheng et 
al., 1995, Runkler & Palm, 1996, Delgado et al., 1997, Kim et al., 
1997, Runkler and Bezdek, 1998c, 1999). The number of ways 
authors have used the information produced by clustering for SRE 
defies an intelligent (computational, artificial or biological 
intelligence!) classification of methodologies. We are content here to 
illustrate several approaches of SRE for function approximation, 
and refer you to the literature for detailed discussions. 

If you apply any soft clustering algorithm to (say) XY that results in 
a pair (U^^, V^^), the point prototypes can be projected onto X and Y 
exactly as in Figure 4.57. Now, instead of 0-1 rows in the matrix in 
(4.91), you will have (say) a fuzzy partition of the ducks and llamas. 

YSTTXY U^sU'sU^'^ = 
0.9 
0.1 

0.8 
0.2 

0.7 
0.3 

0.2 
0.8 

0.1 
0.9 

0.4 
0.6- (4.92) 

soft boundary between ducks and llamas 

U, 

S(x) 

2n 

U 2k 

U, 21 
rX ^ x 

T"ri]W. 

Figure 4.58 The basis of MA point prototTpe soft nile extraction 
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At this Juncture different authors strike out in many directions. The 
most straightforward extension of CRE is to project the rows of U-'^ 
onto X and Y, leading to the situation illustrated in Figure 4.58 for 
an SISO system. In Figure 4.58 we show only the projection of the 
first row of U onto X and the second row of U onto Y. Both values 
from each column in U can be projected into both spaces. You can 
visualize the "missing" values in Figure 4.58 by recalling that each 
column sum in U is 1, so the difference between the value shown and 
the dashed line marked " 1" represents the value not shown for each 
column. Alternatively, if you imagine rotating, say, the vertical 
memberships 90 degrees to the right and aligning their "0" axis with 
the "1" axis of the horizontal memberships, each membership line 
will have two components that sum to 1. 

We will not repeat Figure 4.58 for the non-point prototype case, since 
the only difference between a figure for this case and Figure 4.58 
would be the depiction of non-point prototypes (lines, planes, 
quadratics, etc.) in the product space containing XY. Figure 4.49 
shows non-point prototypes this way, but does not depict the values 
of U like Figure 4.58 does only because Runkler and Bezdek (1998c, 
1999) did not use U in the work discussed in Example 4.17. 

The problem you now face is what to do with the projected (point or 
non-point) prototypes and discrete sets of memberships lying along 
the range of each variable in the input and output domains. In 
Example 4.17 Runkler and Bezdek (1998c) simply ignored U, and 
placed premise membership functions with user-selected shapes 
that satisfied a regularity constraint by the positions of the 
projected point prototypes (because they used a TS model, CMFs were 
not needed). No attempt was made to subsequently optimize the 
PMFs. 

Yager and Filev (1994b) use their MCM algorithm to procure c 

prototypes V ^ e 9^PI for the MA model, MISO case. For an MISO 

system with input x e 91^ and output y e 9t, V^^ is converted into 

the fuzzy rule: If "x is CLOSE to v^" then "y is CLOSE to v^". 

Now defining the fuzzy sets m^ = CLOSE to v^ and mo^ = 

CLOSE to vf, we get the rules : If m.(x) then mo,(y) ;i = l c. 
Each antecedent clause is translated into p atomic clauses : 
Xĵ  is m ,j^; k = 1,..., p . Gaussian-like membership functions are 

-((x - V ' ) ^ / 2 C T ^ ] 

used for the PMFs and CMFs : m..(x^) = exp ^ " « ' «' and 
_f(y_vy)2/2a^) 

mOj(y) = exp ^ ' ' \ Oy is the spread of the j - th antecedent of 
the i-th rule and a is the spread of all of the consequents. 
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Yager and Filev {1994b) used the height method of defuzzification for 
the MA model (equivalently, the TS model with zero-th order 
functions for the consequents). Initial estimates of the parameters 
Oy are taken as 1/1/2^, where P is one of the MCM parameters in 

Table 4.16. All parameters of the system (vj|,v^,a..) are then further 
tuned with gradient descent to minimize the total squared error 

n M 112 

X y,^-S(x.) . Although MCM determines the number of 
prototypes (and hence rules) automatically, control of c is implicit 
in the parameters of the MCM potential function and the threshold 
value used to stop the process. Thus, an inappropriate choice of these 
parameters may over-determine or under-determine the number of 
rules. U is not used, of course, because MCM does not produce one. 
The approach in Chiu (1994) is very similar, differing principally in 
the use of SCM instead of MCM. 

Some authors abandon the PMF structure of the LHS of /? shown in 
Figure 4.32 altogether, opting instead for a much simpler scheme in 
which the firing strength a.(x) of R in (4.72) is replaced by some 
presumably reasonable function of x. Specifically, a simplified 
form of (4.72a) is used: 

R.: \|/.(x) ; l < i < c (=M) . (4.93) 

In (4.93) the functions {\|/.} are usually interpreted as membership 

functions for clusters in the input space 91^, and indeed, are often 
found or defined this way. The fuzzy system defined using (4.93) 
instead of (4.72) is not the LHS of a proper MA or TS model, so we 
call the resultant fuzzy system a hybrid MA or hybrid TS system, 
respectively, according as the RHS of /€ is configured in an MA or TS 
fashion. 

Abandoning the PMF structure disables linguistic interpretation of 
the rules , effectively skipping much of the bother and 
computational complexity (and arguably, some of the utility) of 
finding linguistic termsets and using approximate reasoning to find 
ttj (x). To see how authors use this idea, it is convenient to have a 
slightly different notation for the function in (2.7a) defined by the 
first order necessary condition required of U for local extrema of the 

FCM objective function. For any x, v. E 9?P,X ?i v^.i = 1 c,V = {v.}, 

any inner product induced A-norm ||x||^ = x"^Ax, and m > 1 we let 



354 FUZZY PATTERN RECOGNITION 

V|/.(x) = FCMj(x,V)s 
c 

I 
J = l 

/ 
x-vj 

A 

2 A 
m-1 

) 

c 

I 
J = l ^ 

X - V . 
Jl A ; 

2 A 
m-1 

) 

, 1 < 1 < c. (4.94a) 

Another popular choice for \|/j in (4.93) is an exponential function in 
p variables centered at v., 

v|/(x) = EXP.(x.Vj) = e 2V« 'llAJ l< i<c (4.94b) 

Values of (4.94a) and (4.94b) lie in (0, 1), and both are maximum 
when X = Vj (for this to be true for (4.94a) it is necessary to define 
FCM.(x, V) = 1 <=> X = Vj). The shapes of these two functions as 
continuous variables of x for fixed V can be very different because 
FCMj depends on the location of all c prototypes, whereas EXP. is 
always radially symmetric in x about v . Moreover, (4.94a) is not 
generally unimodal, whereas (4.94b) has but one maximum. This 
important consideration has been largely ignored in rule extraction 
by clustering (see Runkler and Bezdek (1999) for an extended 
discussion of this topic). 

Sin and deFigueiredo (1993) consider only hybrid SISO TS models. 
They use FCM to cluster in XY, and the XB index V^„ at (2.102) to 

XB 

select an optimal number of clusters. With A the identity in (4.94a) 
rule i is : IF FCMj(Zj(x), V ^ ) THEN Uj(x), where z.(x) depends on 
both the input x and the output u.(x). The CMFs {u.(x)} are then 
estimated by minimizing Ê  = £ ^tk^f^if^k) ~yk) ^^^ ^ ~^' ^'•••' '̂ • 

k=l ' 
Please be careful about our confusing use of u here; u is the ik-th 
entry of U, while u.(x) is the output function for the i-th rule in /€. 
The role of U is limited to using its i-th row as weights of E.. Sin 
and deFigueiredo suggest that the output functions might be 
represented, for example, by training c feed-forward neural 
networks with XY. The only example they give, however, uses the 
psuedoinverse method to find the least squared error solution for 
the coefficients of a first order RHS. 

For generalization, given xeSRP, let z.(x) = L^ j^^J. The firing 

strength of rule i is computed as aj(x) = FCM.(Zj(x),V-'^); then 
S.pg(x) is computed with equation (4.73) as usual. Notice that each 
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rule uses a different z^[x) to get its firing strength, and that this 
number depends on both the input to and output of rule R. 

In one of the most widely ranging papers we know of for SRE, 
Delgado et al. (1997) offer 6 methods they call ESTl, ..., EST6, for 
constructing both proper and hybrid MISO TS models for function 
approximation. We briefly review this paper to exemplify jus t how 
rich the variety of methods you can choose from really is. Several 
methods of cluster validity are alluded to, but only the Fukuyama-
Sugeno (1989) index is exphcitly discussed. EST1-EST3 are 0-th 
order hybrid models that do not decompose the input space, instead 
reljang on (4.93) for direct estimation of firing strengths. 

For ESTl and EST2, FCM is used to cluster XY, and then only V^ and 
V^ are used. Rule i for ESTl is, using the Euclidccm norm in (4.94a) : 
IF FCMj(x,V^) THEN Uj(x) = v^. For generalization, given xe3i^, 
compute a^(x) = FCMj(x,V-'^) and u.(x) = v^, 1 < i < c; then S.j^(x)is 
computed with equation (4.73). This scheme makes no use of the 
fuzzy partition U ^ . EST2 is ESTl with (4.94a) replaced by (4.94b) 
and A = C, the fuzzy covariance matrix for cluster i (from, for 
example, the GK algorithm). 

EST3 applies FCM to XY, uses the terminal fuzzy partition U^^ to 
initialize U''̂ ' emid then runs FCM on X alone (at the same value of c). 
Then the lO data and equation (4.94a) with the Euclidean norm are 
used with both V ^ and Vf (here Vf is obtained by running FCM on 
X - it is not the projection of V^^ onto X) to define constants for the 
output functions of a zero-th order TS model. Specifically, for 1 < i < 

u,(x) = 
i [ F C M , (X^ , V ^ ) • FCMj ((x^. yk). V ^ ) ] " y^ 

i [ F C M , (X^ , V ^ ) • FCM, ((x^, y^), V^)j™ 
(4.95) 

In (4.95) m is the same weighting exponent that is used for FCM 
clustering. Again with the Euclidean norm, rule i for EST3 is : IF 
a,(x) = FCM,(x,V^) THEN u,(x) at (4.95). For generalization, given 

X e 91P, compute a.(x) = FCMj(x, V^) and u.(x) = v,̂  (by (4.95)), 1 < i 
< c; S.j^(x)is computed with equation (4.73). 

Method EST4 in Delgado et al. (1997) uses an approach to design a 0-
th order hybrid TS model that is quite unlike any of the methods 
reviewed so far. In this scheme X and Y are clustered separately into. 
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say c and c clusters, where c and c are not necessarily equal, but 
are chosen by one of a number of different validation strategies 
which are enumerated in Delgado et al. only through references. 
Under this plan the rule-base can have ĉ  • c rules, and each rule is 
assigned a weight w.. that is called the certainty of the rule that 
relates cluster i in X to cluster J in Y. Also mentioned are one set of 
input membership functions {m.(x)} defined on 9?^and a set of 

constant output functions, V , that are found by clustering in Y. 
Delgado et al. do not specify what clustering model is used to find 
these parameters. 

If FCM is the clustering model that produces V^ and V^ in X and Y, 
respectively, and \|/j(x) is computed with (4.94a) or (4.94b), rule i 

takes the general form : if a.(x) = FCM.(x, V-'̂ ) then u (x) = v^ with 
certainty w... Delgado et al. suggest several ways to compute the {w } 

from XY and the {vj/.(x)}. Finally, a T norm is selected to integrate 
the information in the weights and input memberships, resulting in 
the following generalization of (4.73): given xe^t^ , compute 
aj(x) = FCMj(x, V^) and u.(x) = Vĵ , 1 < i < c.; then EST4 is computed 
as 

I I T ( V i ( x ) , w , . ) v J 
EST4(x) = ^^^ . (4.96) 

i lT(v| / ; (x) ,w ) 
i=ij=i •' 

Several examples given in Delgado et al. (1997) suggest that ESTl-
EST3 are somewhat better than EST4, and not enough details are 
given about EST4 to understand exactly how things are done. 
Nonetheless, this exhibits several very different approaches to the 
use of clusters in X and Y to secure rules to approximate S. 

EST 6 clusters in XY to establish a hybrid 1-st order MISO TS model. 
XY XY 

FCM is used to produce U and V , which are then used to initialize 
the GK clustering algorithm (recall that this is one of the clustering 
models capable of producing "linear" prototypes from the principal 
eigenvectors of fuzzy covariance matrices. Section 2.3.A). Outputs of 
the GK algorithm are then used to initialize the LHSs of the system. 
Equation (4.94a) is correct in functional form for the GK model, but 
instead of a fixed A-norm, AO of the GK functional produces 
estimates of c matrices {A.}. Delgado et al. use these in (4.94a) with V^ 
from GK to define rule i for EST6 as follows: If aj(x) = FCM^ (x, V^) 
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P 
Then u.(x) = ajQ+ X â ĵ x,̂ . The coefficients {a^^:! < 1 < c;0 < k < p} 

k=l 
of the consequent functions are then estimated using recursive least 
squares, and Delgado et al. state that the GK partition U^^ is used 
during this procedure, bu t they do not state how. Finally, these 
authors also state that they used a genetic algorithm to optimize this 
system with respect to the MSE error it commits on XY, but no 
details of the GA or how it was used were given. 

We have now seen several ways that the values {u } in fuzzy 
partitions U found by clustering in X, Y, or XY are used functionally 
in conjunction with point prototypes. Another approach taken by 
some authors returns us to Figure 4.58, where the values {u } are 

shown as sets of discrete points projected from U^^ onto the input 
and output domains of the fuzzy system. Again, a variety of 
approaches for using these memberships have been reported in the 
literature. Figure 4.59 shows a set of projected memberships (like 
the ones in Figure 4.58) in either an input or output domain of a 
fuzzy system, and a few of the many ways we might construct 
membership functions from them. 

1 o 
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o ° 

O o 
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memberships linear interpolation 
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o \ / o 

o ^ / o x / o 
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triangular Cauchy B-splines 

Figure 4.59 Using projected memberships from U to build FMFs 

More generally, each row of U corresponds to (n values of) a 
membership function for the 1-th cluster. It is possible that 
"projection" assigns more than one membership value to a feature 
value. When this happens some type of aggregation operation 
(usually the maximum) must be used to resolve the conflict and 
assign a unique membership value to the feature value. When there 
are p features, the i-th row of U^^ will be "projected" onto all p of 
them for each k = 1 to n, but the shapes of the p membership 
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functions resulting from this operation may be very different 
because the distributions of values in each feature vary. 

Sugeno and Yasukawa (1993) discussed several ways to build 
membership functions from the values {u }, including piecewise 
linear interpolation and convex completion as shown in Figure 
4.59. If the functions used to fit the projected memberships (such as 
the ones produced by convex completion) are not smooth, when they 
are combined with a non smooth T-norm or T-conorm such as the 
minimum or maximum, the approximation to S can be pretty 
bumpy. 

The bottom tier of Figure 4.59 depicts three methods that are smooth 
approximations to projected memberships in U^^. We can simply 
erect triangular (or trapezoidal) membership functions (e.g., Sugeno 
and Yasukawa, 1993, Genther and Glesner, 1994, Klawonn and 
Kruse, 1997), perhaps centered at the projections of V^^; we can use 
predefined shapes such as Cauchy or Gaussian functions, again 

XY 
centered at the projections of V (e.g., Chung and Lee, 1997, Runkler 
and Bezdek, 1999); or we can use a numerical technique such as B-
splines or least squares to fit, say a radial basis or cubic function to 
the memberships (Halgamuge et al., 1995). See Runkler and Bezdek 
(1998c) for a catalog of other functions that can be used, as well as a 
unified interface (the ACE membership function toolbar) from 
which they can be built. 

In any case, once we have the membership functions, they can be 
taken either as the final PMFs (and/or CMFs in an MA model), or as 
initial estimates that will be subsequently tuned using a technique 
such as gradient descent (Yager and Filev, 1994b, Chiu, 1994), or 
genetic algorithms (Delgado et al., 1997). With a little thought, you 
can invent a new way to use this information too. The point is, (U^^, 
B'̂ )̂ carries a lot of information that can be used, but may not be 
trusted with absolute confidence. Why not? That's the last question 
on our list, and the easiest one to answer. 

Finally, what might go wrong when clustering is used for rule 
extraction? Chapters 2 and 3 contain only a fraction of the 
clustering algorithms you can use to extract rules from data for 
fuzzy systems. But even this fraction is fraught with peril for the 
unexperienced user in both pattern recognition, where you really 
just wcint the clusters, and here, where you are using clustering as a 
tool for building fuzzy systems. The biggest danger all of us face in 
either application? Clustering algorithms WILL produce clusters 
(i.e., partitions) - that's their job - whether the data possess any or 
not. Perhaps approximation of functions by fuzzy systems is an 
even bigger danger. We'll leave you hanging on this unsettling note, 
and return to this thought in Section 4.11. Here's a hint to whet your 
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appetite : our coverage of this topic amounts to surve3angjust a few 
trees in the jungle qffunction approximation. 

H. Heuristic rule extraction 

Structural parameters of rule-based classifiers are not always 
estimated with training data using decision trees, clustering or 
whatever else happens to be on your mind at design time. Often the 
rules are simply defined by the modeler, and the lO data cire used for 
testing and refinement of the subjective design, and possibly for 
parametric estimation, optimization and validation. While this 
may sound unscientific, the two examples in this subsection show 
that the "trial and error" method of rule-base development is alive 
and well, is sound, and can lead to very effective rules for 
classification. This section contains two examples of classification 
performed with fuzzy rule-bases that are developed this way, and 
which, for lack of a better word, we will call heuristic designs. Both 
examples use the MA formulation of rule definition and inference 
structure. 

Our first example involves a straightforward classification problem 
- recognizing two similar chromosomes from features extracted 
from their images (Keller et al., 1995a, b). The rule-based system 
discussed in Example 4.20 "locates" a portion of an image of a 
handwritten address that contains the street number, and is based 
on the work of Gader et al. (1995a). This is not a traditional use for a 
classifier, and it shows quite nicely the power and flexibility of 
fuzzy rule-bases for classification. As you will see, this system uses 
MA rules. 

Example 4.19 Human genetic investigations have provided some of 
the most dramatic progress in medicine in recent times. One of the 
standard tools used is karyotyping, a process of visualization and 
interpretation of chromosomes. This labor-intensive process can 
yield a large amount of information about a human subject and 
suspected or potential disease processes. To decrease the labor 
involved, efforts have been made to automate the process of 
karyotyping. These efforts have achieved only limited success to 
date. Successful automation of the karyotyping procedure would 
have far reaching economic implications. Cost reduction would be 
significant because of the large number of specimens analyzed each 
year around the world. 

Many pattern recognition approaches have been used to classify 
isolated chromosomes using features which are either directly or 
indirectly related to the banding patterns that result when 
chromosomes from cells in metaphase (the stage before cell 
division) are stained (Errington and Graham, 1993, Graham and 
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Piper, 1994, Stanley et al., 1995, 1998). The banding patterns are, in 
principle, unique to each of the 24 classes of chromosomes in a 
human cell (homologue pairs of chromosomes numbered 1-22, and 
either a homologue pair of X chromosomes for a female, or X and Y 
chromosomes for a male). 

Figure 4.60 shows idealized representations (ideograms) and 
par t icular examples for two similar chromosome classes 
(chromosomes within the same "Denver Group", Errington and 
Graham, 1993). It is difficult to directly match the real 
chromosomes to the ideograms. The "banding level" is connected to 
the resolution of the bands in a complete cell image (a metaphase 
spread). The "400-band level" in Figure 4.60 means that there should 
be roughly 400 dark bands visible in all 46 chromosomes in the 
metaphase spread. The "narrow" point of the chromosome is called 
the centromere, which divides the chromosome into two arms: the 
P-arm (or short arm) and the Q-arm (or long arm). 
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Figure 4.60 Ideograms and examples for chromosomes 16 and 18 

Features such as centromeric index (the ratio of the length of the 
short arm to that of the entire chromosome), relative length, and 
banding pattern information, including bandwidth, numbers of 
bands, band spacing, and band intensity can be used with human 
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knowledge to create a rule-based classifier for recognition of these 
two chromosomes (Keller et al., 1995a, 1995b). 

To distinguish chromosome 16 from chromosome 18, rules were 
developed to generate class confidences directly from Centromeric 
Index (CI) and Relative Length (RL). Table 4.37 contains the rules 
used to determine the class 16 confidence from these measurements 
(class 18 rules are similar). 

Table 4.37 Fuzzy rules for class 16 confidence 
based on Centromeric Index and Relative Length 

Cl-> 
iRL VL L M H VH 
VL VL VL L M H 
L VL VL L M H 
M VL L L H H 
H VL L M H VH 
VH M M H VH VH 

Keller et al. used five linguistic values for all their rules: Very Low 
(VL), Low (L), Medium (M), High (H), and Very High (VH). Since 
relative length is less reliable than the centromeric index, its 
variation has less effect on the consequent than changes in CI. An 
example of the rules used is: 

IF Centromeric Index is High 
AND Relative Length is Very High 
THEN Chromosome 16 Confidence is Very High 

The rules and membership function definitions for the premises 
and consequents were entered into the CubiCalc RTC fuzzy logic 
development environment (CubiCalc, 1990). The fuzzy sets described 
in the rules were heuristically generated by examining the values of 
the variables on a small training set of 400 band level chromosomes 
taken from images acquired at Ellis Fischel Cancer Center, 
University of Missouri-Columbia. For the two chromosome classes 
50 rules were generated based on the CI and RL features. 

A set of rules involving CI and RL would be sufficient to separate 
some chromosome classes. However, chromosomes 16 and 18 have 
similar relative lengths and centromeric indices. So, additional 
feature information (found in the banding pattern) is needed. The 
banding pattern is characterized by the number of bands in each 
arm, relative bandwidths, and relative distances of bands from the 
centromere. However, it is difficult to correctly segment the bands in 
real chromosome images, so indirect measurements are often used. 
Chromosome "blobs" are found in metaphase spreads (not an easy 
task in itself: Stanley et al., 1995, 1998). The medial axis, or 
skeleton of each (hopefully) single chromosome is generated by 
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standard image processing techniques such as thinning (Gonzalez 
and Woods, 1992). The length of the chromosome is then the 
Euclidean or pixel length of the skeleton. For each point of the 
skeleton, both the average intensity along each line perpendicular 
to the skeleton and within the blob (the density profile) and the 
second moment of those densities along the perpendicular (the 
shape profile) are calculated (Piper and Granum, 1989). 
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Figure 4.61 Shape profiles for chromosomes 16 and 18 
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Figure 4.61 shows shape profiles for typical examples of 
chromosomes 16 and 18 as measured at pixel locations along the 
axis of generated skeletons. The shape profile contains direct 
information about the banding patterns. 

To extract band-related information, "standard" weighting 
functions were correlated with the shape profile of each arm of the 
chromosome under investigation. The weighting functions were 
designed to match the banding pattern exhibited by the chromosome 
arm for the specific class. This approach was used because it 
eliminated the need to segment the bands directly, which could lead 
to considerable false information by disobeying the principle of 
least commitment. These features are similar to the "wdd" features 
employed by Piper and Granum (1989) but they carry more direct 
evidence about particular class banding patterns (see Keller et al., 
1995a for more details on the functions used). 

Table 4.38 shows the eight rules generated for one of the three 
banding pattern correlation values for the p-arm. Keller et al. used 
similar rules for three band correlation functions, giving a total of 
24 rules for class confidence based on shape profile information. 
The rules and membership functions were heuristically generated. 
Hence, /? had M = 74 rules for this 2 class problem. 

Table 4.38 Class confidence based on the p-arm 
banding pattern of data file (wdl6tbp) 

wdl6tbp 16 Confidence 18 Confidence 
VL VH VL 
L H M 
M M H 
H L VH 

In a preliminary test, features were extracted from 23 400-band-
level chromosome # 1 6 images and 30 400-band-level chromosome 
# 1 8 images in the database. The inference done in Cubicalc was 
based on the MA model and employed the minimum operator to 
compute firing strengths, summation as the rule aggregation 
method, and center of gravity (COG) for defuzzification. By using 
maximum class confidence as the crisp decision rule, Keller et al. 
obtained 100% correct classification for # 16 and 87% correct 
classification for # 18 (resubstitution). By thresholding the 
difference between chromosome 16 confidence and chromosome 18 
confidence, and rejecting chromosomes whose confidence difference 
was too small, they report 100% (resubstitution) reliability on this 
small set with a 23% rejection rate. Finally, the confidence values 
can be used in subsequent processing. 
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Our second example comes from the field of handwritten address 
recognition (Gader et al., 1995a). Recognition of handwriting is 
important for automating document processing functions such as 
mail sorting and check reading. As we have seen and will see again 
(Wang and Suen, 1983, 1984, 1987, Chi and Yan, 1995, 1996, Chi et 
al., 1995, 1996), fuzzy set theory can be an appropriate framework to 
address several problems in handwriting recognition. Handwritten 
character and word classes are not crisp sets. Inherent amibiguity 
exists at several levels, requiring that multiple sources of 
information be utilized to correctly interpret handwriting. 
Furthermore, document analysis systems consist of multiple stages 
of processing: image processing to separate handwriting from 
background, segmentation to isolate individual regions such as 
lines, words, and characters, feature extraction to characterize 
pattern classes, and finally, classification. Each stage of processing 
contains uncertainty since the algorithms do not always yield the 
correct result. Therefore, there are two sources of ambiguity in 
handwriting recognition: the data are inherently ambiguous and the 
algorithms are imperfect. 

Example 4.20 The ambiguity between numerals and alphabetic 
characters in handwriting is a problem, as shown in Figure 4.62, 
which contains, for example, an "F" as the first letter of the word 
"Franklin" that looks like the numeral "7"; and an "1" as the first 
letter of the word "Ingraham" that can be mistaken for the number 
"2"; and several number "7"' s that are very similar to the "F". 

Figure 4.62 E^xamples of confusing street numbers and letters 

Developing an effective interpretation system of handwritten 
addresses for automation of mail delivery is a challenging task. The 
numeric fields in an address, i. e., the street numbers and ZIP code, 
play a crucial role in reducing the complexity of the address 
interpretation task. If these numeric fields are correctly detected 
and identified, the number of possible addresses is significantly 
reduced. Correct location and interpretation of the street number 
field reduces the number of possible street names. Thus, we must 
locate the street number without any knowledge of the street name. 
This is not a "standard" classification problem, since the goal is to 
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find the location where the street number ends (if there is a street 
number in the image). There is the equally important task of 
recognizing the digits, which in this example was performed by feed
forward neural networks (Section 4.7). 

Potential address images were input to the system as described in 
Gader et al. (1995a). Image processing was used to segment subimages 
of lines from handwritten addresses into sequences of primitives. 
Six neural networks were used in the confidence assignment: two for 
numerals (0-9), and four for alphabetic characters. 

Two types of feature vectors were used as inputs to the neural 
networks, the transition feature vector and the bar feature vector. 
The bar-features are completely described in (Gillies et al., 1992, 
Gader et a l , 1992, Gader et al., 1995a), while the transition features 
are described in (Gillies et al., 1992, Gader et al., 1997a, b). The 
neural networks were trained using backpropagation, and used 
class-coded outputs. They also contain a class named "garbage" to 
account for segments which did not represent any character image, 
such as multiple cheiracters or pieces of characters. 

Transition features are the locations and numbers of transitions 
from white pixels to black pixels along horizontal and vertical 
lines. Transition calculations are performed from right to left, left 
to right, top to bottom and bottom to top. This information is 
encoded as a feature vector with 100 elements. Three neural 
networks for the confidence measurements used transition feature 
vectors, one each for upper and lower case alphabetic characters, 
and one for digit recognition. 

The bar features encode directional information from the 
foreground and the background. First, up to 8 feature images are 
generated, each corresponding to one of the directions east, 
northeast, north and northwest, in either the foreground or the 
background. Each feature image has an integer value at each 
location that represents the length of the longest bar which can fit at 
that point in that direction. For each of the 8 feature images, 15 
different subimage zones are created. The values in these zones are 
summed and normalized between 0 and 1. The result is a feature 
vector of size 120. Three neural networks for the confidence 
measurements used bar feature vectors, one each for upper and lower 
case alphabetic characters, and one for digit recognition. 

Primitives often contain only parts of characters. To obtain 
confidence measurements on characters, subimages of pairs and 
triples of the primitives were also used to obtain character 
confidence assignments using the neural networks. Hence, there 
were six character confidence readings and measurements at the end 
of each primitive, each corresponding to a single primitive, a pair or 
a triplet of primitives, in either upper or lower case characters. The 
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maximum of these 6 confidence measurements was used as the 
character confidence feature for the fuzzy rule-based system. 

A fuzzy logic system with 48 rules that aggregated results of image 
processing and character recognition modules to assign confidences 
concerning the locations of street numbers in address blocks was 
developed in Gader et al. (1995a). The neural networks described 
above were used to assign alphanumeric character class confidences 
to combinations of primitives. Each consecutive combination of 
primitives starting with the leftmost primitive was assigned a 
confidence value by the fuzzy rule-base indicating the possibility 
that the combination represented a complete numeric field, i.e., the 
potential location marker for the numeric portion of the street 
address. One example of a rule in this system is: 

IF the next primitive is too complex to be recognized as 
digits, 

AND the numeric field confidence of the current primitive 
is large, 

AND the gap size between the current and the next 
primitive is medium; 

THEN the street number confidence should be positive 
large. 

Linguistic values of each linguistic variable were represented by 
standard trapezoidal membership functions. For example, the 
membership functions for the linguistic values small, medium, 
large, and huge are shown in Figure 4.63 for the linguistic variable 
gap (size). Notice that Large and Huge are both 1 for x close to 1. 
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Figure 4.63 Membership functions for the linguistic variable "gap" 

Gader et al. followed the usual pattern for the development of 
heuristic rule-based systems: an iterative cycle of rule definition. 
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test ing, and rule refinement. The rules in the fuzzy rule-base were 
initially wri t ten based on p ic tures of address blocks (SUNY, 1989). 
The system w a s t hen t ra ined with 71 image blocks us ing the s ame 
MA model t h a t w a s descr ibed in Example 4 .19 , implemented in 
Cubicalc. The system w a s t ra ined on the 71 images, each of which 
was crisply labeled a s having or not having a numer ic address field, 
a n d if present , i ts location. The training process w a s i terated unt i l 
the r e su l t s were satisfactory. Following each t ra in ing cycle, the 
sys tem w a s adjus ted ba sed on a n analysis of the resu l t s , paying 
par t icular at tent ion to the error cases . 

After t raining, 78 new image blocks were used as a test set. A few 
a d j u s t m e n t s were m a d e b a s e d on these r e su l t s . For example , 
additional rules (such as rules to handle "P.O. Box") were added to the 
ru le-base , and a few ru les were changed. The union of the t ra ining 
a n d tes t se ts was t hen u sed a s a reference trciining set, a n d a blind 
(validation) t e s t w a s conduc ted on 155 addi t ional image blocks . 
During the blind test, the ou tpu t confidence value was thresholded. 
Those locations a t which the overall system confidence was above a 
u se r specified threshold were labeled a s locations of street n u m b e r s 
by the system. 

Table 4 .39 Success and location error rates for 
the training and validation sets 

Success rate 
t r a i n va l ida te 
9 1 % 8 6 % 

Location rate 
t r a i n va l ida te 
9 1 % 8 7 % 

Table 4 .39 shows the resul ts of the final t raining r u n and the blind 
tes t of 155 images, 79 of which contain street number s . The success 
ra te is t he percentage of answers t h a t are correct; either a n image 
block contained a street n u m b e r and it was correctly located or it did 
no t conta in a s t ree t n u m b e r a n d the sys tem indicated no s t ree t 
n u m b e r . The location rate is the percentage of s treet n u m b e r s t h a t 
were correctly located. 

The performance of th i s system i l lustrates the capacity of a n MA 
fuzzy ru le-based sys tem for locating s t reet n u m b e r fields. A wide 
variety of mult i- layer feedforward networks for locating t he s t ree t 
n u m b e r s were also t ra ined us ing backpropagat ion and tested us ing 
the s a m e training, test and validation da ta sets . The numer ic i npu t 
variables used by the fuzzy logic system were also used for the neura l 
ne tworks . The networks performed reasonably well - b u t not a s well 
a s t he fuzzy logic sys tem. The bes t success ra te on the t es t d a t a 
ob ta ined by any n e u r a l ne twork w a s 79%. The fuzzy ru l e -base 
achieved a test ing success ra te of 86%, which is significantly bet ter 
t h a n t h a t achieved by any of the neural networks ©. 
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Gader et al. (1995a) conjectured that the reason the fuzzy logic 
system outperformed the optimized neural network was that the 
granularity of knowledge required to locate street numbers is 
"coarser" than that required to perform tasks such as character 
recognition. Tasks that require knowledge about the world that is 
not statistically represented in the data are difficult or impossible 
for neural networks to learn, but this type of knowledge can be 
encoded with rules. 

I. Generation of fuzzy labels for training data 

Several of the methods discussed so far require soft labels for the 
training data in order to build the decision or classifier function. 
This includes the soft k-nn rules, the fuzzy integral, fuzzy decision 
trees, soft rule - based classifiers, and fuzzy aggregation networks 
(Section 4.7). This was done as early as 1985, when Keller and Hunt 
(1985) softened the training of the classical linear perceptron. The 
assignment of soft labels to training data is an important step in the 
overall process of classifier design. In this subsection we discuss 
some methods of assigning fuzzy labels to data in order to generate 
fuzzy classifier functions. 

Most of chapters 2 and 3 deal with generating soft labels for objects 
represented by feature vectors or relational data. Since clustering is 
unsupervised in general, it may not be the best choice for labeling 
training data in this context, since the best clusters are those which 
minimize some clustering criterion, and the algorithmic clusters 
found may not reflect the actual "ground truth" available in the 
physical labels in the training data (but see House et al., 1999 for an 
example that this is not always the case). Clustering algorithms 
sometimes create membership values for training points that have 
crisp label i which are larger for some class j^ i . This happens, for 
example, in the context of 1-np design, if a training point from class 
i is closer to the class j prototype than to that of class i. 

To insure that soft training labels maintain the "truth" about the 
training data (i.e., are consistent with the physical labels supplied 
with the data), some form of supervision is required. One way to 
accomplish this in the clustering framework is to cluster the data 
one class at a time, as, for example, Chiu (1997) recommends when 
you want to build a fuzzy rule-based classifier using labeled data 
with clustering. In order to get meaningful "typicality" 
memberships, you should consider using a possibilistic model such 
as PCM to acquire the soft labels, since label vectors from any fuzzy 
clustering algorithm contain values that represent degrees of 
sharing between classes. PCM produces an inverse distance-type 
membership for each training point from its class prototype. After 
finding and correctly labeling class prototypes by any means. 
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inverse distance membership functions can be generated for the 
training data. 

Variations of the k-nn technique have been used to obtain fuzzy 
labels. Jus t taMng the fraction of the number of class i vectors in the 
k nearest neighbors to a training point as its membership in class i 
suffers from the same problem as fuzzy clustering. There is no way 
to guarantee that the "true" class of a training point will maintain 
the largest membership. For example, consider the "F" in the word 
"Franklin" in Figure 4.62. It is possible that for a given training set, 
in feature space all of the neighbors of the feature vector from that 
"F" would be vectors from the character "7", because this "F" really 
looks like a "7". Hence, simple fractions would give this feature 
vector zero membership in the class "F", even though it actually was 
an "F" written by some person. This is one dilemma you have when 
dealing with real data: even though an object may actually be 
member of class i, its feature vector often mingles with those of 
other classes. Example: build a classifier that identifies men and 
women based on the 2D input feature vector height and weight. No 
classifier we are aware of would, based on this pair of 
measurements, correctly label Heidi Gillingham, who at one time 
was a center for the Vanderbilt women's basketball team, height = 6 
feet, 11.5 inches. If you were to create a soft label vector for Heidi, its 
maximum value would almost certainly interchange the correct 
label with the wrong one. 

One clever but simple method to acknowledge this uncertainty in the 
training data was developed by Gader et al. (1995c), and could be 
called a possibilistic k-nn labeling procedure. For a training vector 
from class i, their approach was to use the fraction of the k nearest 
neighbors to be the memberships for all classes J it i, and to preserve 
unit (or at least very high) membership in the true class i. This way, 
the "F" may have high memberships in multiple classes, reflecting 
the ambiguity of its feature vector. As an example, the "F" in Figure 
4.64 received high membership in its class, but also reasonably high 
values for "I", "L", "S" and "T". In Gader et al. (1995b), these 
possibilistic training labels were used as desired outputs for a 
multilayer perceptron. What was discovered was that in terms of 
pure character recognition, crisp labels worked better, but when the 
results of the character recognizer were submitted to a word 
recognition system (Gader et al., 1995b), word recognition rates 
increased significantly when using the possibilistic labels. By 
acknowledging the ambiguity of handwritten characters, the total 
system could keep multiple hypotheses alive and hence, piece the 
words together more effectively. This adheres to the principle of 
least commitment. 
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Figure 4.64 A handwritten training "F' and its possibilistic 
memberships in the character classes 

If enough training data are available (as in some image processing 
applications), normalized histograms of the feature data can be used 
to estimate class memberships. While this approach is most often 
used to calculate class confidence with respect to one feature, it can 
easily be extended by constructing histograms of each of the various 
features, and the individual feature memberships can be aggregated 
to get combined memberships both for the training and test data. 

Generating soft labels for crisply labeled training data is tricky, and 
it is very problem dependent. If the goal of a classifier is character 
recognition, then the evidence in Gader et al. (1992, 1995b) suggests 
that crisp training labels are better, However, as the goal (and the 
processing) became more complex, e.g., word recognition, fuzzy, 
probabilistic or possibilistic labels may provide more realistic 
information and better final results. You should use the simplest 
tool to solve your problem. As system complexity grows, tools such 
as employing soft labels for the training data become more 
attractive. In fact, uncertainty is always fruitful - as long as you try 
to understand it too. 

4.7 Neural-like architectiures for classification 

Much has been written in the last twenty years or so about "neural 
networks", a term we abbreviate by "NN" - recall that we use (nn) for 
nearest neighbors. Network architectures such as the MA and TS 
fuzzy systems and fuzzy decision trees do not draw their original 
inspiration from a desire to mimic biological NNs (BNNs) - although 
they do have desirable properties such as parallelism which can of 
course be associated with the BNN. However, several of the models 
discussed in this section are in some rudimentary sense (neural-
like) network structures that do attempt to imitate BNNs. Other 
volumes in this handbook contain good descriptions of many 
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neural-like network structures, especially for control (Nguyen and 
Sugeno, 1998). Our presentation is limited to those fuzzy set-related 
NN models that seem particularly useful for pattern recognition. 

Most authors distinguish between BNNs and computational NNs by 
calling computational s t ructures aimed at imitating BNNs 
Artificial NNs (ANNs). A few authors have made a further 
distinction between ANNs and computational NNs (CNNs). Fine 
distinctions about the meaning of various terms used in this field (if 
they have useful meanings at all!) simply distract readers from the 
main point, which is the interface between NN models and fuzzy 
logic as used for numerical pattern recognition. Readers interested 
in this aspect of NNs, including discussions about "computational 
intelligence" and "soft computing" are encouraged to consult, e.g., 
Bezdek (1992, 1998), Marks (1993), or Zurada et al. (1994). We will use 
NN for computational approaches that mimic the BNN, and leave it 
at that. 

There are two distinct areas of integration between fuzzy pattern 
recognition and NNs. First, we may use the conventional NN for a 
variety of computational tasks within the larger framework of a 
pre-existing fuzzy model. In this category, for example, are attempts 
to build [membership] function representat ions with NNs; 
implementation of fuzzy logic operations such as union (max-nets), 
intersection (min-nets), and even fuzzy logic inference. There is also 
a great amount of current effort being expended in using NNs to 
derive optimal rule sets for fuzzy controllers (another approach to 
rule extraction) - that is, to automate the process of membership 
function extraction and tuning of term sets that are used in both 
fuzzy pattern recognition and control. 

On the other hand, many writers are investigating ways and means 
of building "fuzzy NNs", by incorporating the notion of fuzziness 
onto or into a NN framework (as opposed to using the NN within a 
fuzzy framework). For example, the target outputs of the NN during 
classifier training can be fuzzy label vectors (points in the interior 
of the triangle N shown in Figure 1.2). In this case, the NN itself is 
implicitly functioning as a fuzzy classifier, and is conceptually 
identical to any other fuzzy classifier function D imaged in N . 
Operationally, of course, the mathematical function D is implicitly 
represented by an explicit computer program or piece of hardware 
that implements the NN. 

Another way to incorporate fuzziness into a standard NN is by 
altering the integrator/transfer functions at each node so that they 
perform fuzzy aggregation (union, weighted mean, or intersection) 
on the numerical information arriving at each node. Yet another 
way to introduce fuzziness into the NN framework is through the 
input data X to the NN, which may be "fuzzified" in one of several 
ways. 
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A. Biological and mathematical neuron models 

The BNN is one of the systems that enables organisms (in particular, 
humans) to perform biological pattern recognition. Figure 4.65 
depicts the simplest ideas we have about the atomic unit - a neuron -
of a BNN. Each neuron has an axon (pulse transmitter), soma (pulse 
emitter), dendrites (pulse receptors), and is connected to other 
neurons by synapses (connectors). In Figure 4.65 a packet of data 
(electro-chemical pulse x ) has been emitted by the soma, and is 
traveling along the axon. 

dendrites 

Figure 4.65 A rudimentary biological neiu-on 

Figure 4.66 depicts part of a BNN. The term network derives from the 
interconnections (which may not be entirely physical) between 
neurons. At a point of data transfer, a synapse (the connection 
neighborhood) transmits data packet x from a dendrite of the 
emitting neuron to a receptor of the receiving neuron. It is believed 
that each transfer encounters variable resistance (modeled in Figure 
4.66 by a synaptic weight vector w) to the conduction of energy. 
Information (electrical, chemical, biological in form) is generated, 
flows, is assimilated, and somehow used to solve problems in the 
BNN. Our assumption is that each neuron does something like 
(numerical)computing - this gives rise to the hope that 
computational "neurons" and networks of them can be used to 
imitate this structure and its performance. 

The synaptic weights at a node in the BNN are believed to vary over 
time, and it is assumed that this is one of the major mechanisms by 
which the brain "adapts" to changes in its environment (i.e., to 
changes in its input data and/or output requirements). Another 
means for achieving adaptation to system tasks is thought to be 
through the activation and deactivation of (sets of) nodes in the 
network, again "on the fly". That the brain can and does adapt in 
real time is inarguable - it is the mechanisms for doing so that are 
not well understood. 
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Figure 4.66 Part of a biological neural network 

Hardware Implementations of computational NNs have become 
common (e.g., Serrano-Gotarredona et al., 1998). Many companies 
now market "NNs on a chip", including products advertised as "fuzzy 
NN chips", etc. If you are interested in this aspect of NNs see issue 
4(4) of the 1996 IEEE Transactions on Fuzzy Systems. It is not our 
purpose to pursue this topic, so we are content to show Figure 4.67, 
which illustrates the components of a typical electro-mechanical 
(or possibly optical) version of Figure 4.66, that is, a layout of 
(hardware and/or software) components in an architecture that 
ostensibly mirrors the biological version of one neuron. 

Components of the input and weight vectors x and w of Figure 
4.66 are shown as real numbers in Figure 4.67; as usual, we assume 
that X ,w eSRP. The analog of the soma is called a node of the 
network, x. is the input to the node, and w is the weight vector for 
(or at, or in) the node. Some writers prefer to regard the scalars 
{w :i = l,...,p} as weights on the edges entering the node, while 

others regard w as a weight vector attached to the node. We use one 
or the other of these interpretations at various times. The node in 
Figure 4.67 is called N - the jth node in the network. 
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axon 
(signal in) 

sjmapse 
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w.. 
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(processor) 

Figure 4.67 An electrical circuit that models the standard neuron 

Figure 4.68 illustrates what usually happens at each node in the NN. 
Two functions are active. First an integrator Junction 
f: 9tP' X St'i' h^ 9t combines a node weight vector co e 3i^' with the 
input vector x e 91^'; often, but not always, co = w, the weight vector 
shown in Figure 4.67. Notice that the dimensions of x and w are, 
respectively, p ' and q'. Usually p ' = q', but these dimensions can 
and do change from layer to layer, so we leave the notation flexible. 
We use primes here to indicate that this neuron can be anywhere in 
the network (the input vector to the network will always be in 9?^, 
and the output vector from the network will be in 9^''. 

Node 
Input 

X e 9tP'-

node 
weights 

- > x -

integrator 
function 

f:9lP'x9ti'H^9l 

> y = f(x,a)) — 

transfer 
function 

F:9^h^9t 

> z = F(y)-

Node 
Output 

- > z e 9 ? 

Figure 4.68 A mathematical neuron 

The traditional, historically first, and still most popular choice for 
f is the Euclidean inner product (McCulloch and Pitts, 1943); when 
to = w e 9?P, y = y(x) = f(x, w) = (x, w) + a. Recalling equation (4.3) 

and Figure 4.4, we see that this choice sets up a hyperplane H in Si^ 
at each computing node where it is used, and we call f a linear 
integrator function. Justification for this terminology lies in the 

fact that every affine function on 9t^ can be written as a linear 
function on Si^'*'^ by defining the p+1 tuples x'=(x^,... ,x ,1)^ and 



CLASSIFIER DESIGN 375 

w'=(Wj w ,a)^, for which (x', w') = (x, w) + a. The parameters 

w' = (w, a) of H are (part of) the weights that are sought during 
training for each node of the network that uses linear integrator 
functions. In the neural networks literature a is often called the 
offset or bias of such a node, and the node itself may be called a first 
order neuron. It will be convenient to have a special notation for 
this oft-used integrator function; we call it f , the subscript referring 
to the hyperplane that it defines. 

"Higher order" neurons arise when the inner product is replaced by a 
more complicated function. For example, a second order neuron is 
realized by replacing f(x, w) = (x, w) + a with a quadratic form in x, 
f (x, w, W) = x^Wx + x^w + a, where W is a p x p matrix of additional 
weights that are associated with f. In this case the weights of the 
integrator function f are the triple of parameters co = (W, w, a). The 
form of f is limited only by your imagination. You will encounter 
many substitutes for these simple functions in the literature of 
"fuzzy NNs". 

The action of f is followed locally in each computing node by 
applying a transfer (or activation) function F to the value of the 
integrator function on its inputs. F is used to decide if the node 
should "fire" (produce an output), and if so, how much "charge", and 
of what sign, should be broadcast as output in response to the input 
X. The most typical choice for F is the unipolar logistic (sigmoidal, 
squashing) function, 

where X in 9̂"*" and p in 9? are real constants that adjust the shape of 
F. Specifically, X controls the steepness or slope of Fĵ  and p controls 
the crossover point along the y axis at which inflection occurs, viz., 
Fj^(y) = 0.5 <=> y = p. Without loss of generality we discuss F̂ ^ for P = 
0, since this parameter simply shifts F̂ ^ to the left or right of the 
origin. F̂ ^ is called a unipolar activation function because its range 
is (0, 1). Figure 4.69 depicts F̂ ^ for three choices of the steepness 
parameter X with P = 0 for y in [-5, 5]. 
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0.0 

Figure 4.69 E£Fect of steepness parameter X on F^ 

At ^ = 0 the graph of Fĵ  is the horizontal line y = 0.5. As ^ increases, 
the shape of Fĵ  becomes more and more like the step function which 
jumps from 0 to 1 (which are the asymptotes of F as y -^ ±oo) as X 
approaches °°. The linear transformation 

F....(y) = 2 F , ( y ) - l = l ^^_,,^_^, - 1 (4.98) 

of (4.97) is called the bipolar form of the logistic function because its 
range is (-1, 1), with limits ±1 as ^ approaches o°, the sign depending 
on y. That is, the limit of F̂ ^ j^. with p = 0 is just the sign function, 

iijB{FL.bi^ = sgn(y) = 
1; 

-1; 
y > o 
y < o (4.99) 

Another function that can be used as a transfer function which has 
the same basic properties as F^^^ is the hyperbolic tangent, 

F(y) = A, tanh(|3y). There are many other transfer functions in the 
fuzzy NN literature; we will meet some of them later in this chapter. 

Now combining the action of the integrator and transfer functions, 
consider the composition of f followed by F. We call this the node 
function 4> = F o f, whose job is to convert vector inputs to a single 
node into real outputs, z = 0(x) = F o f(x) = F(y). When the integrator 
function is f ̂  and the transfer function is F^ (unipolar) we write 

*^LH~^L°^H' ^^'^ ^^ ^̂ ^̂  ^̂  ^^^ standard or McPitts (after 
McCulloch and Pitts, 1943) neuron 

We have already met the idea of node functions, which in section 4.6 
were associated with the nodes of a decision tree classifier. It is 
entirely proper to regard those node functions in the same light as 
the ones currently under discussion. Both types make decisions 
about what values "travel" along paths in the network. One of the 
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main differences in the two network structures is that in decision 
trees there is but one input edge per node, and usually many output 
edges with different values; whereas most neuron models have nodes 
with many inputs, and only one distinct output (that may go many 
places, but has the same value on each outgoing edge). In Section 4.11 
we will discuss the equivalence between some special classes of 
decision trees and certain types of neural networks. 

Decomposition of O into its two components enables us to analyze 
the mathematics of one node more carefully, and is very helpful in 
understanding the relationship of NN methods to other classifier 
designs. Imagine that you can rotate a hyperplane H so that it stands 
vertically, parallel to the vertical z-axis, and you are standing at 
infinity, looking down along H towards the origin of the horizontal 
axis. Figure 4.70 shows an "end-on" view of what you would see if you 
could position yourself at the "edge" of the hyperplane H in Figure 
4.4 that is created by f . Then superimpose the action of transfer 

function F with ^ = 1 and P = 0 on [-5, 5]) onto your field of view. 

y ^ f n W 
> y 

Figure 4.70 Geometric interpretation of node function O „ = F 

In this different view of the geometric meaning of the linear 
integrator function f , you would see the half spaces H~ and H^ to 
the left and right of H. The logistic function provides a non-linear 
response to node inputs that fall on either side of H. Since F takes 
values in the open interval (0, 1), you might be tempted to interpret 
them as memberships, and in the proper linguistic framework, this 
could certainly be a membership function for some linguistic value. 
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But , u n d e r t he se c i r c u m s t a n c e s , would you call th i s a "fuzzy 
neuron"? We think not. We will encounter ins tances of fuzzy models 
t ha t d i scuss node computat ions in terms of <E> ra ther t h a n F o f, a n d 
we will look carefully for the added value provided by fuzzification 
of t he node function, or of i ts cons t i t uen t s , the in tegra tor a n d 
t ransfer functions. 

B. Neural network models 

The definition of the computa t iona l NN given in DARPA (1988, p . 
60) is: "a n e u r a l ne twork is a sys tem composed of m a n y simple 
p r o c e s s i n g e l e m e n t s ope ra t ing in para l le l whose funct ion is 
de te rmined by network s t ruc tu re , connect ion s t reng ths , a n d the 
processing performed a t computing elements or nodes". The network 
s t ruc tu re (or topology) refers to the way the nodes are connected to 

each other; the connection s t rengths are the weight vectors {co }; and 

node processing refers to local computat ions done by O a t any node 
in the network. 

Figure 4 .71 shows a general NN archi tec ture , with no par t icu la r 
a s s u m p t i o n s m a d e abou t the node functions t ha t are used . The 
ne twork topology in Figure 4 .71 h a s feed-forward, feed-backward 
a n d cyclic connec t ions be tween a n d among its nodes . Most NN 
mode l s u s e d in p a t t e r n recogni t ion a r e feed-forward only, a 
simplification t h a t seems necessa ry for bo th computa t iona l a n d 
analyt ica l t ractabi l i ty. 

x e 9 t P 

Input 
LaycT 

NN:91P h^Ji" 
• > ue5R'^ 

Out.pul. 
Layer 

Figure 4.71 A computational neural network 
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See Table 1 in Hecht-Nielsen (1988) for an early list of the thirteen 
(supposedly, in 1988) most common NNs as well as a tabulation of 
neurocomputers for each model built as of that date. The most 
complete current listing of NN architectures and software is perhaps 
the Handbook of Neural Computation (Fiesler and Beale, 1997). A 
good recent list of hardware implementations of NN architectures is 
given in Chapter 27 of Chen (1996). 

Most NNs have layers. In Figure 4.71 there is an input layer, whose 
nodes {N': j = 1,...,p} almost always "perform" no computations. The 
purpose of the input layer is to indicate how the data enters the 
network in p parallel input streams, and to show how the input 
features are distributed to the first hidden layer, whose nodes are 
indicated by the notation {N :̂J = l,...,kj}. Hidden from what you 
may ask? Hidden from the input and output layers, so we are told. 
Integer k is the number of nodes in the first hidden layer. The qth 

hidden layer has k nodes {N? :i = l k }, etc., and the nodes of the 
y q ' J J ' ' q " 

output layer axe (N": j = l , . . . ,c}. Thus, superscripts indicate the 
layer, and subscripts indicate the node number within each layer. 

The output layer usually has computations at each node. When we 
discuss a general NN, we may omit the superscripts and speak about 
node Nj for simplicity. We call the hidden and output layers in a NN 
the computing layers of the NN. The architecture in Figure 4.71 is 
symbolically denoted by the sequence of numbers representing the 
number of nodes in each layer as p: k^: • • •: kq: c. 

If the last functions applied to values flowing through the output 
layer in Figure 4.71 are of the form (4.97), the output of the NN is a 
possibilistic label vector, u = {û  u^)^€N ^ (see equation (1.1)). 
This hardly justifies calling such a network a possibilistic NN, so 
don't be tempted to interpret it that way unless there is enough 
semantic Justification to entitle the network to this descriptor. 

It is convenient to have a notation for the set of all parameters of a 
NN that must be "learned" (acquired during training). For example, 
if a node has linear integrator and logistic functions, Ô^̂^ ~ ^ L ° ^H ' 

then the ith node weight vector has the form u> = (X,, B . w, a) . When 
^ 1 I t 1 1 

the total number of nodes in the network is N, we call W = ( u , ..., co ) 
the network weight vector. For example, if there are 8 input nodes, 2 
hidden layers with 3 and 5 nodes, respectively, followed by an output 
layer with 4 nodes, i.e., an 8:3:5:4 architecture, then there are 
(8 + 3)-3 +(3+ 3)-5+ (5+ 3)-4= 95 parameters to learn assuming 
feed forward connections only. 
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The cardinality, |W| ofW, which is the number of parameters to 
estimate, is important, because it influences the size of minimally 
acceptable training sets. Theoretical guidance for network size (as 
measured by |W|) for a given set of lO data is limited to cases where 
very idealized assumptions are made about the training data. For 
example, Baum and Haussler (1989) give the bound 

32 • W A 

E (X IX ) , 
D*̂  te' tr y 

log. 
32 M 

E (X IX ) 
D^ te' ti'. 

< n = X .where (4.100) 
tr I tr 

M is the total number of hidden nodes in a single layer and 
Ejj(Xj^g|X^) is the desired fraction of errors that you will tolerate on 
the test set. They assert that a single layer neural network with 
bipolar output nodes will "almost certainly" generalize [to 
Ejj(Xj^g|X^) on similar input data] if the fraction of errors 
committed on the training data is less than half of the desired test 
error, E^^iX^X^) <Ej^{XJX^) / 2, and (4.100) is satisfied. Haykin 
(1994) calls (4.100) a distribution-free worst-case bound on the size 
of the training data. Ignoring the logarithmic term and the 
multiplier 32 in (4.100) gives the simpler first order estimate, 

Iwl 
<n,,. , (4.101) ED(X,e|X^) "^ 

which Haykin (1994) asserts is a good rule of thumb in practice. 
Equations (4.100) and (4.101) bound the size of the network in terms 
of the number of samples, but not the number of total values 
(number of features times number of samples), in X . Another rule of 
thumb that involves p, the number of features per sample, is 
10 • |W| < n^̂  • p . For example, |W| < 150 • 4 / 10 = 60 for resubstitutlon 
training (i.e., n = n = 150) of the Iris data, which limits the network 
weight vector to a total of 60 parameters. None of these bounds 
account for the variability that real data possess, and there are as 
many of them as you have time to read about, but you should always 
be cognizant of the "power" of your training data - its size certainly 
limits the total number of parameters you should estimate with it, 
be the design a NN or some other type of classifier. 

Ju s t above the diagram in Figure 4.71 you see NNIS^P h-> 3i^. This 
emphasizes that mathematically the NN is just a vector field. We use 
the notation NN when the role of the NN as a function is being 
emphasized; of course, NN is a computational transformation 
realized only by computer Implementation. And we use (unbold) NN 
when talking about a NN generally, or in the engineering design 
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sense, as an input - output system. In this regard NN Is exactly like 
the classifiers based on decision trees and fuzzy systems discussed 
in section 4.6. Here, NN will be a feature selector, clustering 
algorithm or classifier function depending on the discussion at 
hand. When it Is a classifier, we use our standard notation D»„,. 

NN 

One touted advantage of neural networks Is that their parameters 
can be "learned" from labeled training data. But this is true of every 
classifier - that's what supervised learning means. The real power of 
NNs lies In the way they build up functional approximations to lO 
mappings that underlie the training data. ICreinovIch et al. (1998) 
provide a very nice discussion of this aspect of NNs In the context of 
universal approximation theory. Parametric learning by a NN Is 
based on an update junction or strategy that converts the current set 
of weights W{ at the t-th training cycle or Iteration Into a new or 
updated set Wj+i. The action of the update or learning rule can be 
written symbolically as Wj+j =U{Wt). Updating Is done during 
training whenever the NN system output(s) do not correspond well 
enough to the desired labeled outputs. For pattern recognition, this 
usually means that the NN is operating as a classifier. 

Input Layer Hidden Layer(s) Output 
Layer 

Figure 4.72 The FF network with node functions <I> = F o f 

There are many principles that guide the choice of a learning 
strategy. Different learning rules are chosen to match a specific 
network architecture; most update rules attempt to optimize some 
function of the observed error(s) between the desired and observed 
outputs of the network. By far the most popular and pervasive NN to 
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date is the feed forward (FF) network, (Zurada, 1992, Haykin, 1994). 
Figure 4 .72 shows a typical representa t ion for a FF network. The 
main difference between this s t ruc ture and the one shown in Figure 
4.71 is in the topology of the interconnections between the nodes. In 
a FF network there are no self loops or feedback connections; da ta a t 
each s tage of the network in Figure 4.72 can only flow forward (to 
t he n e x t layer) from left to r ight . The s t a n d a r d a lgor i thm for 
upda t ing in the FF case is the back-propagation technique invented 
by Werbos (1974). Given the central importance of back-propagation 
in t he t ra in ing of FF networks , these ne tworks are referred to a s 
feed-forward back-propagation (FFBP) networks . They are usua l ly 
called multi-layer perceptrons (MLP). Many au thors , including u s , 
reserve the t e rm MLP for the special case of the FFBP network in 
which every node function is (i>^^ = ^ L ° ^H • 

In t h e BP m e t h o d , t h e e r ro r funct ion for a given 10 pa i r 

(x e 9^P, y e 91*̂ ) is the s u m of squared errors between the desired and 

II 1 1 ^ 
target outputs , E(x, W ) = NN(x, W ) - y . E is regarded as a function 
of t he c u r r e n t network weight vector, a n d differentiation of th i s 
function of W^ leads to necessary conditions for adjus tments of the 
weights by gradient descent. The inpu t is fed forward, and the error 
it c a u s e s p roduces u p d a t e s to the cu r r en t weights t h a t are t h e n 
propagated backwards th rough the network layer by layer - hence, 
FFBP. We will not repeat the formulae for th is well known procedure 
here . If a specific need ar ises in connect ion with fuzzification of 
some p a r t of the FFBP design, we will d i scuss w h a t s eems mos t 
appropria te a t t ha t junc tu re . 

It is impossible for u s to es t imate how m a n y fuzzy var ian t s of the 
FFBP s t r u c t u r e shown in Figure 4 .72 have been d iscussed in the 
l i terature of so-called "fuzzy-neuro (aka neuro-fuzzy)" sys tems in the 
las t decade . Suffice it to say t h a t the re are leas t a half dozen 
textbooks whose titles suggest t ha t they deal exclusively with this: 
for example, Newal Fuzzy Systems (Lin a n d Lee, 1996),Weuro-Fuzzy 
and Soft Computing (Jang et al., 1997) and Neuro-Fuzzy Controllers 
(Godjevac, 1997). In order to appreciate some of the extensions of the 
NN to be developed subsequent ly , we presen t in Example 4 .21 the 
r e s u l t s of u s i n g the s t a n d a r d FFBP ne twork to design a cr isp 
classifier with the Iris data . 

Example 4 .21 The Iris data is labeled, and can be used to estimate the 
pa ramete r s of a FF network in many ways. Here we show the resul ts 
of t ra in ing the s ame MLP network with three different t raining and 
tes t ing s t ra teg ies . Specifically, we t ra in t he ne twork shown in 
F igure 4 . 7 2 wi th n o d e func t ions ^ L H ~ ^ L ° ^H ^ ^ i ^ S b a c k -
propagat ion with these three protocols: 
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A. X^̂  = X = Iris, leading to the resubstitution error estimate 

E„ (X|X). 
NN 

B. X = the union of the first 25 points from each of the three labeled 
classes; X = the union of the remaining 25 points from each class, 
leading to the estimate E„ (X | X ). Cross validation was not done 
for this example. 

C. Finally, we illustrate the leave one out procedure by building, for 
k = 1,...150, the classifiers {D^Nk' ^^ constructing the training and 
test sets X|̂  j^ = X - {Xĵ } and X^̂  j^ = {Xĵ }. From these we can compute 

150 

an average error rate, E_ ( X J X , )= S E„ (X, . |X, ^ ) / 150 . 
°NN '^ ^ k t l °NN,k te.kl t r . k ^ ' 

The MLP we used for all three experiments was a simple one: it had 
two hidden layers with 6 nodes each and an output layer with c = 3 
nodes. Since the Iris data is 4 dimensional, this gives a 4:6:6:3 
configuration. The 15 computing nodes all use the linear integrator 
function f and the logistic function F . For simplicity we fixed X = I 

H L 
and p = 0 for the logistic functions at all 15 nodes. Consequently, the 
only parameters that must be estimated are the weight vectors {w} 
and bias constants {a.} of the 15 hyperplanes at the computing 
nodes. That is, the cardinality of the weight vector for this structure 
is |W| = (4 + 1) • 6 + (6 + 1) • 6 + (6 +1) • 3 = 93 parameters. Do we have 
enough data to expect good generalization with this structure? Since 
(4.100) and (4.101) are for single (hidden) layer networks, they don't 
apply to our topology. The only guideline we have is the rule of 
thumb 10 • |W| < n^ • p. Solving this inequality for n with the values 

p = 4 and |W| = 93 gives n̂ ^ > 10 • 93 / 4 = 232.5. Since n = 150 for 
Iris, no scheme for training and testing this network can satisfy this 
rule of thumb. Let's see how good the rule is. 

Each of the networks for experiments A and B was initialized 
randomly. Training was terminated when the MSE on the training 
data was less than 0.01 for 10 consecutive passes (epochs) through it, 
or at the maximum specified limit of 200,000 epochs. For 
experiment C, the network was initialized randomly at k = 1, 51 and 
101, i.e., at the start of each new class, and the weights from the 
training runs at these three k's were retained and used to initialize 
the remaining 49 training sessions for points in that class. Without 
this "jump start" for better initialization, some of the experiment C 
runs ran to the iteration limit of 200,000 passes without satisfying 
the (successive Iterates) termination criterion. In other words, 
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carrying the final weights from the previous run forward to 
initialize the next training session in the leave one out tests helped 
network training a lot. 

All networks used learning rate and momentum factors of 0.5. The 
learning rate refers here to a multiplier in the update rule for the 
weights, and has exactly the same meaning as the term did in earlier 
sections. We have not discussed momentum, since there has been 
little work that we know of on "fuzzy momentum". Momentum is a 
term that is added to the update rule for the network weights, and it 
is often able to accelerate back-propagation learning towards 
termination. See Section 4.5 in Zurada (1993) for an excellent 
discussion of this topic. 

Experiments A and B aren't very exciting, and are easy to report. 
Training method A with n = 1 5 0 led to a MLP classifier with a 
resubstitution error rate of zero, and training method B with n = 75 

" tr 
terminated at a network with 1 testing error. Thus given all 
(experiment A) or half (experiment B) of the Iris data for training, it 
is n o t h a r d to find a n e t w o r k for w h i c h 
E„ (X| X) = 0; E„ (X. IX, ) = 1. Don't forget that the resubstitution 
estimate is usually optimistically biased as you evaluate this result. 

Experiment C is more interesting, for here we use n = 149 of the 150 
points in Iris for training (which is almost the same training data as 
resubstitution uses), and test the resultant classifier on the point 
held out (which is not resubstitution). In our set of 150 trials using 
this scheme, the classifier built with X^^^ = X-{Xj^} and tested on 

•^tek ~ ^^k^ gave the wrong classification for k = 2, 42 (called class 
21 were class 1), 57 (called class l | w a s class 2) and 71 (called 
c l a s s3 |was class 1). Thus, for this network configuration, 
Ej, ({x,}|X-{x.}) = 4/150 = 2.66o/o. 

NN,k 

How did our rule of thumb about the number of parameters versus 
the size of the training data do? Well, this rule of thumb is not tied to 
a specific error rate like (4.100) is, so we cannot say that it failed 
(except in case A - no one would argue that a perfect score is 
undesirable). On the other hand, the worst case, experiment C, 
produced an average error rate of 2.66% with less training data than 
the rule of thumb recommends. So? Take rules of thumb for what 
they are - general guidelines or heuristics that work sometimes, for 
some algorithms, and some data sets. 

The errors committed in experiment C are particularly interesting 
in that class 1 (Sestosa) is usually the subspecies that is handled 
perfectly by classifiers, but here, the leave one out networks 
committed two errors on class one test points, while class 3 
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(Virginica) here showed no errors. This suggests that the decision 
functions built by the network are more complex than the simpler 
ones we have studied so far. The leave one out error rate is really a 
little misleading because it is not for j u s t one classifier; 
nonetheless, it is often taken as a "representative" best (and most 
pessimistic) estimate of the error rate that can be expected using a 
similar design on the same type of data. We also remind you that 
these results depend on the initialization used, and for a different 
set of starting points, something entirely different could happen. 

Recalling Table 4.9, we know that the experiment C error rate 
(2.66%) can be achieved with c = 7 LVQ prototypes. However, the 
error rate shown in Table 4.9 is the resubstitution error rate on all 
150 points, and experiment A in this example shows that the FFBP 
NN easily achieves 0% errors in the resubstitution case. Since the 
leave one out error rate is the most pessimistic one we can compute, 
and here we have 2.66% for it, we are tempted to conclude that a 
simple MLP of the type represented by the 152 classifiers designed in 
this example is, for this data set at least, more likely to produce 
lower generalization errors than the nearest multiple prototype 
classifiers in Section 4.3. 

Finally, we comment on the training time it took for each of the 150 
leave one out classifiers designed in experiment C. In 57 of the 150 
designs, termination was achieved in less than 1000 passes through 
the training data, which took about 5 seconds on a SUN 
workstation. This was the case for all 50 points in class 3. At the 
other end of the scale, the 32nd point in class 1 took more than 
46,000 passes through the 149 training data to satisfy the 
termination criterion. This sounds like a lot, but this run only used 
about 4 minutes of CPU time. Moreover, once trained, NN classifiers 
are fast, and (for small data sets anjrway) we think some type of 
network design should always be tried when you start building 
classifiers with labeled data. 

To show the versatility of the FFBP network, we give another 
example of its use for an entirely different pattern recognition 
problem - feature extraction. This idea had its origins in the work of 
Cottrell et al. (1989). Many papers have been written that use the 
basic idea illustrated in Example 4.22. 

Example 4.22 We seek a 2-dimensional data set extracted from the 
Iris data by a FF design. Figure 4.73 shows the architecture of the 
network to be used. There are 4 input nodes, one hidden layer with 2 
computing nodes that use ^^^^ = F̂ ^ <= f j ^ , and the output layer has 4 
nodes, thus making a 4:2:4 configuration. The wrinkle here is that 
the target outputs for this application are the input vectors. That is, 
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we want the NN to function like the identity map, so 
NN(Xĵ ) = Xĵ  Vk. The idea that underlies this design is that if NN 
does function as the identity, then the data flowing through every 
layer of the network will, by and large, possess the same 
"information" as the inputs themselves. And in particular, the 

vectors y^ = (yik'y2k^^ ^ ^ ^^^* ^^^ copied from the output of the 
hidden layer should be a good pair of extracted features in this 
loosely defined sense. 

Figure 4.73 A MLP approach to feature extraction from the Iris data 

As shown in Figure 4.73, the basic structure of the six computing 
nodes is that each used a linear integrator and logistic transfer 
function. We use bipolar logistic transfer functions in this example 
to demonstrate that the only difference between these and their 
unipolar relatives is a matter of scaling. Since the range of the Iris 
data is [0.1, 7.9], each logistic function was scaled by 10, enabling the 
output of each node to range over the interval [-10, 10). Thus, the 
specific form of each node function is lOOĵ  ^^^. 

As in Example 4.21, the parameters of all 6 bipolar logistic 
functions were fixed at ^ = 1, p = 0, so the parameters acquired during 
learning in this example are again the weight vectors [w} and bias 
constants [a} of the 6 hyperplanes at the computing nodes. Now 

there are only |W| = (4 +1) • 2 + (2 + 1) • 4 = 22 network parameters, so 
n > 10 • 2 2 / 4 = 55. Our rule of thumb says we can use Iris, or any 
subset of it with at least 55 samples, for training. Moreover, this 
network satisfies the requirements laid out for equations (4.100) 
and (4.101). With M = 2 and |W| = 22, we can either pick n ^ a n d 



CLASSIFIER DESIGN 387 

compute E^[X^JX^), or fix EplX^^IX^^) at some desired level, and 
solve (4.100) for n . Suppose we insist that the generalization error 
in (4.100) be less than 10%, Ep(X^JXj^) = 0.1. Then with (4.100) we 
compute 

'°''W(^ 45,489 » 1 5 0 , 
.1 J °\.l' 

so by (4.100) it will impossible to attain a 10% test error. Indeed, 
using (4.100) with 100% test errors leads to 

740 \ , „ . , 
" - ' ' 3,078 > 150. n<T} 

These results suggest that we can't hope for the success we reported in 
Example 4.21 for this problem. But to be fair to the error bounds, we 
point out that the bound in (4.100) also assumes that during training 
we can obtain a resubstitution rate on the training data that is no 
more than half of the testing rate, and we did not conduct this 
experiment. 

All 150 points in Iris were fed sequentially through this network 
during training to acquire the network weight vector. Training was 
terminated when the overall sum of squared errors between the 
inpu t s and ou tpu t s of the network was less t han 17 
misclassifications of the hardened outputs. At termination, the 
resubstitution MSE was 16.971. By (4.100), this means the best 
generalization error we could expect is about 34%. Putting 0.34 into 
the denominator of (4.100) gives n = 10,845. Hmmmmm 

Returning to the problem at hand, after termination, each point in X 
= Iris is fed through the network one more time, generating 
Y = {yj y^g^} c 9^^, a labeled set of 2D vectors that can be used to 
represent the 4D Iris data. Figure 4.74 is a scatter plot of the 150 
points in Y found by this technique. Each y automatically acquires 
the same label as x in the original data set, so the class labels of the 
50 points in each of the three clusters can be illustrated by different 
symbols. 

The vertical lines y = 2 and y = -1.03 represent a linear classifier 
that separates the extracted data into three groups. It is easy to see 
that the 4 " x 's" to the left of the vertical line y = -1.03 are the only 
resubstitution errors committed by this classifier. Thus, the two 
dimensional data set Y extracted by the FFBP network provides a 
substantial improvement over the resubstitution error rate that can 



388 FUZZY PATTERN RECOGNITION 

be achieved by a set of hyperplanes in the original four dimensional 
data set X. In fact, Figure 4.74 shows that only one feature, y 
needed to achieve this error rate. 
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Figure 4.74 A NN approach to feature extraction from the Iris data 

Before you get really excited about the NN method, we want to show 
you the result of feature extraction on Iris using the standard linear 
transformation known as principal components analysis (PCA). We 
aren't going to discuss this topic; instead you are referred to the 
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wonderfully readable treatment of PCA in Johnson and Wichern 
(1992). Figure 4.75 shows the projection of Iris onto its first two 
principal components. Comparing this view to Figure 4.74 shows 
that PCA and the NN in this example extract very similar features. 
We are again able to construct a pair of hyperplanes in Figure 4.75, 
by eye, that commit either 3 or 4 resubstitution errors - depending 
on how good your eye is - on the extracted data (if you make the 
calculations, it turns out to be 4 errors). 

PC,22 

PC, 12 

Figure 4.75 Feature extraction from Iris with principal components 
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And finally, let's have a closer look at Ws the data scatterplotted 
in Figure 4.12. Figure 4.76 is another plot of the same data, now 
shown with the extra information that accrues from having crisp 
class labels. This also depicts a feature extraction method - the 
special case called orthogonal projection illustrated in Figure 2.22. 
And again, it's easy to construct a piecewise linear classifier with 
the pair of hyperplanes in Figure 4.76 that commits only 3 or 4 
resubstitution errors. 

• fli 

^ Class i = Sestosa 
X Class 2 = Versicolor 
I Class 3 = Virginica 

Figure 4.76 Feature extraction from Iris 
by orthogonal projection (selection) to get Iris 

Given Figure 4.76, you must be wondering - why bother with these 
complicated classifier designs when I can just project the data into 
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5̂  and eyeball a pretty good linear classifier onto its scatterplot? 
Well, if you can do it this way, you should do it this way - as Einstein 
once said "simple is best - but only simple enough to work". But the 
reason it works here is because Iris is nice to us. For one thing, p = 4, 
so there aren't a lot of pairs of features to look at. But suppose you 
have p = 100 features. Then there will be 4,950 pairs of features to 
scatterplot, so selection by visual inspection becomes pretty tough. 
We think you should always try simple tricks like this, but don't 
count on them too much. After all, you don't expect the hare to void 
turd the size of elephant dung. 

The MLP can also be used to select (instead of extract, as in Example 
4.22} a good subset of features. For example, Pal and Chintalpudi 
(1997) made a simple modification of the conventional MLP for 
feature selection. Each input layer node becomes a computing node 
by associating it with a multiplier which lies between 0 and 1. If the 
multiplier is zero then that feature does not pass into the network, 
while if the multiplier is 1 then the associated feature passes into 
the network unat tenuated . For intermediate values of the 
multiplier, the feature is partially attenuated. Pal and Chintalpudi 
realized the multiplier using a multiplier function with a tunable 
parameter. 

Using our terminology, let f(x) = x be the identity function, let 
G^:9^ i-> [0,1] be a monotonic, non-decreasing real-valued function 
parametrized in the real number X (e.g., the unipolar sigmoid), and 
define F(y) = y • G^(y). Thus the effect of 0(x) = F o f(x) = y • G^(y) is 

to multiply X by a multiplier function g with a tunable parameter X, 
where G,(y) is in [0,1]. If gjy) of an input node is 1, then the 
corresponding feature is important and passed unattenuated into 
the net; if G,^)= 0, then that feature is irrelevant or harmful and is 

A. 

not allowed to enter the network. The Type I fuzzy neuron depicted 
in the lower half of Figure 4.77 is very similar to the input node 
structure proposed by Pal and Chlntlapudl, but the Pal and 
Chintlapudi neuron does not necessarily produce outputs that lie in 
the interval [0, 1]. 

In Pal and Chintlapudi the non-input layers are exactly like those 
in the conventional MLP. The multiplier parameters A,̂  i = 1,..., p, are 
learned along with the connection weights using the usual back-
propagation algorithm. The training starts with all multiplier 
functions set to almost zero, i.e. with almost 100% attenuation. 
Thus, at the beginning of training, practically none of the features 
are allowed to pass into the network. As the network trains, it 
selectively allows only some important features to be active by 
adjusting their multiplier values as dictated by the gradient descent. 
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The training can be stopped when the network has classified 
satisfactorily i.e., when the training error rate has gone down to a 
tolerable value. Features with high values of the attenuation factor 
(i.e., small multipliers) may be eliminated from the feature space. 

Ghosh et al. (1993) discuss the conversion of a multilayer perceptron 
to an unsupervised network by the introduction of concepts from 
fuzzy theory. This fuzzy neural network can extract objects in a 
noisy environment in a completely unsupervised manner by 
minimizing a measure of fuzziness computed on the output of the 
network. 

Yan (1993) presents a scheme for extracting multiple prototypes 
from crisply labeled training data, X^̂  = {Xi,...,x„] c 9?^, using a 3 
layer perceptron that is very similar in spirit to the method 
presented in Example 4.22. Yan's objective is to reduce the size of Xjj. 

through the transformation V^ = X^^ = fi(X^), exactly as depicted in 

Figure 4.2. Yan uses a p+2 : c: c multilayered perceptron as the 
function fi. We remind you that in the setting of multiple prototypes 
in Definition 4.2, c is the number of classes in X , c < c. Yan's desire 

tr 

is find a set of multiple prototypes, called V in Definition 4.2, for 
which c « n, and for which the resubstitution error of the 1-nmp 
classifier D„ „ „ in equation (4.7) is zero (we have also called this 
consistency). While consistency is a stated objective in Yan (1993), 
no guarantee is claimed; the method is consistent for one of the 
numerical examples given, and may be for the second one too, but 
this is not stated. 

Did you notice that Yan's MLP structure was p+2 : c: c? In this 
interesting paper Yan increases the dimension of the input space by 

II l|2 / 

2, adding the number \\xy.\\ /2 as the p+1- st coordinate of each x, , 
and the constant 1 as its p+2-nd coordinate. Yan argues that the 
number \\xy^\\ /2 is chosen so that this MLP - without sigmoids in the 
computing nodes and before training - can be regarded as an 
approximation to the 1-nn rule in equation (4.38). 

The c output nodes are completely fixed, using a linear integrator 
function that has user-defined weight vectors depending on just two 
parameters of opposite signs. The activation function in each output 
node is the unipolar sigmoid F in (4.97) with ^ = 1, P = 0. Thus, there 
is no adjustment in the output layer during training. 

The desired prototypes in Yan's scheme are the weight vectors (in 
9̂ P) of the hidden layer nodes, each of which uses the stemdard node 
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function <J>LH with fixed sigmoidal parameters as in the output 
layer. Backpropagation training adjusts the initial prototypes 
(which are specified in the paper by a third user-defined parameter), 
and at the end of training, the n points in X that have c classes are 
replaced by the c point-prototypes in the vector V At this state Yan 
has the basic equipment needed to build the 1-nmp classifier 
D J., needing only to pick a distance measure (Euclidean in the 

• c c' 
paper). Yan calls the prototypes obtained by this MLP "optimized 
prototypes". 

Two numerical examples are given in Yan (1993), both for 2D data. 
The first example is an "XOR-like" data set of 162 points in the plane 
that form (roughly) four clusters in the shape of an "X", but the 
clusters have only c = 2 crisp labels. These 162 labeled data points 
are replaced by c = 4 2D "optimized prototypes" with the result that, 
when used in the 1-nmp rule in (4.7), they give zero resubstitution 
error. The second example uses 500 labeled (image) data that are 
distorted digits for training, and another 500 data for testing. Yan 
states that the 1-nn rule achieves 99% accuracy using all 500 
training data to label the test data, and that 10 optimized prototypes 
obtained with his method achieve a testing success of 99.4%, 
slightly better than the full 1-nn rule, using only 2% (10/500) as 
many points. We will return to this interesting method in Section 
4.8. 

The objective of Section 4.7.B has been to introduce the terminology 
associated with the most popular NN models. The remainder of this 
chapter is devoted to specific ways that one or more components of a 
NN model can be altered to accommodate and manipulate fuzziness. 
Any and all of the modifications we describe can justifiably be 
called fuzzy neural networks. As we mentioned earlier, this has been 
done in so many ways that it is impossible for us to lead you through 
the forest; the best we can hope for is to give you a glimpse at some of 
the trees. 

C. Fuzzy Neurons 

Example 4.21 (and a metric ton of papers over the last 15 years) 
demonstrate how good plain old FFBP and especially MLP nets can 
be in pattern recognition, and in particular, for classifier design. 
Fuzzy sets were created to deal with linguistic information and 
provide an interface between linguistic and numeric descriptions. 
So, we hope you see in what follows that two advantages can be 
realized by networks that have Type I fuzzy neurons as defined in 
equation (4.102). The most important contribution of adding 
fuzziness to a NN structure is that, after training, the nodes of a 
fuzzy neural network can admit a linguistic interpretation, i.e., 
some insight can be gained into how the features combine to make a 
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class decision. The opaqueness of FF nets has always been an issue; 
it's hard to trust a "black box". The second advantage is that for 
many types of data, we have found that networks of fuzzy neurons 
train in many fewer epochs (although the calculations done during 
training may increase). 

Keller and Hunt (1985) first introduced fuzzy sets into the training of 
a single perceptron (don't we just love to cite ourselves?). We have not 
discussed the perceptron, nor do we intend to, for it is arguably the 
most well known linear classifier that had its roots in a desire to 
mimic the BNN. But for the record, it's a linear classifier that was 
originally designed for c = 2 class problems, and the perceptron 
learning rule is an iterative procedure that finds estimates of the 
parameters of the sought after separating hyperplane. When the 
training data have two linearly separable classes, the perceptron 
convergence theorem guarantees us that the iterative learning 
procedure converges to a separating hyperplane in finitely many 
steps (Duda and Hart, 1973). 

Keller and Hunt 's fuzzification of the perceptron training rule 
generally resulted in faster convergence, also guaranteed a 
separating hyperplane if one existed, and produced good results 
when the data were not linearly separable - a big problem with the 
classical perceptron training algorithm (Rosenblatt, 1957). 
Fuzzification of the training rule was extended to MLP nets by Pal 
and Mitra (1992). These connections to NN training, along with the 
use of neural networks to perform operations like fuzzy inference 
will not be pursued here. The reader is referred to Lin and Lee (1996) 
for development of these and other relationships between fuzzy sets 
and neural networks. 

There are many ways to integrate fuzzy sets into a neuron model. 
Most of these methods involve changing the integrator and 
activation functions of the standard McPitts neuron. Some involve 
changing the input data and/or the weight values from real numbers 
to fuzzy sets. There are even multiple taxonomies developed to 
describe the various possible modifications. Lee and Lee (1970, 1975) 
were the first to postulate and describe fuzzy neurons and they 
analyzed fuzzy neural networks based on their fuzzy neurons from 
the standpoint of fuzzy automata theory. See (Lin and Lee, 1996, 
Jang et al., 1997, Godjevac, 1997, Pedrycz et al., 1998) for extensive 
details about many forms of fuzzy neurons. Gupta and Rao (1994) 
discuss various principles of fuzzlfying neurons and neural 
networks; and Buckley and Hayashi (1994) provide a nice summary 
of fuzzy neural nets that process fuzzy signals and/or have fuzzy 
weights. 

We begin with the basic mathematical neuron model in Figure 4.68. 
Most of the fuzzy variants of this node change the form of one or 
more of the input vector x, the weight vector w , or the 
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integrator/activation functions f/F. The fuzzy neuron which seems 
to be encountered most often in pattern recognition is called the 
Type I neuron. Each input Xj is still a real number, but the weight w^ 
is "thought of as a fuzzy set whose membership function is m . The 
integrator/activation function pair O = F o f is replaced by some 
fuzzy aggregation function. That is, the output of a Type I fuzzy 
neuron is given by 

0^j(x,m^j) = mj(xJ®m2(x2)<8)--®m (x (4.102) 

where the vector m.j,j = (m^, • • •, m )^ of input edge membership 
functions effectively become the "weights" for the node. The symbol 
® in (4.102) is used to represent a fuzzy set connective operator: 
union (OR neuron), intersection (AND neuron), generalized mean, or 
hybrid. If ® is a T-norm, then the Type I fuzzy neuron simply 
computes the LHS activation or firing strength of a fuzzy rule Ui (x) 
exactly as in equation (4.72). Figure 4.77 shows you the conceptual 
difference between the McPitts and Type I fuzzy neurons. 

x„ 

McPitts Neuron 

fxl = = 
hH^ ' j^g-M(w,x)+a-P) 

m 

2 m (x ) Type I Fuzzy Neuron 

mp(Xp)^'' V—-^ <I).ĵ (x,m.ĵ ) = mj(Xj)®---(8)mp(Xp) 5G)t. 
Figure 4.77 Standard and Type I fuzzy neurons 

We have added graphs of specific membership functions on the input 
edges to the Type I fuzzy neuron for illustration, but these functions 
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can be any membership functions. In view of Figure 4.77 you see why 
we say that the weights are "thought of as fuzzy sets. They are not 
weights at all in the normal neural networks sense, but are used to 
convert real inputs into membership values that lie in [0, 1]. Thus, 
the use of in.j,j = (m^ . - .m )^ serves to normalize the input features. 

These functions allow you to choose membership function shapes 
that weight different features and feature values differently, and by 
this device you can build a lot of factual as well as heuristic 
knowledge about the process generating the data into the model. 

From the pattern recognition standpoint the input edge membership 
functions also serve as a mechanism to convert raw input features 
into degrees of satisfaction of a class h5^othesis. Yamakawa et al.'s 
(1992) fuzzy neuron, on the other hand, has a fixed membership 
function and also a tunable real weight for every input link to a 
neuron. 

You can see from Figure 4.77 how a layer of AND neurons can be used 
to emulate the LHS of a fuzzy rule base. If the AND layer is followed 
by other layers of specialized neurons, like OR neurons and 
"weighted averaging" neurons, then you can view the action of a 
fuzzy rule base as a special case of fuz^ neural networks. The so-
called adaptive-network-based fuzzy inference system (ANFIS, Jang 
et al., 1997) is one such realization, although there are many in the 
literature. Our purpose here is not to study all the interconnections 
between fuzzy sets and neural-like structures and get thereby be 
caught in the jungle of function approximation (see the excellent 
article by Dubois et al., 1998, reproduced in part in section 4.10). We 
are interested in the value-added to the pattern recognition problem 
when standard neurons are replaced by fuzzy neurons. What could 
that possibly be? 

Using a parametrized operator (such as Yager unions and 
intersections, weighted generalized means, etc.), a fuzzy neuron can 
be defined which affords the opportunity to be trained (i.e., it's 
parameter(s) can be learned). A back-propagation algorithm can be 
devised since partial derivatives of these families of operators can 
be computed. Krishnapuram and Lee (1988, 1989, 1992a) used these 
basic operators in a network that has Type I fuzzy neurons to do 
multicriteria decision making. One basic problem is that the 
category of neuron must be determined (does the data represent 
conjunction, disjunction, or compensatory criteria?). This makes 
the training algorithm cumbersome. In what follows, we develop the 
use of hybrid fuzzy connectives, first for a single Type I fuzzy 
neuron, and then in the next section, for networks of such neurons. 

Fuzzy set theoretic connectives, i.e., unions, intersections, 
generalized means, and hybrid operators, are useful for aggregating 
memberships functions. The resulting membership depends on the 
type of aggregation operator used, and this type is dictated by the 
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"attitude" that we expect the aggregation connective to have. These 
operators are very useful in decision analysis and decision making. 
You are referred to (Dubois and Prade, 1985, Mizumoto, 1989, Klir 
and Yuan, 1995, Dyckhoff and Pedrycz, 1984) for a more complete 
description of fuzzy set connectives, which is what a Type I fuzzy 
neuron computes. 

First, we need to develop some aggregation operators that can be 
used for unions and intersections. The most well known and oldest 
of these is the generalized (or weighted) mean of order q (which was 
called a q-norm in older mathematics books such as Beckenbach 
and Bellman, 1961). This function combines a set of p positive 
inputs, say x = (Xj x )^; Xj > 0 V i, with a set of p convex weights, 

say w = (Wj,..., w )^, as follows: 

M (w,x)= I w x ^ 
1=1 

i / q 

.q^iO , (4.103a) 

where the weights w = (Wj,..., w )^ satisfy the constraints 

w, >OVi; i w =1 . (4.103b) 
1=1 

M can be interpreted as a node function, say ^^ = F j , o f where 

the in tegrator and t ransfer functions are defined as 
p 

f (x,w)= XW|X^ and F^. {y) = y^^'^. The parameter q may or may 

not be part of the unknowns that must be estimated when using 
(4.103b) as a fuzzy neuron. When q is unknown, it corresponds in 
some very loose sense to the offset parameter a of the linear 
integrator function used by the McPitts neuron. 

The generalized means of orders - 1 , 1 and 2 are, respectively, the 
harmonic, arithmetic and RMS means of x. The weights (w} may be 

(usually are) chosen to be equal to (1/p), and then M (1/p, x) <>= ||x|| , 
the Minkowski q-norm in equation (1.11). Here are the most 
important properties of M (Beckenbach and Bellman, 1961): 

M Q(w,x) = lim{M ( w , x ) | = n x ^ ' , q ? t O ; (4.103c) 

M^(w,x)= limJM (w,x)| = max|x.} ; (4.103d) 
q^~> l< lSp 
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M_^(w,x)s lim |M^(w,x)| = niin{xJ ; and (4.103e) 

M_(w,x)<Mq(w,x)<M_^(w,x) Vqe9? . (4.103f) 

M is called the geometric mean. If we relax the positivity constraint 

on the {x.}, and require only that these numbers be non-negative, we 

must restrict q to be positive, or define M (w,x) to be 0 for all q < 0. 

When the {x.} are all positive, M (w, x), is a non-decreasing 

function of q, and when they are all distinct, M (w,x) is strictly 

increasing, 

p < q = > M (w,x)<Mq(w,x), Xj >OVi . (4.103g) 

For the special case when Xj e (0,1] for all i, equations (4.103e) and 
(4.103f) show that for all real q, M (w,x) is f 
(largest) T-norm and smallest T-conorm of x: 
(4.103f) show that for all real q, M (w,x) is pinched in-between the 

n 's4-T3(x)<Mq(w,x)<S3(x) -^ u ' s , x̂  e (0,1] Vi. (4.103h) 

Because of (4.103h), all of the M (w,x)'s can be interpreted either as 
intersections or unions. Here, the weight w associated with x can be 
thought of as the relative importance of x. In the context of 
aggregation of fuzzy evidence, when we use the mean of order q, we 
attempt to choose q to suit the required (or desired) degree of 
optimism or pessimism we have about the values concerned. For 
example, M (w, x) can be used to approximate behaviors such as "at 
least" and "at most" (Krishnapuram and Lee, 1988). When used in 
fuzzy aggregation networks (which will be discussed in Section 
4.7.D) the generalized mean is useful for determining redundant 
features. 

In the hybrid connective, high input values are allowed to 
compensate for low ones. For example, the additive and 
multiplicative y-operators are defined pointwise with respect to a 
common argument, respectively, for fuzzy sets whose membership 
functions are m. and m„, as weighted arithmetic and geometric 

A B ^ ° 
means of any fuzzy set union and intersection: 

m^©^ ffig = ( l - y ) ( m ^ n m 3 ) - i - y ( m ^ u m g ) ; and (4.104a) 

m ^ ® ^ m g = ( m ^ n m 3 ) ' i - ^ ' ( m ^ u m g ) T . (4.104b) 
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Both of these operators can act as a pure intersections or unions at 
the extremes of the parameter y: y = 0 gives the intersection, while y 
= 1 gives the union In both connectives. But these families of 
connectives also allow the intersection and union to compensate for 
each other when 0 < y < 1. Thus y can be regarded as the parameter 
that controls the degree of compensation afforded by its connective. 
Any union and intersection operator can be used in equations 
(4.104); see Dubois and Prade (1985) or Klir and Yuan (1995) for more 
extensive discussions on this point. 

For pattern recognition applications, the aggregation operators in 
(4.103) and (4.104) are often used as integrator functions in Type I 
fuzzy neurons. The definitions given below are for individual 
membership values of the inputs, which can also be interpreted as 
degrees of satisfaction of some criteria for class labeling. 

Zimmermann and Zysno (1983) introduced an exponentially 
weighted multiplicative hybrid operator that they called the 
multiplicative y-model. To write the formula in the style of a Type I 
neuron we add the exponential weight vector, w = (Wj---w )^ to 
equation (4.102), 

O^(X, m„,, w) = ( n m, (x.)"' f-y • (1 - n (1 - m. (X. ))^' r, with (4.105) 

1=1 1=1 

IWj = p andO<y< 1 . (4.106) 

Here w. is the weight associated with input Xj and is related to the 

importance of Xj. The degree of compensation between the union and 
intersection parts of the operator is controlled by y e [0,1] . The parts 
of this connective are not strictly unions and intersections (the 
exponential weights prevent them from being commutative). 
However, the factors in (4.105) function in much the same way. The 
summation in (4.106) insures that the "union" part is always larger 
than the "intersection" part. Krishnapuram and Lee (1988, 1989, 
1992a, 1992b) studied some properties of Type 1 neurons that used 
the generalized mean, the y-model, and Yager's (1980) union and 
intersection operators. These authors developed back-propagation 
training algorithms for FFBP networks that used all these neurons. 
The additive y-model neuron is defined as: 

^jK,m^,w) = {l-y)(hm^{xX') + yil-ha-m^{x^)r') [4.107) 

While this y-model incorporates weights that can be estimated with 
training methods, increased flexibility can be obtained by replacing 
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the fixed multiplicative union and intersection parts with a 
parametrized family of union and intersection operators, for 
example, Yager operators (Yager, 1980). These union and 
intersection connectives can be inserted directly in equation (4.107). 
However, in order to match more closely the way in which a 
traditional neural network handles inputs and weights, we can also 
incorporate exponential weights into the new operators. Using 
(4.104a), the output value of the Type 1 fuzzy neuron takes the form 

Oy (x, m^j, w) = (1 - Y) • yi + Y • 72 - where (4.108a) 

y i = l - ( l A 

1 

l(l-m,(x,)"''f ^ p e [0, oo) , and (4.108b) 

1 A ijm.(xj-.f P e [0, oo) , with (4.108c) 

Since the weights (w.) are tunable, such neurons may be realized 
using the fuzzy neurons of Yamakawa et al. (1992) with a different 
aggregation function than they used. The fuzzy neuron of Yamakawa 
et al. has a membership function and a real weight associated with 
each input connection. Strictly speaking, neurons with hybrid 
operators or the fuzzy neurons of Yamakawa et al. are not of Type 1. 
The additive hybrid operator at (4.108) is constructed from a Yager 
union and intersection (1980) of the exponentially weighted inputs. 

p 
In this case, the constraint X w = p (which ensures that the union 

i=l 

part is always greater than the intersection part in the 
multiplicative Y-model of (4.105)) is no longer needed. All that is 
required is that each weight is greater than or equal to zero (Keller et 
al., 1994b). The mj(Xj) e [0,1] are the inputs or criteria to be 
aggregated, w represents the weight associated with the input mj(Xj) 
and is related to the importance of that input, and Ye [0,1] controls 
the degree of compensation between the union and intersection 
parts of the operator. 

Additive hybrid Type I fuzzy neurons are studied in Keller and Chen 
(1992a, b) and Keller et al. (1994b), and training algorithms similar 
to those for multiplicative hybrids are developed in these papers. We 
will not include the details of the training algorithms since they are 
essentially back-propagation, except with more complicated partial 
derivatives. To reduce the complexity of the derivatives, Keller and 
Yang (1995) modified the Yager operators to Include multiplicative 
instead of exponential weights. As will be seen in the example that 
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ends this section and the examples in the next section (as well as 
those in Chapter 5), the actual form of the Type I fuzzy neuron does 
not have a particularly strong affect on the overall quality of 
approximation provided by the associated fuzzy neural network. 
The speed of training and semantic interpretation of the nodes and 
weights are where the advantage of this type of fuzzification of NNs 
really lies. 

Hayashi et al. (1991) develop training algorithms for similar hybrid 
operators (non weighted inputs, with other choices for the union and 
intersection parts), for use in an information retrieval scheme. This 
is similar to the use of additive hybrid operators in Keller et al., 
(1994b), which concerns itself with general decision making. 

Example 4 .23 This example considers the training of a single 
neuron to approximate the lO relationship of an empirical data set 
which is conjunctive in nature. The operator and data were studied 
in (Thole and Zimmermann, 1979). The first two columns of Table 
4.40 show the input data, n = 20 vectors x = [x^,x^)'^ e 9t^, while 
column 3 displays the desired output d(x). We call this 10 data X . 

Table 4.40 X and outputs of single neuron approximations 

^ 1 ^2 d(x) O 
^ M 

^A <& 
^ Y 

$ 1 
LH 

0.00 0.99 0.01 0.02 0.19 0.05 0.00 0.31 0.30 
0.91 0.42 0.52 0.59 0.50 0.56 0.57 0.55 0.57 
0.22 0.15 0.17 0.10 0.09 0.07 0.18 0.09 0.07 
0.55 0.80 0.67 0.61 0.53 0.65 0.66 0.57 0.57 
0.02 0.45 0.01 0.06 0.09 0.03 0.04 0.11 0.09 
0.50 0.44 0.49 0.38 0.32 0.45 0.47 0.30 0.29 
0.69 0.40 0.54 0.46 0.39 0.51 0.51 0.40 0.40 
0.85 1.00 1.00 0.91 0.87 0.89 0.92 0.82 0.85 
0.42 0.62 0.46 0.43 0.36 0.49 0.51 0.36 0.36 
0.32 0.21 0.14 0.17 0.14 0.19 0.25 0.13 0.11 
0.48 0.31 0.40 0.30 0.25 0.35 0.38 0.23 0.21 
1.00 0.00 0.00 0.03 0.19 0.05 0.00 0.35 0.35 
0.63 0.34 0.44 0.39 0.32 0.43 0.44 0.32 0.31 
0.28 0.45 0.24 0.26 0.22 0.31 0.35 0.20 0.18 
0.13 0.51 0.10 0.17 0.16 0.19 0.21 0.16 0.14 
0.33 0.24 0.30 0.18 0.16 0.21 0.28 0.14 0.12 
0.97 0.26 0.33 0.48 0.40 0.41 0.40 0.49 0.50 
0.48 0.01 0.02 0.05 0.10 0.03 0.02 0.12 0.10 
0.55 0.96 0.71 0.69 0.60 0.66 0.70 0.65 0.67 
0.13 0.98 0.19 0.31 0.28 0.26 0.23 0.39 0.38 
MSE 0.006 0.014 0.004 0.003 0.025 0.025 

Epochs 42 73 15 29 1000 5000 
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Three Type I fuzzy neurons, O^ (4.105), O^ (4.107), Oy (4.108), the 
generalized mean neuron <t>^ (4.103a), and one standard neuron, 

*LH' ^^^^ trained via back-propagation to approximate this data -
that is, weights were sought during training that minimized 

20 2 
MSE^JX ) = l ( 0 . ( z , . * ) - d ( x , ) ) / 2 0 . 

k = l 

For the generalized mean Oj^ , the initial weights and exponent 
q 

were w = w = 0.5, q = 1, and as shown in Table 4.40, the final value 
of q after learning is q= -1.02. The exponential weights started at 1.0 
and the initial value of y was 0.5. The standard McPitts neuron was 
trained for 1000 (<E>LĴ ) and 5000 (O^̂ )̂ epochs. All training runs were 
terminated when the maximum change in any parameter was less 
than 0.0001. 

The outputs upon resubstitution are shown in Table 4.40. The mean 
squared errors for all six neurons are similar. The fuzzy neurons (we 
include the generalized mean as a fuzzy neuron, and notice that it 
enjoyed the smallest MSE of the lot) enjoy a slight advantage in 
terms of smaller training errors over either of the McPitts neuron. 
We think the real payoff, however, is that the number of epochs 
needed to reach the error rates shown was much less for the fuzzy 
neurons than the standard ones. Interestingly, the MSE of the 
standard neuron stabilized at 0.0248 (rounded to 0.025 in the table) 

in about 3500 epochs - that is, the MSE for ^^^ did not decrease in 
the last 1500 passes through X . Of course, it is possible that if 
training were extended, or if a smaller learning rate, or a different 
initialization were used, this level might have decreased. 

Table 4.41 Final parameters of the fuzzy Type I neurons 

Neuron Y(or q) ^ 1 ^ 2 

0.46 

0.19 

1.04 

1.04 

0.96 

0.96 

* Y 
0.05 0.65 0.62 

o 
^ 

-1.02 0.49 0.51 

Table 4.41 displays the final values of the parameters of the Type I 
fuzzy neurons. Both O^ and O^ ended vwth a y near zero, indicating 
that the overall aggregation was intersection-like. The negative 
value for q in the generalized mean indicates that it acts here as an 
intersection-like operator (tending slightly towards the min = T 
norm and jus t a little to the "left" of the harmonic mean, which is 
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realized at q = -1). It is interesting that <I>ĵ  remained almost 
completely compensatory (y = 0.46). Our ability to interpret the 
nature of the neuron (e.g., intersection-like) is sometimes offered as 
an additional advantage of using fuzzy neurons. It's hard to draw 
much stronger conclusions from this simple example, but it gives 
you an idea of one way that fuzziness can be injected into the atomic 
unit of a neural network. 

D. Fuzzy aggregation networks 

When the Type I fuzzy neurons from Section 4.7.C are put into a 
network structure, the resultant configuration has been called a 
fuzzy aggregation network, or FAN (Krishnapuram and Lee, 1988, 
1989, 1992a, 1992b, Keller et al., 1994b, Keller and Chen, 1992a). 
These networks have the advantage that, after training, the nodes 
can be interpreted as "mini-rules", i.e., there is a higher degree of 
transparency in what the network learned than is available in 
traditional neural networks. There are many variations of the 
material presented in this section - too many to cover in any logical 
fashion. What we hope to do instead is show, by example, how you 
might develop a fuzzy network approach that is tailored to the 
application you are interested in. 

With this approach, the decision process can be viewed as a 
hierarchical network, where each node in the network "aggregates" 
the degree of satisfaction of a particular criterion from the observed 
evidence. The inputs to each node are the degrees of satisfaction of 
each of the sub-criteria, and the output is the aggregated degree of 
satisfaction of the criterion. Such networks can be utilized to 
address the object classification problem, and as we shall see in 
Chapter 5, they are quite effective for image segmentation, which is 
also jus t a pattern recognition problem "in the small". 

The classification problem using the fuzzy aggregation net 
framework reduces to : (i) determining the structure of the 
aggregation network to be used; (ii) determining the nature of the 
connectives at each node of the network; and (iii) computing the 
input supports (degrees of satisfaction of criteria) based on observed 
features (This should "ring-a-bell"! It's a critical step). The structure 
of the aggregation network depends on the problem at hand. 
Krishnapuram and Lee (1988, 1989, 1992a, 1992b), and Keller et al. 
(1994b) developed learning procedures based on back-propagation, 
so that both the type of connective at each node, as well as the 
parameters associated with the connective, can be learned from 
training data. Besides general pattern recognition and decision 
making problems, these fuzzy aggregation networks have also been 
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used in network structures for fuzzy logic inference (Keller et al., 
1992, 1994c). 

Example 4.24 In this example from Krishnapuram and Lee {1992a, 
b), we consider the problem of recognizing two classes based on four 
features. The features for each class were generated using a 
multivariate Gaussian probability density distribution. The mean 
and variance of the first two features in both classes were the same. 
The third and fourth features had different means and variances in 
each class. A total of 121 sets of features were generated for each 
class. Out of these 242 vectors, approximately 90% were used for 
training and 10% were used for testing, repeating this process 10 
times (10-fold cross validation). 

From the training data, the mean and variance of each feature in 
each class were calculated. This gives 8 means and 8 variances. The 
membership value (or the degree of satisfaction of the criterion) of 
each feature in the two classes was calculated assuming a Gaussian 
membership function. Specifically, the membership value mj. of Xj 
(the ith feature) in class j was given by 

my(x,) = exp-"^'-^«'V(2^)^) ^ (4.109) 

where p... and a^> are the sample mean and the standard deviation of 
the ith feature in the jth class. This gives two membership values for 
each feature (one for each class) or a total of 8 membership values 
per data vector. These are the input membership functions on each 
edge of the input side of the two fuz2y Type I output nodes used in this 
example. 

Krishnapuram and Lee (1992a) used a single hidden layer 
aggregation network with 8 nodes (hi, h2 h8) and 2 fuzzy Type I 
output nodes (ol and o2) for this classification problem. This 
network is shown in Figure 4.78(a) with inputs at the bottom of the 
sketch. Notice that this is not a fully connected network - feature 
value x is distributed only to h i and h2, x to h3 and h4, etc. Here 

1 •' 2 

nodes h 1 and h2 in the hidden layer tell us to what extent feature 1 
supports class 1 and class 2, etc. In the training phase, the desired 
value of the output nodes o 1 and o2 were chosen to be equal to 1 and 0 
respectively, if the data point came from class 1, and they were 
chosen to be equal to 0 and 1 respectively, if the data point came 
from class 2. 
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class 1 class 2 

"^11 ™12|™21 ™22 I "^31 ™32i ™41 ™42 ™31 ,™32 I ™41 ' ™42 

X j = ^ 2 5 ^ 3 ' •'^4 

(a) the original network 

X g = X ^ 

(b) redundancies removed 

Figure 4.78 Fuzzy aggregation network for a two class problem 

A modified gradient descent algorithm (Krishnapuram and Lee, 
1992a, 1992b) was used (to account for the constraints on the 
weights) with the multiplicative y-model as the aggregation operator 
for training the parameters yand 5 associated with ol and o2. As the 
t raining proceeded, the weight values associated with all 
connections emanating from the first four nodes of the hidden layer 
gradually decreased toward zero. Four other weights also dropped 
towards zero, producing the much simpler network shown in Figure 
4.78(b). The final parameter values were: for node ol , y = 0.922, w = 

4.66, w^ = 3.34; for node o2, y = 0.923, w^ = 4.64, w^ = 3.36. This 
indicates that these features were redundant. Krishnapuram and Lee 
state that this suggests that the weights associated with x and x 
should be reduced relative to other weights in the network. 
Constraints on the weights such as the ones in (4.103b) or (4.106) are 
crucial if this is to be achieved. 

The overall rate of correct classification for ten-fold cross 
validation was 92%, the same performance attained by an optimal 
Bayes classifier trained with the standard mixture model equations 
(which in this case are decoupled and can be computed non-
iteratively because the data have crisp training labels). Thus, this 
aggregation scheme performs as well as a Bayesian classifier on 
data that match the assumptions for an optimal Bayesian design. 

Aggregation networks using Oj^ as the node function in Type 1 fuzzy 
neurons have been successfully applied to a variety of problems 
(both two-layer and multi-layer) including the determination of 
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creditworthiness, and recognition of tanks, armored personnel 
carriers and false alarms with excellent results (Krishnapuram and 
Lee, 1989, 1992a, 1992b). 

One important aspect of the training procedure for aggregation 
networks is that the resulting networks can be interpreted 
linguistically, since the final parameters allow us to loosely 
characterize each node as a conjunction, disjunction or mean of the 
values being aggregated. Based on the parameter values, it is even 
possible to say something about the strength of the operation, i.e., 
that the node is a strong or weak conjunction of evidence. For 
example, the generalized mean behaves like an intersection (union) 
operator for negative ( positive) values of q. Similarly, Oj^ and O^ 
behave like intersection (union) operators for values of y close to 0 
(1). Interpretation of these operators can provide insight into the 
nature of the decision process, and into the nature of the training 
data itself. This could be used to advantage, for example, if the 
designer had the information necessary to heuristically tune the 
performance of the network. We will see "mini rules" such as these 
used for image segmentation in Example 5.10 in Chapter 5. 

Another important aspect of these networks is that they can be used 
to identify redundant features. Krishnapuram and Lee (1989, 1992a, 
1992b) define three kinds of redundant features: (i) uninformative, 
(ii) unreliable, and (iii) superfluous. Uninformative features are 
those whose values are approximately the same in all feature 
vectors. Unreliable features are those whose means and variances 
are roughly the same in all classes. And finally, superfluous features 
are those that are highly correlated. Features that have the first two 
of these three characteristics are not very useful for classifier 
design. Features with the third characteristic can increase the 
reliability of a classifier, since they all provide similar 
information. Krishnapuram and Lee (1989, 1992a, 1992b) use 
numerical experiments to support their assertion that aggregation 
networks using node functions based on either Oj^ or Oj^ can 

q 

eliminate uninformative and unreliable features, as indicated by 
the training weights for such features tending towards 0. Example 
4.24 shows an instance where unreliable features (1 and 2) are 
eliminated this way. 

Because the weights for Yager-type nodes {<i>y) are exponents of 
feature values which lie in the interval [0,1], and because y 
determines the "mixing" of union and intersection components for 
the desired node, it is possible to detect features which do not 
contribute to the decision using Oy as well. The farther away from 
1.0 a weight becomes during training, the less impact that feature 
has in the combination of values made at the node. When y is greater 
than 0.5, the node leans more towards a union, and so, large 
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exponents tend to signify unimportant features, while for more 
intersection-like nodes (y < 0.5), a small exponent keeps a feature 
from contributing to the node output (Keller and Chen, 1992b). This 
allows features in the training data to be investigated as to their 
potential for contributing to the final aggregation. 

We end this section with an example of a two level network showing 
how fuzzy aggregation networks can be used to solve recognition (or 
decision) problems in high level computer vision. In one sense, this 
use is similar to employing neural networks to model fuzzy rules, a 
technique investigated by several authors (Wang and Mendel, 1992, 
for example). We include this example in Chapter 4 because the 
discovered "rules" are object recognition decisions - that is, the 
network is performing classification, and hence, is a classifier. 

Example 4.25 This example combines some results discussed in 
(Krishnapuram and Lee, 1992a) and Keller et al. (1994b). We will 
show how the miultiplicative and additive hybrid operators can be 
used in a two layer network to simulate a classification problem in 
computer vision. The goal is to recognize a stool from an arbitrary 
viewpoint. The stool is assumed to have four cylindrical legs and a 
top that can be square or circular. However, depending on the 
viewpoint, the top may be perceived as a parallelogram or an ellipse. 
The strategy here is that a strong fuzzy classification should result if 
either group of features (legs or top) is present. The two layer 
network shown in Figure 4.79 was used by both (Krishnapuram and 
Lee, 1992a) and Keller et al. (1994b). 

stool 

legl leg2 leg3 leg4 topi top2 

Figure 4.79 Aggregation network or "stool recognition" problem 

In the first layer, the simulated evidence associated with the four 
legs is combined to make a hypothesis at op-2, and the simulated 
evidence supporting the shape of the top is combined at op-3. In the 
second layer, the hjqjothesis concerning the existence of the stool is 
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made at op-1 by aggregating the evidence coming from op-2 and op-3. 
Different aggregation operators such as Oj^, O^ and Oy were used 
for op-1, op=2 and op-3 ("op" stands for operator in this example). 
The training data set was constructed synthetically using the 
following decision strategy. 

IF all four legs exist in the current view 
OR IF there is one of the two possible types of tops 
THEN accept the hypothesis that the object is a stool. 

Because of the way the desired outputs were assigned in the S5mthetic 
data, it is expected that after training, the connectives for op-1, op-2, 
and op-3 will be disjunctive, conjunctive, and disjunctive, 
respectively. If we use O^ ,̂ O^ or Oy for the three nodes, the three y 
values at the nodes y ,. 7, and y should be large, small, and 

'stool 'legs 'top ° 

large, respectively. A subset of the synthetic input data, vectors 
X 6 SR̂ , together with their desired output values d(x), is shown in 
Table 4.42. Only a subset of the 48 input/output tuples are shown. 
The entire data set, which satisfies the above stipulations, consists 
of n = 48 lO pairs which are all symmetric combinations of those 
listed in Table 4.42. 

Table 4.42 Sample inputs and desired output d(x) 

legl leg2 leg3 leg4 t o p i top2 d(x) 
m j x j ) m2(x2) m3(x3) m4(x4) m^CXg) mg(Xg) 

0.10 0.10 0.10 0.10 0.10 0.10 0.01 
0.10 0.10 0.10 0.10 0.10 0.90 0.90 
0.10 0.10 0.10 0.90 0.10 0.10 0.05 
0.10 0.10 0.10 0.90 0.10 0.90 0.93 
0.10 0.10 0.90 0.90 0.10 0.10 0.10 
0.10 0.10 0.90 0.90 0.10 0.90 0.95 
0.10 0.90 0.90 0.90 0.10 0.10 0.20 
0.10 0.90 0.90 0.90 0.10 0.90 0.98 
0.90 0.90 0.90 0.90 0.10 0.10 0.98 
0.90 0.90 0.90 0.90 0.10 0.90 0.99 

The results of training (i.e., resubstitution errors incurred after 
training) are displayed in Table 4.43. In this example, the 
parameters were initialized as follows: y was set to 0.5, all of the w 's 
to 1.0 and P (for the Yager connectives) to 2.0. All training runs were 
terminated when the maximum change in any parameter was less 
than 0.0001. 
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Table 4.43 Desired output and results using 5 networks 

d(x) * . , * . O,, NN5 NN20 
M A Y 

0.01 0.18 0.19 0.04 0.004 0.02 
0.90 0.90 0.90 0.90 0.90 0.94 
0.05 0.18 0.19 0.08 0.03 0.05 
0.93 0.93 0.90 0.96 0.93 0.92 
0.10 0.19 0.20 0.08 0.07 0.07 
0.95 0.90 0.90 0.96 0.96 0.95 
0.20 0.26 0.25 0.20 0.27 0.23 
0.98 0.91 0.91 0.96 0.97 0.98 
0.98 0.74 0.71 0.96 0.79 0.93 
0.99 0.97 0.97 0.96 0.99 1.00 

Epochs 385 5000 1248 5000 20000 
MSE 0.0059 0.0068 0.0004 0.0016 0.0003 

For comparison, we trained a standard FFBP network with 
configuration 6:3:1 where the parameters of the logistic functions 
were fixed at A, =1, P = 0, so the parameters acquired during learning 
in this example are the weight vectors {w} and bias constants {a.}. 
We trained this network to 5000 and 20000 iterations through the 
training data. The outputs of these two networks are in Table 4.43 in 
columns labeled "NN5" and "NN20", respectively. The final 
parameters for the fuzzy aggregation networks were as follows (the 
weights {w} are numbered from left to right): 

Network of O., neurons 
M 

op-1 

op-2 

op-3 

Tstooi=l-0; w^=1.03; W8=0.97 

Y,,„ = 0.06; w = 1.00; w = 1.00; w = 1.00;. w = 1.00 
"=6® 1 2 3 4 

Yt„„= 1.0; w = 1.00; w = 1.00 
™P 5 6 

Network of O^ neurons 

op-1 : Tstooi = 0-99: 

op-2: Yiegs = 0-00; 

op-3: Ytop = 0.99; 

w = 0.985; w = 1.015 
7 8 

w = 0.999; w = 0.999; w = 1.059; w = 0.944 
1 2 3 4 

w = 1.000; w = 1.000 
5 6 

Network of O neurons 

op-1: Ystooi = 0.96; (i = 0.41; w = 1.172; w = 1.227 
7 8 

op-2: Y,.«c = 0.03; B = 1.94; w = 0.98; w = 0.98; w = 0.99; w = 0.97 
f Hegs " ^ 1 2 3 4 

op-3: Ytop = 0-92; p = 2.24; w = 1.639; w = 1.639 
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As can be seen, for all three fuzzŷ  models, op-1 and op-3 turned out to 
be primarily union connectives, while op-2 leaned toward 
intersection. The results in all cases matched the desired values 
pretty well, especially considering the small amount of training 
data. 

Furukawa and Yamakawa (1998) recently proposed a 4 layer feed
forward fuzzy NN which can extract local features (structural 
information) directly from inputs such as handwritten characters 
and employ them for recognition. The interesting aspect of this 
method is that each layer uses a different type of fuzzy neuron and 
each performs a different task. The first layer gets the local features 
from the input image. The second layer filters off dispensable 
features and integrates the local features obtained by the first layer 
into more global features. The third layer compresses the size of the 
map of local features. The fourth layer is self-organized by learning 
and gives similarities of the input image to all of the learned images 
in the output layer. 

E. Rule extraction with fuzzy aggregation networks 

There are many methods to generate fuzzy (and crisp) rules 
automatically from training data through the use of fuzzy network 
structures (Wang and Mendel, 1992, Berenji and Khedhar, 1993, Lin 
and Lee, 1996; Jang et al., 1997, Lin and Cunningham, 1995). We 
discuss a method developed by Krishnapuram and Rhee (1993a) 
which uses the FAN from section 4.7.D to induce a set of fuzzy rules 
which are used for classification (see Example 5.10). This technique 
is fairly general, and can be applied to any classification problem. 

Krishnapuram and Rhee (1993a) describe an automatic rule 
generation procedure which they used for supervised image 
segmentation (i.e., pixel classification). The procedure consists of 
the following three stages: estimation of the class membership 
functions (m.}, where m..(x.) represents the membership value of 
feature i for each class j ; estimation of the membership functions 
{ m^^} of the linguistic labels to be used in rule base /€ to describe each 
feature i; and generation of the rules in /€ that best describe the 
training data. 

Suppose there are p features and c classes. In the first stage, 
Krishnapuram and Rhee use the smoothed histogram of each feature 
in each class to generate the membership functions (m , i=l p; 
J=l, . . . ,c}. The smoothed histograms (m } play the role of the 
Gaussian membership functions used in Example 4.24 (see (4.109)). 
Krishnapuram and Rhee use a network similar to the one in Figure 
4.78 to eliminate uninformative and unreliable features. The 
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generalized mean was used as the node function in the output nodes. 
At the end of this stage the remaining features are used in the rule 
generation process. 

The first step in the second stage is to generate the membership 
functions {m^} for the various linguistic values (such as low, 
medium and high) that each non-redundant feature can take. This is 
done by first computing a smoothed histogram of a given feature. 
Unlike the computation of my, data from all classes are used for this 
purpose. This process generates p smoothed histograms. Each of 
these histograms is then approximated in terms of a weighted sum 
of Gaussians. Krishnapuram and Rhee (1993a) use a polynomial fit 
to the histogram to determine the number of peaks in the histogram; 
this information is used to establish the number of Gaussian 
functions needed, as well as their initial means and covariance 
matrices. Then, a gradient descent procedure that minimizes the 
error between the smoothed histogram and the weighted sum of 
Gaussians is used to fine tune estimates for the means and variances 
of the Gaussians. 

Each Gaussian function that appears in the weighted sum 
approximation of the feature i histogram is treated as the 
membership function of a linguistic label associated with feature i. 
The membership values for an observed feature value in each of the 
labels can be calculated using these membership functions. The 
final step is to obtain a compact set of rules with conjunctive and 
disjunctive antecedent clauses. To achieve this, Krishnapuram and 
Rhee use a three-layer fuzzy aggregation network. They initially 
start with an approximate structure for the aggregation network 
which is then pruned after training. 

Figure 4.80 shows the structure of the approximation network for 
generating rules (jump ahead to Example 5.10 if you want to see this 
approach used in an actual problem). In the approximation 
network, the bottom layer consists of p groups of nodes, with the i-th 
group consisting of r nodes, where r is the number of linguistic 
values (granularity) defined on the i-th feature. We denote the 
linguistic values associated with feature i by (^^^..^(^ . Node k of 

group i (which is associated with (,) in the bottom layer uses the 

membership function m ^ of the linguistic label (which is a 
Gaussian function determined in the previous stage) as the 
activation function. 

The hidden layer consists of p groups of c nodes each. The jth node in 
group i in the bottom layer is connected to the kth node in the 
corresponding group in the hidden layer if a small a-cut (e.g., 0.05) of 
m^̂  has a non-empty intersection with the support of m . The 
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rationale behind this connection is that if the support of the 
membership function of a hnguistic label has no intersection with 
m , then it cannot appear in the antecedent clause of a rule that 
describes class i (remember that m is the smoothed histogram of 
feature i values from class k). This connection process is repeated 
for all the groups in the bottom layer. 

Class 1 Class j Class M 

Feature 1 Feature i Feature p 

Top 
Layer 
Rules 

Hidden 
Layer 
PMF 

Clauses 

Bottom 
Layer 
Ling. 

Values 

Input 
Layer 

Figure 4.80 An approximation network for generating rules 

The kth node of all groups in the hidden layer is connected to the kth 
node of the top layer for k = l,...,c. All hidden and top-layer nodes 
use a suitable fuzzy aggregation operator such as the generalized 
mean or the y-model as the activation function. The i-th feature (x ) 
is fed to the i-th group of bottom-layer nodes as input. This 
completes the construction of the initial fuzzy aggregation network 
for this method. 

The target values (crisp class labels) in the training data are chosen 
to be 1 for the class from which the training data was extracted, and 
0 for the remaining classes. The aggregation operators (such as the 
generalized mean) used in the hidden and top layers have weights 
associated with each of their inputs. Each node in the hidden layer 
represents a combination of atomic premise clauses (e.g., feature i is 
low and feature j is high). However, the nature of the combination 
depends on the aggregation operator (e.g., generalized mean) chosen, 
and is not necessarily as in (4.72a). 

As the network is trained, the weights corresponding to redundant 
antecedent clauses in the hidden layer become insignificant. This 
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happens because typically there is a constraint on the weights. Each 
node in the top layer in Figure 4.80 represents a combination of 
rules for a class. The weights for redundant rules also become 
insignificant during training. The network is then pruned by 
removing all connections with very low weights (e.g., < 0.0001); the 
thresholds chosen in the top layer are usually data dependent. 

The resulting network is interpreted as a set of fuzzy decision rules. 
The nodes in the hidden and top layers can represent either 
conjunctive, disjunctive or compensatory nodes, depending on the 
final values of the parameters of the aggregation function. Also, the 
connection weights determine the relative importance of the 
antecedent clauses in a rule. Since all the rules are determined 
simultaneously, an optimal set of rules is obtained, as opposed to 
individually optimal rules that would result from a serial process. 
In the notation of Section 4.6.D, the final network represents the 
rule base /?. Another attractive feature of this method is that it 
automatically identifies redundant features in the first stage. For 
example, this method eliminates the first two features of Iris (Rhee, 
1993, Krishnapuram and Rhee, 1993a), leaving the third and fourth 
features (scatterplotted in Figure 4.12) to support the classifier. The 
rules discovered for Iris look like this: 

R : IF feature 3 is low OR feature 4 is low 
THEN class = Sestosa 

R : IF feature 3 is med OR feature 4 is med 
2 

THEN class = Versicolor 

R : IF feature 3 is high OR feature 4 is high 
THEN class = Virginica 

The structure Just described, like ANFIS (Jang et al., 1997) and many 
others, is applicable for many types of data and problems - both in 
classifier design and elsewhere. Example 5.10 in chapter 5 
illustrates this approach to learn a small set of fuzzy rules for an 
image segmentation problem. 

4.8 Adaptive resonance models 

Competitive learning models (besides the ones already discussed in 
Section 4.3) have been studied by many researchers (Grossberg, 
1976a, 1976b, Rumelhart and McClelland, 1982, Carpenter and 
Grossberg, 1987a, Rumelhart and Zipser, 1985). This section is about 
Carpenter and Grossberg's adaptive resonance theory (ART) and 
some fuzzy relatives of it. 

The original model was called ARTl by Grossberg (1976a, b). There 
are some interesting parallels between the evolution of crisp 
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decision trees and ARTl. Like Quinlan's ID3 (Section 4.6), ARTl was 
developed in a somewhat broader context than clustering or 
classifier design; Quinlan was interested in rule extraction for 
semantic explanations of rule-based decisions, while Grossberg 
wanted to mimic rudimentary connections believed to operate in 
our biological neural networks. When people began to use these two 
crisp models strictly for pattern recognition purposes, both were 
found deficient because both were created for a special type of data 
(IDS for any discretely valued inputs, and ARTl for binary inputs, 
which are also discretely valued, with only two values) that are 
relatively rare in everyday pattern recognition. So, both developers 
generalized their original designs to accommodate continuously 
valued features : Quinlan's 1983 1D3 was imbedded in his 1993 C4.5; 
while Grossberg's 1976 ARTl was generalized to ART2 in Carpenter 
and Grossberg (1987b). 

ARTl and many of its unsupervised relatives are nothing more than 
sequential point prototype generators, so a logical place for this 
subsection from the pattern recognition point of view would be 
somewhere in Section 4.3. On the other hand, unlike some of the CL 
models discussed in that section, many investigators besides 
Grossberg have invested substantial effort in connecting ART to 
(presumed) elements of the biological neural network, so we decided 
to defer this section until after our brief discussion about the BNN in 
case this aspect of ART interests you. Our aim here is to make sure 
that you understand the basic structure of ARTl from the pattern 
recognition viewpoint. Following Moore (1988), we separate the 
algorithmic component of ARTl from its architectural design, and 
present only the algorithmic aspects of ARTl, Grossberg's (1976a, b) 
original model. 

A. The ARTl algorithm 

Recall from Section 4.3.A tha t any c point prototypes 
V = (Vi,..., Vp} c 9tP can be substituted into (2.6a), and the result is 
the crisp partition UnpCV), the nearest prototype partition of X. As 
pointed out in Section 4.3.A, subsequently applying (2.6b) to the 
rows of U(V) results in the sample means, V = V, so it is not 
incorrect to regard the prototypes V = V as a representation of 
Unp(V). Much of the ART literature uses this alternate way to 
describe crisp clusters in terms of their nearest prototypes, so we 
will follow this convention in this section. 

Most competitive learning models suffer from a problem we can 
loosely call "unstable Icciming". Grossberg (1976b) proved a theorem 
about the competitive learning model described in Grossberg (1976a) 
which essentially states that if not too many input vectors are 
presented to the algorithm relative to the number of categories, or if 
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the inputs do not form too many clusters, then the prototype that 
represents each class eventually stabilizes. This competitive 
learning model was also analyzed by Rumelhart and Zipser (1985), 
whose simulations confirmed Grossberg's theorem. However, non-
frivolous counterexamples demonstrate that such competitive 
learning models cannot learn temporally stable prototypes in 
response to arbitrary inputs (Grossberg, 1987). For these 
counterexamples, system response to the same input data on 
successive presentations can be different due to prototj^e updates 
that take place in response to intervening data (Shih et al., 1992, 
Baraldi and Alpaydn, 1998). Consequently, the response to a given 
input pattern might never stabilize. Carpenter and Grossberg 
(1987a, 1988b) demonstrated several environments in which 
periodic presentation of Just four inputs can cause instability. 

Moore (1988) characterizes the stability of CL models in terms of two 
properties she calls stable and stable . Specifically, a CL model is 
stable in case no prototype returns to a previous position during 
training; and it is stable when only finitely many prototypes are 
created during learning. The assumption for these two definitions is 
that there is an infinite supply of data. Stable is a property 
possessed by individual prototj^DCs, while stable is a property of the 
entire prototype set V. 

Stability is one of two problems that Grossberg's ARTl was designed 
to address. The second problem was called plasticity by Grossberg. 
Plasticity refers to the ability of a CL model to learn new inputs after 
it has stabilized on previous training data. To understand both the 
problem and Grossberg's method of fixing it with ARTl, suppose that 
a CL learning model has been running for a while, and its prototypes 
are fairly stable. Most of the CL models we have discussed so far 
(Section 4.3) use an update equation with the general form of 
equation (4.11), rewritten here to save you the trouble of looking it 
up: 

The plasticity problem is related to the learning rate distribution in 
(4.11) - that is, the numbers {ajkt}- In almost every case we know of, 
the standard method of achieving stability under (4.11) is to begin 
with values for the {tti^t} close to, but less than, 1; and then to 
decrease the {aj .̂t} towards zero as time (iteration number t) 
increases. The plasticity problem arises because smaller learning 
rates may disable the model's ability to respond appropriately to 
new inputs that have not been seen by the algorithm until the {ajk tJ 
are small. To understand this, we assume that VQÎ  is any prototype 
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that will be updated with (4.11) for the current input x, and rewrite 
(4.11) in a more suggestive form: 

Av = (v„ew - Void) = o.[x - v^id) (4. I D 

Figure 4.81 The update geometiy of CL models that use (4.11) 

Figure 4.81 illustrates the update geometry of (4.11'), and hence, of 
all the algorithms in Section 4.3 that use (4.11) to update prototypes. 
The vector Av takes its general direction from the difference vector 
(x - VQIJ ); its magnitude depends on the value of a; and the sign of a 
determines whether the update moves v^^^ towards x (attraction, the 
region "above" vector v^y^) or away from x (repulsion, the region 
"below" the vector Voy). 

When a = 1, v^^^ = x; when a = 0, Vj,ew = Void, i.e., the prototype is 
unchanged; and most importantly for plasticity, when a is positive 
but close to 0, Av will be very small. Under these circumstances 
algorithms that use (4.11) to update their prototypes don't have 
much choice - they become stable as a^^^ -^ 0 because Av is so small 
that they can take only tiny steps. If the learning rates actually get 
to zero, the updates stop, and the prototypes are completely stable. 
Now suppose that a^^ « 0, and that a new input arrives in the 
system that has not participated in the update scheme. The impact 
of this point on the locations of the {Vj} may be insignificant, even 
though the new input itself is importantly related to the structure of 
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the overall input data. This is the plasticity problem, and it tugs CL 
models in the opposite direction from stability. 

ARTl is motivated by this so-called stability-plasticity dilemma of 
competitive learning (Carpenter and Grossberg, 1987a). Apparently, 
the best situation would be if the CL system could switch between the 
plastic and stable states and vice-versa as the need arose. Such 
characteristics can be built into a network by adding a feedback 
mechanism between the competitive layer and the input layer. This 
philosophy has resulted into two well known prototype generation 
architectures, ARTl (permits only binary inputs) and AKTZ (suitable 
for analog / gray level inputs). In ART-type networks outputs of the 
processing elements reverberate back and forth between layers, 
resulting in a stable oscillation when proper prototypes develop - a 
kind of resonance - hence the name ART. Study of the structure that 
achieves this takes us into the architectural details of ART 
networks, which is not covered in this book.. We will follow Moore 
(1988) by presenting a simple description of ARTl in the language of 
Section 4.3. 

ARTl assumes that inputs are binary valued p-vectors, that is, input 
data have the form x = (Xj ^ )^ e {0,1}P. While the general case is 
to assume an infinite input stream, we will always deal with finite 
data sets X = {xi,...,Xn} c (0,Ip, |X| = n . ARTl uses two similarity 
measures between the binary input vectors and the prototypes it 
constructs. Let x be the current input vector, x^ e {0,1}^, and let {v} 
be a set of c binary-valued prototypes (we shall see later that ARTl 
guarantees this). Define 

Si(Xi,,Vt) = ^̂ '̂'ii' „ , i= l....,c; p>0 ,and (4.110a) 
P+IKIL 

S2(Xi,.Vi)=\, ^', i = l c . (4.110b) 

The closest protot3^e to x maximizes s , and for small values of p, 
(4.110a) is an estimate of the ratio of overlap between x and v 

k i 
(recall that these are binary-valued vectors, so the dot product 
simply computes the number of matches between x and v.) and the 
magnitude of the prototype. Using a small value of p helps with the 
"all zero prototypes" problem. This measure is sometimes called a 
search parameter in the ARTl literature. 
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Similarity measure s is used to evaluate the extent to which x and 
V are matched: this number will range between 0 and 1, being 0 if 
there are no matches, and 1 if x, < v , where ordering of vectors is in 

k I '^ 
the usual component by component sense. In other words, (4.110b) 
computes the fraction of matches between the input and the 
prototype. This measure is compared to a threshold p called the 
vigilance parameter. We will describe the role each of these 
measures plays in determining (nearest prototype) cluster shapes 
after we discuss the operation of the ARTl algorithm, which is 
summarized in Table 4.44. 

Table 4.44 The ARTl algorithm 

A. Training phase : find V without U 

Store Unlabeled binary-valued data X c {0,1}P,|X| = n 
<•• maximum number of iterations: T 

Pick *• search parameter p : 0 < p « 1 
•• vigilance parameter p : 0 < p <1 

For t = 1 to T 
For k = 1 to n 

Iterate V'<-V 
REPEAT 

Si (xj,, Vj) = max{Si (x^, v j)} 

V ' < - V ' - { V j } 

(4.111a) 

l F ( v ' = 0 a n d s 2 ( x ^ , v , ) < p ) 

Then V<-Vu{Xk} 

(4.11 lb) 

lFs2(x^ ,v . )>p (4.111c) 
Then Vf <- Vj A X,̂  (bitwise AND) 

UNTIL (V' = 0 ) 
Nextk 

Nextt 

(4.11 Id) 

B. Prototype relabeling of V with U ĵ. using, e.g., (4.13) 
C. Optional (crisp) clusters if Ujj.is unknown, with, e.g., (2.6a) 

F k - V i i < l < j < c , j ^ i 

otherwise. Resolve ties arbitrarily 
•Vi,k 

The prototypes built by ARTl are accumulated in Table 4.44 using 
our standard notation - V is the set of prototj^es at any point during 
training. Table 4.44 has the same general organization as Table 4.4 -
it is set up so that if you have labels for the training data, these can 
be ignored in step A, and then used in step B to create labeled 
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protolypes. Thus, AERTl can be used to design prototype classifiers 
ju s t as we did with other CL models in Section 4.3. The usual 
specification of ARTl (e.g., Moore, 1988) does not give a termination 
criterion. Carpenter and Grossberg (1988b) show that ARTl 
terminates after a finite number of iterations (remember, an iterate 
is one pass through all of X, sometimes called one epoch) in the sense 
that no new clusters will be formed, and the prototypes of existing 
clusters will stop changing - a point at which ARTl is said to be 
stabilized. We have added an iterate limit T in Table 4.44 as a matter 
of practicality, since the finite number of passes needed to achieve 
stability for a particular data set is not known, and might be very 
large. 

Many ART papers call s a search criteria because it controls search 
through the current prototypes, beginning with the closest (winner). 
Equation (4.11 la) shows that ARTl, like LVQ and SHCM, begins as a 
winner take all CL model - it selects v - the closest prototype to input 
X - for possible updating. If there are no prototypes, the input is 
declcired a new prototype (and hence, ARTl creates a new cluster). If 
there are protolypes, and the winner fails to achieve resonance, the 
"second best" (next closest prototype to the input) is tested by 
(4.11 la); and so on, until one of the existing prototypes gets updated 
or, failing this, a new prototype is created. Consequently, the 
"winner" in ARTl - that is, the prototype that gets updated - is the 
one that exhibits maximum response among the subset of 
prototypes that satisfy the vigilance test. Thus, ARTl is a CL model 
which only updates one prototype per input, but not necessarily the 
"winning" one in our previous sense of the word winner as used, e.g., 
in connection with Kohonen's LVQ. Dynamic creation of new 
prototypes by ARTl seemingly frees it from the problem of how 
many to look for, but like the mountain and subtractive clustering 
methods of Section 4.3, the terminal value of c, the number of 
prototypes chosen by the model, depends implicitly on the choice of 
the ARTl parameters p and p. 

At the beginning of ARTl there are no prototypes, so without loss, we 
initialize the prototype set by V<-{Xj}. Whenever ARTl creates a 
new prototype, it is one of the input vectors - in other words, the first 
Instance of each prototype in V is a binary valued vector, v e (0, 1}P . 
Consider the prototype update equation V; f-VjAXj^ in (4.11 Id). 
Both arguments of the bitwise AND are binary vectors, so the new 
updated prototype will again be binary. Moreover, taking the bit-
pair minimum in each of the p coordinates of the two vectors means 
that whenever a 1 is removed during this operation, it cannot be 
restored by a later update of the same prototype. 

While the updated prototype vector Vĵ ^̂  in Figure 4.81 for 

algorithms such as LVQ and SHCM can move in any direction in 9?^, 



420 FUZZY PATTERN RECOGNITION 

the updated ARTl prototype vector v, <- Vj A X^ can only gravitate 
towards the origin, and can only move parallel to the axes of the 
lattice {0,1}^. A side effect of this asymmetric updating strategy is 
that ARTl is biased towards creating a lot of prototypes if the input 
data are strings with a lot of O's. ARTl imposes this constraint on 
the directions that prototype updates can take in an attempt to 
control the stability (motion) of the prototypes during learning. 
This stands in sharp contrast to the method used, for example, in 
LVQ, where stability is achieved by scheduling the learning rates so 
that {ttii^t}"^'^- ^66 Baraldi and Alpaydn (1998) for a discussion 
related to conditions on the {c^y.^} under which AKTl may converge. 

If ARTl is terminated before stabilization, the crisp partition U(V) 
associated with V is not guaranteed to be Ujjj,(V) unless optional 
phase C in Table 4.44 is used - that is, a last pass through X after 
termination of ARTl is needed to construct Uĵ CV) with equation 
(2.6a). However, if ARTl is stabilized at termination, a theorem due 
to Carpenter and Grossberg (1988b) guarantees that U(V) = Unn(V), 
without using step C in Table 4.44. Carpenter and Grossberg call this 
situation "direct access by perfectly learned patterns". To be sure you 
have Unu(V), jus t use step C, which always guarantee it. We 
summarize some other properties of ARTl derived by Carpenter and 
Grossberg (1988b) that are also paraphrased in Moore (1988) : 

aw- The vigilance parameter essentially controls the diameter of the 
clusters. Consequently, increasing p usually results in more 
clusters (higher c) with decreased cardinalities. Carpenter and 
Grossberg call this the self-scaling property (the word "self may 
be a little misleading, since you pick p) ; 

f̂  Distinct clusters have distinct prototypes ; 

•% ARTl clusters are stable ; 

k> For X c {0,l}P,|VARri| ^2^, so ARTl is stable^ on finite or infinite 

input sets. (However, ARTl is not stable for X C 5 R P , but 

remember that ARTl was not designed for vectors in 3i^); 

~^ After stabilization, Vj c Xĵ  V Xĵ  e class i. Here v^ c Xĵ  means 
that X has a 1 wherever v does. Moreover, each x, belongs to the 

k i k '̂  

j th crisp (nearest prototype) cluster if and only if v. is the largest 
subset of X among the c prototypes. 
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ARTl is not particularly attractive as either a prototype generator 
a n d / o r crisp clustering algorithm because of its limited 
applicability (binary valued data). Moore (1988) asserts that it might 
be useful for binary character recognition, but that it may not be 
suitable for signal processing problems where the O's possess as 
much information as the I's. Nonetheless, APTTl is significant for 
three reasons: first, the issue of plasticity versus stability is both 
interesting and important, and ARTl was the first model to clearly 
identify this problem and propose a solution to it; second, relatives 
and generalizations of ARTl can handle continuously valued data, 
and these extensions are as good as any other model you might 
choose to try - but as usued, the proof will always be in the pudding; 
and lastly, the attempt to connect this model to elements of the 
biological neural network has a certain charm, even though, in our 
opinion, the actual connection between any computational NN and 
the BNN will never be known. 

The ARTl architecture is equipped to deal with only binary input 
vectors; ART2 can handle both analog and binary data. All of the 
basic building blocks of ARTl are used in ART2. The main difference 
between the two schemes is in the architecture of the input layer L^, 
which is split into a number of sub-layers containing both feedback 
and feed forward connections. The processing in both the input 
layer L and output layer L of AP5T2 is similar to that in ARTl. For 

further details, see Carpenter and Grossberg, (1987b). There is yet 
another version of ART called ART3 (Carpenter and Grossberg, 1990) 
for parallel search of learned patterns. 

B. Fuzzy relatives of ART 

The ARTl model can handle only binary inputs. The usual 
interpretation of a binary feature value in ARTl is that 1 indicates 
the presence of some quality, and 0 indicates its absence. In real life 
many descriptive features are fuzzy, or partially present to some 
degree. This is, of course, the raison d'etre for fuzzy sets in the first 
place. The most prominent generalization of ARTl to continuously 
valued data is based on this observation (Carpenter et al., 1991a). To 
get an ART model for continuously valued data. Carpenter et al. 
proposed a generalization of the ART model they called fuzzy ART 

(FART) which assumes input data in [0,1]^, and uses the fuzzy set 
aggregator we call the T norm for the computation of activities and 
the adaptation of weights. We briefly discuss the changes needed to 
convert the ARTl algorithm in Table 4.44 into the FAIRT algorithm. 

FART begins with the output nodes (which are in what is often called 
layer 2, denoted here as L , with nodes (L }) initialized at the value 1; 

i.e., Vj = fv^j,...,Vpj) =(1,...,1) = l , j = 1 c. For this initialization, 
each category is initially uncommitted, and when an output node 
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wins, it becomes committed. The similarity measu re s a t (4.110a) 

u s e d by ARTl to control t he s ea rch pro( 

presented to the FAKT algorithm is given by 

u s e d by ARTl to control t he s ea rch p rocess when i n p u t x is 

Si.FARr(^k.Vi) = " I ' ^ 1 = 1 c ; P > 0 , (4.112) 
P + Filli 

w h e r e P > 0 is a constant . The AND operation in (4.112) is defined 
c o m p o n e n t wise u s i n g T , i.e., A(X,v) = (Xj A v ^ , . . . , x A V ). The 

winner node J is selected, a s in ARTl s tep (4.111a), by maximizing 
the modified search criterion, 

Si,FAKr(^k>'^j) = S ^ K F A K r ( ^ k ' ^ » • (4.113) 

If t he re is more t h a n one winning node . Carpenter et al. (1992) 
sugges t u s ing the winner with the smal les t index. The o u t p u t is 
subsequent ly computed by 

f Xfc, if Lo I is inactive 
S = ^ r , . . . . , • (4.114) A(XJ^,VJ) , if L2J is chosen 

The vigilance tes t in Table 4.44, equat ion (4.11 lb) , is made in FART 
us ing a generalization of the matching criterion s at (4.110b), 

||A(Xk,Vi)|L 
X k ' V i ) = - ' ' — i i — n — ^ ' i = l . - - - . c '2,FART I'^-k' *1 

Fkiii 
(4.115) 

Using (4.114) and (4.115), when the J t h category is chosen (again, it 
may or may not actually be the winner), resonance occurs if 

l|S||i=||A(Xk,Vj)||j>p||xk||i . (4.116) 

When this happens , the update equation in (4.11 Id) is replaced by 

Vj <-a(A(Xk,Vj)) + ( l - a ) V j , (4.117) 

where a e [0,1] is the learning rate, a^^^ = a , for all i, k and t. Other 
aspec t s of the algorithmic operation of FART are very similar to our 
specification of ARTl in Table 4.44. 

Carpenter et al. (1991a) asser t t h a t when the da ta are "noisy", it is 
better to begin with a = 1 when J is a n uncommit ted node, a n d then 
switch to a < 1 after the node is committed. T h u s Vj = x^ if x is the 
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first input at which Lj j becomes a winner. Carpenter et al. (1991a) 
call this strategy fast commitment and slow recoding. 

In a large set of data with many distinct values, the possibility of 
ending up with a large number of prototypes is high. FART tries to 
control the proliferation of categories by normalizing the input 
data. The simplest choice is to convert each incoming vector to a 
unit vector using the standard procedure, x^ <- x^ / |xk|| . Another 
type of normalization discussed by Carpenter et al. can be achieved 
by complem^ent coding. Let the complement of the input vector x be 

x'̂  where xf = l - a j , i=l p. The com.plem.ent coded input c(x) is 

defined as c(x) = (x, x"̂ ) = (aj, . . . , ap, a j , . . . , ap)^. Note that for any x, 

||c(x}||j = p , and hence complement coding imposes an automatic 
normalization to the fixed length of p (see the denominator of 
(4.11 lb) to understand the motivation for this). A neural realization 
of FART is discussed in Carpenter et al. (1991b). 

So far we have discussed ART models only in the context of 
prototype generation associated with either nearest prototype crisp 
clusters, or possibly, as a basis for the design of nearest prototype 
classifiers (as in Section 4.2). A class of neural architectures for 
incremental supervised learning that results in a crisp classifier is 
known as the adaptive resonance theoretic MAP (ARTMAP, 
Carpenter et al., 1991c). An ARTMAP system has two ARTl modules, 
ARTĵ  and ARTt,, that can create stable categories in response to an 
arbitrary sequence of input presentations. 

ARTMAP is trained in the usual way using (X , U ) for design, and 
(X , U ) to test the classifier. The subnet ART, receives an input 
^ te te' ^ ^ 

datum Xk e X^r, while the ARTi, subnet uses the corresponding crisp 
output label u^ e Ufj. e Mjjcn- ART^ and ARTj, are connected by an 
associative learning network and an internal controller to ensure 
autonomous operation in (near) real time. The learning rule 
a t tempts to simultaneously minimize predictive error while 
maximizing predictive generalization. The learning scheme 
increases the vigilance parameter of AIRT^ by the minimal amount 
needed to correct a resubstitution error at ART^̂ . A prediction 
failure at ART ,̂ increases the vigilance parameter of ART^ by the 
minimum amount necessary to initiate hypothesis testing by ART^j. 
This process is known as m.atch-tracking. 

Carpenter et al. (1992) also generalized ARTMAP for "fuzzy inputs" -
that is, input vectors in the hypercube [0,1]^. Fuzzy ARTMAP 
(FARTMAP) replaces the ARTl modules ART^ and ART^ of ARTMAP 
by fuzzy ART or FART modules. These two FART modules are 

http://com.plem.ent
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connected by a module called the map-field, F^^. The map-field has 
the same number of nodes as the L2 layer of ART ,̂ which are 
connected to the L2 layer of ART^. For ARTMAP, inputs to both 
ARTa and AFH'j, are presented in the complement code form. Let x be 
an input vector and u be its corresponding crisp output label vector; 

then ARTa is given the input c(x) = (x,x^)^ and ART^ receives 

c(u) = (u.u'^)'^ as its input. The map-field F^^ is activated whenever 
one of the ART^ and ART^ categories is active. If both of them are 
active, then F * becomes active only when ARTg predicts the same 
category as that of ART ,̂ via connection weights between F^^ and 
ART^. The output vector of F̂ *̂  is 0 when the category found by 
ART^ is disconfirmed by ART,, and in that case ART^ searches for a 
better category. Readers interested in this scheme are referred to 
Carpenter et al. (1992) for a detailed discussion of FARTMAP. 

Baraldi and Parmiggiani (1995) proposed a crisp variant of ART 1 
called simplified ART (SART). SART is a self-organizing feed
forward network that uses a soft competitive learning scheme to 
update the prototype vectors associated with the output (L2 layer) 
nodes. The Fuzzy SART (FSART) model, also proposed by Baraldi 
and Parmiggiani (1997b), integrates the SART architecture with a 
soft learning strategy employing a fuzzy membership function. 
Similar to SART, FSART is also a self-organizing feed-forward 
network. While processing, FSART adds a new node to the output 
layer whenever the system fails to categorize a data point, and 
removes previously allocated nodes whenever they are no longer 
able to win the competition for any input vector. One advantage of 
FSART is that it does not require any preprocessing such as 
normalization or complement coding, and it is quite stable with 
respect to small changes in the input parameters and the order of 
data feed. But FSART is computationally expensive compared to 
ARTl because it needs to determine the "neighborhood-ranking" 
(Baraldi and Parmiggiani, 1995) whenever it considers a new input. 

Blonda et al. (1998) discuss an application of a fuzzy hybrid neural 
network called the fully self-organized sim.plified adaptive 
resonance theory (FOSART) model of Baraldi and Parmiggiani 
(1997a). The FOSART model is a member of the family of neural 
networks called radial basis function (RBF) networks, and we want 
to include an example from Blonda et al. in this section because it 
provides us with a very different type of fuzzy NN structure that also 
ties together several models discussed in previous sections. Towards 
this end, we take a short excursion into the world of RBF networks. 
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C. Radial basis function networks 

Haykln (1994) provides a nice discussion of RBF networks, so we 
will not spend a lot of time reviewing them, but Example 4.26 will 
make more sense to you if we spend just a few pages discussing RBF 
networks, which are very interesting in their own right. The most 
important difference between an MLP and an RBF network is that 
the computing nodes in the first (and only) hidden layer of a typical 
RBF network use radial basis functions as node functions, instead of 
the more familiar linear integrators followed by sigmoids as used, 
for example, in all computing layers of MLPs (Section 4.7). 
Apparently Broomehead and Lowe (1988) were the first authors to 
employ RBFs instead of "standard" node functions in a feed forward 
network architecture. 

When X = (x ,...,x } c91^ is a set of n distinct points, the functions 

RBF = RBF((p,||*||) = |(p( x-xj | )> are called a set of radial basis 

functions. In the older literature of classifier design, families such 
as these were often the kernel functions for classifiers such as 
Parzen's window (Duda and Hart, 1973). Since any norm can be used 
for RBF, there are infinitely many sets of RBFs for each choice of (p 
(sometimes called the generating function of RBF, which at this 

point is an arbitrary mapping from 9?"̂  to 3i). The points in X are 
called the centers of the basis functions. RBF functions are linearly 
independent as long as the points in X are distinct. 

The function (p(||x-xj) is radial because the norm is radially 
symmetric about x ; and RBF is a "basis" only in some ill-defined 
sense - viz., that some linear combination of the functions in RBF 
will approximate lO data XY arbitrarily well. In the language of 
Section 4.6.D, certain families of RBFs are universal approximators 
(Park and Sandberg, 1991, 1993), so if the "power" of a network is 
measured by its UA ability, RBFs are equally "as powerful" as MLP 
networks, and MA and TS fuzzy systems as well. 

As mentioned at the beginning of Section 4.6.D, radial basis 
functions are one of the leading choices for families that are used for 
"conventional" function approximation (Powell, 1990). Once a norm 
and generating function 9 are chosen, the general form of an 
approximating RBF family is 

S(x:B)= iwk(p(ix-Xki)-(w. , (x)) , (4.118) 
k=l 
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where the unknown parameters or weights which must be estimated 
with lO training data XY are 8 = w = (wj w^ )^ e 9t", and we define 

,(x) = (cp(||x-xi||) cp(||^-x„||))\ 

Chen et al. (1991) assert that the shape of cp for RBF is not as crucial 
to good approximations of S as the choice of centers. A more 
realistic view is that the quality of the approximation in (4.118) 
depends jointly on four things: (p, the norm, the centers, and the 
data used to build the approximation. Chen et al. (1991) identify four 

families of su i table genera t ing functions: (p(t) = t^ log t; 
± i 2 

(p(t) = f|32+t^)"2, and (p(t) = e"**''̂ ' . Thus, the most familiar, but 

certainly not the "best" or only choice for the i-th function of an RBF 
\2 

set is a multiple of the univariate Gaussian density (p(t ) = e i/pr 

where t = x - x , for p-dimension inputs, with each of the n data 

points used as the mean, M = x for all i as in (2.18), for example. It is 
fairly common to assume a circular covariance structure for each 
function, Ej = af I. Under these circumstances we have the Gaussian 
radial basis functions 

GRBF = i (p(||x-Xil) = i 
-^l--' 2a ;i = l,...,n (4.119) 

Substituting (4.119) into (4.118) gives 

S(x:8) 
k=l 

1 

(4.120) 

which provides approximations to S by linear combinations of p-
variate Gaussian functions centered at the data with spreads (or 
widths) {cf}. If the (af} are unknown, they become part of the 
parameter vector 8 that must be estimated. 

When n is large (as it will be in almost all interesting real data sets), 
the approximation in (4.118) gets pretty unwieldy, so we abandon X 
as the set of centers of the RBFs, and use our old friends 
V = (Vj,..., Vq) e 9 '̂'P, a set of q prototypes in 9^P instead of the n data 
points, as centers of a set of q functions that are sometimes called 
generalized radial basis Junctions (Haykin, 1994). Using V instead of 
X in (4.118) gives the approximation 
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S(x:8)=iwi(p(| |x-Vi||) = (w,.f(x)) . (4.121) 

If (p and the norm in (4.121) have been chosen, the parameters that 
need to be estimated are now the weight vector w, the q prototypes 
{v.}, and any other parameters needed by the node function (j) (such 

as the width parameter if the RBFs are Gaussian). We can easily cast 

the approximation problem (finding 9 in (4.121)) in a network 
architecture. Define the integrator and activation functions at node 
i, i = l,...,q, in the hidden layer as 

fi(x) = ||x-Vi|| ; {4.122a) 

Zi=<t),(x) = Fi(fi(x)) = (p(||x-vJ|) . (4.122b) 

In the notation of Section 4.7, the node functions for the q hidden 
layer nodes are then {^i = (p o f j ; i = l,..., q}, the hidden layer node 
weight vectors (assuming that the parameters of the functions 
specified by ip do not need to be estimated) are the q prototypes V, and 
the output of the hidden layer is the vector z = (zi,...,Zq)^. For 
convenience, let w' =(w,,,.. . ,w . , a j ^ be the weight vector for the 

i ^ 11 ql 1' = 

output node o , and denote the vector obtained by adding a 1 as z's 
last (new) coordinate by z ' , z' = (Zj Zq, 1)^. Now define the 
integrator and activation functions at c output nodes (o, i = l,...c), 
which comprise the output layer, as 

f„i{z) = (wi,z) + a i=(wj ,z ' ) : (4.123a) 

Foi(foi(^» = K ' ^ ' > = foi(^) • (4.123b) 

Equation (4.123a) shows that the i-th output node uses a standard 
linear integrator function with weight vector w{ to be estimated, 
and uses the identity map for activation. In other words, the output 
layer comprises a set of c nodes that use node functions that in the 
early literature were called continuous perceptrons (without 
sigmoidal activation functions, Zurada, 1992). In our reserved 
terminology for MLPs, the node functions are specifically 
*̂LH ~ ^L ° ^H' ®° ^ ^ hesitate to call this output layer a single layer 
perceptron (SLP), but, following Haykin (1994), we cautiously do so 
here. The output layer has q inputs coming from the hidden layer 
and c outputs. Combining the equations in (4.122) and (4.123) in a 
network architecture gives the structure shown in Figure 4.82. 
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Input Layer Hidden Layer Output Layer 
(RBFs) (SLP) 

Figure 4.82 A tjrpical radial basis function network 

We have shown the hidden layer (or kernel nodes) in Figure 4.82 
with q nodes, so the layering architecture of the FIBF network in 
Figure 4.82 is compactly described as p:q:c. Like the feed forward 
network in Figure 4.71, the network in Figure 4.82 is a vector field, 
RBF:9tP h^ 9̂ *̂ , i.e., the network in Figure 4.82 realizes the 
approximation S(x:6) = RBF(x:W), where 8 = W is the network 
weight vector. If all of the parameters in the hidden layer are 
assumed known, then W = (Wj w ' ) ; if there are unknown 
parameters associated with the hidden layer nodes (e.g., the spatial 
locations and shape parameters of the RBF centers), then W includes 
these parameters as well. Notice that the p: q: c multiple output RBF 
network can be separated into c single output networks of size p: q: 1. 

The i-th output node of the RBF network produces the real number 
Ui = (wj, z'); i = 1,..., c. When the target output vectors in Y are crisp 
label vectors, the usual method of converting the network output 
vector u = RBF(z) to a crisp label is to first normalize the outputs of 
the SLP so that each value lies in the closed interval [0, 1] or the open 
interval (0,1). One convenient way to do this is to replace the identity 
in (4.123b) by, for example, a unipolar sigmoid function, so that the 
output layer becomes a single layer perceptron in the sense of 
section 4.7 with node functions ^^^ =Fj^of^. This converts the 
output of RBF to a possibilistic label vector which can, if desired 
(and must, if training error rates are to be computed), be hardened 
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with the function H in (1.15). Hardening is not necessary when using 
the MSE between the computed and target outputs as a measure of 
generalization quality of the network in question. 

Comparing Figures 4.72 and 4.82, we see that the RBF and MLP 
networks are similar in that both are feed forward structures, but 
they also have some differences. The main distinctions are that the 
RBF network usually has only one hidden layer, whereas the MLP 
very often has two or more; the node functions in the hidden layers 
are very different; and while the output layer in the MLP usually has 
nonlinear node functions, the output layer in the RBF network 
usually has linear node functions as shown in Figure 4.82. There are 
other differences between the two architectures; we leave discussion 
of these to Haykin (1994). 

There are several training strategies for an RBF network. The 
simplest way to proceed is to assume the number q of fixed RBFs in 
the hidden layer, centered at q points selected randomly from the 
data. The fixed RBFs are often chosen as a special case of the 
Gaussian functions in (4.119) which have fixed and equal standard 
deviations that are proportional to the maximum distance between 
the chosen centers, so that (4.119) becomes 

GRBF={(p,(x) = e"(''"""''^/'^^^;i = l....,q} , (4.124) 

where 5 = max< v. - v. >. This fixes the width of each function in 
max -—„—' 1 J 

(4.124) at o = Smax/V^ • ^ • With this approach, the only parameters 
that need to be learned by training are the c weight vectors of the 
hyperplanes used for the output node functions, and this can be done 
(for c = 1 at least) with a technique such as the psuedoinverse 
(Broomheade and Lowe, 1988). 

A second method for training RBF networks, called hybrid learning, 
is a two stage process. This method begins by temporarily regarding 
the RBF network in Figure 4.82 as two "separate" networks that are 
trained independently, and then "put together" for testing and 
operation. If you imagine temporarily breaking all the edges in 
Figure 4.82 between the hidden and output layers, the network on 
the left {"lefi half-net') will be a p:q layer network with p input and q 
RBF "output" nodes; while the network on the right [" right-half-nef) 
will be a q:c single layer perceptron whose inputs are the left half 
outputs. 

How will we train the left half-net? Moody and Darken (1989) first 
suggested that any unsupervised method could be used to get the RBF 
centers. Methods for doing this fall into the two groups depicted in 
our Figures 4.1 and 4.2: (i) selection to find q centers among the n 
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training data ; or (ii) extraction, using, for example, any point 
prototype clustering algorithm (Chapter 2), or any other point 
prototype generator (Chapter 4) to find centers for the q RBF node 
functions. If clustering is used, you will need to settle the issue of 
how many centers (q) to look for (cluster validity, again). Since we 
are dealing with labeled 10 data, the number of classes (c) is given, 
but this will be the number of output nodes in the right half-net. We 
have dealt extensively with this issue in previous sections: suffice it 
to say that if you choose to train the left half-net with unsupervised 
learning, the target output set Y is simply ignored during training. 
Once the centers are obtained, Moody and Darken then used "nearest 
neighbor heuristics" (which are not the k-nn rules discussed in 
Section 4.4) to find the width of each (Gaussian) RBF. 

Once the left half net of size p:q is trained, we know the exact 
structure of the input and output layers in the right half-net because 
this network is a q:c single layer perceptron, which may be trained 
in the usual way (for example, with the least mean squared or LMS 
algorithm, Widrow and Steams, 1985). This results in estimates for 
the q weight vectors {Wj} of the hjqierplanes residing in the output 
nodes of the right half net. During training, outputs of the left half-
net on X become inputs for training the right half-net against the 
desired target outputs Y . 

When this "two-part" hybrid approach to training the network in 
Figure 4.82 is completed, the left and right half-nets are "pasted 
together" (or, if you prefer, operated in cascade). Now the p:q:c RBF 
network can be tested with X Ŷ  (recall our notation XY for JO data 

te te 
in Section 4.6), and then operated as a network classifier or function 
approximator in the usual way. The two stage hybrid approach to 
training an RBF network might be superior to the fixed, selected 
centers training method, but we say might because, as we have 
emphasized many times, the success of clustering algorithms at 
discovering good point prototypes for clusters in X depends on 
whether the data possess clusters that match the clustering model 
chosen to search for them. And, as always, the ubiquitous cluster 
validity problem is there to haunt you. 

In the third training method, the entire network weight vector W, 
which includes the free parameters in both the hidden layer and 
output layers, is learned. This is sometimes done by standard back 
propagation training based on gradient descent conditions (Poggio 
and Girosi, 1990). Chen et al. (1991) discuss a supervised learning 
scheme which incrementally selects a number of centers in the data 
for RBFs using a method based on orthogonal least squares (OLS). 
Key features of the OLS method are that it adds centers chosen from 
X one at a time, always maximizing the increment to the explained 
variance between the desired and observed outputs, and it is 
relatively stable in the sense that it can be done without ill-
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conditioning problems when using the orthogonal projection 
theorem. This is much like using principle components analysis for 
feature extraction, where each additional component used in the 
linear combination accounts for a successively smaller amount of 
the remaining total variance in the input data. 

The basic model in Blonda et al. (1998) is the RBF network of Figure 
4.82, and their training method is the two part, hybrid approach 
that we couched in terms of "left half and "right half nets. These 
authors compare three classifier designs that differ principally in 
the method used to train the left half-net. Specifically, they describe 
two fuzzy schemes and a non-fuzzy approach that uses Kohonen's 
unsupervised self-organizing feature map ( SOFM, subsection 4.3.D). 
The right half-net in all three classifiers is the single layer 
perceptron with node functions 0^^ = Fĵ  o f̂  as in Section 4.7 (i.e., 
hyperplanes followed by the unipolar sigmoid), trained with the 
standard LMS method. 

The first of the three classifiers discussed by Blonda et al. (1998) uses 
the fully self organized simplified adaptive resonance theory 
(FOSART) model (Baraldi and Parmiggiani, 1997a) to build the left 
half-net. This procedure is basically a heuristic point prototype 
generating algorithm that combines certain aspects of ARTl, 
competitive learning, and fuzzy c-means clustering to determine the 
number of nodes q and the positions of the q RBF centers (prototypes 
V). The hidden layer (the output layer in the left half-net) consists of 
a variable number of RBF nodes, which are analogous to the L layer 

in ARTl. Unlike ARTl, however, FOSART nodes can be created or 
deleted during training. Initialization of the FOSART centers in 
training the left half-net is also a little different than ARTl; 
FOSART starts with two nodes, v and v^, taken as the first pair of 
distinct inputs submitted to the network. 

Each FOSART hidden layer node uses a fixed width Gaussian radial 
basis function as in (4.124), but with a different fixed width than the 

value determined by 5 =max^| |v , -v in that equation. In 

Blonda et al., the spread of the RBF functions is fixed at 
a = 1/K, K e(0,l]. K is a user defined parameter that is functionally 
equivalent to the (normalized) vigilance parameter p in ARTl and 
FART, since it controls the proliferation of nodes in the output layer 
of the left half-net built by the FOSART algorithm. While the nodes 
in the standard RBF network (Figure 4.82) are not viewed as 
"competitive" in the sense of the competitive learning models 
discussed in Section 4.3, the hidden layer nodes in FOSART are 
made competitive in Baraldi and Parmiggiani (1997a) in a way that 
is somewhat similar to the competition in the ARTl L layer. 
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More specifically, let x be the cur ren t i npu t vector a t i terate t, and 
suppose t h a t the FOSART hidden layer current ly possesses s nodes 
(and hence, s prototypes). We are using t here to index passes (epochs) 
t h r o u g h X, b u t FOSART also keeps t rack of the "age" of each node 
created in the ou tpu t layer (of the left half-net). Let x denote the age 

of t he i-th node , i= l , . . . s . (we will explain short ly how th i s set of 
p a r a m e t e r s is manipulated.) We indicate th i s extra "time" variable 
wi th a n addi t ional subscr ip t , so Vj^^ ^ is the prototype for node i 
which h a s age x. a t iterate t. FOSAE^ first computes the values 

*i,t :xj,) = e ;i = l , . . . ,s (4.125) 

The largest value in (4.125) is u sed to identify the winner node, say 
<t'w.t (^k) for the winning node v ^ ^ j__i, for th is input . The smallest 
dis tance in the exponent of (4.125) gives the largest value of the RBF, 
a n d conversely, so th i s terminology m a k e s sense . The value Jus t 
below the winner value in (4.125) identifies the prototype t h a t is 
called t he second place node (second bes t neuron) , since it comes in 
second in the competition for x . 

FOSART compares (!)w,t(2Ck) to t he "vigilance" paramete r , a n d if 

(j)^t(Xj^) > p = 1 / K , resonance occurs . When th is happens , some of 

the nodes in the RBF layer will be updated . When (|)„ Jxjj) < p = 1 / K. 
FOSART creates a new node v 

s+l • \ 

with a n RBF centered a t v 
s+ l 

When resonance occurs so tha t learning ra tes are needed, these are 
c o m p u t e d by s u b s t i t u t i n g t h e funct ion D^^^ = l-(\)^^{x-^) i n to 
equat ion (2.7a), the necessary condition for membersh ips in fuzzy c-
means , with m = 3. So tha t you don't have to t h u m b back to Chapter 
2, the explicit construct ion is 

Uik.t 
1 

l-<t'i,t(Xk) 

1 

l-<l>t,t(Xk) 
i=l,...,s (4.126) 

Since va lues computed with (4.125) lie in (0,1) the value in (4.126) 
always exists . The winning node in the o u t p u t layer of ARTl h a s 
lateral connect ions to all the other nodes in i ts layer. In FOSART, 
only some of the nodes in the RBF layer are upda ted . Blonda et al. 
call the non-winner nodes t ha t get upda ted "synaptically linked" to 
t he w inn ing node . (This feature is bor rowed from the SOFM, 
subsec t ion 4.3.D, hence the "SO" par t of FOSART.) In other words, 
FOSART main ta ins a n upda te neighborhood A/(Vi^j J in SOFM style 
for each node in the RBF layer, b u t unlike SOFM, it is not the inverse 
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image 7V'̂ (d,T.j J of a topologlcally connected display space. The 
topological connectivity of the prototypes is maintained in FOSART 
by a distance rule which can form topology preserving maps 
(Martinetzetal., 1994). 

Update neighborhoods of the RBF nodes expemd and contract during 
training as nodes and node links are created and deleted using the 
following heuristics. Given a winner and second place nodes for any 
input, a sjmaptic link between these two nodes is created (7\/(Vj .̂ J 
grows) if the distance between their prototypes is "fairly similar" to 
the set of existing distances between pairs of linked centers that 
already exist for both nodes. 

More specifically, the links from any RBF node to other nodes in its 
current update neighborhood satisfy a link constraint. Let 
{ ĵ.xj.tJ = MVIT;J t); FOSART requires the ratio of the maximum to 
the minimum pairwise distances of the prototypes in neighborhood 

q,x ,t s,T ,t mm ^ • ^ • t S,T.,t % • A/(Vî j t) to satisfy maxj 

The threshold % is chosen by the user, and FOSART currently 
employs the value % = 1.6. Now suppose v and v „ to be 

the current first and second place winners. If nodes w and w2 are not 
already linked, a link is established between them if the ratio of 

their intemode distance, IV , ^ - V „ to the minimum of the 

two sets of distances for pairs of nodes in A/(v ) and 

Mv„2,Tw2.t^ is less than or equal to x = 1-6. If the link from wl to w2 
is inserted, new sets of distances are computed over both 
neighborhoods, and any links in either one that no longer satisfy 
the link constraint are deleted. Moreover, links that have not been 
used for an entire pass through X are now deleted (i.e., A/(Vî . j) 
shrinks). 

At resonance, learning rates are computed for all s nodes in the 
output layer as follows: 

%t=< 

'wl 

Ki. t ) -Ki , t ) ' :i = wl 

(Vt)-(Vt) ' '''i.,t^^^^.i.„,.0 ' 
(4.127) 

0 ; otherwise 
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As we have said, t is a user specified constant that controls the time 
available for learning. In Blonda et al. (1998) Xj e[0,oo) is a real 
number which begins at 0 and simply accumulates the sum of the 
learning rates applied to the i-th RBF node. Thus, after computing 
(4.127), the ages of the s nodes are reset using Xj <- tj + cc^_•^^^. Baraldi 
and Parmiggiani (1997a) call the winner node wl stable (and updates 
of this node stop) when T^^ > 3 • t , for at this point the exponent of 
the second factor for the winning node in (4.127) is > 3. After 
computing (4.127), the nodes in the RBF layer are updated with 
equation (4.11), 

Vi.Ti.t = Vi,Ti,t-i + aik,t(Xk - Vi,,j,t-i). t i < 3 • T; i = 1 s. (4.128) 

Notice that a condition for updating is that the node has not reached 
its stabilization age. If a current node in the RBF layer is never a 
winner (in the ART sense) for an entire epoch but others are, and it 
has not already "stabilized" (so that updates on it have stopped), the 
node is then deleted from the network. Updating stops when either 
(i) all of the nodes have stabilized (none are updated for an entire 
epoch); or (ii) when ||Vt - V^.J < e in some convenient matrix norm. 
At this point FOSART has created a set of q RBF nodes and provided 
estimates for the centers of the RBF node functions in the output 
layer of the left half-net. 

After the output layer of the left half-net is determined by FOSART, 
the right half-net is trained. Blonda et al. (1998) do not specify how 
the weights of the output layer are initialized, what the parameters 
of the unipolar sigmoids are, nor how training is terminated. The 
two independently trained half-nets are then coupled, and the 
resultant p:q:c RBF network, structured as in Figure 4.82 (except for 
the sigmoids in the c output nodes) is called the FOSART-SLP 
classifier. With this as background, we present an example 
abstracted from several papers about FOSART. 

Example 4.26 Blonda et al. (1998) consider classifier design in the 
context of lesion detection in MR images taken from a patient 
diagnosed with multiple sclerosis (MS). An interesting ancillary 
aspect of this work is the comparison of results using standard MR 
images with a new type of MR imagery called magnetization-
prepared rapid gradient echo (MP-RAGE), which can produce 
thinner slices than standard MR devices. Figure 4.83(a) shows one 
slice from the Tl MP-RAGE sequence for the patient with MS. 
Unlike brain tumors, which produce very visible lesions (see Figures 
4.16 and 4.19), multiple sclerosis produces small heterogeneous 
lesions that are in some sense similar to microcalcifications in 
digital mammograms - small, well distributed, and hard to see. Can 
you find them in Figure 4.83(a)? 
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(a] Tl iMP-RAGE Image Cb] Labeled data 

(c) color key for image [b) 

Figure 4.83 (a) Raw MP-RAGE image data, and (b) training data 
selected from (a) by a neuroradiologist, with (c) color key for view (b). 

Figure 4.83(b) shows the training data extracted from the MR slice 
corresponding to Figure 4.83(a) by an expert neuroradiologist. The 
labeled data consist of a total of 8627 pixels. The number of pixels in 
each of six tissue classes are reported in Table 1 of Blonda et al. 
(1998), repeated here as our Table 4.45. Half of the pixels in each of 
the c = 6 classes were randomly selected for training, and the 
remaining 50% were reserved for testing the three classifiers 
discussed by the authors. 

Standard 3D spin echo MR images such as those shown in Figures 
4.16(a) and Figures 4.19 (a)-(c) result in pixel vectors which have the 
form discussed in Example 4.5, viz., x = (Tl , T2 , p ). The MP-RAGE 
data, which is derived from an extension of the turboflash 
technique (Brandt-Zawadzki et al., 1992), is a function of the Tl 
gradient spin echo sequence. MP-RAGE also produces three 
dimensional data which has been successfully used in brain image 
analysis (Blonda et al., 1996a). The data used for the images in this 
example are 3D pixel vectors made by replacing the Tl-spin echo 
intensity with the Tl MP-RAGE intensity in the 3D spin echo data. 
This gives us pixel vectors x = (Tl-RAGE^, T2^, p.. ), leading to the 

data setX = {x^j, x^^,..., x x ^ in 3i^. The images used by Blonda 
et al. (1998) had spatial dimensions m = n = 256. 
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Table 4.45 Pixels in tissue classes selected by a neuroradiologist 
(after Blonda et al., 1998. Tables 2-4) 

Tissue Abbr. # of pixels 
white matter (WM) 1675 
gray matter GM) 1294 
cerebro-spinal fluid (CSF) 1251 
pathology (PT) 479 
background (BK) 848 
other (OT) 3080 

The color key in view (c) of Figure 4.83 would enable you to see a total 
of 10 Isolated regions in view (b) that are labeled pathology (PT) - if 
you could see view (b) in color. Reproduced in shades of gray, 
however, it is pretty hard to see the regions labeled PT, so we have 
superposed an arrow in the center right of view (b) pointing to 2 of 
the 10 pathology regions (which are enclosed by one circle), and 
circled the rest of them without arrows in little ellipses so you can 
find them. There are 6 circled regions: 4 of them contain 2 pathology 
regions each, and the other two contain Just one. 

The first classifier discussed in Blonda et al. (1998) is the RBF 
network discussed prior to this example, with the left half-net 
trained by FOSART, and the right half-net trained by the standard 
LMS rule. Protocols for the runs made will be given shortly. 

The second classifier discussed In Blonda et al. (1998) is based on the 
same two layer p:q:c RBF structure that FOSART finds. In the second 
design the number of hidden layer nodes is fixed at the FOSART 
determined value of q, and the centers of the fixed width Gausslans 
specified In (4.125) are found by applying a modified version of the 
batch FLVQ algorithm (subsection 4.3.H) to the training data. 
Baraldl et al. (1998) recommend 3 heuristic modifications of 
descending FLVQ based on conclusions they drew from 10 numerical 
experiments. The recommended modifications to the algorithm of 
Table 4.12 are that: m = 1.05 (Instead of 1.1); that termination 
criterion e = 0 (that is, the recommendation is to abandon the 
computation of E In Table 4.12, and always run descending FLVQ to 

the final value m = 1.05); and finally, that a value for Am = [m^ - m^) 
always be chosen in the range [0.01, 0.05], regardless of the values 
selected for m and T. The classifier discussed in Blonda et al. (1998) 
that is illustrated in this example used all of these modifications to 
descending FLVQ while determining the prototypes for the RBFs In 
the hidden layer of the FLVQ based classifier. The structure of and 
weights for the output layer were determined In exactly the same 
fashion as for the FOSART-SLP design. This second classifier will 
be called the FLVQ-SLP network. 
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Finally, a third two stage p:q:c RBF design that was structurally 
identical to the FOSART-SLP and FLVQ-SLP networks was built by 
Blonda et al. using Kohonen's self organizing feature map (SOFM) 
approach to find the centers of the RBFs in the output layer of the 
left half-net. In the experiments below the initial learning rates 
were a^^^ =0 .5Vi ; and these rates, applied uniformly across the 
nodes being updated, decreased monotonically with the formula 
t*ik,t = <̂ ik,o (l ~ {t/T)). The value of T was the total number of training 
data times the number of epochs run. For example, the first run used 
47 epochs on 8,627/2 training data, so T=202,734. 

The update neighborhoods for the four unsupervised SOFM runs 
shown in Table 4.46 were linear arrays in this example, and the 
initial sizes (radii) of the update neighborhoods for the four runs 
discussed in Table 4.46 were 10, 6, 6 and 5, respectively. For 
example, if the neighborhood size is 5 and Vj4t is the current 
winner, the prototypes that get updated are the 11 consecutively 
indexed centers {Vgt Vig.t}- The radius of the neighborhood in 
SOFM display space was also decreased monotonically with the 
equation [r^ = ro(l-( t /T))] . The SLP layer was built and trained as 
the other two classifiers were. Initialization and termination 
conditions for the SOFM prototypes and SLP weight vectors are not 
specified in Blonda et al. (1998). 

Now we are finally ready to discuss the results shown in Blonda et 
al. (1998). Four training runs -with X^ were made with FOSAPTT-SLP 
using four different values for the "vigilance" parameter, 1/p = K = 
0.044, 0.010, 0.120 and 0.147. The total number of RBF hidden layer 
nodes at termination in each of these four runs was then fixed as the 
number of RBF nodes in the other two networks (that is, all three 
classifiers had the same architecture in each run, initially 
determined by the FOSART-SLP runs). The number of hidden RBF 
nodes for the 4 FOSART runs was q = 22, 109, 160 and 254. In other 
words, all three classifiers had 3:22:6 configurations for run 1, etc. 

The number of passes through the training data to termination for 
the FOSART runs was also forced on the other two classifiers. The 
FOSART runs terminated in 47, 14, 12 and 15 passes, respectively, so 
the other two classifiers were designed using protot3^es (that were 
possibly still being updated) at the same number of passes. Table 
4.46 combines the information reported in Tables 2, 3 and 4 in 
Blonda et al. Protocols for the FOSART-SLP runs were z = 100, e = 1; 
and for FLVQ-SLP, m^ = 2 and m^= 1.05. Table 4.46 shows the MSE 
achieved on the training and test sets, as well as the percent correct 
classification for both training and testing in each of the four runs. 
In terms of the MSE criterion FLVQ does consistently better (is 
lower) than SOFM, and is lower than FOSART in 5 of the 8 cases 
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shown. In terms of error rates (here shown as percent correct), 
FOSART is a few percent lower than both of the other designs in all 4 
resubstitution cases, and is lower than both of the other classifiers 
in all of the test error cases except for SOFM, run 2, where it is a 
little higher than SOFM. 

Table 4.46 Training and test results for the image in Figure 4.83(a) 
(after Blonda et al., 1998, Table 1) 

Run resubst i tu t ion MSE (X^ test MSE (X ) 
te FOSART FLVQ SOFM FOSART FLVQ SOFM 

1 183.4 153.8 183.6 190.1 155.1 178.8 
2 57.1 59.2 73.8 67.9 63.9 75.0 
3 41.8 49.1 64.3 52.9 52.4 65.8 
4 28.3 31.2 43.9 39.8 36.4 47.8 

resubst i tu t ion : % correct test error : % correct 
FOSART FLVQ SOFM FOSART FLVQ SOFM 

1 68.4 73.0 72.5 67.0 71.8 70.4 
2 75.2 76.9 77.1 74.7 76.2 72.5 
3 75.7 78.2 78.3 74.9 77.2 77.6 
4 71.1 79.3 78.7 76.3 78.3 78.5 

What can be concluded from these experiments? None of the values 
in Table 4.46 suggest a real advantage to any of the three designs. 
Rather, and very similarly to Table 4.14, where four algorithms, 
including LVQ and descending FLVQ also produced very similar 
results on Iris, we view the three classifiers in this example as being 
very similar. With a little tuning here and there, it is quite likely 
that any of the three designs could realize the "best" outputs. 

Figure 4.84 shows the final segmentations of the original image 
made by the three classifiers in run 1, with the same tissue color key 
as used in Figure 4.83(b) appended to each. These segmentations were 
made by running the classifiers on the entire 65,536 3D pixel vector 
image data. Each classifier has c = 6 perceptron nodes with node 
functions (JJLH = FL ° f H ^t its outputs, so the overall structure of the 
trained networks is as possibilistic classifiers that produce a label 
vector u G Npg for each pixel. The labels are then hardened with 

(1.15) and each pixel was colored using the color assigned to the 
corresponding tissue class during the initial labeling of the training 
data (i.e., the colors shown in Figure 4.83(b)). 



CLASSIFIER DESIGN 439 

() I 

! I' I 

i : • > . 

I ; 

(a) FOSART-SLP 

() I 

I T 

I .! 

i ; Vi 

(b) FLVQ-SLP 

Figure 4.84 Segmentations of Figure 4.83(a), Blonda et al. (1998) 
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Figure 4.84 (con't.) Segmentations of Figure 4.83(a) 

Visual comparison of these three images to the ground truth - the 
labeled image in Figure 4.83(b) - is pretty difficult in shades of gray, 
and is further complicated by the fact that all 65,536 pixels are 
colored in Figure 4.84, but only a small fraction of them (8,627) are 
visible in Figure 4.83(b). If you could see the color images, the 
FOSART segmentation would look a little better than the other two 
on some of the lesions in the lower half of the image. It's a little hard 
to understand why this is true, since FLVQ and SOFM both enjoyed 
lower MSEs and higher percent correct classification than FOSART 
for run 1. Perhaps a more informative display would be the 
difference images on just the ground truth pixels in X , which would 

show the effectiveness of the three classifiers at labeling MS lesion 
pixels in the test set. 

Blonda et al. (1998) assert that the performance of FOSART recorded 
in Table 4.46 shows that it is stable to small changes in the 
parameter K. They also state that the 3D data used, with the Tl MP-
RAGE intensities, produced somewhat better results than the 
standard 3D spin echo MR data. No evaluation of the medical 
significance of the images in Figure 4.84 is reported by Blonda et al. 

The ARTl/FART architecture seems to have minimal influence on 
the design of FOSART, although several of the basic concepts (node 
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creation, vigilance) of ARTl are certainly evident in FOSART. Our 
overall assessment of the classifiers in Example 4.26? In the first 
place, ŵ e think that the method of comparison w âs at best, a little 
unfair, and at v^rorst, crippling to the FLVQ and SOFM methods. The 
architecture discovered by FOSART w âs forced on the other tw ô 
networks (and hence, not necessarily optimal for their performance 
criteria). 

Comparing the three classifiers built by prototypes obtained from 
the same number of training epochs - again picked by FOSART - also 
seems unfair to the FLVQ-SLP and SOFM-SLP designs. After all, the 
rate of convergence of different algorithms that are looking for a 
solution to a common problem is often different, but, mindful of the 
tortoise and the hare, it is certainly possible that slower algorithms 
can produce better solutions in every sense except the time 
parameter used to stop them. FOSART was allowed to terminate, 
while the other two designs were simply sampled at the same time 
before they terminated in their ovvrn right. This seems to prejudice 
the examples given in favor of FOSART. We appreciate the authors' 
honest attempt to compare apples to apples, but in this case, some 
apples seem more equal than others. 

Given these disclaimers, it surprises us that FLVQ and SOFM 
performed better than FOSART under these circumstances. It might 
be the case that on a level playing field, the FLVQ and SOFM based 
designs would enjoy an even clearer advantage than is evident in 
this example. Finally, you have to wonder how a standard RBF 
network (sans fuzziness) or the crisp MLP with one or two layers 
would compare to the results in Example 4.26, or for that matter, 
how well segmentations with a non-neural model, several of which 
have already been discussed (and see Chapter 5 for more), would 
compare with the outputs shown in Figure 4.84. 

Nonetheless, we like the basic ideas in this example, because the FF 
networks discussed in Blonda et al. (1998) have a very different 
flavor than the ones discussed in Section 4.7. Dynamic 
reconfiguration of the RBF layer during left half-net training seems 
like a good and clever idea; the authors assert that this has the effect 
of countering the tendency of ART-like models to overfit the data, 
and this strategy eliminates dead nodes. The manipulation of the 
update neighborhood in FOSART (the RBF layer in the left half-net) 
is also very different from ARTl/FART and indeed, SOFM as well. 
This aspect of the FOSART scheme may provide it vinth some nice (as 
yet unproved) local properties akin to topological connectedness of 
the update neighborhoods. On the other hand, FOSART is a little 
like the color resulting from mixing 4 or 5 different paints - it might 
be splendid, or it might black everything out. So, when you try a 
hybrid scheme like this, add a little bit at a time, stir well, and test 
often. 
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Radial basis function networks (crisp or otherwise) provide a 
fundamentally different approach to classifier design than the MLP 
model discussed in Section 4.7. However, there is a connection 

-fik-'.iri 
between RBF networks and FAN models. Choose ^^ (x) = e ^ •' in 
(4.122b), where A is a positive-definite diagonal matrix. Then ^^(K) 
can be written as a product of p ID Gaussian functions, which can be 
interpreted as the membership functions for the linguistic values 
appearing in the bottom layer of a FAN (refer to Figure 4.80). 
Consequently, the outputs of the hidden layer units in Figure 4.82 
can be interpreted as the conjunctive combination of membership 
values. The output layer nodes in an RBF network have linear 
activation functions which can be realized as generalized means. 
Thus, RBF networks are roughly equivalent to FANs that have 
conjunctive nodes in the hidden layer and generalized mean nodes 
at the output layer. Estimating the parameters of ^^[x.) for an RBF 
network is roughly equivalent to estimating the parameters of the 
membership functions in a FAN. 

RBF networks are usually easier to train than back-propagation 
designs, are related to several well known conventional methods -
e.g., Parzen windows, and provide approximations that are much 
more local than FFBP designs (Llppman, 1989). We think that RBF 
networks are important enough to deserve a whole chapter - but in 
another book ©. We will discuss a few other fuzzy NNs in Section 
4.11. 

4.9 Fusion techniques 

Real applications, such as assisted medical diagnosis, handwritten 
word recognition, automatic target recognition, burled land mine 
detection, etc., are, unfortunately, not like the Iris data. By this we 
mean that it is rarely the case that successful systems can be 
designed using only a few features and almost any classifier, as Is 
the case with the Iris data. 

More often, many sources of information are needed to provide 
partial (soft) classifications, followed by an aggregation function of 
some type. This strategy has become widely accepted, and is known 
by many names, including data fusion, information fusion, 
multistage classifier design or classifier fusion, sensor fusion, and 
so on. However, the key Ingredients in most of these approaches are 
shared by them all: multiple sources of information provide partial 
classifications; the classifications are then somehow joined 
together to give a final (hopefully better) decision than any 
component classifier could. If you think of features as the sources of 
information, then many of the classifiers we have discussed in this 
chapter can be regarded as fusion devices. 
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We will only scratch the surface of this extremely important topic in 
the hope that you will use our discussion as an entry point into the 
l i terature. Hall (1992) discusses a variety of mathematical 
techniques that can be useful in the context of sensor fusion. 
Dasarathy (1994b) focuses on decision fusion and contains over 700 
references on this topic, going back to 1981. We will use the terms 
information fusion and sensor fusion interchangeably, even though 
there are clearly distinctions between them. 

There are several ways to develop a taxonomy of the levels at which 
information fusion activities can take place. One such hierarchy 
includes data level, feature level, and decision level fusion (Sims 
and Dasarathy, 1992, Dasarathy, 1994b). If the data are temporal in 
nature, such as a sequence of images over time, we should add 
temporal information fusion to this list. 

A. Data level fusion 

Data level fusion involves combining sensor outputs directly. A 
primary example of data level fusion is the combination of precisely 
registered images from multiple sensors or wavelengths, such as 
color images, multispectral images, or images acquired using 
multiple infrared bands. This type of fusion is quite useful only y" 
precisely registered information is available. Figure 4.85 shows an 
example of data level sensor fusion for two registered images from 
different sensors that contain information about buried land 
mines. Using the DARPA Backgrounds data, which is based on 
ground penetrating radar (GPR), and a forward looking infrared 
(FLIR) image acquired by Geo-Centers, Inc., suitable image 
processing techniques can provide complementary evidence of the 
presence or absence of the mine-like objects. There are three objects 
of interest in the illuminated scene, two near the top of the frame, 
and one at the bottom. The GPR image (top left panel in Figure 4.85) 
had strong returns for the two objects at the top of the image. Since 
the bottom object is not in the data, subsequent processing of this 
image alone (shown immediately to the right of the GPR image, with 
the targets indicated by small white arrows and 'T"s), misses the 
third object, and produces a detected false alarm. However, by 
combining the registered FLIR and GPR image data before 
processing, and using morphological operations on the combined 
data, the three objects were detected and the false alarm eliminated, 
as shown (very faintly) in the bottom right view of Figure 4.85. 

Figure 4.85 is a very simple example that demonstrates the concept 
of complementary sensor fusion at the data (or image) level. It's 
possible that in processing the one FLIR frame in the bottow left 
view, all three objects could be found without false alarms, but it is 
just as likely that 0, 1, or 2 might have been detected. This is one 
frame (out of thousands) - and is one of the few we could find that 
showed objects in both the GPR and FLIR images. Hence, Figure 4.85 
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is really only a conceptual diagram that attempts to answer the 
question- "what is data level fusion?". 

raw GPR image processed GPR image 
without data fusion 

^ ' 

raw FLIR image output from processing 
fused (FLIR+GPR) images 

Figure 4.85 Data fusion aids object detection 

A main difficulty in fusing image data this way is that the images 
must be accurately registered in order to perform pixel by pixel data 
fusion. Due to differences in range and resolution of various 
sensors, direct data level fusion such as this is usually effective only 
in carefully controlled situations. 

While the potential payoffs of sensor fusion are high, there are 
many difficulties. Image data are often unregistered and non-
collocated. Passive imaging sensors can be registered but they often 
have different resolutions, causing different intensity distributions 
which can make registration and matching a difficult problem. The 
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variation in object signatures from different sensing modalities 
also make it difficult for an algorithm to reliably match potential 
objects of interest in different image types. 

Another problem in sensor fusion is that information may be 
missing in one sensing modality but available in another. This 
statement can be true in a partial sense. An object may be partially 
occluded in one sensing modality but not occluded in another. There 
may be high contrast between two regions in one modality but not in 
another, etc. These attributes (occlusion, contrast) are not binary -
they are true to some degree. The fusion algorithm must use 
whatever partial information is available. 

Measurements on sensor outputs always contain uncertainty. This 
uncertainty is caused by inherent physical limitations (resolution, 
etc.), from the partial information problem, and from imperfections 
in the algorithms themselves. A practical and effective fusion 
algorithm must make full use of the available information without 
being overwhelmed by imprecise and conflicting measurements. 
The use of fuzzy set theoretic models within the information fusion 
domain explicitly recognizes this uncertainty and provides 
mechanisms which often successfully manage the uncertainty and 
thereby arrive at more realistic answers than crisp, precise models. 

Another type of fusion that can be regarded as either data level or 
sensor level fusion is discussed in a pair of papers by Hathaway et al. 
(1996) and Pedrycz et al. (1998), who present three models for fusing 
heterogeneous fuzzy data (HFD). The objective of this type of fusion 
is to convert fuzzy numbers into numerical data vectors (feature 

vectors in 9t^). Using our standard notation, we let n column vectors 

in a data set X = {x , x , ...,x } c 91^ be arrayed as a p x n object data 

matrix, which we denote as X e 9t^" by letting column k of X be the 

column vector x X = [x^ x^ ••• x^ j . Here dimension p is the 
number of generalized coordinates in the chosen representation of 
the heterogeneous fuzzy data; p will vary as the parametrization of X 
does. 
To understand what type of data this is, Consider the speed s of a 
vehicle. The features used for describing and classiiying vehicle 
speed (of, e.g., t rucks on a highway) can have various 
representations. If measured precisely at some time instant, speed s 
is a real number, say s = 100. Figure 4.86(a) shows the membership 
function, mjs ) = 1 o s = 100; otherwise, mj(s) = 0 for this case. 
This piece of data could be collected by one observation of a radar 
gun. 



446 FUZZY PATTERN RECOGNITION 

mjs ) moCs) mJs) 

° 1 1 1 
90 100 110 

(a) numerical 

90 100 110 

(b)intetval 

90 100 110 

(c) linguistic 

Figure 4.86 Membership functions of crisp and fuzzy data 

Next, suppose that two radar guns held by observers at different 
locations both measure s at the same instant. One sensor might 
suggest that s = 90, while the second measurement might be s = 110. 
Uncalibrated instruments could lead to this situation. In this case, 
several representations of the collected data offer themselves. One 
way to represent these temporally collocated data points is by the 
single interval [90, 110], as shown by the membership function m (s) 

in Figure 4.86(b), maCs) = 1 <=> 90 < s < 110; otherwise, m2(s) = 0. 
Another plausible representation is to center a small interval of 
radius e about each observation, leading to the pair of real intervals 
[90-e, 90+e] and [110-e, 110+e]. Both representations make the same 
point - that data can come to us in the form of real intervals. 

Finally, it may happen that vehicle speed is evaluated non-
numerically by a human observer, who might state simply that "s is 
very high". In this case the observation can be naturally modeled by 
a real fuzzy set. The membership function m (s) shown in Figure 1(c) 
is one (of infinitely many) possible representation of the linguistic 
term "very high", mg(s) = max{0 , l -0 . l | l00-s |} ,se3<. Taken 
together, the three forms of data shown in Figure 4.86 are called 
heterogeneous fuzzy data (HFD), and our objective is to find a 
transformation of these three types of fuzzy numbers so that each of 

the input data wind up in the numerical feature space SR̂ . 

Let 9? be the real numbers, /(9t) = / be all closed real intervals such 
as [a, b], and J^{'3i) = jT be the real fuzzy subsets of 9 .̂ Every element 
of iT is a membership function m: 5̂  h^ [0,1]. Next, let 

jP = j x fx-'-xy (4.129) 
p times 

An element of iF is a function that represents a real number, real 
interval or fuzzy set of real numbers; an element of J^ is a p-tuple of 
them. For example, the vector x = (1.32, | sin(x) |, [-3, 4.5], 2.77, x^ for 
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X in [-1,1]) is in y^. The most general form of HFD is a collection of n 

vectors X = {x^,x^,---,x } c 7 ^ . Hathaway et al. (1996) discuss 
several parametric representations of this data as a set of 
generalized coordinates in some real, finite-dimensional vector 
space. 

Because real numbers and intervals can be represented by crisp 
membership functions, each vector in X can be regarded as a p-tuple 
of real membership functions. This is the case that is discussed in 
Pedrycz et al. (1998). We will briefly discuss the simpler case set out 
in Hathaway et al. (1996), of parametric HFD models by considering 
here only the more restricted case obtained by constraining the 
membership functions for each coordinate of x to be symmetric 

trapezoidal fuzzy numbers. 

Our notation for any representation of a symmetric trapezoidal 
fuzzy number is m (x; a , a , a ) = m (x; a), where a = (a , a , a ) is the 
vector of parameters that specifies m in the chosen representation. 
We will regard m as the standard representation of a symmetric 
trapezoidal fuzzy number, and will refer to a as the center, a as the 
inner radius, and ag as the outer radius of the graph specified by 
m (x; a). Using this standard representation, we let 

iFiT(a) = {m^:9?i-^[O,l]:ae9t3;a2,a3>0} . (4.130) 

jFiTP(a) = iFiT(a) X :riT(a)x- • • x;73T(a) c J^^ is obtained by replacing J 
p times 

in (4.129) with !)^ST{si). There are four kinds of symmetric 
trapezoidal fuzzy numbers in JiT(a), viz., real numbers, intervals, 
and symmetric triangular and trapezoidal fuzzy numbers. 

Every coordinate of a vector x in j73TP(a) has a unique 
representation as an element of iFvST(a) for an appropriate choice of 
a. When every element in a data set X is in ^^^^(a), we call it 
parametric HFD, because each generalized coordinate of every x in 

X has a unique representation as an element of !FST[a) for some 
choice of a. We abstract a simple example from Hathaway et al. 
(1996) that shows how their parametric HFD model can be used for 
data fusion, which in turn enables us to do clustering and classifier 
design with this type of mixed data. 

Example 4.27 Table 4.47 lists, without parentheses or comma 
delimiters, a set of n = 9 data points in 7JT^(a). The superscript of 
JiT^(a) indicates that each data point comprises a pair of 
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generalized coordinates; â  for i = 1, 2. For example, interpret row 
one in this table as the generalized coordinates of the vector 
Xj =(1.1,0.0,0.0,1.5,0.0,0. o r 6 9t^. The first triple of coordinates 
specifies the symmetric trapezoidal fuz^ number m (x; 1.1, 0.0, 0.0), 
the real number 1.1, and the second triple specifies the symmetric 
trapezoidal fuzzy number m (x; 1.5, 0.0, 0.0), which is the real 

number 1.5. The pair of generalized coordinates for x in JS^ (a) 
specifies a real interval and a real number, and so on. 

Table 4,47 A 9 -point parametric HFD set in JiT^(a) 

First Variable : â  Second Variable: a 
2 

^ 1 1.1 0.0 0.0 1.5 0.0 0.0 

^ 2 
1.5 1.0 0.0 2.1 0.0 0.0 

^ 3 0.2 0.1 0.2 1.7 0.3 0.2 

^ 4 
3.1 0.3 0.0 4.1 0.5 0.0 

^ 5 2.7 0.0 0.1 3.0 0.0 0.2 

^ 6 
3.5 0.2 0.0 4.7 0.1 0.0 

^ 7 
4.5 0.0 0.0 0.6 0.0 0.0 

^ 8 
4.7 0.0 0.0 0.3 0.0 0.0 

^ 9 
4.6 0.0 0.0 0.6 0.0 0.0 

For the representation of X in j75T (a), p = 6 because each input 
variable requires 3 numbers for specification as a symmetric 
trapezoidal fuzzy number. By this device the original set of 18 (2 for 
each of the 9 input data) membership functions are converted into a 
set of 9 vectors in 9t^, and this is how the data are fused; all of the 
HFD inputs are transformed into vectors in 6-dimensional 
EucUdccin space. The nine 6D vectors in Table 4.47 are the fused data 
- that is, the transformation of the inputs to 9t^ accomplishes the 
fusion. Now we may process the columns of Table 4.47 with any 
pattern recognition algorithm that uses object data. 

Figure 4.87 is a sketch that illustrates the 18 membership functions 
in fST{Q.) that are specified by the HFD set in Table 4.47. The frames 
in Figure 4.87 are not to scale. Each sketch in Figure 4.87 is 1 unit 
tall. The horizontal scales vary from one to two units wide so you 
can only see the approximate relationships of the various data to 
each other. Moreover, the parameters of the functions are given in a 
different way than in (4.130) so that the sketches fit in the figure. 
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First Variable Second Variable 

1.1 

1.5 2.5 

0.2 0.3 0.5 

m::: 
3.1 3.4 

A 
2.72.8 

m 
3.5 3.7 

4.5 

4.7 

1 
4.6 

! . - - - - . - • 

1.5 

2.1 

1.72.02.2 

m 
4.1 4.6 

S'.O 3"2 

M 
4.74.8 

0.6 

0.3 

0.6 

Figure 4.87 Graphical representation of the HFD in Table 4 .47 
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Figure 4.87 illustrates how the parametric HFD model fuses data of 
the three types discussed in the speed example into a uniform 
numerical framework. Data points 1,7,8, and 9 are pairs of real 
numbers; they would be collected by point-valued sensors, x shows 
a real interval as its first coordinate, and a real number as its 
second entry; this would result from an instance of the (sensor 2, 
sensor 1) pair for object 2. x and x could be the result of 
observations by sensor type 3 on both variables. And so on. 

It now makes sense to ask about clusters in HFD. The idea itself is 
easy to grasp, and the computational means for doing cluster 
analyses in HFD are available in the setting of !FST^[,&). We can 
apply any object data clustering algorithm to the generalized 
coordinates of X obtained by this representation, and it will produce 
clusters. Hathaway et al. applied the fuzzy c-means clustering 
algorithm (Subsection 2.2.A) to the data In Table 4.47 with m=2, c=3, 
e=0.0001 and the Euclidean norm for the objective function. The 
termination criterion was E^ = |Ut -U^ . iL ^ ^• 

The initialization they used Is Indicated with subscript 0 in the 
upper half of Table 4.48, and it grouped points {1,4,7}, {2,5,8} and 
{3,6,9} into c=3 crisp clusters. The lower half of Table 4.48 contains 
the final prototypes, indicated by subscript f, which were obtained 
In 14 iterations of FCM. 

Table 4.48 Initial and final FCM prototypes for X in Table 4.47 

First Variable : a Second Variable : a„ 
1 2 

^2 0 

2.90 0.10 0.00 2.07 0.17 0.00 

^2 0 2.97 0.33 0.03 1.80 0.00 0.07 

^ 0 
2.77 0.10 0.07 2.33 0.13 0.07 

^ f 0.94 0.31 0.07 1.76 0.10 0.07 

^2f 
4.59 0.00 0.00 0.51 0.00 0.00 

^3.f 
3.17 0.21 0.02 4.11 0.25 0.04 

Table 4.49 shows the Initial (crisp) and final fuzzy partitions of the 9 
HFD data points. Hardening Û  in Table 4.49 with (2.10) leads to the 
crisp 3-partition (shown by the shaded and bold cells) X = {x , x , x } 
u{X^,X^,Xg}u{X^,Xg,Xg}. 
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Table 4.49 Initial and final FCM 3-partitions for X in Table 4.47 

^ 1 ^ 2 ^ 3 ^ ^ 5 = 6̂ ^ 7 ^ 8 ^ 9 

row 1, U 1 0 0 1 0 0 1 0 0 
row 2, U 0 1 0 0 1 0 0 1 0 
row 3, U 0 0 1 0 0 1 0 0 1 

row 1, Uf 0.97 0.84 0.93 0.01 0.22 0.03 0.00 0.01 0.00 
row 2, Uf 0.01 0.06 0.03 0.00 0.11 0.02 1.00 0.99 1.00 
row 3, Uf 0.02 0.10 0.04 0.99 0.67 0.95 0.00 0.00 0.00 

since each point in Table 4.47 and Figure 4.87 has two components, 
it is possible to construct a 3D view of each row in the data that 
shows the 2D membership function for each object. Figure 4.88 is a 
3D plot of the data and final prototypes in which the data have been 
lightened, and the three prototypes darkened so that you can see 
them. 

m(x,y) 

Figure 4.88 The terminal FCM prototypes for c = 3 are used 
to classify HF data point z 

The second prototjrpe (cluster center) corresponds to the point v = 
(4.59, 0.51). (Actually, this is true only after the computational 
results are rounded to two decimal places. To four decimal places, 
prototype \^^= (4.5868, 0.0013, 0.0004, 0.5137, 0.0001, 0.0008)"^, so 

V does not, strictly speaking, correspond to a vector in 9̂  . The 
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first a n d th i rd c lus ter cen te rs have all non-zero coordinates , and 

t h u s define trapezoidal pjTamids in JST (a). 

Ha thaway et al. also showed t h a t the prototypes obtained in th i s 
example can be used as a bas i s for 1-np classifier design. By way of 
i l lus t ra t ion, suppose t h a t the 9 point HFD da t a are regarded as 
" t ra in ing data" , a n d t h e o u t p u t of t r a in ing is the se t of HFD 
prototypes for c = 3 shown in Figure 4 .88 . Suppose t h a t z is the 

t r i a n g u l a r m e m b e r s h i p funct ion in jFiT (a) specified by t h e 
generalized coordinates z - (z,, 0, 0.25, 1.0, 0, 0)^ a s i l lustrated in 

Figure 4 .88 . As plotted, z a p p e a r s visually equ id i s tan t from the 
prototypes for c lasses 1 a n d 2. The HFD model enables u s to make 
th is a well-defined concept. 

An easy calculation of the Euclidean dis tance from z to each of the 3 

p r o t o t y p e s in the representation space J i T ^ ( a ) c 9 t ^ yie lds t h e 
resu l t s in Table 4.50. If the first coordinate of z is 2.65, the nea res t 
prototjqje is V , 3aelding the class 1 label. If the first coordinate for z 

is 2 .70 (as shown in t he thi rd co lumn of Table 4.50), the label 
assigned by the neares t prototype classifier would be class 2. 

Table 4 .50 Ulustxation of a nearest prototype classifier for HF data : 
tabulated are E^uclidean distances 5 (z, v ) 

z = 2.65 z = 2.70 

1 
2 
3 

1.93 1.98 
2.00 1.96 
3.17 3.16 

This shows how a classifier can be designed us ing fused da ta t h a t 
will look for the closest ma tch to a n unlabeled observation among a 

library of generalized prototypes. The representa t ion space ^iT^(a) 
provides the essent ia l ingredient - viz., a unified framework for 
p a t t e r n recognit ion us ing models t h a t a re already available a n d 
well u n d e r s t o o d . All of t h e u s u a l p r o b l e m s a s soc i a t ed wi th 
c lus ter ing, c lus ter validity a n d nea re s t prototype classifiers - for 

example, w h a t dis tance measu re (in 9t^) a n d how many prototypes 
per class to use - become sensible questions to ask and t iy to answer. 
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B. Feature level fusion 

Feature level fusion is much more general and directly takes 
advantage of the ability of different sensors to measure 
complementary information. This level of fusion involves 
combining multi-dimensional, quantitative feature vectors derived 
from sensor measurements, possibly together with qualitative 
information. For example, one sensor may give shape information 
while a different sensor may provide depth. This level of fusion has 
many similarities to complex pattern classification problems 
(Wootton et al., 1988, Keller and Hobson, 1989, Keller and Osbom, 
1991, Keller etal., 1991). 

(M: 

^ • > : 

Figure 4.89 Feature level fusion to reduce false alarms 

As an example consider the Geo-Centers GPR system, which 
produces a volume of data as the sensors are moved downtrack. The 
coordinates are downtrack, cross track and time (which roughly 
correlates to depth). In Figure 4.89, two views of the Geo-Centers GPR 
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data are displayed: panel (b) is a surface plot where the energy below 
the surface is "summed up" into a downtrack-crosstrack plane; and 
panel (c) is a depth plot representing the radar returns in time and 
downtrack given a fixed crosstrack value. The objects are at 
locations denoted by very faint "tick marks" in panels (a)-{c) of 
Figure 4.89. Panel (a) of Figure 4.89 is a thresholded version of the 
image in panel (b). All of the objects are accounted for, but many 
false alarms are also evident in panel (a). While the raw data is the 
same, different features emerge by processing it in different ways. In 
looking at the depth plots, Frigui et al. (1998a) and Gader et al. 
(1998b) noticed that the high energy locations in the panel (b) 
surface plot corresponded (roughly) to rising and falling edges in the 
panel (c) depth plot at locations related to the size of the objects. 
Panel (d) of Figure 4.89 represents two thresholded outputs of 
gradient masks operating on the image in panel (c). Darker values 
represent strong rising edges, while the lighter color corresponds to 
falling edges in panel (d). Note that there are still false alarms in 
panel (d). Hence, by combining these sets of features, we might expect 
to enhance detection capabilities while eliminating false alarms. 

Keller and Gader (1997) proposed one method of combining 
information on energy (panel (a)) with the information on rising 
and falling edges (panel (d)) using a fuzzy rule: 

1F there is significant energy in the GPR surface plot. 
AND there are rising and falling edges in the GPR depth plot 
AND the edges are close 
THEN confidence in mine is high 

View (e) in Figure 4.89 shows an implementation of the above rule. 
This particular implementation lost two of the desired detections, 
but significantly reduced the number of false alarms from the 
standard approach (panel (a)). Don't read too much into Figure 4.89; 
it is Just an example to illustrate the concept of feature level fusion. 

C. Classifier fusion 

Decision level fusion generally involves combining information 
from algorithms that have partially or fully processed individual 
sensor measurements (or features derived from them), and perhaps, 
other qualitative information that may reside in rules such as the 
land mine rule jus t given. The division between feature level fusion 
and decision level fusion is not crisp, but decision level fusion is 
generally considered to be at a higher level, such as combining the 
outputs of several classifiers. (Tahani and Keller, 1990, Gader et al., 
1995a, Gader and Mohamed, 1995, Cho, 1995, Kuncheva et al. 1998). 
This fusion level is the primary emphasis of this section. 

The basic assumption that drives decision level fusion schemes is 
that classifier algorithms are imperfect. Thus, a good strategy for 
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enhancing the performance of classification systems is to construct 
multiple independent systems and then combine the results, 
hopefully achieving higher reliability and robustness through 
redundancy. The hope is that each individual system makes 
independent errors which can be overcome using advanced fusion 
schemes. 

Figure 4.90 illustrates a general architecture for classifier fusion. In 

this Figure D is any classifier function, D: 5RP h^ N . The value u = 
s= J • pc 

D(z) is the label vector for z in 9t^. D is a crisp classifier if D[ 9t^] is 
always a crisp (binary valued) label vector; otherwise, the classifier 
is fuzzy, possibilistic or probabilistic, which, as we have done 
earlier, we lump together by the term soft classifiers. 

Training data 

-X5>^u,^ Fusion 
Classifier 
D = F({D,}) 

'i^(5)^H(u) = e, 

^'r^D 

iTesting data 

Figure 4.90 Classifier fusion models 

On the left in Figure 4.90 we show a bank of L first level classifiers -
it would not be wrong to conceptualize these as the input layer of a 
network, and this often helps in visualizing the fusion operation. 
Each D could be a soft classifier of a different type; for example, D 
might be a nearest prototype classifier, D , a multilayered 
perceptron. D a fuzzy decision tree, and so on. Most of the time, the 
L classifiers {D } use the same training data to acquire their 
parameters independently, but for classifier fusion this is not 
necessary. Exceptions to this include the bagging (Breiman, 1996) 
and boosting (Drucker et al., 1993) approaches for creating 
ensembles of neural networks. 

The fusion classifier D = F(Di DL) , where F is a specified "fusion 
operator" that integrates the outputs of the bank of classifiers in the 
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first level, generally maps soft labels to soft labels, D: N h^ N .As 
with other classifiers, we often use the hardening function 
H:N i-> N in equation (1.15) to get a final crisp output from D as 

shown in Figure 4.90. For classifier fusion to improve recognition 
rates over individual classifier outputs, different classifiers must 
make different mistakes. A fusion method should emphasize the 
strengths of individual classifiers and subsets of classifiers, avoid 
weaknesses, and use dynamically available knowledge about the 
inputs, the outputs, the classes, and the classifiers. 

There are three styles of classifier fusion. The simplest type is when 

Dis a fixed operator without any unspecified parameters that 
cannot be trained and which is simply chosen by the user - e.g., the 
minimum, maximum, weighted mean, etc.; in this case we call D a 
non-trainable fusion operator. A more aggressive approach to 
fusion allows D to be trained simultaneously but independently 
from each of the L D 's using the same training data; then we call D a 
separately trained fusion operator. Examples of this type of 
operator include fuzzy integrals (Tahani and Keller, 1990, Keller et 
al., 1994a, Gader et al., 1996b, Wang et al., 1998), OWA operators 
(Cho, 1995), decision templates (Kuncheva et al., 1998, 1999), and 
many others that we will meet later in this section. 

Lastly, if D is trained simultaneously and in conjunction with the L 
D 's using common training data, we call D a co-trained fusion 
operator. There aren't too many examples of this third type of 
fusion. Jacobs et al. (1991) discuss a mixture of "experts" that use a 
gating network for D that is trained together with the first level 
classifiers. However, this model selects (as opposed to combines) 
classifier outputs, so is not exactly what we call a co-trained fusion 
model. 

As an introduction to time-based fusion, Sato et al. (1997) discuss a 
temporal version of FCM called TFCM (Section 2.6) that integrates T 
time slices of data sets having fixed spatial sizes in a weighted 
objective function across time. The output of TFCM is a single fuzzy 
partition matrix U for the entire set of time slices coupled to T sets of 
prototype vectors {V , ..., VJ, one set for each slice. When the frame 
rate of temporal sequences is high, TFCM may be useful for "short 
bursts" within the overall sequence of temporal data, because 
changes in the scene will be very slight. In this situation the number 
of objects (that is, c, the number of clusters in U) should not vary, but 
the centers of gravity (that is, the prototypes V we use to track the 
objects) will, if the objects and/or sensor platform have changing 
positions in time. 
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There are at least as many methods for classifier fusion as there are 
for designing classifiers, since the decision fusion mechanism D in 
Figure 4.90 is a classifier. Voting strategies (Mazurov et al., 1987), 
like majority choice or best "M of N" approaches, and order 
statistics, like the maximum or median, are obvious simple non 
trainable methods to fuse multiple classifier outputs. 

Kittler (1998) discusses the problem of classifier fusion from a 
statistical decision theoretic standpoint for two scenarios: fusion of 
opinions based on identical representations, and opinions based on 
distinct representations. Standard methods for combining distinct 
opinions, such as the product rule, sum rule, min rule, max rule 
majority voting, and weighted averaging are shown to be special 
cases of compound classification, where all representations are used 
jointly under suitable Bayesian hypotheses. Kittler (1998) also 
contains many other statistical based fusion references. 

Figure 4.90 looks like (and is, if we regard the L classifier outputs as 
inputs to a single node) a standard FF neural network, and as such, 
can be trained on the output of the L classifiers and thus act as a soft 
fusion technique. We will discuss this method in some detail later in 
this section, but refer you to Rowley et al. (1998) for a typical 
example of using a NN as the fusion device. 

Additionally, there are methods to choose the best classifier for a 
particular sample (among say, an ensemble of neural networks, or 
from different types of techniques) based on some measure of 
"goodness" or "consistency" of the multiple outputs (Leon et al., 1996, 
Woods et al., 1997). This is somewhat different in nature from the 
situation depicted in Figure 4.90. The classifiers aren't combined 
directly in this method; they are used to determine if classification 
should be done at all. Refusing to decide (at least until more evidence 
is forthcoming) can improve overall classification accuracy and is 
consistent with the principle of least commitment. 

Pick your favorite classifier, and you can turn it into a fusion 
machine. We are being somewhat casual here, because the fact is that 
fusing the results of classifiers/sensors/information sources is not 
well understood. There is little theory of sensor fusion. Hence, the 
"proof is in the pudding" right now, i.e., different approaches can 
produce very different results on different data (that's a lot of 
differences - just don't treat them with diffidence). What we will do 
now is give a few examples of fuzzy set based classifier fusion 
approaches that have been shown to work in certain domains. 

The fuzzy integral (Section 4.5) is a very flexible approach for 
classifier fusion. Tahani and Keller (1990) were the first to utilize 
the Sugeno fuzzy integral to combine the results of multiple 
classifiers. In that paper they established a framework for fuzzy 
integral fusion in an automatic target recognition application that 
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used three first level classifiers: a Bayes decision theory classifier, a 
feature based Sugeno fuzzy integral, and a soft prototype classifier 
based on FCM. The fuzzy integral was able to compensate for two 
extremely confident (but erroneous) classifications by one of these 
three classifiers. Subsequently, several authors have used both the 
Sugeno and Choquet fuzzy integrals to combine multiple 
information sources (Keller et al., 1994a, Gader et al., 1995a, Gader 
and Mohamed, 1995, Cho and Kim, 1995, Grabisch et al., 1995). 

Example 4.28 In (Hocaoglu et al. 1997, Keller et al., 1998), a system 
based on fuzzy set theoretic algorithms to perform automatic target 
recognition from Laser Radar (LADAR) imagery was described. 
Figure 4.91 shows the framework of this approach for an automatic 
target recognition (ATR) system. 

r LADAR Range l m a g e \ 

(DEVLINJJ (LODARK) J^ GEAR j 

Fusion : Choquet 
Fuzzy Integral 

(3 Threshold and Detect 

First Stage 
Detector Scoring ^ Feature Extraction 

c Neural Network 

System 
Scoring 

d 

J 
Threshold and Detec^ 

Figure 4.91 A fuzzy logic ATR system 

The details of the LADAR pixel target detection filters, called 
LODARK, DEVLIN and GEAR in Figure 4.91, are in (Hocaoglu et al. 
1997, Keller et al. 1998). Briefly: LODARK stands for LOw and DARK -
LADAR range image targets have more "action" in the low part of the 
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scanning window and correspond to darker pixels than the 
background. DEVLIN stands for DEViation from LINear - the 
background in range images tends to look like a plane (not airplane 
of course), hence targets (and other objects) cause a deviation from 
that flat or linear plane. CFAR stands for constant frdse alarm rate 
and is usually a size-contrast filter, although this implementation 
used robust estimators in the size contrast filter (Frigui et al., 
1998b). 

What is important here is that all three classifiers produced a target 
confidence at each pixel in the LADAR scene. The Choquet fuzzy 
integral was used to combine the results of the three classifiers. For 
one group of experiments, the set of LADAR images was divided into 
a training set (52 images wrtth 89 targets) and a test set (45 images 
v^ t̂h 86 targets). See Figures 4.20 and 4.21 for a typical image in this 
data set. Each pixel level detector was run on the training images 
and for each threshold value, the probability of detection vs. the 
number of false alarms was computed (the graph of these points is 
called a receiver operating characteristic (ROC) curve. From the ROC 
curves on the training data, a threshold was picked for each 
detector. Each detector was then run with its threshold on the test 
set and scored. A Sugeno fuzzy measure (see equation (4.47)) was 
generated from densities calculated as the relative number of 
detections by each classifier on the training set. In this case, the 
resultant measure was a probability measure (since the densities 
summed to one). 

The three detector confidences for each pixel in the training images 
were fused with the Choquet integral, and once again the probability 
of detection vs. the number of false alarms for all thresholds was 
computed. An "optimal" threshold was selected (manually) from the 
training results of the fusion. The results of the three individual and 
the fused detectors are shown in Table 4.51. On the training data, the 
Choquet Integral combination was able to slightly increase the 
detection rate while reducing the number of false alarms. Many of 
the false alarms were generated on just a few "poor" images, and no 
effort was made to incorporate temporal aspects of the image 
sequences into the processing. 

Table 4.51 Target detection outputs for individual and fused 
detectors on training data 

# False 
Detector # Hits A l a r m s Densi ty 

CFAR 75 (84.3%) 200 0.32 

DEVLIN 80 (89.9%) 227 0.34 

LODARK 81 (91.0%) 319 0.34 

FUSED 83 (93.3%) 191 -na-



460 FUZZY PATTERN RECOGNITION 

The test images were then submitted to the final configuration. The 
Choquet fusion scheme for the detectors (using the threshold 
selected from the training ROC curve) found 81 of the 86 targets in 
the test images, with 183 false alarms. The second stage detector in 
Figure 4.91 was added to further reduce the number of false alarms. 

In Example 4.28 there were training images, but no "desired outputs" 
at the pixel level. Hence, the densities for the fuzzy integral were 
calculated from global statistics. Recently, the Choquet integral has 
become the fuzzy Integral-of-choice for classifier fusion activities 
where desired outcomes are available. This is because the entire 
measure can be learned as the optimal solution to a quadratic 
programming problem (Grabisch and Nicolas, 1994). 

Even restricted classes of measures give rise to a wide variety of 
combination schemes. As noted in Section 4.5, all linear 
combinations of order statistics (LOS) operators (or OWA fuzzy 
operators in some circles) are special cases of the Choquet fuzzy 
integral. Tumer and Ghosh (1998) show that a LOS combination of 
multiple neural networks provides excellent fusion of classifiers in 
the presence of outliers, or when there is a high variance of 
individual classifier performance. They performed an analysis of 
decision boundaries and ran experiments on 6 standard data sets 
from the University of California (Irvine) repository to support 
their views. This study lends support to the Choquet fuzzy integral 
combination as a very competitive fusion method. 

An application where classifier fusion has received considerable 
attention is handwriting recognition. This is because there are an 
abundant number of classifier schemes for character and word 
recognition, along with a huge amount of labeled training and 
testing data. Classifier fusion methods in this domain include 
intersection of decision regions, voting, prediction by top choice 
combinations, Dempster-Shafer theory of evidence, fuzzy integrals, 
neural networks and rule-based approaches (Ho et al., 1994; Huang & 
Suen, 1995; Keller et al., 1994a, Suen et al., 1992, Xu et al., 1992, Chi 
and Yan, 1996, Chi et al., 1996b). 

Handwritten word recognition is problematic because of the large 
variations in the shape of characters, the illegibility and ambiguity 
present in many handwritten characters, and the overlapping and 
interconnecting of neighboring characters. In most applications the 
size of the lexicons (dictionaries) is large and the contents of the 
lexicons (the classes) are changing. The problem is more complex 
than traditional pattern recognition problems because the number 
of classes is relatively large - easily on the order of thousands, and 
moreover, changes from word image to another. This precludes the 
use of some decision combination methods that depend on knowing 
the number of classes and the identity of each class in advance. 
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One widely used fusion method In handwritten word recognition is 
the Borda count, which is simple to implement and requires no 
training. All classifiers rank all of the alternatives (classes), and 
the Borda count is simply the sum of the ranks for each class. In this 
method, however, all classifiers are treated equally, which may not 
be preferable when certain classifiers are more likely to be correct 
than others. Ultimately, more sophisticated techniques are 
necessary for fusion in this domain because different word 
recognizers do not contribute equally and do not place equivalent 
restrictions on the recognition results. For example, a weighted 
Borda count was shown to achieve better performance than the 
unweighted Borda count in (Ho et al., 1994). The next example, taken 
from (Gader et al., 1996b) demonstrates the ability of the fuzzy 
Integral to effectively combine classifier outputs for handwritten 
word recognition. 

Example 4.29 In a test of classifier fusion for word recognition, 
Gader et al. (1996b) considered three advanced recognition 
algorithms: a dynamic programming algorithm that Is applied to 
segmented characters, which we call the segmentation-based 
method (SBM, see example 4.12), a hidden Markov model (HMM) 
approach, and a Juzzy version of the hidden Markov model (FHMM) 
method (Mohamed and Gader, 1994, Mohamed and Gader, 1995). The 
decision fusion strategies all use the ranks of the strings provided by 
each word recognizer. The HMM and FHMM schemes do not produce 
output confidence values that can be compared to each other, or to 
those produced by the SBM. Only the relative ranks of the HMM and 
FHMM for various words in the lexicon are comparable. The SBM 
approach used two MLP neural networks (one each for upper and 
lower case letters) to generate character confidences for unions of 
primitive segments. The neural networks were trained with 
handwritten characters that were assigned posslbillstlc training 
labels (Gader et al., 1995), which produced better results in word 
recognition than those from neural networks trained with crisp 
character labels. The use of ranks provides a measurement which is 
comparable across recognizers. Gader et al. used only the top n (n= 5, 
here) strings In the lexicon for each recognizer. For a given word 
image and lexicon, each classifier produced an ordering of the 
lexicon. The kth string in each ordering of the lexicon Is assigned 
the rank confidence 1 - (k/n). If k > n, the rank confidence Is defined 
tobeO. 

Recall that the Borda count associated with a string in a lexicon Is 
defined as the sum of the ranks, while the weighted Borda count is 
the weighted sum of the ranks. The weights can be fixed for every 
classifier, or they can be a function of the match confidence (degree 
of match) between the Image and the lexicon string. Data dependent 
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or data Independent approaches can also be used to generate the 
density values for the fuzzy integrals. 

The fuzzy integrals used the rank confidences for the values of the 
function h(x). The density values were generated using two methods. 
In the first method, Gader et al. assigned each classifier a fixed 
density value which was used for every string in every lexicon; this 
value is considered to reflect the worth of each classifier. An 
example of the non-data dependent method for combining word 
classifiers are shown in Tables 4.52(a) and 4.52(b). This example is 
difficult - can you figure out what the correct word should be from 
this pair of tables? Did you guess the word "island" - before you read 
the caption of Table 4.52(a)? This is the correct word. 

Table 4.52 (a) Three classifier rankings 
for an image of the word "island" 

Rank HMM FHMM SBM 
1.0 "grant" "stpaul" "island" 
0.8 "island" "grant" "grant" 
0.6 "granada" "island" "salem" 
0.4 "burwell" "oneill" "nehawka" 
0.2 "nehawka" "o'neill" "roseland" 

The three classifiers were run on an image of the word "island" from 
the SUNY (1989) postal database, and the five rows of Table 4.52(a) 
correspond to the top five words as ranked by each of the three 
classifiers. Note that the word "island" appears in the top three 
choices of each classifier, but is the top choice of only one of them. 
Actually, the word "grant" seems to be a better guess from the 
information in Table 4.52(a). Table 4.52(b) shows the results of fixed 
weight fusion for the top five classes (words) appearing in Table 
4.52(a). The Borda count uses no weight factors. For the other three 
schemes (weighted Borda count, Sugeno integral and Choquet 
integral) the weights/densities were chosen as 0.65 for SBM, 0.25 for 
HMM and 0.05 for FHMM. As seen in Table 4.52(b), the weighted 
Borda count and the Choquet integral pick the correct class for this 
example. 

Table 4.52 (b) Results of classifier fusion 
on the results in Table 4.52(a) 

Weighted 
Borda Borda Sugeno Choquet 

String Count Count Integral Integral 
"grant" 2.60 0.81 0.8 0.85 
"island" 2.40 0.88 0.8 0.92 

"nehawka" 0.60 0.31 0.4 0.32 
"salem" 0.60 0.39 0.6 0.26 

"granada" 0.60 0.15 0.25 0.15 
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The second method discussed in Gader et al. (1996b) used data 
dependent densities. The confidence value produced by the SBM was 
used to define a density value for it in the fusion scheme. The density 
values for the HMM and the FHMM were then determined by a 
heuristic formula involving the SBM confidence and the agreement 
between the classifiers concerning the rank of each string. More 
precisely, let: 

Cg = confidence value from the segmentation-based classifier 

g^ = density of the segmentation-based classifier 
rs= rank of the string by the SBM 

g" = density of the HMM classifier 
rn = rank of the string by the HMM 

g'̂ = density of the FHMM classifier 
rp= rank of the string by the FHMM 

If a string is in the top n choices of the segmentation-based system, 
then define 

g^ = m a x ( e , a C s ) ; (4.131a) 

g " = | 3 y ( l - C s ) ( l - | r H - r s | ) ; and (4.131b) 

g ^ = y - ^ ( l - C s ) - ( l - | r F - r s | ) . (4.131c) 

Otherwise, define 

g^ = max(e. a • Cg) (4.132a) 

g" = P • V( l -Cs ) - ( l - | rH- rF | ) (4.132b) 

g ^ = T - y ( l - C s ) - ( l - | r F - r H | ) (4.132c) 

Here a, p, and y are parameters that can be optimized and e > 0 is 
very small. The expression max(e, a C g ) was used to keep the 
densities for the SBM non-negative in the case that an appropriate 
segmentation cannot be found. The same method can be used to 
define weights for the weighted Borda count. 

For example, the data-dependent Choquet combination method 
would assign confidence values shown in Table 4.53 for the strings 
"island" and "grant" from Table 4.52(a). The values of the parameters 
used for the computations shown in Table 4.53 were a = 0.9, P = 0.1, 
and Y= 0.4. 



464 FUZZY PATTERN RECOGNITION 

Table 4.53 E^sample of data-dependent Choquet integral fusion 

String 

"island" 
"grant" 

g H Choquet 
Integral 

0.75 
0.46 

0.68 
0.42 

0.02 
0.27 

0.04 
0.08 

0.92 
0.86 

The experiments were performed on handwritten words from the 
SUNY CDROM database. The "BD city" words were used (Hull, 1994). 
The FHMM and HMM were trained using the standard traiining set 
from that database. The SBM method was trained using a different 
set of data. In the SBM experiment, 126 words from the training set 
were used to "train" densities and weights. All of the 317 BD city 
names from the test set were used for testing. Sets of lexicons that 
had an average length 100 were used for both training and testing. 
The results of the three individual classifiers are shown in Table 
4.54. 

Table 4.54 Recognition results for individual classifiers 

Classifier Training Testing 
HMM 

FHMM 
SBM 

74.6% 
74.6% 
82.5% 

71.6% 
73.2% 
83.9% 

The "training" method for the weighted Borda count and the fixed 
density fuzzy integral approaches was a "modified" exhaustive 
search. Weights/densities were varied from 0.05 to 0.95 by 
increments of 0.05. The training method that was used for the data-
dependent densities was a similarly modified exhaustive search on 
a, p, and y. In each case, "optimal" values for the parameters were 
found on the training set and then used on the test set. The top choice 
results for the Gader et al. (1996b) experiments are shown in Table 
4.55. 

Table 4.55 Training and test results for fused classifiers 

Optimal Testing 
Combination Approach Training 

Data-Dependent Choquet 89.7% 88.0% 
Data-Dependent Sugeno 89.7% 86.4% 
Data-Dependent Weighted Borda 88.9% 85.5% 
Fixed Choquet 88.1% 82.0% 
Fixed Sugeno 88.1% 85.2% 
Fixed Weighted Borda 88.1% 86.4% 
Borda 84.1% 83.3% 

Gader et cd. (1996b) attempted to train several standard MLP neural 
networks to fuse classifiers from the same data that was used by the 
fuzzy integral. Each feature vector contained ten inputs: the 
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segmentation confidence (Cg), the word ranks for the three 
classifiers (rg.rji.rp), the data dependent densities for the three 

classifiers (g^,g",g^) , and the fuzzy measures of the three 2-
element subsets of classifiers. Recall that for a fuzzy measure 
defined over the set of three Information sources (In this case, the 
three classifiers), there are eight subsets to consider. Leaving off the 
measure of the empty set, which Is 0, and that of the whole set, which 
Is 1, the fuzzy measure is completely specified by the measures of the 
three singleton sets (these are the densities above), and the measures 
of the three subsets containing two of the three sources. Hence, the 
neural networks had as input the segmentation confidence, the 
classifier outputs, and the fuzzy measure. The target was set to 0.9 if 
the string represented the correct choice for the current word image, 
and 0.1 If It was Incorrect. Many architectures were Investigated. 
Table 4.56 shows the best results obtained. 

Table 4.56 Training and test results : neural nets with crisp outputs 

Training Testing 
Architecture # Iterations Results Results 
10:5:1 1000 84.1% 80.4% 
10:5:1 3000 84.9% 82.3% 
10:5:1 6000 84.9% 81.4% 
10:5:1 21000 86.5% 79.5% 
10:10:1 2000 83.3% 81.4% 
10:10:1 4000 83.3% 81.4% 
10:10:1 10000 86.5% 81.7% 
10:10:1 15000 88.1% 80.8% 
10:10:5:1 5000 84.9% 82.0% 
10:10:5:1 9000 86.5% 81.4% 

It Is clear from Table 4.56 that the neural network architectures did 
not match the performance of the fuzzy integral for fusing the three 
classifiers on this data set. Gader et al. conjecture that this may be 
true in handwritten word recognition because we are not learning a 
nonlinear function In the same sense that s tandard pattern 
recognizers do - i.e., we are not hacking through Dubois and Prade's 
"Jungle of function approximation". Since strings need to be ranked, 
there are a very large number of possible classes and hence, we 
cannot use the standard class coding approach. This makes the task 
for a neural network extremely difficult. 

Sly and Chen (1974) wrote one of the first papers about the 
application of fuzzy models to handwritten character recognition. 
Like Chang and Pavlidls (1977), this paper contained precursors of 
some elements of many papers to follow, including those of Chi et al. 
(1996b) and Chi and Yan (1996). Although the language of syntactic 
pattern recognition is not used in Siy and Chen, some of the 
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material on this topic that we will present in Section 4.10 is closely 
related to ideas in this paper, so we take a little stroll down Siy and 
Chen lane, as it were, to check out the sceneiy. 

Siy and Chen argued that all handwritten characters were distorted 
versions of printed characters , and that all alphanumeric 
characters comprised essentially three basic "strokes": the line, a 
portion of a circle, or a whole circle. They suggested the set of 15 
"features" shown in Figure 4.92, made from one of the three basic 
strokes, as a basis for decomposition and subsequently, recognition, 
of the various characters in any alphabet. In Section 4.10 we will 
call these 15 arcs the primitives of a grammar for syntactic 
approaches to handwriting analysis. Shown directly beneath the 
symbolic name of each primitive is a 2-digit number that will be 
used to encode the prototypical description of each character. 

Hline 
01 

/ \ 
Vline 

02 
Pline 

03 
N line 

04 

c 3wn s s 
C curve D curve V curve A curve S curve Z curve 

05 06 07 08 09 10 

oo o o o 
Circle L Circle R Circle A Circle B Circle O 

11 12 13 14 15 

1 2 

^ 

Numeric code 
Node pairs 
Class label 

Final code 

0102060000 
1213340000 
5 

0102060000121334005 

Figure 4.92 The 15 branch features (primitives) of Siy and Chen 

A character is represented by three strings of numbers; the first 
string is made by concatenating digit pairs (e.g., 01=H line, 02 = V 
line, etc.) in ascending order; the second string encodes the node 
pairs needed to specify the stroke sequence, ordered to connect the 
digit strings in the first pair; and the third string is a class label 
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(this is how training and test data are labeled). A functional 
representation of the digit "5", using (•) to indicate concatenation, is 
5 = H{1,2) • V(l, 3) • D(3,4), which indicates three things: the sequence 
of strokes and type of strokes (H and then V and then D), and the sets 
of node pairs ((1,2) and then (1,3) and then (3,4)). Using this scheme, 
for example, the numeral "5" will be encoded as shown in the lowest 
panel of Figure 4.92. 

Siy and Chen skeletonize the binary character images by a thinning 
algorithm (see examples 5.6 and 5.14, and also, e.g., Gonzalez and 
Woods, 1992). Next, a set of nodes in the skeleton is found. Nodes can 
be tips, corners, and junctions (strokes with 1, 2 or more than 2 
edges incident to them, respectively). See Figure 5.17 for an 
illustration of a comer and a junction (called a triple point in Figure 
5.17 because there are 3 edges incident to the node). 

A branch b is an arc (element of the skeleton) connecting a pair of 
adjacent nodes. Branches are classified by two attributes; their 
straightness and orientation. To illustrate, suppose a branch b is 
extracted. At this point b might be a line, or it might be a curve. 
Consequently, Siy and Chen determine the best fit (minimum least 
squared error) line to the points along the skeleton b. Once this is 
done, b is classified by computing its "straightness", which is 
defined as its membership in the fuzzy set "nearly lines", defined as 

where S is the fitting error of the best fit line and S is a threshold on 
the fitting error. If S = 0, m, (S) = 1. Thus, when the fitting error is 
zero, b is a line, and otherwise, b departs from linearity to some 
extent. Branch b is classified as a curve if 0 < msL(b)< 0.5; and 
otherwise, b is declared a line. 

To handle the orientation of b, Siy and Chen define membership 
functions for each of the four line segments (H, V, P and N) in Figure 
4.92. For example, the membership function for the horizontal H 
line in Figure 4.92 is mn (6) = 1 - mln{min{|e|, |180 - e|, |360 - e|}/45,1}, 

where 9 = tan"^ (m) is the angle of inclination in degrees of the best 
fit line (whose slope is m) to the branch b under consideration. If the 
branch b passes the straightness test in (4.133) so it is declared a 
line, b is then assigned a crisp membership in the set whose branch 
membership function maximizes this subgroup of 4 membership 
functions. In our notation, each branch that is declared linear is 
associated with a possibilistic label vector u(b) e Np4 whose entries 
are computed with the four "line tjrpe" membership functions, and 
then branch b is assigned to a crisp line type by hardening the 
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possibilistic label, b e line type 1 <=> H(u(b)) = Cj, where 1 takes values 
1 to 4, as say, the line type runs through H, V. P and N. 

Siy and Chen define 6 membership functions that are similar to the 
ones used for orientation of lines for non-linear cases. If a branch b 
is declared a curve by equation (4.133), these membership functions 
are used to label b as one of the remaining 11 non-linear feature 
types. Eventually, every branch in a character skeleton is crisply 
labeled as one of the 15 primitives in Figure 4.92. 

Aiming towards a 1-np classifier that has the flavor of equation 
(4.2), Siy and Chen assign a crisp class label to each character in the 
training data, and then run it through the above decomposition, 
finally obtaining a 3 string prototype for each training character. 
Since each training data produces a prototype, the prototypes will be 
correctly labeled automatically. Moreover, as there will be many 
variations of the same symbol, there may be several distinct 
prototypes for a single character. The measure of "nearest" that was 
chosen instead of the metric 5 in (4.2) was exact string matching, bit 
by bit, against the strings derived to represent an input datum. Siy 
and Chen use the relative frequencies of occurrence of each 
prototype to make the search for a matching prototype during 
testing and operation of the character recognizer a little more 
efficient. Remember, this was 1974, and matching n prototypes to a 
long string for a lot of test samples could be computationally 
arduous. 

As described, the 1-np classifier implemented by Siy and Chen has a 
"reject" option - that is, the system has three output categories 
during testing: correct if one prototype exactly matches the input 
and the labels agree; incorrect, if one prototype exactly matches the 
input and the labels disagree; and no decision when no prototype 
matches the input. The training data discussed by Siy and Chen 
consisted of 50 samples for each of the 10 integers 0, 1 9, so their 
system produced n = 500 prototypes for the 10 characters. Then the 
system was tested on a set of 500 unseen samples called the 
"Honejrwell 500" data by Siy and Chen. On this test data, their 
simple 1-np classifier obtained a success rate of 98.4% correct - that 
is, 8 of the 500 test characters were labeled incorrectly - three 9's, 
two O's and one each of the numbers 3, 4 and 5. As we pointed out at 
the beginning of Section 4.3, nearest prototype classifiers are 
simple, effective and cool. Granted that the data set used by Siy and 
Chen is small, this example still seems to bear out our assertion. Siy 
and Chen (1974) does not exemplify a fusion technique: we discussed 
this paper here to prepare for the next group of papers, which 
consider the same topic, and that do use classifier fusion. Now we 
spin forward to 1996, and see how much better we can do with all the 
latest neural gadgets and fusion techniques at our disposal. 
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Earlier in this section we mentioned that standard FF neural 
networks can be used for classifier/sensor fusion. Next we discuss a 
set of four papers by Chi and Yan (1995, 1996) and Chi et al. (1995, 
1996b) that all use multilayered perceptrons (MLPs) as a principle 
component of classifier design. The two 1995 papers discuss single 
classifiers, while the two 1996 papers have two classifiers in the 
first level, and an MLP is used as the fusion classifier at the second 
level. One of the primary applications that we have been using to 
illustrate fusion so far - handwritten digit recognition - is the focus 
of all four papers, and all four use the same data set. After we discuss 
the four papers, we will combine their results in a single example -
Example 4.30. 

All four papers base their examples and discussion on the same 
database, identified as the United States National Institute of 
Standards and Technology (NlSTl special database number 3, which 
consists of handwritten segmented characters. And all four papers 
use the same data sets X and X for training and testing of the 

tr te '^ ° 

classifiers developed in them. The cardinalities of X and X are 
tr te 

equal, both being 10,426 crisply labeled samples of the 10 digits 0, 1, 
..., 9. The features that are derived from the NIST database differ in 
the four papers: the 1995 papers are based on feature vectors in 9t^*, 
while the two 1996 papers use feature vectors in 9t^^. We will not 
report many details of the feature extraction and classifier design 
methods for each of these papers, but we do want to convey the basic 
flavor in each of them. 

Chi et al. (1995) and Chi and Yan (1995) use functions of the pixel 
counts from 8 x 8 subwindows in the 64 x 64 image of each digit in the 
database to obtain 64 input features as the basis for the design of a 
fuzzy rule based classifier. The fuzzy rules in both 1995 papers are 
found by first running a self-organizing feature map (SOFM, see 
Section 4.3.D) on X to generate prototypes from the training data; 
in both papers, the SOFM display space is a square 2D grid of 
various sizes. Then, the SOFM prototypes are used to generate 
triangular premise membership functions (PMFs) using a variant of 
a membership function generation method due to Dickerson and 
Kosko (1993). Finally, fuzzy rules of the Takagi-Sugeno (TS) type are 
extracted from the training data using a well known method due to 
Wang and Mendel (1992). Both 1995 papers use product aggregation 
(T = product) as in (4.72c) for aggregation of the LHS of each rule to 

get its firing strength. 

The major difference between the two 1995 papers is the inferencing 
method used during defuzzification when an input is submitted to 
the TS rule base. It is easier to describe the inferencing procedure 
used in both papers by abandoning the formalism of label vectors, 
so we will cast these classifiers in the notation of 4.6.D, i.e., using 
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S Instead our standard notation D, to denote classifier outputs, 
and instead of crisp label vectors for the output functions, we use the 
digits 0, 1, ..., 9, which correspond to crisp labels for each sample in 
the training and test data. 

Unlike Chiu (1994), Chi et al. (1995) do use the standard TS 
defuzzification formula shown in (4.73). Since there are M rules, 
with M » c = 10 classes, many rules will have the same crisp label -
one of the 10 digits from 0 to 9 - as their right hand sides. Since (4.73) 
always makes a convex combination of the output functions by 
combining them with the associated firing strengths, the result of 
using this formula in the present instance is to produce a number in 
the closed interval [0, 9] for each input datum. With the notation Just 
established, (4.73) takes the form 

M 

Iai(z)Ji 
S ^ ( z ) = ^^i = ue[0 ,9] , Jie{0,l,...9}Vi . (4.134) 

l a j ( z ) 
J=i 

The real number in [0,9] is now converted into one of the 10 crisp 
labels, and the TS system becomes a crisp classifier by computing 

S ^ ( z ) = [ s ^ ( z ) + 0.5j , (4.135) 

where L*J again denotes the floor of its argument. 

In Chi and Yan (1995), the same basic classifiers use sets of 64 input 
features as given In Chi et al. (1995), but the method of Inference In 
the fuzzy rule base Is changed. Chi and Yan (1995) use a 3 layer feed 
forward network. The first layer generates the fuzzy membership 
function values. The number of nodes in the hidden layer is equal to 
the number of rules, and the output of the kth hidden node is equal 
to the firing strength of the kth rule. The output layer has 10 nodes, 
one for each of the 10 digits 0, 1 9. The ith output node combines 
the output of the hidden layer nodes as follows: 

uJz) = F, M 

Ioc,(z) 
1 = 0,1 9 , (4.136) 

where F Is the logistic function at (4.97) with A, = 1 and P = 0. Unlike 

(4.135), this network produces S^(z) = (uQ(z),...,Ug(z))'^, a vector 
output. Chi and Yan learn the weights {w..: 1 = 0, 1, ..., 9; j = 1,2, ..., M} 
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by the usual back propagation method, so this is essentially a single 
layer perceptron whose inputs are normalized firing strengths. Once 
the weight vectors are found, (4.136) is used to classify test inputs. 
Chi and Yan call this an optimized fuzzy rules (OFR) classifier; they 
do not specify how S^(z) is hardened to produce crisp labels, so we 
presume they use the same strategy as in (4.135). 

In the 1996 papers the fuzzy rule base is obtained by a completely 
new method, and, as we have mentioned, the features also change. 
Both 1996 papers base their features on Siy and Chen's (1974) shape 
features that are shown in Figure 4.92. Chi et al. (1995) modify this 
set of features just a bit in that they use the 4 lines and 6 arcs that are 
shown in the upper and middle panels of Figure 4.92, but the 5 
circles in Figure 4.92 are replaced by 2 shapes. The eleventh shape 
used in these two 1996 papers is circle O as shown in Figure 4.92, but 
the four circles L, R, A and B in Figure 4.92 are replaced in these two 
papers by a twelfth primitive that is simply called "curve", which is 

shaped like this: ^-^- The same membership function, equation 
(4.133), that Siy and Chen proposed in 1974 is used in both of these 
papers to assess the extent to which a given segment is linear. 

Working on the presumption that a given numeral can be well 
characterized by its 6 longest segments, Chi et al. (1996b) extract a 
total of 36 numerical features for each datum from its 6 longest 
segments, and convert the training and test data in the NIST 
database into these feature vectors; Chi and Yan (1996) use these 
same 36 features, which are obtained as follows. The four basic 
features are computed: type of segment (this is a symbolic feature 
which is one of the 12 shape descriptors), normalized segment 
length, and normalized coordinates of the center of gravity of the 
segment relative to the center of gravity of the thinned skeleton of 
the digit. For up to 6 segments per skeleton, this makes 24 features. 
Added to this are 12 more features: number of segments in this digit, 
numbers of end points in each of four quadrants whose axes lie at 
the center of gravity of the thinned skeleton of the digit, normalized 
total length, the center of gravity of the thinned skeleton of the digit, 
numbers of lines, circles and curves, and aspect ratio of the image. 
Notice that this list of 36 features has one symbolic feature, 8 
integer-valued features, and 27 continuously valued features. A 
typical crisp 1D3 decision tree rule extracted from the training data 
using these features looks like this: 

IF the type for longest segment is circle 
AND the type for second longest segment is C curve 
AND normalized y coord, of skeleton centroid is > 0.586 
THEN digit = 6 

Chi and Yan (1996) discuss a method for fuzzifylng the crisp ID3-
derived rules that is applicable to symbolic, discretely-valued, and 
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continuously-valued real data. They effectively quantize the n 
distinct values of each of the p features in the training data using 
trapezoidal membership functions, so that when IDS is applied to 
the training data, the crisp IDS rules are well defined over continues 
ranges of values that capture the training data. Figure 4.9S 
illustrates their fuzzification of the kth internal node v after the 

k 
edges have been established with IDS using the n values of the i-th 
feature in the training data. 

Figure 4.93 Internal node k in Chi and Yan's fuzzy decision tree 

Each edge leaving v is associated with one or more values of the i-th 
feature. Chi and Yan span the values with a trapezoidal membership 
function that is either single sided (one value moves along the exit 
edge) or double sided (some range of training values flow through the 
exit edge). This construction lies conceptually somewhere between 
the approach of Umano et al. (1994), who defined discrete premise 
membership functions, and that of Zeidler et al. (1996), who use 
trapezoidal membership functions on the exit edges (i.e., as premise 
membership functions for the fuzzy rules). 

While Zeidler et al. (1996) make estimation of the trapezoidal 
premise membership functions part of the training problem, Chi 
and Yan (1996) simply define trapezoidal PMFs with one fixed, user 
defined constant that adjusts the slope of the sides of each trapezoid 
as a function of the examples passing through that node during tree 
building with IDS. Chi and Yan state that the choice of the slope 
(there is only one parameter for the whole tree) is problem 
dependent. Since the training features flowing through each edge of 
the tree have different values, the node functions {^y^A will not be 
identical, but they all have the same functional form. Letting 
tXkj.min'Xkj.maxl dcnotc the interval spanned by the training data 
along edge kj and s be the user-defined "slope" of the trapezoid, the 
PMFs all have the form 
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S-l̂ ) 

f l 
z - (1 - s) • X kj.inin 

S • ^ k j . m t n 

(1 + S) • X kj.max 

S - X kj.max 

' ^ k j . m i n *~ ^ < ^ k j . m a x 

; ( l - s ) x • -^kj.mln ^ Z < X^j jjjjjj 

•' ^ k j . m a x < Z < (1 + S) • X ^ j , 

; otherwise 

(4.137) 

Once the IDS tree has been fuzzified, Chi and Yan again compute 
firing strengths along its paths using the T2 or product norm shown 
in equation (4.72c). Now Chi and Yan's tree is in the structural form 
of the Chang-Pavlidis tree shown in Figure 4.39, each leaf VL 

possessing two pieces of information, a^lz), the firing strength or 

decision value along the path from v to VL^ , and e. , one of the c 

crisp label vectors for the classes in the training data. 

The way this tree operates on an input z is interesting and novel. 
Recalling that M is our notation for the number of leaves (or number 
of rules) in such a tree, we let (x(z) = {ai(z),...,ayi{z))^ denote the M-
vector of firing strengths obtained by traversing the tree from its 
node to the M leaves. Chi and Yan (1996) define the output vector of 
their decision tree as 

Sg^(z) = ((wi,<x(z)),...,(w„(x(z)))'' (4.138) 

where the c weight vectors {wj c 5?"̂  are weight vectors of the output 
nodes of a 2 layer feed forward neural network that has 10 output 
nodes (for the 10 digits 0, 1, ...,9). Estimation of the {w,} by 
backpropagation using the same training data as was used to 
generate the crisp ID3 tree also involves a set of user defined fuzzy 
relational matrices that are given in Chi and Yan (1996). The node 
functions in the output layer are hyperplanes whose weight vectors 
are the c vectors needed in (4.138) to make it operational. 

The elements of the right hand side in (4.138) are not guaranteed to 
lie in [0, 1]. To make S ^ classify inputs, Chi and Yan interpret the 

j th element of the output vector, (Wj,a(z)), as the degree to which 
input z belongs to class j , j = 0 9. Labeling decisions are then made 
by simply hardening this vector, i.e., by selecting the class (index of 
the vector S^) corresponding to the maximum value of (Wj,a(z)V 
thereby obtaining a crisp decision. This fuzzy rule-based crisp 
classifier is one of the two classifiers used in both Chi and Yan 
(1996) and Chi et al. (1996b); we will call this classifier Ti^. 
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The second classifier used in Chi and Yan (1996) is a standard 1-nmp 
design as in equation (4.7), based on prototypes obtained from the 
training data using Yan's (1993) method called optimized prototypes 
(OP) (see our discussion of this in Section 4.3.D). We will denote these 
prototypes by V , and denote this classifier by our standard 

notation, D £ ^ „ ^. The second classifier in Chi et al. (1996b) is based 
on hidden Markov models (HMM). We don't want to stray too far 
from classifier fusion, so we simply denote this classifier as D ^ ^ , 
the CSY standing for the authors, Chi, Suters £ind Yan, and refer you 
to their paper for details about their HMM models. 

Both 1996 papers then fuse the two classifiers in them by using a 
standard MLP as the fusion classifier, say D^N . The input layer to 

Dpjuj has 21 nodes (10 for the outputs from each of the first level 
classifiers, plus one node to introduce the bias constant in all the 
hidden layer nodes). Inputs from the fuzzy rule base classifier DQ^ 
lie in the range [0,1], while inputs from the other two classifiers 
(D? ' „ s- and DS-fJ.,) are normalized to lie in the same range. The 

hidden layer in D^N had standard node functions <I>LH = F'L ° f H ^^ 
in Section 4.7. Each unipolar sigmoid is fixed, with A, = 1 and |3 = 0. 
The output node functions were not parametrized, and had unipolar 

sigmoids with X= I and P = 0. The final output of Dp̂ ĵ  was, we 
presume, hardened in the same way as the "optimized fuzzy rules 
neural network". D^^ was trained to acquire weight vectors for the 
hjqjerplanes in the hidden layer nodes with the same training data 
as used for all other classifiers, using the outputs from the first level 
and their target labels as lO data, much in the manner of the hybrid 
method of training RBF networks that we discussed in Section 4.8. 
DpjN follows the standard scheme we called separately trained 
fusion at the beginning of this section. Now we are ready to discuss 
the results reported in the four papers. 

Example 4.30 This example combines recognition rates from tables 
in the four papers (Chi and Yan (1995, 1996) and Chi et al. (1995, 
1996b). The Euclidean norm is used for both the 1-nn and 1-nmp 
rules. Table 4.57 shows the % correct classifications in both 
training (resubstitution) and testing (generalization) on the NIST 
data described above for all the classifiers discussed in the four 
papers. FR in this table stands for fuzzy rules. We repeat the 
description of the data here for convenience. The database was the 
National Institute of Standards and Technology (NIST) special 
database number 3, which consists of handwritten segmented 
characters. And all four papers use the same data sets X and X for 

tr te 
training and testing of the classifiers developed in them. The 
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cardinalities of X̂ ^ and X are equal, both being 10,426 crisply 
labeled samples of the 10 digits 0, 1, ..., 9. 

Table 4.57 is divided into 4 sections, corresponding to the classifiers 
discussed in each of the four papers, and when a result was repeated 
in one of the source papers, we do not repeat it here. The first three 
rows of Table 4.57 concern results reported In Chi et al. (1995), 
which used three one stage classifiers, viz., the crisp 1-nn rule at 
(4.2), the crisp 1-nmp rule at (4.7) using 809 SOFM prototypes from a 

30x30 2D display grid which had 91 inactive cells, and S ^ , the 
fuzzy rule based classifier defined in (4.135). According to Chi et al. 
(1995), the 10,401 rules generated by the method used to design S ^ ^ 
with 225 SOFM prototypes did not cover all of the inputs (there was 
not a rule for every possible LHS of the TS system). Because of this, it 
was possible for a test input to not match any rule, thereby making 
all M firing strengths zero. This causes the denominator in (4.134) to 
be zero. When this occurred, the test input was declared "unsure" by 
S ^ ^ , and was forwarded to a backup 1-nmp classifier that used 
SOFM prototypes. The backup classifier in the third row of Table 
4.57 had a 15x 15 display grid, and apparently all 225 prototypes 
were active. 

We believe the reason that S ^ ^ produced so many rules is that there 
is a problem with the use of (4.134) and (4.135). Suppose only two 
rules fire : rule 1 has firing strength 0.8 for the output "7", while rule 
2 fires with strength 0.8 and output label "4". Using (4.134) in this 
case results in S ^ ( z ) = (0.8-7 + 0.8 •4)/(0.8 + 0.8) = 5.5, so the 

output of (4.135) will be the integer "6 = [5.5 + 0.5j". This problem is 
the result of using numerical proximity instead of structural 
proximity as the underlying rationale for defuzzification, and can 
result in needing a rule for almost every training datum. 

TTie crisp 1-nn rule is perfect in resubstitution, as it must be, and can 
be viewed as a benchmark of sorts for all the other classifiers shown 
in Table 4.57. The TS based classifier S ^ nearly matches this 
performance in resubstitution, but is 1.2% less in testing. The 
second block of Table 4.57 shows the outputs of four single stage 
classifiers. The first row in this set of four is a standard 1-nmp rule 
classifier based on 395 active prototypes in a grid of 400. This is the 
same design as in the second row of the first sub block, but it uses 
many fewer prototypes, and the decrease in recognition rates is 
ascribed to this. The second classifier is a TS system with 395 rules 
derived by the three stage procedure reported above (SOFM, PMFs, 
Wang-Mendel training) that uses the standard TS defuzzification in 
equation (4.73). This row catches the eye, being some 30% less 
accurate than any other classifier in this table. Following this is the 
result of using a standard 65:30:10 multilayered perceptron, which 



476 FUZZY PATTERN RECOGNITION 

does pretty well on the training data, but falters a little on the test 

set. The last classifier in this group is S ^ , based on 395 optimized 
fuzzy rules that uses the defuzzification in (4.136). To their credit, 
Chi and Yan graciously point out the standard MLP perceptron does 
a little better than this design, and offer some possible explanations 
for this in the 1995 paper. 

Table 4.57 Training and test restilts for classifier designs firom four 
papers : Chi et al. (1995, 1996b) and Chi and Yan (1995, 1996) 

Reference Classifier 
Train 
Results 

Test 
Results 

C h i e t a l . (1995) 
(64 features) 

1-nn 
1-nmp/SOFM 
(809 active in 900 prototypes) 

8 ^ ( 1 0 , 4 0 1 FRs) with backup: 
"unsure" with SOFM 1-nmp 
using 225 prototypes 

100 
98.7 

99.99 

98.0 
96.3 

96.8 

Chi &Yan (1995) 
(64 features) 

1-nmp/SOFM (395 prototypes) 
FR (395 fuzzy rules with (4.73)) 
MLP (65:30:10) neural net 

S ^ (395 OFRs) 

97.4 
67.9 

99.98 
99.0 

95.0 
64.7 
97.1 
96.3 

C h i e t a l . (1996b) 
(36 mixed 
features) 

ID3 (2163 leaves) 
IDS (pruned, 828 leaves) 
ID3 (simplified, 151 leaves) 

D D T = fuzzy 1D3 (151 fuzzy rules) 

DH?X, = h idden Markov models 

HMM 

"Vop.E,5 
( 1000 "optimal" prototypes) 

98.8 
97.1 
94.6 
97.7 

93.6 

98.4 

91.4 
91.9 
90.7 
95.0 

92.8 

97.8 

FUSION A DNN =F(DDT'Dhmm) 
F = MLP (21:20:10) 

99.97 97.8 

FUSIONS 

DNN = F (DOT,DVQP,E ,5 ) 

F = MLP (21:20:10) with backup: 

"unsure" using 1-nmp DVQP,E,5 

with 1000 optimized prototypes 

98.8 98.6 

Chi & Yan (1996) 
(36 mixed 
features) 

1D3 (fuzzy, cont. feat, only) 
ID3 (fuzzy, symbolic 
and discrete, feat, only) 

Dg^= fuzzy 1D3 ( all features) 

96.0 
97.3 

97.7 

93.0 
93.8 

95.0 

FUSION C 
D = F(Dg}^,D^^„p,^,s) 
F = MLP (21:20:10) 

99.6 98.6 
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The third group of classifiers that appear in Table 4.57 are the ones 
discussed in Chi et al. (1996b). The first two rows in this group 
correspond to the crisp 1D3 decision tree of Section 4.6.C, with and 
without pruning. Notice that the error rates of these two classifiers 
bears out the general supposition that pruning crisp decision trees 
increases generalization at the expense of training accuracy. The 
third row reports the success of a two stage simplification of the 
crisp IDS tree using a method due to Quinlan (1987). Rows 4-6 in this 
block show the recognition rates of the fuzzy IDS tree described 
above, the hidden Markov models classifier, and a 1-nmp rule 
classifier that uses 1000 of Yan's (1993) optimized prototypes. Row 7 
shows the results of using fusion method A, the 21:20:10 neural 
network that we described earlier, which is used to fuse the hidden 
Markov model and fuzzy IDS designs. Row 8 of this third group 
shows fusion method B, which is fusion method A augmented by a 
backup option for "unsure" results that is forwarded to a 1 -nmp rule 

for resolution with Dy^p ^.g. the classifier of row 6. We see that this 
method, fusion with backup, produces a test rate of 98.6% correct, 
the best so far. 

The final subset of four rows in Table 4.57 reports the results 
discussed by Chi and Yan (1996). The first row in this group reports 
the error of the fuzzified IDS tree developed in Chi et al. (1996b) on 
Just the 27 continuously valued features of each training sample. 
Performance on just these features is not so good, and the second 
row shows that the same type of fuzzy tree built with only the 8 
integer and 1 symbolic features is better - an interesting result, that 
the classifier is more successful using these 9 non-continuos 
features than 27 continuously valued numbers. The fuzzified IDS 
tree using all S6 features displayed in the third row of this subset 
shows a slight increase in performance from the use of either of the 
feature subsets shown in the first two rows of this group. And 
finally, the last row in Table 4.57 shows the performance of fusion 

method C, which is a model that combines the classifier Dy^p gg 

showrn in row 6 of the third subset of rows in Table 4.57 with B%\, 
the classifier in row 3 of the fourth subset of rows. The fusion model 
is again a 21:20:10 built and trained as described above. Chi and 

Yan's (1996) fusion model D = F(Dg^,D^^p g.g) ties Chi et al.'s 
(1996b) fusion with backup model, also achieving a recognition rate 
of 98.6 % correct in testing. 

To summarize, two fusion models do improve the performance of all 
of the systems that depend on single stage classifiers reported in the 
four papers on which this example is based. At 98.6% correct, they 
both do a little better on test than the 1-nn rule at 98.0% correct. 
About this we make two observations: first, a k-nn rule with k > 1 
might do better; second, these results involve only one data set, and 
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one set of samples for training and testing, so take our usual caution 
seriously - the data really control your results. 

Lest you think we mean to degrade the results in Table 4.57, we point 
out that an improvement of Just 0.6 % in this test set corresponds to 
an improvement of 0.006*10,426 = 63 digits. If a zip code reader was 
being used by the United States Social Security office, and your 
social security check was being processed for automatic mailing by 
an optical scanner based on Chi and Yan's model instead of the 1-nn 
rule after the letter had been addressed by hand, this slight 
improvement would mean that, on average, about 63 more checks in 
each set of 10,000 would reach the correct destination. Everything is 
relative - in the handwritten digit recognition business, every digit 
counts. 

As a final observation, return to 1974, and look at the test error 
reported in Siy and Chen's paper for single character recognition -
98.4% correct, using parameters from their 15 shape features and a 
standard 1-np classifier. Admittedly, the 500 test data of Siy and 
Chen are a far cry from the 10,426 test data of Chi and Yan (1996), 
and again, both are the results of just one training and testing cycle. 
How far have the "intelligent" architectures we have developed in the 
22 years between these two papers really taken us? You be the judge. 

The last fusion method we discuss was introduced by Kuncheva et al. 
(1995) under the original name of fuzzy templates. Various 
improvements and changes during the evolution of this fusion 
model can be traced through Kuncheva (1998) and Kuncheva et al. 
(1998), and in the latest iteration of the model (Kuncheva et al., 
1999), it is called decision templates, so that is the name we will use 
here. 

As usual, we begin with the assumption that we have a set of crisply 
labeled training data, Xfj. = {x̂  Xn}c9^P, and as in earlier 
sections, we denote the crisp c x n partition matrix whose columns 
are the label vectors of the points in X ĵ. by U^^. e Mhcn- This method 
begins with the construction of a set of c (Lxc) prototype or template 
matrices, say {DT*: i =l,...,c}. DT* is called the decision template for 
class t The training data and the L first level classifiers (D} are used 
non-iteratively in the construction of the decision templates, and 
when we have these matrices, the second level fusion classifier is 
trained. Let Dj^^(x.) denote the output of classifier k for class s on 
training input x , so k = 1 to L, s = 1 to c and j = 1 to n. If we submit all 
n training data to the L classifiers, we have a total of Lc • n values. 
Imiagine a 3D array of these classifier output values that shows (Lc) 
of them as a function of the index on the training data, as in Figure 
4.94, which illustrates the fundamental construction pictorially. 
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crisp label matrix Utr 

U tr,(i) 

Ui(Xi)---Ui(Xj) Ui(Xn) 

Ui (Xi])(Ui (Xjj)—<Ui^(XnJ^ 

u J x J - ' - u J X j ) Uc(Xn) 

DTU^ 
_(Utr,(i).Dks) 

n, 

Du(Xn)-;Dls(Xr,) Dlc(Xn) 

• D L C K ) DrifS„)-/^nfSr 
Dii(Xj)--Di3(Xj) D i Jx j ) 

D k i ( X j ) " ( D l ^ ( ^ - - D k , ( X j ) 

DLC(^J) Dii(Xi)-;Dis(Xi) D i J x i ) 

Dki(Xi)-<I^J(xJ>-Dke(Xi) 

D L I ( X I ) - > ^ ; ) DLe(Xi) 

"ks 

Figure 4.94 Construction of the decision templates 

Now we construct the (k,s)th element of the ith decision template by 
taking the n-vector U ,,, the i-th row of U (recall our notation for 

tr.(l) tr 
rows of matrices as vectors, and that X^ J = n^ V i), dividing it by n , 
the number of elements in class i in the training data, and then 
computing its Euclidean inner product with the n-vector 
Dĵ s =(Dks(Xi),...,Di5.s(Xn))^. Do this Lc times - i.e., run k and s over 
the n Lxc frames shown in Figure 4.94. This generates the Lxc 
matrix DT ,̂ which is the decision template for class i. The vectors 
{Dks}and the matrix DT* depend only on the training data X , 
indicated formally by 

DTLlX^) ^^-^^—!^5—^, k = l L ; s = l c 
n. 

(4.139) 
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Suppose tha t z In SRP is a n input to the system Eind that Djlz) e Np^ is 
the label vector produced by classifier D , i = 1 L. It is immaterial 

w h a t k ind of label vector each classifier p roduces - some might be 
c r i sp , some fuzzy, or probabi l i s t ic , or possibi l is t ic . T h u s , t h e 
dec i s ion t e m p l a t e s s c h e m e a c c o m m o d a t e s "mixed" t y p e s of 
classifiers automatically. To u s e the decision templates to fuse the 
o u t p u t s of t he first level classifiers, we cons t ruc t one more L x c 
matr ix , DP(z), the decision profile of the inpu t z, by arrajdng the L 
label vectors {Djfz)} as the rows of the desired matrix. 

DP(z) = 

^ (Di(z ) )^ -» 

^ ( D k ( z r ^ 

^ ( D L ( Z ) ) ' -> 

(4.140) 

Lxc 

Equat ion (4.140) enables u s to describe the construct ion in Figure 
4 .94 succinctly: t he decision templa te DT' for class i is j u s t t he 

average of the decision profiles | DP(x e X^̂ . ^ > of the elements of the 

t ra ining da t a t h a t have the i-th crisp label. While the const ruct ion 
in (4.140) is clear, it does not show you the crucial idea t ha t makes 
t he ma t r i x DP(z) useful for fusion, which is t ha t its c columns 
cor respond to t he opinions of the L classifiers abou t each of t he 
c lasses . Tha t is, the ij-th entry in DP(z) is the suppor t of classifier i 
for c lass J. To emphasize th is we show (4.140) in a pictorial way in 
Figure 4.95: 

dp 

DP(z) = 

dp Ll 

dpi 

dp LJ 

'iPic 

dPi i •;;•• dpy ••§ dpie 

3 

dp 

L {Dil's 

Lc 

- ^ D i ( z ) e N 
pc 

4- 'i 

I Support: I 
| f o r c l a s s j | 
;l from the %. 

JLXC 

Figure 4.95 Construction of the decision profile 
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The important point made by Figure 4.95 is that it is the columns of 
the decision profile matrix that carry information about the c 
classes. Many fusion schemes (fuzzy integrals, Dempster-Shafer, 
etc.) use the columns of DP(z), but most authors that use these 
approaches do not frame their models in the language of matrices 
because there is no advantage in doing so. The idea of bundling the 
information used by decision templates and the decision profile 
into matrix form so an entire Lxc matrix DT" can carry information 
about support for class i began with Kuncheva et al. (1995); as we 
shall see, tiiis leads to some new fusion models. 

We have not discussed a fusion operator F that specifies D yet, and 
interpretation of the decision profile as in Figure 4.95 allows us to 
create many column-wise or class-conscious schemes that 
accomplish fusion of the L first level classifiers. To get a feel for the 
idea, we illustrate the use of DP(z) with five aggregation operators 
which use the rows or columns of the decision profile directly to fuse 
the outputs of the L first level classifiers. We illustrate the five 
aggregation operators that appear in Example 4.31 below: majority 
(MAJ), m.aximum (MAX), minimuTn (MIN), average (AVR) and 
product (PRO). Here is an example of how these five operators work. 
Suppose L = 6, c = 3 and the decision profile for a particular input is 

D P ( z ) •• 

0.5 0 .4 0.1 
0 .9 0.1 0 .0 
0 .3 0 .4 0 .3 
0.7 0.1 0 .8 
1.0 0 .0 0 .0 
0.2 0 .3 0.5 

(4.141) 

From the rows of this matrix we see that D , D , D and D are fuzzy 
classifiers, D is a possibilistic classifier, and D is a crisp classifier. 
To compute the majority vote, we harden the 6 rows of DP(z) in 
(4.141) with H at (1.15), obtaining 1 vote for class 2 (from row 3), 1 
vote for class 3 (from row 6), and the remaining 4 votes for class 1, 
yielding class 1 as the majority. This will be the fused output using 
MAJ, and, as we shall see, the evidence supporting class 1 in this DP 
is pretty strong. 

The other four aggregation operators illustrated in Example 4.31 
first operate on each column of the decision profile separately, 
producing new label vectors in N across the three classes, which 
are then hardened with H to get a crisp decision. The outputs of these 
four operators on DP(z) in (4.141) are illustrated in Table 4.58, where 
the final label for z is class 1 in all four cases. 
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Table 4.58 Using aggregation with the decision profile 

0.5 0.4 0.1 
0.9 0.1 0.0 
0.3 0.4 0.3 

DP(z) = 0.7 0.1 0.8 
1.0 0.0 0.0 
0.2 0.3 0.5 
i i i 

MAX (1.0. 0.4, 0.8) H - 4 1 
MIN (0.2. 0.0, 0.0) H ^ 1 
AVR (0.6, 0.22, 0.28) H ^ 1 
PRO (.02, 0.00, 0.00) H - ^ 1 

Kuncheva et al. (1999) give a three-way classification of fusion 
operators based on: (i) the way the rows and/or columns of the 
decision profile are used; (ii) the type of labels produced by the first 
level classifiers; and (iii) the type of training employed by the second 
level classifier. Class conscious (CC) operators use the information 
in the decision profile DP(z) "class by class" - that is. column by 
column - when making a decision about how to label z. Class 
indifferent (CI) fusion operators use information in the decision 
profile "indiscriminately" in the sense that the class by class 
information is either ignored or integrated across all classes - that 
is, all of the information in DP(z) is used by each decision template. 
Thus, in this classification scheme the primary discriminant 
between fusion methods is whether a fusion model does or does not 
use all Lc entries of DP(z) when considering the evidence for a single 
class label. 

For example, the four aggregation operators in Table 4.58 use only 
column i of DP(z) to construct an overall assessment (the 
corresponding entry of the output label vector) of the support for 
class i, so these four operators are class conscious, but the MAJ 
operator, which uses only the rows of DP(z), is class indifferent. 
Another distinction between some of these operators is that AVR 
and PRO use all the values in each column of DP(z), while MIN and 
MAX use only one, so these latter two aggregations are more 
sensitive to outliers and noise than the AVR and PRO operators (cf. 
the discussion following equation (2.93), where we pointed out that 
Dunn's (1974a) separation index is too sensitive to outliers because 
of its reliance on MIN and MAX). AVR is not much better, since it has 
a zero breakdown point (one outlier can destroy the estimate, as 
illustrated by Sketch B in Section 2.3.H). 

When at least one of the L first level classifiers produces soft label 
vectors, Kuncheva et al. (1999) classiiy D as follows: 



CLASSIFIER DESIGN 483 

CCl Class conscious (without second level training) for D. 
Examples include MAX, MIN, AVR, PRO and OWA [ordered, 
weighted aggregation operators, Yager and Kacprzyk, 1997 
andKuncheva, 1997). 

CC2 Class conscious (with second level training) for D. Examples 
include the: probabilistic product PPR (Tax et al., 1997; 
Kuncheva, 1998); Juzzi) integral (Fl) as discussed above; and 
trained linear combinations (Hashem, 1997). 

CI2 Class indifferent (with second level training) for D. 
Examples include the: linear discriminant classifier (LDC), 
quadratic discriminant classifier (QDC), and Fisher's linear 
discriminant (FLD), all of which are discussed by Duda and 
Hart (1973), the logistic classifier (LOG, Anderson, 1982), 
Dempster-Shafer (DS) aggregation (Rogova, 1994), neural 
networks (Jordan and Xu, 1995) and the decision templates 
(dt) approach being discussed here. 

If all L classifier outputs are crisp before aggregation (either because 
the L classifiers are themselves crisp, or because soft outputs are 
hardened before aggregation, the distinction between class 
consciousness and class indifference disappears. Fusion methods 
for exclusively crisp (denoted here as "C") first level classifiers are 
classified by Kuncheva et al. (1999) according to the type of training 
at the second level: 

CI No second level training for D. An example is MAJ. 

C2 Second level training for D. Examples include the : behavior 
knowledge space (BKS) method (Huang and Suen, 1995) and 
naive Bayes (NB) combination (Xu et al., 1992). 

Example 4.31 will contain almost all of the fusion operators given 
as examples in these categories. In the decision templates approach, 
the action of the classifier D: N [-> N in Figure 4.90 is defined as 

pc pc ° 

D(z) = (Di(z) D,(z))TeNp, , (4.142) 

where each element Dj(z) in the fused soft label vector D(z) is 
computed as some function s of the pair of matrices DP(z) and 
DT' (XJ , 

Di(z) = s(DTHXtr).DP(z)), i = l c . (4.143) 
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Kuncheva et al. (1998) interpret the function s:3i^ x 9t^ h-> 9̂ * as a 
general "similarity measure". Equation (4.143) makes it clear why 
the decision templates model is class indifferent: all Lc entries of 
both the decision profile of z and the i-th decision template derived 
from X are used to produce an estimate of the single value in this 
equation. This stands in contrast to class conscious fusion models 
such as the Dempster-Shafer and (some) fuzzy integrals, which use 
only the L entries in the i-th column of DP(z) to build an estimate of 
a value for class i that is conceptually equivalent to Dj(z) - i.e., that 
is the fused estimate of support for the i-th label. Keller and Osbom 
(1996) discuss a method for training a classifier based on the Sugeno 
fuzzy integral wherein all class information is used, and this is in 
some sense a bridge between the categories listed above. Some 
genetic algorithm approaches for training fuzzy integral measures 
also utilize the classifier information across classes in a similar 
way (Wang et al., 1998). 

Included in Group CI2 are 11 decision template models that are 
realized by making specific choices for s in (4.143). These measures 
are discussed in Kuncheva et al. (1999) and appear in Example 4.31, 
where they are all abbreviated by dt:s in Table 4.59. These 11 
decision template fusion models can be divided into four 
subcategories, depending on the specific function used for s: s i to s4 
are proper similarity measures; 11 to 15 are inclusion indices; dt:c 
uses a consistency index; and dt:np is the 1-np rule. We will not 
discuss all 11 measures here, but will illustrate each of the four 
subgroups with one example. 

The most obvious way to use the (DT'} is to regard them as 
prototypes in 9t^, the vector space of all decision profile matrices. 
We might indicate this explicitly in the notation adhered to 
throughout this book by renaming the matrices {DT*} as {vf^}, and 

(conceptually) regarding them as vectors in 9?^. Then if we regard 
any decision profile computed by (4.140) as a vector in this space, the 
1-np classifier, equation (4.2) can be used to choose the best match 
(nearest prototype) from among the c prototypes. In the context of 
equation (4.2) "best" is defined by choosing any metric 6, here on 

5R^, and when that is done, by defining V'̂ ^ = {v[*^:i = l,... ,c}, we 
have all the elements of the standard 1-np classifier, but now 
operating as a trained, second level fusion classifier, D = D pj . 

Since there are two infinite families of metrics on any vector space 
(induced by the inner product and Minkowski norms on 9^^ )̂, this 
produces two infinite families of fusion models, one for each such 5. 
The structure of the decision templates fusion model for this choice 
of matching is exactly that of the single layer competitive learning 
network shown in Figure 4.11, and when the metric is an inner 
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product, the second level classifier D = D jyj- is piecewise linear 

as in Figure 4.5. This choice for s in (4.143) using the Euclidean 
norm for 5 in equation (4.2) is dt:np in Table 4.59. 

The four similarity measures used by Kuncheva et al. (1999) that are 
seen in Table 4.59 are based on regarding the Lc entries of the pairs 
of matrices used in (4.143) as membership values of two fuzzy sets 
(formally, this can be done, since all Lc entries in DP(z) and each DT* 
(X.J lie in [0,1]). Thus, any measure of similarity between pairs of 

discrete membership functions can be used in (4.143) - for example, 
most of the measures discussed in Pal and Bezdek (1994). As an 
example, s i in Table 4.59 is computed as 

c L 

I Imin{dt]i,,dpjk} 
sl(DT'(Xtr), DP(z)) = ^ ^ . (4.144) 

S Xmaxldt^k'dpjk} 
k=i j=i 

which is the ratio of the relative cardinalities of the intersection to 
the union of the two "fuzzy sets". The five measures called II to 15 in 
Table 4.59 are called indices of inclusion (Dubois and Prade, 1980). 
For example, 11 is defined as 

c L 

I Imin{dt5k,dpji,} 
ll(DT'(Xt,),DP(z)) = ^= 'J=\ ^ , (4.145) 

I Idt*k 
k=ij=i 

which presumably measures the extent to which the 1-th decision 
profile DT* is included in the intersection of DT* with DP(z) when the 
entries of these matrices are regarded as fuzzy sets. And finally, 
there is one consistency indexinTable 4.59, 

c(DT'(Xt,),DP(z)) = max{min{dt]i,,dpjk}} • (4.146) 

With a little thought, you will be able to supply many other plausible 
choices for the fusion operator F = s. For example, the correlations 
between DP(z) and the L DT's are easily computed as the cosine of the 
angle between (each of) them (essentially the dot product of 
matrices). 

There are two more models in Table 4.59 that we have not 
mentioned, the oracle (OR) model (Woods et al., 1997) and the single 
best (SB) models. The error rate of the oracle is defined as follows: 
during testing, if any of the hardened outputs of the L first level 



486 FUZZY PATTERN RECOGNITION 

classifiers is correct for a given input, count the oracle output as 
correct for that input. Thus, oracle is (almost always) an empirical 
upper bound on the possible improvement that can be realized by 
fusing the outputs of more than one classifier. We say almost always 
because it is not impossible to arrange the outputs so that the fused 
error rate is less than oracle. 

To see this, suppose that the decision profile from a set of two 
possibilistic classifiers for some input z which is known to have a 

ro.4 0.3" 
0.6 0.5 

hardened (that is, the outputs of both first level classifiers are 
hardened), each produces the crisp label for class 1, so the oracle is 
wrong. Suppose the decision templates for this case are the matrices 

crisp class 2 label is DP(z) = If both rows of DP(z} are 

DT' = 
0.7 
0.5 

0.1 
0.0 and DT^ = 0.3 

0.4 
0.4 
0.5 Take for the similarity 

measure (s in (4.143)) the function 

s(DP(z),DPi)=:l-
| |DP(Z) -DTI | | ^ 

Lc 

where the arguments of s are regarded as vectors in 9t^. Then 
calculate 

s(DP(z),DTM = 1-I M i M l M l M 1 = 0.725 ; and 

s(DP(z), DT^) = 1 -1 M l O : i ± M ± M I = 0.9 

Both decision templates produce the correct label when the output of 
(4.143) is hardened, so it is possible to do better than the oracle 
classifier - possible, but not often likely. 

At the other extreme is the single best SB) result, which means that 
the L classifiers are run independently (without fusion), and the best 
performance of any one of them is recorded as SB. Thus, SB is not a 
fused classifier, and is (almost always) an empirical lower bound on 
the performance of fusion schemes, which presumably - but again, 
this is not guciranteed by any theory - improves the performance of 
the single best one (after all, this is really the only reason to 
consider second level classifier fusion at all). The gap between the 
single best and oracle classifiers might be taken as the "potential for 
improvement" that can be realized by any fusion scheme. 

Now we are ready to present Example 4.31, which compares 25 
fusion models, including 11 decision template models, and one non-
fused classifier, to each other. Some of the results in Example 4.31 
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come from Kuncheva et al. (1998), and some are published here for 
the first time. 

Example 4.31 We briefly describe the two data sets used in Kuncheva 
et al. (1998). Satimage is a set of n = 6,534 vectors in p = 36 
dimensions with c = 6 crisp labels derived from multispectral 
LANDSAT images. The labels and their percentage of samples in the 
data are: red soil (23.82%), cotton (10.92%), gray soil (23.43%), damp 
gray soil (9.73%), soil with vegetation (10.99%) and very damp gray 
soil (23.43%). Kuncheva et al. (1998, 1999) used four features from 
this set, #s 17-20, as recommended by the database designers. 
Phoneme is a set of n = 5,404 vectors in p = 5 dimensions with c = 2 
crisp labels. The two classes and their percentage of the total sample 
were: nasals (70.65%) and orals (29.35%). In what follows we call 
these two source data sets Satimage and Phoneme. 

All 2D subsets that can be made by selecting pairs of features from 
the 4D and 5D source data were extracted from Satimage and 
Phoneme. The Satimage data with p = 4 features yields 6 pairs of 2D 
features, so L for the Satimage experiments using 2D subsets is 6. 
Similarly, using all 2D subsets of the 5D phoneme data yields L = 10 
for the Phoneme experiments. Each of these sets of 2D data were the 
basis for the design of a corresponding first level quadratic 
discriminant classifier (6 first level classifiers for Satimage, 10 
first level classifiers for Phoneme). We can assert with some 
assurance that the (two sets of) classifiers for these experiments 
were not independent because each feature from the original data 
sets participated in the training of p-1 of them. 

We discuss training and testing for the Satimage data, where L = 6 
yields 6 2D training and test sets, say {X .X ,},...,(X ,̂ X J . Then, 

tr,l te, 1 tr,6 te,6 

6 first level QDC classifiers D ,...,D are trained with only the 
corresponding 2D data sets. That is, D, is trained with X ,, and 

k tr,k 

during testing, only samples from X . a re submitted to D , k = 1 6. 
Thus, row 1 of DP(z) is D (z) with z e 9̂ ^ having two of the four 
features, row 2 of DP(z) is D (z) with z e 9t̂  having a different pair of 
the four features, and so on. The decision template for the kth class, 
DT^(X ,), is built according to (4.139) with the 2D data set X , k = 

tr,k ^ tr.k 
1,...,6. Table 4.59 lists the results of the experiments. Training and 
testing for the Phoneme data was done similarly, but with L = 10 
first level classifiers. Each of the two data sets was used to make 40 
training and testing runs in 4 groups of 10 run averages as follows. 
First, 100 training data are extracted randomly from either 
Satimage or Phoneme. 
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Table 4.59 Cumulative rankings for 25 fusion schemes 
and the sin^e best one stage classifier 

Sa t lmage P h o n e m e S u m of ranks : Relative 
Data L = 6 Data L = 1 0 both data sets efficiency 

D i:p(D) b splb) b 5:p(b) rel.eff.{b) 
OR 104 OR 104 OR 208 1.00 
DS 82 d t l l 78 d t l l 159 0.76 
MIN 86 d t s l 78 dt:I2 159 0.76 
d t n p 90 dt:s3 85 d t s l 159 0.76 
PRO 91 LOG 87 d t s 2 159 0.76 
d t l l 81 dt:s2 78 PRO 158 0.75 
d t s l 81 dt:I2 78 d t n p 158 0.75 
dt:s2 81 DS 72 DS 154 0.73 
dt:I2 81 MAJ 71 d t s 3 147 0.70 
dt:I4 77 AVR 71 MIN 138 0.65 
PPR 64 dt :np 68 AVR 131 0.62 
dt:s3 62 PRO 67 d t I 4 126 0.59 
AVR 60 BKS 63 MAJ 109 0.51 
MAX 48 FI 61 FI 108 0.50 
FI 47 MIN 52 LOG 102 0.47 
NB 40 MAX 52 MAX 100 0.46 
MAJ 38 SB 42 BKS 88 0.40 
dt:I5 38 dt:I4 49 PPR 88 0.40 
dt:I3 37 NB 31 NB 71 0.32 
SB 26 d t I 3 30 SB 68 0.30 
BKS 25 PPR 24 dt:I3 67 0.30 
dt:c 25 dt:c 23 dt:I5 51 0.22 
LOG 15 dt:s4 15 d t c 48 0.20 
LCD 11 dt:I5 13 dt:s4 23 0.08 
dt:s4 8 QDC 7 LCD 16 0.04 
QDC 6 LCD 5 QDC 13 0.03 

After training the first level classifiers (6 QDC classifiers for 
Satimage, 10 for Phoneme) and, for fusion schemes that are 
trainable, the second level fusion models, testing is done with the 
remaining data. The 100 points are replaced, a new draw is made, 
and training and testing are repeated. This cycle is repeated ten 
times, and the error rates of the 25 fusion and SB one-stage schemes 
are averaged, independently - that is, 10 runs of the oracle are 
averaged, 10 runs of DS are averaged, etc. Then the performance of 
the 25 fusion and single best 1- stage schemes are ranked 1-26, with 
26 denoting the best (highest score), and 1 the worst (lowest score). In 
this scheme the oracle is expected to rank first (score 26 each time), 
and the single best (which is not a fusion classifier) last (score 1 each 

time). Once the 10 runs with IX̂ Î = 100 were completed, another 10 

runs were made with \X^\ = 200, then another 10 with |Xtj.| = 1000, 

and finally 10 with |Xtj.| = 2000. Thus, at the end of the experiment. 
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we have 4 ranks for each of the 25 fusion and 1 non-fusion models 
for each of two data sets. Consequently, the minimum possible 
cumulative rank (2:p(D) in Table 4.59) over 8 averages of 10 runs is 
8=4(1)+4(1), and the maximum is 208 = 4(26)+4(26). Notice that QDC 
appears in Table 4.59 as a fusion model. These three entries in Table 
4.59 correspond to using L QDC's in the first level, and one 
additional QDC as the second level (fusion) classifier. 

The last column in Table 4.59 shows the "efficiency" of each of the 
fusion schemes relative to the efficiency of the oracle, which is 
taken to be 1. The relative efficiency is computed by linearly 
transforming the ranks with the formula eff = (0.005*rank)-0.04, 
which lie in the interval [8, 208] into the unit interval [0, 1]. The 
maximum is attained as expected, but the minimum is not attained 
because different fusion models attained the minimum rank on 
various runs during the experiment. From the last column of Table 
4.59 we see that just below the oracle, 4 of the 11 decision template 
fusion schemes are tied at a relative efficiency of 0.76, followed 
closely by PRO (aggregation by the simple product). The Dempster-
Shafer (DS) model is very close to this, scoring a relative efficiency 
of 0.73. The fuzzy integral (Fl) used in this particular example has a 
relative efficiency of 0.50. Discounting the oracle, this FI is exactly 
at the median relative efficiency of the 25 classifier fusion schemes, 
with 12 schemes above it, and 12 below. 

We hasten to point out that there is exactly one way to train decision 
templates for a given choice of s (in some sense this corresponds to 
the flexibility afforded other methods by vairious training schemes). 
There are dozens of papers that address the question of how best to 
train fuzzy integrals (i.e., how to generate fuzzy measures, see 
Section 4.5) ; and, historically, perhaps even more that consider 
methods for training DS models (i.e., how to get the bpa's, see 
Section 5.7.A). Ju s t as our summary of the comparison between 
ssfcm and ssFCM in Section 2.2.B pointed out that some choice of 
supervising points would probably enable ssfcm-AO to produce the 
same partition that ssFCM did in Example 2.3, we think that using 
different training schemes for, say, several Fl or DS models would 
produce ranks in Table 4.59 that would be spread out across the table 
just like the decision templates do in this example. 

In this example the fuzzy integral was trained using the method 
given by Tahani and Keller (1990), while the Dempster-Shafer model 
was trained with the approach outlined in Rogova (1994). This 
emphasizes again an important point that we have made before: 
most methods (here, fusion methods) will probably produce fairly 
similar results if you have enough time to look for the solution you 
want. In fact, and very analogous to fuzzy rule-based systems 
"hiding" as fuzzy decision trees, some of the decision templates in 
Table 4.59 can be realized as Choquet integrals : MAX, MIN, AVR, in 
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addition to all other linear combinations of order statistics 
(Grabischetal., 1999). 

There are also 4 relatively inefficient decision template schemes 
very close to the bottom of the last column in Table 4.59 - even lower 
than the single best classifier, and only the LDC and QDC are below 
these four. This probably indicates that the choice of the similarity 
measure used to match the decision profile to the decision templates 
is very important. We cannot say from these results which of the 
four subtypes mentioned above is better or worse on the basis of this 
limited set of experiments, especially since there are similarity and 
inclusion indices in both the top 5 decision templates and the 
bottom 4 decision templates. However, Kuncheva et al. (1998, 1999) 
distinguish between two types of similarity measures: integral 
measures that are based on cardinality (si, s2, s3, 11, 12, 13); and 
pointwise measures, which allow a single degree of membership to 
determine their value {s4, 14, 15, C). The fact that 5 of the 6 integral 
measures in Table 4.59 place well above 14, the most highly ranked 
pointwise measure, strongly suggests that integral measures are 
more reliable than pointwise ones. The dt:np scheme ranks well in 
Table 4.59, being tied with the PRO scheme for third place in terms 
of rank or relative efficiency, and once again illustrates that old 
adage - nearest prototype classifiers are simple, effective and cool. 
Further, we find it interesting that the simple PRO scheme, which is 
class conscious, but which has no second level training, does so well. 

To conclude, here are some differences between the decision 
templates approach to classifier fusion and most of the other 
separately trained fusion schemes we know of. First, when the i-th 
decision template DT* is matched against the decision profile of an 
input, the comparison is class indifferent (uses all of the columns in 
the decision profile matrix), in contrast to many other popular 
fusion schemes which are class conscious (use only the appropriate 
column of the decision profile matrix for each class). 

Second, decision templates are non-parametric in the sense that 
there are no parameters to learn or thresholds to choose. The only 
choices that must be made to implement them are the choice of F = s, 
the fusion operator that matches the decision profile matrix DP(z) to 
the c matrices {DT'}, and possibly, the method of hardening soft 
label vectors whenever the need for crisp outputs arises. The choice 
of a good F is certainly not trivial. As the results in Table 4.59 show, 
decision templates with some F's worked fine, and with other F's, 
the same fusion model applied to the same first level classifier 
outputs were relatively terrible. Since there are infinitely many F's, 
as always in pattern recognition, finding the right one Is what 
makes the method successful for a particular data set - and you 
know that don't come easy! On the other hand, once the function s is 
chosen in equation (4.143), training the decision templates amounts 
to performing the non-iterative calculations in (4.139), so from the 



CLASSIFIER DESIGN 491 

viewpoint of ease of training, the decision template approach is 
much simpler than most of the other trainable second level fusion 
models we know about. 

Example 4.31 is abstracted from the most ambitious comparison of 
different fusion models that we know of, accounting for 25 different 
fusion D's that combine L = 6 (Satimage data) and L =10 (Phoneme 
data) first level classifiers. Perhaps the most important thing to be 
gained from this example is the insight it gives into some subtle 
differences between the various strategies that can be used for 
separately trained fusion classifiers. There are many, many other 
approaches to classifier fusion besides the few that we have 
discussed in this section. We will briefly discuss a few others in 
Section 4.11. 

4.10 Syntactic pattern recognition 

Syntactic (or structural) pattern recognition has far fewer advocates 
in the engineering community than numerical pattern recognition. 
We aren't sure we can supply a reason for this, but offer several 
possibilities. First, many syntactic approaches are couched In the 
highly specialized jargon of formal language theory, which is less 
accessible to many engineers than it (perhaps) should be. A much 
more probable reason for the paucity of fuzzy models in this field is 
that, quite simply, it is usually much harder to build a working, 
fielded system based on syntactic models than numerical ones. Good 
basic texts on syntactic pattern recognition include Gonzalez and 
Thomason (1978), Pavlidis (1980) and Fu (1982). Bunke (1992) is a 
collection of recent papers on advances in structural pattern 
recognition. 

The primitive is the basic element or building block in the syntactic 
approach; it plays roughly the same role here that numerical 
features play in the methods we have discussed prior to this section. 
Another key concept in structural pattern recognition is the 
grammar that can be built from primitives. The grammar can be 
thought of as a "basis" for a set of objects. Jus t as Njjg = {Cj ê ,} 

spans or generates every vector in S?*̂  as a unique linear 
combination of its c elements, we can imagine the "span" of a 
grammar as all of the objects that can be generated from the 
primitives, using specified rules of combination called production 

rules. The span of N is the vector space St"̂ ; the analogous concept 
in the syntactic approach is called the language generated by the 
grammar. We will formalize each of these concepts in Section 
4.10.A. 
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The basic idea is to decompose objects, usually hierarchically, into 
simpler structures, until the source object can be described in terms 
of its primitives ("basis elements") and the structure that relates 
them to each other. The paragraph you are reading right now is a 
good example. If we regard the paragraph as the object, we can 
decompose it into successively finer and finer elements- viz., 
sentences, then words, then characters, and finally, "strokes", 
which are the primitives in the language being illustrated (written 
English). Notice that the Icinguage provides us with two capabilities: 
first, if we have its building blocks, we can generate objects from it; 
and conversely, once we have the language, we can test and classify 
given objects as belonging to it or not. In other words, we have the 
same problems - representation and recognition of objects that 
underlie almost all pattern recognition problems. 

Usually primitives are physically recognizable elements of the 
object. Because sensors don't provide data that is readily converted 
to the form needed by sjnitactic methods, there is at least one extra, 
very hard step - the extraction of sets of primitives from numerical 
data - if the syntactic approach is to be based on sensor data. 
Syntactic representation of objects by a set of concatenated or 
otherwise connected primitives requires a level of sophistication 
that implies more effort than the results often justify. Coffee cups 
are simple enough to describe structurally, but a power plant, for 
example, is not so easy to decompose into a manageable set of 
primitives. Notable exceptions to this are applications in the fields 
of shape analysis and character recognition, because data from 
these two applications lend themselves well to simple sets of 
primitives which effectively capture structural properties of the 
objects of interest. 

Numerical and structural techniques are often discussed as if they 
are separate disciplines, bu t numerical pattern recognition 
techniques are often very much in evidence in syntactic models, 
where they can be used to extract structural primitives from sensor 
data. For example, we might run any of the edge detectors discussed 
in Chapter 5 on an input image, and then use edge fragments, or 
groups of them, as segments of objects. Segmenting inputs refers to 
the decomposition of objects into meaningful substructures. This 
helps the designer recognize useful primitives from which to build 
sentences. 

Ju s t as numerical pattern recognition can be divided into several 
main branches (e.g., statistical, graph-theoretic, fuzzy, etc.), 
structural pattern recognition can be subdivided into two principal 
approaches by the way the structure that connects primitives 
together is represented. One group of methods depends on formal 
language theory for quantification of structural relationships, 
while the second group of methods use graphs (or relational data) to 
carry the structural information that links primitives together to 
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build objects. We will explore some basic ideas of this second kind in 
Section 5.8, where we discuss spatial relations between objects such 
as "above" and "right of in connection with the decomposition of 
complex objects as a means of scene description and object 
recognition with image data. 

As in numerical pattern recognition, successful syntactic designs 
are an iterative and interactive procedure : trying new features 
roughly corresponds to defining new primitives, grammars, 
languages, etc.; and changing classifiers corresponds to using 
different automata, matching procedures, and so on. Process 
description again resides mainly in the hands of human designers, 
who rely not only on sensor data (such as images of handwritten 
characters), but on their innate ability to describe structural 
relationships between elementary parts of complex objects. It is 
beyond the intended scope of this book as well as our personal 
interests and backgrounds to present a detailed discussion of either 
the language or graph-theoretic approaches to structural pattern 
recognition. However, there has been a steady trickle of papers that 
use fuzzy models in both of these arenas since the early 1970's. Our 
objective in this section is to present you with enough information 
about this approach to pattern recognition so you can decide for 
yourself whether a plunge into the stream (the literature we cite) is 
worthwhile for the problems you want to solve. 

A. Language-based methods 

We ease into this topic with an intuitively reassuring example that 
displays some of the elements of the formal language approach. 
Wave form recognition is an application that is amenable to the 
syntactic approach because one-dimensional signals, like 
characters in alphabets, can be thought of as built from a sequence 
of fairly simple "strokes". Thus, we have a conceptual basis for 
decomposing signals into linked sets of strokes that approximate 
wave shapes. String grammars are appropriate for wave form 
decomposition, where the most fundamental operation is head to 
tail connection (or one-dimensional concatenation) of the chosen 
primitives. 

"Nil*' VJlP'' 

Example 4.32 This example has its roots in the pioneering work of 
Shaw (1969), who proposed a more extensive set of primitives and 
production rules as the basis of a picture description language that 
was sufficiently rich to build grammars whose objects included 
blocks, "houses", and the 26 upper case characters A-Z used by the 
English language. 

Choose as primitives the four arcs shown in Figure 4.96(a); notice 
that each one is directed in the sense that it has a tail and head. We 
allow only head to tail connections from left to right in this 
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example - that is, there is but one rule for concatenation of 
primitives, and we indicate left to right concatenation by left to 
right juxtaposition. The primitives are the geometric entities, and 
in order to efficiently describe manipulations of them, we choose an 
alphabet of symbols, say A = {a, b, c, d} that correspond to the 
strokes shown in Figure 4.96(a): a = local max (Cap), b = negative 
slope, c = local min (Cup), and d = positive slope. With suitable 
production rules that tell us how we may combine the symbols in the 
alphabet, these primitives can be used to represent many regular 
wave shapes. 

(a) four primitives for waveform description 

(b) the concatenation co = abed 

(c) the concatenation C, = aaacac, KI = 6 

Figure 4.96 Four primitives and waveshapes built from them 

Figure 4.96(b) Is a nice approximation to one cycle of a sine wave 
build by concatenating the four primitives into the sentence (or 
string) CO = abed. The length of the string co, denoted by \(o\, is the 
number of symbols from the alphabet needed to make it, so |co| = 4 in 
Figure 4.96(b). Figure 4.96(c) shows a slightly more complicated 
waveshape (which uses fewer primitives but more production rules) 
that is represented by the sentence ^=aaacac, |C| = 6. These simple 
figures show you Immediately why we might expect syntactic 
pattern recognition methods to be useful for signal processing. 
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A second application where the syntactic approach often surfaces Is 
character recognition, both handwritten and printed, and the 
harder problems that it leads to such as word, sentence and 
paragraph recognition. Why? Because the fundamental object (the 
character), can be approximated pretty well by combinations of just 
a few primitives, which are again "strokes". We have met this idea 
already in the work of Sly and Chen (1974), Chi et al. (1996b) and Chi 
and Yan (1996). Siy and Chen held that all alphanumeric characters 
comprised essentially three "strokes": lines, curves, or circle and 
they suggested the set of 15 primitives shown In Figure 4.92, made 
from one of their three basic strokes. Sly and Chen did not use the 
language or methods that we now associate with syntactic pattern 
recognition in their work, but the most important elements of their 
work can be identified with various facets of the structural 
approach. Their "branch features" are primitives, their 
representation of each character as a set of three bit maps 
constitutes the selection of an alphabet and production rules, and 
their classifier, essentially a nearest prototype machine, is roughly 
analogous to parsing strings to assign each input to the best 
matching class. 

Figure 4.97 Four primitives for the letter "F' in Figure 4.64 

Primitives for character recognition will be very similar to the ones 
shown in Figure 4.92 in that every character in any alphabet will be 
composed of a fairly small number of simple "strokes". For example, 
the letter "F" in Figure 4.64 is (roughly) composed of four strokes, as 
shown in Figure 4.97. This construction is a little more complicated 
than the waveforms in Figure 4.96, since the letter F cannot be built 
from a single concatenation of primitives. The "body" of the F is 
composed of the string abc, and could be built by head to tail 
concatenation, but the crossing arm of this character, represented 
by the primitive d, cannot be adjoined correctly to abc by head to tail 
attachment. Here the location of the crossing arm must be fixed by 
an operation that is not available with simple head to tail 
concatenation - in other words, we need a more extensive set of 
production rules in order to build a good approximation to "F" with 
these primitives. 

Now we are ready to make a slightly more formal presentation of the 
ideas in Example 4.32. A grammar G is defined as a 4-tuple G = (V ,̂ 
V^, P, S) where 



496 FUZZY PATTERN RECOGNITION 

(G1 I V is a finite set of terminals or primitive variables, such as the 
four waveshape fragments "cup", "cap", "positive line" and 
"negative line" in Example 4.32. When each primitive v e V j is 
represented by a symbol, the set of symbols that represent V Is 
called a vocabulary A. In Example 4.32 A= {a, b, c, d}, and once 
a vocabulary Is chosen, it is customary to interchange V and 
A. Thus, we might also say that V = {a, b, c, d} in Example 4.32. 
We follow traditional notation for terminals, symbolizing 
them with lower case letters such as a, b, etc. 

CG2] V IS a finite set of nonterminals (also called constants or 
N 

nonterminal variables or subpatterns) that are used In 
Intermediate stages during the construction of sentences. We 
did not speciiy any non-terminals in Example 4.32. We follow 
traditional notation for non-terminals, symbolizing them 
with upper case letters such as A, B, etc. 

(G3| P Is a finite set of syntax or production rules (or rewriting rules) 
that are used in the generation and/or parsing of sentences. 
Strings in G are traditionally symbolized by lower case Greek 
letters like a and (3, and the production rule that maps string a 
to string P is written as a -> [3. We did not specify any 
production rules in Example 4.32. 

(G4| S eV is a special member of V , called the starting (or root) 
symbol of a sentence. This non-terminal Is used as the 
beginning point of sentences that can be generated by the 
grammar. We did not speciiy a starting symbol in Example 
4.32. 

We have used the traditional notation of syntactic pat tern 
recognition for the terminals (V ) and non-terminals (V ) in a 
grammar G, which are sometimes called the vocabularies of G. The 
set V = V.J, u Vj^, with V.J, n Vĵ  = 0 Is called the alphabet or total 
vocabulary of G. We caution you that other authors use different 
terminology for many of the Ideas given in the definitions below 
(e.g., for meanings of the words adphabet, vocabulary, etc.). 

When a Is a string, a" = a- • • a . The null string Is denoted by X. The 
n times 

set of all finite length strings of symbols. Including the null string X, 
that can be built from a finite alphabet V is denoted by V*; in 
particular, V^ is the set of all finite length strings of terminals in G. 
If P contains the rewrite rule a ^ [3, r| = cojacoa and y = (»i(i(02, we say 
that string TI directly generates a string y, and write r| => y. 

G 
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There are many types of primitives, sentence structures, grammars 
(strings, trees, webs, plexes, etc.) and production rules. Of these we 
discuss and illustrate only the simplest (and possibly most 
frequently encountered in pattern recognition) grammar - the string 
grammar. A simple string grammar to represent "sine waves" using 
the four primitives shown in Example 4.32 could be G =(V , V , S, 
P) where 

Yj, = {a, b, c, d}; V^ = {S}; P = { S -> abcdS, S -* abed}. 

The set of all possible sentences L(G) which can be generated by a 
grammar G is called a language over G, 

L(G) = {a :aeV; ;S=^a} . (4.147) 
' G 

Grammars are used two ways. In the generation mode, we use G to 
create sentences beginning with S, and ending with the string; when 
represented by a tree, this mode of operation results in a derivation 
tree - we derive the string from G using the symbols in V and the 
rules in P. Since we always begin a derivation from S, derivation 
trees are always generated top-down, ending up with the sentence at 
the leaves of the tree. 

Conversely, if we are given a sentence which might be a member of 
L(G), finding out whether it is or is not a member of L(G) is called the 
analytic (parsing) mode - this is the mode we will be in during 
classifier operation. When represented by a tree, this mode of 
operation results in a parse tree, which can be either top down, or 
bottom up. You can imagine this process as beginning with an 
"unfilled" rooted tree: you know S and the leaves, and try to fill in 
the interior of the tree with valid productions. The issues that 
demand attention during parsing are computational efficiency and 
termination of the parse, and there are many schemes available to 
accomplish this step. As grammars become more complex, so do 
these two problems. A conflict occurs if a sentence parses in more 
than one language (or tree), which is highly possible when general 
grammars are constructed to represent actual shapes. 

For example, we cannot generate the waveshape in Figure 4.96(c) 
with G , because the production rules needed to generate the string 
C = aaacac are not in P. Consider the grammar G „ with terminals as 
^ ° db 
in Example 4.32 and non-terminals and production rules as follows: 

yj, = {a,b,c,d}; 
V^ = {S, A, B}; 
P ^ = { S -> dA, A ^ dA, A ^ d, A ̂  dB, B -> bB, B -> b }. 

db 



498 FUZZY PATTERN RECOGNITION 

This set of production rules cannot generate the string ^ = aaacac 
either, because the only terminals that are manipulated by the 
production rules in P are d and b, even though a and c are in V . The 

grammar G generates strings of the type {% = d̂ b™ ] n > 1, m > 0}, 
which are piecewise linear curves that start with n positively sloped 
line segments followed by m negatively sloped line segments - that is 

"A"-shaped objects. Figure 4.98 shows a few of the sentences that can 
be built with this grammar. If it was necessary to balance the 
number of b's and d's, different production rules would be needed. 
Would the grammar G built by substituting a for d and c for b in the 
production rule set P generate the string C, = aaacac? No, because 
the grammars G^̂  and Ĝ ^̂  use the same terminals but have different 
productions, and hence, generate different languages. This is a key 
aspect of syntactic pattern recognition - finding production rules 
that will generate the sentences (objects) we wish to represent and 
recognize. 

Figure 4.98 Some sentences in the grammar G 

A grammar and language that can capture all the objects you want to 
recognize must be inferred somehow. Once L(G) is in hand, 
classification is often done with the aid of formal language theory 
(Chomsky, 1965). A grammar is formed for each class, and sentences 
are recognized as belonging to a given class if they can be parsed in 
the grammar for that class. If several classes are possible, all of the 
class grammars usually share the same primitive elements so that 
all grammars have an opportunity to generate the sentence. 
Recognition (of, e.g., a piece of an object) then reduces to parsing a 
sentence to see if it can be generated by the grammar for that object 
class. Starting with the symbol S, we look for a sequence of 
production rules which produce the sentence. For example, in the 
grammEir G , the sentence ^=dddbb would parse as 

S -> dA ^ ddA ->• dddB -> dddbB -^ dddbb. 

Many syntactic pattern recognition applications deal with shape 
recognition. The first task is to convert real shape data into the 
string or tree or plex that formally represents each shape. In 
Example 4.32, the primitives are perfect semicircles and diagonal 



CLASSIFIER DESIGN 499 

lines. If you were to draw a curve like either of the ones shown in 
Figures 4.96(b) or 4.96(c), you would be unlikely to make perfect 
matches to the 4 primitive shapes. This problem is compounded by 
automatic boundary extraction methods which are often used to 
"outline" an object (Chapter 5). Hence, before the shape can be 
analyzed via sjmtactic grammars, it must be encoded as a sentence 
in the appropriate languages. Mistakes during primitive 
classification can doom the parsing algorithms that follow. This is 
an instance where the principle of least commitment plays a major 
role. 

Where do fuzzy sets, models and methods fit into syntactic pattern 
recognition? They have been inserted into the primitive extraction 
phase, into the collection of data from uncertain sources, into the 
production rules, and into the parsing activities carried out during 
classification. Fuzzy sets made early appearances in both the 
fuzzification of primitives and the construction of fuzzy grammars 
and fuzzy languages. Indeed, we have already seen how the 15 
primitives in Figure 4.92 can be fuzzified (equation (4.133) and 10 
others like it were used in Siy and Chen (1974), and are still in use 
by, for example, Chi et al. (1996b) and Chi and Yan (1996)). 

Fuzzy grammars were defined very early in the evolution of fuzzy 
models, first appearing in the paper by Lee and Zadeh (1969). 
Formally, ajuzzy grammar is a 5-tuple 0̂ ,= {V^, V^, S, P, m) where V ,̂ 
V , S, and P are as before, and m: P -> [0,1] represents the grade of 
membership of each production rule in the grammar, i.e., some rules 
are more typical of the grammar than others, and so, they will have 
higher memberships. For a rule a -+ b in P, we can write 

m(a ^ b) = p, or more simply, a ^ b . (4.148) 

If a -^ b and y and 6 are arbitrary strings, then 

yaS -S ybS . (4.149) 

The membership of a string x in L(GJ is defined as 

m(x) = m(S-4 x) = sup{min{m(S -^ a^) m(«n -^ x)}}, (4.150) 

where the supremum is taken over all derivation chains such as the 
chain a ,...,a from S to x. Instead of the min (T norm) in (4.150), 

I n J 
any T-norm could be used. This is similar to the way in which 
stochastic grammars are defined, except that the interpretation of 
uncertainty in stochastic grammars is that of likelihood of use of a 
production rule, and the method for determining the probability of a 
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string X in L(Gp is usually the sum over all derivations of the product 
of the rule probabilities. Tamura and Tanaka (1973) developed 
several early techniques for learning fuzzy grammars. 

Example 4.33 In the positive slope or "A" grammar G , suppose that 
the production rules are modified to include memberships: 

1.0 0.8 0.8 0.6 0.6 0.6 

P = { S - > d A , A - > d A . A ^ d . A - > d B , B ^ b B , B ^ b } . 

Then the membership of a string x=dddbb in the fuzzy language 
L(G,^ J is m(x) = min {1.0, 0.8, 0.6, 0.6, 0.6} = 0.6 (note that there is 
only one derivation of this sentence). The string y = ddddd would 
have membership m(y) = min (1.0, 0.8, 0.8, 0.8, 0.8} = 0.8, i.e., 
positively sloped lines have higher membership than A'S in this 
fuzzy grammar. If the memberships are thought of as probabilities 
G „ , will become a stochastic grammar, and then the probability of x 

db.f 
would turn out to be p(x) = 1.0 • 0.8 • 0.6 • 0.6 • 0.6 = 0.173. Stochastic 
grammars can have the property that sentences of small length are 
favored over longer ones. This is due to the fact that product is a 
much stricter intersection operator than minimum. If the product 
(T norm) were used in (4.150) instead of the min (T norm), then m(x) 
and p(x) would coincide. 

Fuzzy automata are important in fuzzy syntactic pat tern 
recognition. For example, E. T. Lee (1982) developed an approach to 
represent approximate shapes by fuzzy tree automata and process 
the shapes based on syntactic pattern recognition. Lee (1972a, b) had 
earlier experimented with fuzzification of sets of shape primitives 
which were similar in geometric content to the primitives being 
used by Shaw (1972), with fuzzification quite like that used by Siy 
and Chen (1974). In Lee (1982) a set of three primitives (isosceles 
triangle, rectangle, and cross) are first fuzzified, and then used as the 
basis for a fuzzy grammar. For example, Lee (1982) proposed that the 
membership function for a "fuzzy isosceles" triangle with interior 

base angles B ° and C °, in the set of crisp isosceles triangles be 

mn-(B°,C°) = l - ' 90° 

When a triangle is isosceles, B° =C°so mj.j,(B°,C°) = 1, and otherwise, 

mj^(B°,C°) < 1. Similarly, the membership of a quadrangle with 
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interior angles A°, B °, C ° and D ° in the set of crisp rectangles was 
defined as 

mR(A°,B°,C°,D°) = l -
^'A° - 9 0 ° | + |B° - 9 0 ° | + |C° - 90°| + |D° - 90"'^ 

360° 

Using these fuzzified primitives, Lee (1982) built syntactic 
representat ions of "approximate houses" by concatenating 
"approximate isosceles triangles" on top of "approximate 
rectangles". His constructions (Figure 1 of Lee, 1982) for three 
approximate houses named s , s and s are replicated in our Figure 
4.99. 

r 

A B = 90° C = 60° 1 \ 
90° C = 45° 

Si S2 S3 

mH(Si) = ] L mH(s2) = 2 / 3 m H(S3) = 1 / 2 

Figure 4.99 Some approziniate houses, Lee (1982) 

The three membership values shown below the approximate houses 
in Figure 4.99 are computed in Lee (1982) using a well defined fuzzy 
tree automaton. Lee also describes how to build "approximate 
churches" and "houses with high roofs" using fuzzy grammars. We 
remark that in order to perform a concatenation operation such as 
"place the roof on top of the house", it is necessary to resolve the 
question of how to define the spatial relationship "on top of, a topic 
we discuss in Section 5.8. Another point worth emphasizing here is 
that Lee's primitives, P={triangle, rectangle, cross}, are themselves 
decomposable into strings of simpler primitives. For example, the 
roof of house s in Figure 4.99 might correspond to the string d^b^ in 
the grammar G^̂  discussed in connection with Figure 4.98. This is 

'^ db 

how we ultimately break down a complicated object in the formal 
language approach to syntactic pattern recognition. 

Now we can cast pattern recognition questions in terms of formal 
languages. In order to build classifiers capable of identifying 
different objects using this approach, we follow a procedure that 
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might go roughly like this. Assume that the basic objects are 
handwritten sjmibols, and we want to read them automatically with 
a computer vision system. First we acquire data by digitizing a 
scene, perhaps run an threshold operator on them, thin them to get 
their skeletons, and then decompose them into sentences in one or 
more of the c languages {L(G)} over the grammars {G}. We will have 
chosen a set of primitives, and once particular objects are acquired, 
we will look for the production rules that generate correct 
representations of the objects in at least one of the chosen (or 
inferred) grammars. The same set of primitives may support many 
useful grammars, and finding the primitives, the production rules, 
and the grammars can all be part of the "training" procedure. Once 
the languages {L(G.)} that capture the objects of interest are known, 
we turn the process around during classifier operation. Now a new 
object comes into the system. We convert it into a sentence using the 
primitives at our disposal, and then try to parse it in one or more of 
the grammars available. When we get a one or more matches, we 
have (a) class label(s) for the object. 

You might be surprised to discover how many of the algorithms we 
have already discussed in this book can be converted into similar (if 
not the same) techniques for use with strings and/or string 
grammars. Fu (1982) discusses straightforward extensions to the 
syntactic case (at least for string grammars) of the following crisp 
algorithms that we have discussed for either the object or relational 
data cases: hard c-means (our section 2.2); single linkage clustering 
via the minimal spanning tree (our section 3.3); the crisp 1-np and 1-
nmp rules (our Section 4.2); and the k-nn rule (our Section 4.4). 

One of most fundamental ideas underlying most of the algorithms 
we have discussed prior to this section, including all of the 
clustering and classifier designs mentioned in the previous 

paragraph, is the distance 5(x, y) between vectors x and y in SR̂ . 
There are several equivalent notions for strings. The most common 
metric used in the setting of strings is the Levenshtein metric, which 
is defined in terms of three string transformations - substitution, 
deletion and insertion. For strings a, p in V^, Levenshtein (1966) 

defined these for any coj, (JO2 e ^r as follows: 

cOjacOg H->C0jb(02, Va,b e V.j,;a 7t b (substitution); (4.151a) 

T 
' D 

C0jac02 f-̂  cOjCOg, V a e V^ (deletion) . (4.151b) 

0)̂ (02 i-> cOjacOg, V a e V.J, (insertion) . (4.151c) 



CLASSIFIER DESIGN 503 

With the three string transformations in equations (4.151), the 

Levenshtein distance 5LEV(<'^I>'02) between two strings C0i,c02 e V^ is 
defined as the smallest number of transformations needed to derive 
one string from the other (either way, since this distance will be 
symmetric). For example, if K^ = bbdbabc and K2 = bdbbabbc, we 
can produce K2 from KJ with 3 transformations: insert "b" between 
the symbols a and b; substitute "d" for the second b; and finally, 
substitute "b" for the (new) second d. Thus, 5LEV(KI,K2) = 3 . Two 
things to notice: the sequence of transformations used in the 
calculation is not unique (but the result is); and the distance between 
strings of different lengths is well-defined. Fu (1982) gives a 
weighted form of 8LEV which allows you to weight different types of 
errors differently. 

Having a way to measure distances between strings in different 
string languages, opens many doors. For example, you can construct 
a minimal spanning tree on sets of strings. The distance between 
two languages L(G ) and L(G ), or as a special case, between a sentence 

CO and a language L(G), can be defined directly by using any standard 
measure of the distance between pairs of sets. For example, any of 
the set distances shown in Figure 3.3 serve this purpose. J u s t 

imagine that the points in Figure 3.3 are sentences, that 6 = 5LEV • 
that X = L(G )̂ and that Y=UG^). 

Now look back at the 1-np, 1-nmp and k-nn rules in equations (4.2), 
(4.7) and (4.38), respectively. All of these classifiers, built for feature 
vectors in 5RP , need only prototypes and a way to measure distance. 
Suppose you cire lucky enough to have a set of c string grammars {G} 

that generate c string languages {L(G)}, and for each language, you 

have, say, n crisply labeled sentences {aj G V^^;j = l, . . . ,ni}, with 
c 
X n i = n . Then the n sentences {a,;i = l,...,c;j = l,...,nj} together 
1=1 

with the distance SLEV enable you to use the k-nn rule in (4.38) 
directly to classify any input string. 

To use the 1-np and 1-nmp rules, you need prototypes. Fu (1982) calls 
the string Uq, selected from the n. strings (aji j = 1 n j in the i-th 
class whose indices satisfy 

q = arg minj c' = X 
8 fa' a''"^ 

" i 

(4.152) 
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the "representation" or cluster center of the H; strings {ttj}. Notice 

that the "cluster center" ttq is not built from, the sentences already 
labeled class i; it is one of the sentences in this class. Once we have a 
way to find prototypes, the crisp 1-np rule at (4.2) and the crisp 1-
nmp rule at (4.7) can be implemented directly in the syntactic 
domain. 

Could you fuzzily any of these designs in the syntactic string 
grammar domain? Some of them are already done. For example, the 
soft k-nn rules in Table 4.19 translate directly into soft k-nn rules 
for sentences in string grammars. The c-means clustering 
algorithms can all be imitated using prototype calculations similar 
to the one at (4.152) and the necessary conditions for U shown in 
Table 2.2. Doing this leads to c-means type clustering algorithms 
that can be used to find clusters in an unlabeled set of n strings 
which (presumably) come from one of c languages. 

Table 4.60 shows how to implement a syntactic relative of the hard 
c-means (HCM) clustering algorithm, which we will call string 
grammar hard c-means (sgHCM), the prefix "sg" standing for string 
grammar. This is not an alternating optimization algorithm, 
because the update equations used at each half-iterate do not satisfy 
any criterion of optimality. A more accurate term is alternating 
cluster estimation (ACE), and it means exactly the same thing here 
that it does in the numerical case (Runkler and Bezdek, 1998b, 
1998c, 1999): update functions for each half of the cycle are simply 
picked from a set of logical choices, and iteration proceeds to 
termination, either by small successive changes in the estimates of 
U or by exceeding a maximum iterate limit. We won't have a very 
good idea of where this type of clustering leads in terms of the 
formal languages that underlie the strings it groups together, but it 
does provide a way to design a syntactic nearest prototype (1-snp) 
classifier. 

The SgHCM algorithm in Table 4.60 appears in Fu (1982) as 
Algorithm 9.4 in a different notation. Scalar multiplication of 
strings by real numbers is undefined, so the quantities u a and 

Ujg ̂ a^ in SgHCM appear to be incorrect. However, the memberships 
here are crisp, so the multipliers are either O's or I's. If we define 
Oa = 'K, the null string, and l a = a, the notation in Table 4.60 
makes sense. 
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Store 

Table 4.60 The s^CM clustering algorithm 

n unlabeled finite strings X = {a^; k = 1,..., n} 
number of clusters: 1 < c < n 
maximum number of iterations: T 

Pick termination measure: E = V^ - V̂^ J = big value 

termination threshold: 0 < e = small value 

Guess 
initial string prototypes: 

Iterate 

t<r-0 
REPEAT 

t<r-t+l 
For k = 1 to n 

For i = 1 to c 
I^ik,t =5LEv(0Ck'"l,t-l) 

Next i 
Next k 
For i = 1 to c 

ni,t <r- 0 
For k = 1 to n 

"̂ •* [0; otherwise] 

Next k 
Next i 
For i = 1 to c 

q = arg min-{ c 
i.J 

l<J<n,^ 

I -

Next i 
TIL (t=1 

(U.V)^(Ut.Vt) 

s=l 

\Ev("lJ.t«J'^is,t«s) 

n i.t 

ai,t = «q 

UNTIL(t=TorE^<8) 

Fu illustrates sgHCM with a set of 51 unlabeled samples of one of the 
9 upper case characters {D, F, H, K, P, U, V, X, Y}. Fu notes that of the 
nine possible classes, there are four shape-similar pairs, namely (D, 
P), (H, K), (U, V) and (X, Y), and one "odd" shape, the letter F. Each 
sample begins as a continuous line pattern on a 20x20 grid. This 
image is digitized, and then a string representing it is generated by 
traversing the chain encoding (Gonzalez and Woods, 1992) of the 
letter cell by cell. A primitive from a set of 4 is then generated from 
the chain code for each three consecutive cells, and the set of 
primitives needed to traverse the sample becomes the string for that 
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letter. The four primitives are lines that look roughly like this: 
a = / ; b = \ ; c = \ ; d = —. For example, the fourth sample 
resembles a "U", but is distorted so that it is rather too tall for its 

width, and has uneven sides, looking roughly like this: ( j . The 
string representing this sample is cbbbxdabbbb, where the symbol 
X is one of three concatenation operators taken from Shaw (1962). 
See Fu (1982) for a more detailed account of how the string 
representation for a character is generated. The shortest string in 
the data set had just 5 primitives ( a nice, well behaved 'Y"), while the 
longest string had 13 (a not so unruly, but very curvy "D"). 

Applying the sgHCM algorithm to this data with c = 9 fixed (using 
prior knowledge as to the number of clusters avoided the question of 
how many to look for) resulted in 9 crisp clusters of strings (and, 
therefore, of the objects that the strings represented). The relabeling 
error (that is, number of mislabeled characters when the data are 
subsequently labeled by visual inspection) of the hard 9-partition of 
this data is 11 mistakes in 51 tries - an "error rate" of about 22%. 
Since the sgHCM algorithm is unsupervised, this may not be such a 
bad result, and what's more, at this point you have labeled 
prototypes (which here are labeled strings in some language) of the 
nine letters, and so, a complete set of parameters to implement the 
1-np rule in equation (4.2) using the Levenshtein distance. In a 
realistic application domain, you may need to be careful about the 
computational complexity associated with computing 8 , which 
is a combinatorial optimization problem. 

What about versions of string grammar fuzzy and possibilistic c-
means (sgFCM and sgPCM)? We believe that both of these edgorithms 
can be developed to cluster strings, although the generalizations in 
these cases may not be as straightforward as that of sgHCM in Table 
4.60. A modified version of FCM has been used for preprocessing in a 
syntactic model that uses string grammars for the recognition of 
handwritten Chinese characters (Cheung and Chan, 1986), but to our 
knowledge, sgFCM and sgPCM algorithms per se have yet to be 
developed. The point is not that string grammar versions of the c-
means models are better or worse than any other clustering 
algorithms for string grammars. The point is that you can often 
transform pattern recognition methods that are familiar in the 
numerical data domain into methods in the syntactic domain that 
bear at least some resemblance to their numerical relatives, and 
there is as much opportunity to soften models in this domain as 
there is in the numerical arena. The theory underlying syntactic 
classifier algorithms developed in this mold, however, may 
challenge the best theoretical computer scientist you know (who is 
none of us, that's for sure). 
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B. Relation-based methods 

This approach to syntactic pattern recognition uses graphs to 
represent structural relationships between the primitives and 
nonterminals. The nodes represent elements of V and V , and the 
edges carry relational information about the structure between 
elements that comprise an object. One of the most important 
changes that is made by using graphs instead of grammars to 
represent structural relationships is that the style of object 
recognition changes. To classify sentences in formal languages, you 
need a good parser; to classify objects that are represented by graphs, 
you need measures of graph similarity. Thus, the relational 
approach often has a style that is very much like nearest prototype 
classifier design, but the prototypes are digraphs, relational graphs 
or attributed graphs, and measures of distance used with numerical 
data are replaced by graph-matching techniques based on measures 
of graph similarity. Advocates of the relational approach argue that 
it should be used when each structure can be represented by a crisp 
prototype, or when there are not enough training data to accurately 
infer useful grammars for each of the c classes. 

Like all graph theory, the use of relational graphs for syntactic 
pattern recognition is 9 parts definitional to 1 part operational. We 
are not going to give you sufficient technical information that 
enable you to build syntactic pattern classifiers using the relational 
approach directly. Again, as in the previous subsection, we want 
instead to show you how fuzzy models have been inserted into this 
field. When you are interested, you will again have to dive into the 
cited literature. There you will find the details (and in them, perhaps 
the devil as well). 

The basic structure of the relational model begins with the idea of a 
semantic net (sometimes called a relational graph). We start with a 
digraph G = (V, E) where V={v} are the vertices of G ; and E is the set of 

edges in G, (v;, Vj) e E <=> r^ = 1 (don't confuse this G with the G we used 
from grammars in the previous subsection). Terminal nodes in V 
"contain" primitives of strings, and non-terminal nodes in V will 
contain intermediate strings that are non-terminal strings. When 
we add semantics to the edges in E, we obtain a semantic net. 

For example, consider the top part of Figure 4.100, which shows 
three boxes, X, Y and Z, on a supporting surface which is not part of 
the structure being described. There are six obvious relations 
between the three boxes X, Y and Z : is above, is below, left of, right 
of, larger than and smaller than. The bottom half of Figure 4.100 
shows the relationships (position and relative size) between these 
three objects as a semantic net, which, as you can see, is a digraph on 
three nodes with semantic information added to the directed edges. 
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Figure 4.100 Structural representation by a semantic net 

If you wanted to build a classifier based on this approach, first you 
would develop one or more relational graphs for each class of 
objects (in essence, multiple prototype graphs), and then to label an 
input object, you would represent it the same way, and match it to 
each of the class prototypes, using a rule just like equation (4.2) or 
(4.7) with the appropriate changes in V and 5. Figure 4.101 illustrates 
this idea. 

The only relation represented by the graphs in Figure 4.101 is the 
structural relation "is on top of T". The objects on the left and right 
in this figure, two sets of stacked blocks, represent crisp classes 1 
and 2, and the object z between them is to be classified. First, all 
three objects are represented by the relational graphs shown just 
below the objects. Then a measure of graph similarity, shown as S in 
Figure 4.101, is used to compare the similarity of each of the graph 
prototypes to the unlabeled input graph. There are many measures 
of similarity for pairs of graphs based on concepts such as counts of 
in-degrees, out-degrees, numbers of nodes and/or edges, differences 
in the minimal spanning tree, etc. For example, using either the 
counts of outdegrees or numbers of nodes for the graphs in Figure 
4.101, we find that G is more similar to G than G is (in fact, G and 
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G match exactly in these two measures], so z is labeled class 2 as 
depicted in Figure 4.101. 

1 4 

2 5 

3 6 

llllll T lilllii 
Class 1 

l ) {4 

V 
Gi 

^ 

Input z 

S(Gi .GJ<S(G2,GJ 

z € class 2 

^ 

Figure 4.101 Prototype classification with relational graphs 

Please compare Figure 4.101 to Figure 4.5; from this you will see that 
we are again doing nearest prototype classification, but the data 
used to implement the 1-np design originate through structural 
relationships instead of numerical measurements. Since the fuzzy 
models we want to discuss develop their own (fuzzy) measures of 
similarity, we will not stop here to discuss crisp measures, but 
instead, will refer you to Shapiro and Haralick (1985) for a 
representative discussion of this topic. 

Relational graphs are limited by several things. First, it can be 
computationally expensive to match them. Second, they 
concentrate entirely on structural properties. As defined, relational 
graphs cannot represent possibly important and measurable 
quantitative and qualitative properties such as weight, length, 
color, and so on. One approach to enriching the representational 
structure of semantic nets is the attributed graph (Tsai and Fu, 
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1979), which enables you to include both numerical and symbolic 
attributes of primitives at nodes in the semantic net. Thus, object 
representation becomes a combination of structural, numerical and 
symbolic attributes. An attributed graph is a graph in which both 
the node set V and the edge set E can have attributes associated with 
them. In general then, each node v € V can take attributes 
(numerical or linguistic variables) from a set of node attributes, say 
A(v) = {Ai Aj}. The i-th node attribute may take, say, J values 

(numerical or linguistic) values, Sj = (ay: j = 1,..., Jj}. The set 

L(V) = ((lj ,ay):i-l I ; j = l J,} , (4.153) 

is the set of all possible node attribute-attribute value pairs. A 
primitive is said to be valid if it is a subset of L(V) in which each 
attribute appears just once, and we follow Chan and Cheung (1992) 
in calling the set of all valid vertex primitives IT. The edge set E of G = 
(V, E) is treated similarly. Edges e e E are associated with a set of I' 
attributes, say E(e) = {Ê  Ej,}. The i-th edge attribute may take j j 

values, Ti = {Cy: j = 1 J ,}. The set 

L(E) = {(Ej,ey):i = l, . . . ,l ' ;j = l,...,j;} , (4.154) 

is the set of possible relational attribute-edge value pairs. A relation 
is said to be valid if it is a subset of L(E) in which each attribute 
appears jus t once. Suppose 0 is the set of all valid edge primitives. 
With these attribute-values sets for the nodes and vertices of a graph 
we are ready to define an attributed graph (Chan and Cheung, 1992). 

G = ((V,o), (E,5)) is an attributed graph over (L(V), L(E)) o 
(i) V is associated with a: V i-> n = vertex interpreter, and (4.155) 
(ii) E is associated with 5: E h^ 0 = edge interpreter. 

The vertex and edge interpreter functions map nodes and edges of the 
graph G into attributed nodes and edges; (V, o) is called em attributed 
vertex set; and (E, 6) is an attributed edge set. This enables us to 
associate structural, numerical and symbolic information with 
each element of the graph. We illustrate the idea of attributed graphs 
using part of an example from Chan and Cheung (1992). These 
au thors argue that attr ibuted graphs are more useful for 
handwrit ten character recognition than the formal language 
approach because the strokes that comprise a character must be 
correctly ordered in a string grammar model, and they do not need 
to be in an attributed graph. Their work is based on the set of stroke 
primitives shown in the upper half of Figure 4.102, which they take 
as the basic strokes needed to make Chinese characters: H (line), V 
(line), P (curve) and N (curve). 
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H line V line P curve N curve 
(- P45Iine) (= N135 line) 

H h H + 
Tee from Tee into HTee Cross Parallel 

Figure 4.102 Primitive strolce types and joint tjrpes 
for Chinese characters (Chan and Cheung, 1992) 

Chan and Cheung assert that a natural way to represent each of the 
four strokes in Figure 4.102 is by an ordered pair, viz., the vertex of 
the stroke and the relationship between strokes, interpreted as edges 
in an attributed graph. First idealizing the ill-defined P and N 
curves in Figure 4.102 as P and N lines (see Figure 4.92) vidth angles 
of 45° and 135° measured counterclockwise from the positive x axis, 
Chan and Cheung set up the following attributed graph, which is 
based on four linear stroke types (H, V, P45 and N135), two stroke 
lengths (long and short), five joint types (Tee from. Tee into, HTee, 
Cross, Parallel as shown in the lower half of Figure 4.102), three 
vertical structural relationships (on top of, below, no vertical 
relation) and three horizontal structural relations (left of, right of, 
no horizontal relation). We summarize this construction in Table 
4.61. 

The bottom third of Table 4.61 shows a sample pair of valid vertex 
and relational attribute-value pairs, each selected by applying the 
uniqueness constraint required by the definitions of valid 
primitive. Chan and Cheung argue that, while crisp attributed 
graphs could be built and matched for handwritten character 
recognition using this structure, the second coordinate of each 2-
tuple in LfV) and L(E) is really fuzzy in the application domain of 
interest. For example, strokes are not always vertical, horizontal, 
etc., and spatial relations such as above and below are often only 
partially fulfilled (see Figure 5.50). Using this rationale, Chan and 
Cheung introduce fuzziness into the attributed graph by adding 
membership functions for the attribute-values in both the vertex 
and edge domains of the definition in (4.155). 
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Table 4.61 Attributes for Chinese character recognition 

^ 1 \ ^ 1 ^2 ^ 3 

stroke stroke Joint vertical horiz. 
type length type relation relation 

a^^=V a^^= long e = Tee from e„ = above 
21 

egj= left of 

a,,= H ^2= ^ ^ ° ^ e = Tee Into e = below 
22 

632= right of 

^13= P^^ ej3=HTee e„„= none 633= none 

a =N135 
14 

e, = Cross 
14 

e,^= Parallel 
15 

L(V) L(E) 
(stroke type, V) (Joint type. Tee from) 
(stroke type, H) (joint type. Tee into) 
(stroke type, P45) Uoint type, HTee) 
(stroke type, N135) Qoint type, cross) 

(joint type, parallel) 
(length, short) (vert, rel, above) 

(vert, rel, below) 
(vert, rel, none) 
(horiz. rel, left) 
(horiz rel, right) 
(horiz. rel, none) 

ne.g. 0e.g. 
(stroke type, V) (joint type, cross) 
(length, long) (vert, rel, above) 

(horiz. rel, none) 

Chan and Cheung define a fuzzy attributed graph as: 

G = ((V, a), (E, 5)) is ajuzzy attributed graph over (L(V), L(E)) <=» 
(i) V is associated with a: V h^ n = vertex interpreter, (4.156) 

(ii) E is associated with 5: E f-> 0 = edge interpreter. 

where n and 0 are the sets of valid primitives and relations on 
edges, validity again meaning each attribute appearing jus t once, 

and (V,CT), (E ,5 ) are (fuzzily) attributed vertex and edge sets, 
respectively. The sets L(V) and L(E) still represent all of the 
possible 2-tuples with first coordinate a vertex or edge attribute, 
respectively; but the second coordinate becomes a set of values (one 
for each attribute value) of a membership function on the attribute 
in question. Thus, instead of attribute value a for the jth value of 
vertex attribute 1, we now have m(a ), where m is a membership 
function on the i-th attribute, 1 = 1,...,I. Similarly, membership 
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functions {m^,... ,m .} are defined on the relational edge attributes. 
The fuzzy attribute graph of an object as defined in (4.156) reduces to 
a crisp attribute graph as in (4.155) when all the membership 

functions {mj mj} and {m^ m .} are crisp. 

The advantage of using the fuzzy graph model in (4.156) is that 
attributes can have memberships in each of the attribute values to 
which they apply. For example, using the ordering in Table 4.61, the 
pair (stroke type, *) in L(V) can assume a form in L(V) such as (stroke 
type, (mil (stroke) = 0.7, mi2(stroke) = 0.1. mi3(stroke) = 0.9, 
mi4(stroke) = 0)), which indicates memberships of the stroke being 
evaluated in each of the vertical, horizontal, P45 and N135 
directions. 

The fuzzy attributed graph adds an intuitively satisfying element to 
its crisp counterpart for this application. But the use of membership 

functions for the elements of the valid primitive and relation sets n 
cind 0 complicates the use of similarity measures that assess the 
extent to which graph representations of objects are similar. Chan 
and Cheung (1992) introduce three measures for assessing the extent 
to which a pair of fuzzy attributed graphs agree. The three 

definitions require Gi and G2 to be Tnonomorphic. Two fuzzy 

attributed graphs Gi and 63 are said to be monomorphic if they are 
connected by a 1-1 mapping that preserves incidence relations 
(determination of the mapping is known to be np-complete, Aho et 

al., 1974). In equations (4.157), we assume that Gi and 62 are 
monomorphic. Now we can state definitions for the three measures. 

Feasibility : a measure of similarity between primitives Vi e Gi and 

V2 6 62 in two fuzzy attributed graphs, 

a(Vj,V2) = ̂ A| vjmJ(ay(Vj))Amf(ay(v2))U . (4.157a) 

In (4.157) m| and mf are membership functions for the i-th vertex 
attribute in the two fuzzy graphs. 

Compatibility: a measure of similarity between edges Ci e Gi and 

62 6 G2 in two fuzzy attributed graphs. 

|3(ej.e2)= AJ v{mi'(ey(ej))Amf'(ey(e2))} . (4.157b) 
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where m} and m f are membership functions for the i-th relational 
attribute in the two fuzzy graphs. 

Degree of match: a measure of similarity between two fuzzy 

attributed graphs Gj and 62 , 

Y(Gi.G2) = A 
leV, 

a(i,h(i)). ^̂ Â̂  [p(ej(i,j),(e2(h(i),h(J))|^^. {4.157c) 

where h(i) is the vertex in G2 that matches vertex i in Gj, and e (i,J) 

is the edge joining nodes i and j in G^̂ , k = 1,2. 

Using the concept of graph matching embodied in (4.157c), Chan and 

Cheung say that Gj and 62 are X-monomorphic when Ĝ  and 62 

are monomorphic and the degree of match Y(GI , 63) > X. Computing 
(4.157c) requires a method for establishing matched pairs of vertices 
and edges; Chan and Cheung use a tree search algorithm due to 
Aklnnija et al. (1986) to establish the needed monomorphisms. 

After proving some properties of fuzzy attributed graphs, Chan and 
Cheung provide an example of their use in representing one Chinese 
character in terms of a set of simpler primitives called radicals, 
each of which is itself decomposed into the four stroke primitives 
shown in the upper panel of Figure 4.102. A key point is that each of 
the radicals is a crisp, human-derived template that is thought of a 
one of the const i tuents of more complex templates, and 
subsequently, characters. The crisp templates (radicals) illustrated 
in the paper are 

± contained in B and contained in (4.158) 

For example, values for representation of the crisp attributed graph 
for the template ± , shown as Table 111 in Chan and Cheung (1992), 
are reproduced in our Table 4.62. 

Table 4.62 Attribute values for the template ±. 

2 

length stroke type 
S t r o k e long sho r t H line V l i n e P curve N curve 

1 
2 
3* 

0.00 0.00 
0.00 0.00 
0.00 0.00 

1.00 
0.00 
1.00* 

0.00 
1.00 
0.00 

0.00 
0.00 
1.00* 

0.00 
0.00 
0.00 
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The values marked by * in Table 4.62 are the ones shown in Table III 
of Chan and Cheung (1992) for the third stroke. It makes more sense 
to us to retain the value 1.00 in the H line column for stroke 3 as 
shown, and a have a value of 0.00 for the P curve column, but our 
rendering in Figure 4.102 is by hand and eye, and none of us know 
enough about Chinese characters to make a call on this - it may be 
that the combination of H line and P curve really produces the 
required stroke. Either the P curve (not P line!) value is a 
typographical error, or we don't appreciate fine differences in the 
strokes well enough. Chan (1996) extracts the stroke sequence (H, V, 
H) for this prototype using the four primitives (H, V, P45, N135) with 
a learning method to be discussed shortly, so we suspect our 
supposition is correct: stroke 3 should have the four memberships 
(1, 0, 0, 0) for the strokes (H, V, P, N). It also seems strange to us that 
all of the length memberships in Table 4.62 are 0.00; perhaps there 
are some incorrect values here as well. 

Chan and Cheung (1992) develop a table of fuzzy attribute values for 
the character ^ by first thinning its image, segmenting it, and then 
defining membership functions for each of the vertex and relational 
attribute values needed to represent $; as a fuzzy attributed graph. 
Then they match this character to the attributed graph of the radical 
shown in Table 4.62. The two graphs are reproduced in Figure 4.103. 

• 1 

- 3 

Figure 4.103 Graphs of the characters ^ and ±. 

When ^ is matched against ± . , the radical is extracted twice, once 
from a monomorphism between vertices {1,2,3} of ± and {6,2,4} of 
$;; and vertices {1,2,3} of ± and {6,2,5} of i . Using equation 
(4.157c), these two subgraph matches produce the following degrees 
of match: 7 =0.97 for the vertex pairs {(1,6), (2,2), (3. 4)}; andY= 1-00 
for the vertex pairs {(1,6), (2,2), (3, 5)}. Certainly the strokes {6, 2, 5} 
in the character i in Figure 4.103 are a better match to {1,2,3} for 
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±. t h a n the s t rokes {6,2,4}, so the degree of ma tch agrees with a 
v isual a s s e s s m e n t of the complex cha rac te r (don't place all your 
evaluat ion faith on our reproduct ion in Figure 4 .103 , which w a s 
done "by eye", no t by obta in ing the exact c h a r a c t e r s from the 
au thors ) . 

Finally, C h a n a n d Cheung (1992) give some stat is t ics for a r u n of 
their sys tem (which, incidentally, used a modified version of fuzzy 
c -means d iscussed in Cheung and Chan (1986) for preclassification) 
on 8 ,980 s a m p l e s of t h e 2 4 0 m o s t f requent ly u s e d Ch inese 
characters . They do not specify the source of the data, nor how many 
cr i sp , h u m a n - t r a i n e d t empla te s ( represented a s cr isp a t t r i bu t e 
g raphs) were used . Wi thout FCM preclassification, 8 ,086 of t he 
labeled t e s t s amp le s were correctly labeled, 140 s amp le s were 
incorrectly labeled, and the remainder were "rejects" = undecided, so 
the t es t error ra te wi thout preclassification w a s abou t 9 .95% (we 
coun t undecided as mistakes). With FCM preclassification, the error 
ra te dropped to 9.2%. This system was not compared to any other 
method, nor w a s the da ta set shared by other s tudies we know of, so 
it 's pret ty h a r d to place the accuracy of these resul ts in the overall 
context of handwri t ten charac ter recognition. On the other hand , it 
is one of t he few examples we can offer of a complete, working 
syntact ic app roach to pa t t e rn recognition t h a t incorporates fuzzy 
models . 

± d̂  > 
X i - ^ G j X2 ^ G g X3 ^ 0 3 X4 ->G4 

X S ^ G B Xg ->G6 

^ 

X7 -4 G7 ^8 ~^ Gg 

Figure 4 .104 Inferring ± = x <-G <-{Gi,. .,G8} from training data 
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In a sequel, Chan (1996) states that a deficiency of the work of Chan 
and Cheung (1992) is that crisp template graphs such as the one 
shown in Table 4.62 are derived by humans. Chan asserts that this 
is tedious, time-consuming and error prone, and in the 1996 paper 
he presents an interesting algorithm that learns crisp templates 
from a set of training data. The training data are (crisply labeled) 
fuzzy attributed graphs of handwritten characters. Figure 4.104 
shows the set of 8 samples of the character ± that (roughly) 
correspond to Figure 1 in Chan (1996). Which of these 8 characters 
do you think best matches the character ±. ? 

In Figure 4.104 the sample characters are all crisply labeled as ± 

and are denoted by {x, x J . Fuzzy attribute graphs {G, Go} of 
1 O 

{x, X J are derived using fuzzy membership values in each of the 
1 8 

four strokes H, V, P45 and N135 shown in the upper half of Figure 
4.102 for each of the three strokes sequenced and numbered as 
(1,2,3} in Figure 4.103. The unknown character that is to be inferred 
is X = ± , whose crisp attribute graph is denoted by G at the very top 
of Figure 4.104. Chan (1996) exhibits tables of memberships of each 
of the 8 training data strokes {1,2,3} in each of the four primitives H, 
V, P45 and N135. For example, the memberships of the 8 training 
data strokes for the first stroke (the upper of the two horizontal 
strokes needed to make ± as shown in Figure 4.103) are listed in 
Table 4.63. 

Table 4.63 Memberships for {x ....,z ). Stroke 1, in H, V, P45, N135 

X H V P45 N135 
1 0.85 0.00 0.22 0.00 
2 0.83 0.00 0.19 0.00 
3 0.37 0.00 0.00 0.49 
4 0.91 0.00 0.13 0.00 
5 0.84 0.00 0.21 0.00 
6 0.98 0.00 0.39 0.00 
7 1.00 0.00 0.03 0.00 
8 0.94 0.00 0.31 0.00 

Take a look at the 8 training data in Figure 4.104: do you agree with 
the membership values shown in Table 4.63 for stroke 1 of these 
eight characters? The horizontal component (column H in the table) 
seems to agree with a visual assessment: sample x has the "most 
horizontal" stroke, and its memberships reflect this; only character 
X has a negative slope in stroke 1, and again, the memberships do 
reflect this, assigning stroke 1 of x. a membership of 0.49 in the 

fuzzy primitive N135 = negatively sloped line segment at 135°; and 
so on. 
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C h a n (1996) develops a t ra ining algorithm t h a t guaran tees t h a t the 
c r i sp a t t r i b u t e g r a p h G inferred from t h e t ra in ing d a t a is X-
monomorph ic . First, each pair of t ra ining g r a p h s are ma tched to 
each o the r to es tab l i sh vertex cor respondence . Then each of the 
strokes needed to make u p the character being inferred is expressed 
a s a "polynomial" in var iables t h a t correspond to t he primitives 
u sed to comprise the s troke (here, the four variables are H, V, P45 
a n d N135). C h a n (1996) devotes several pages to definitions a n d 
resu l t s concerning these polynomial forms. This theory, along with 
t he informat ion shown in Table 4 .63 a n d two tab les like it for 
s t rokes 2 a n d 3 (that a re in Chan 's paper which are not reproduced 
here) a re used to create the poljniomials (in the four variables H, V, P 
a n d N) shown in (4.159a). We let P=P45 a n d N=N135 to shor ten the 
expressions in (4.159): 

Pi (H. V, P, N) = 0.37H + 0.49HN + 0.37HP + 0.39HPN. (4.159a) 

P2(H,V,P,N) = 0.3V + 0.39VP ; and (4.159b) 

p3(H.V,P,N) = 0.31H + 0.61HN + 0.31HP + 0.61HPN. (4.159c) 

C h a n t h e n t akes the t e rm from each of the polynomials in (4.159) 
with t he m i n i m u m n u m b e r of s t rokes a s the correct s t roke for the 
crisp charac te r being inferred. Thus , from the first t e rms in each of 
the polynomials in (4.159) we have the three ordered s t rokes {1,2,3} 
= {H, V, H}, so the method correctly infers from the t ra ining d a t a 
t ha t ± = x <- G. Finally, Chan (1996) gives the following va lues for 
the degree of m a t c h y in (4.157c) between G a n d each of the fuzzy 

a t t r ibute g raphs (Gi Ggl of the charac ters shown in Figure 4.104 

as Y(G, G J ) = 0.85, 0.83, 0.37, 0.43, 0.31, 0.84, 0.81, 0.30 as J r uns from 
1 to 8. Looking back a t Figure 4 .104 , t he se va lues a s se r t t h a t 
character x a t 0.85 is the best match to ± , very closely followed by 
X a n d then x ; a n d tha t charac ter x is the worst match , b u t only 
very slightly worse t h a n x . Do you agree with this a s ses smen t of the 
matches between i t and the training da ta? 

C h a n (1996) s t a t e s t h a t t he overall complexity of h i s t r a in ing 
a lgor i thm is "essentially" l inear or 0 (n ) , n being the n u m b e r of 
t ra in ing da ta . No example is given to i l lustrate the resu l t s of th i s 
method on a set of test data . Nonetheless, these two papers provide 
you wi th a nice example of a re lat ional app roach to s t r u c t u r a l 
pa t t e rn recognition with fuzzy models. 

The l a s t m e t h o d we d i s c u s s in t h i s subsec t i on , r epor t ed in 
Sr in ivasan a n d Kinser (1998), also u s e s a relat ional app roach to 
s t ruc tu ra l decomposition of objects in images (and again, images of 

agghhh handwri t ten characters!). The s t ruc tura l information 
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that relates primitives to each other is not carried by a relational 
graph. Instead, each primitive is associated with a membership 
function that aggregates s t ructura l relationships to other 
primitives, and then the structural information is integrated with 
spatial location data (coordinates of other primitives) to produce 
scores for various possibilities submitted to the system. 

Srinivasan and Kinser assert that one key to mammalian image 
recognition is the process of foveation, defined by them as the 
ability to perceive and then rapidly change focal points (regions of 
interest) in an input image. Foveation points are thought to be 
comers, and to a lesser extent, line segments of objects in the image, 
so these are chosen as the primitives for structural descriptions of 
objects in images. This idea stands in sharp contrast to our previous 
examples of sets of primitives, at least for character recognition, 
which have taken various strokes (segments of arcs) as the building 
blocks of structural decomposition. Figure 4.105 illustrates the five 
primitives {ai,a2,a3,a4,a5} that Srinivasan and Kinser (1998) 
nominate for the letter "A". 

ODDLI^ 

A 

h -\ 

/ \ 

Figure 4.105 Five primitives for the crisp, prototypical letter "A" 

In Srinivasan and Kinser's model, each letter in an alphabet may 
require a different set of primitives. Thus, the 26 upper case letters 
used in the English language might require, say, 100 primitives for 
prototypical representation. This notion of primitives is in some 
sense less primitive (!) than previous schemes that rely on many 
fewer primitives. In fairness to these authors, we point out that this 
method has a much more general objective (automatic target 
recognition) than the papers we have discussed that focus on the 
specific application of handwrit ten character recognition. 
Srinivasan and Kinser use character recognition as a nice way to 
illustrate various points of their model, and do not claim that it will 
compete well in this particular application domain. 
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How are the prototypes for various characters found? Much hke 
Chan and Cheung (1992), an earlier effort discussed in Srinivasan et 
al. (1996) depended on human derived crisp prototypes for each 
letter. And in a manner very like Chan (1996), Srinivasan and 
Kinser (1998) then turned to a trainable learning model that could be 
used to derive primitives from training data. The learning model 
discussed in Srinivasan and Kinser has several elements. First, 
foveation points are detected by a pulse coupled neural network 
(PCNN), which essentially functions like a combined edge and 
corner detector. The PCNN (Johnson, 1994) is a biologically 
motivated computational structure that attempts to model the 
visual cortex of the cat. Srinivasan and ICinser assert that a by
product of the PCNN's inherent ability to segment images is that it 
collects foveation points (edges and comers). 

Once the foveation points are found, each foveation point from the 
PCNN image is transformed into a new image by applying a "barrel" 
transformation which is centered at the detected foveation point. 
The purpose of the barrel transformation is to distort the image, 
thereby placing more emphasis on intensities in a neighborhood of 
the foveation point. The functional form of the barrel 
transformation is given in polar coordinates. For example, the r 
(radius) component of each point is transformed as r^^^ = foij/d*^"^, 
where d is half of the frame width and the parameter b controls the 
amount of distortion introduced at this location. Srinivasan and 
Kinser show the five new images that result from applying this 
barrel transformation to each point in {ai,a2,33,34,as) for the 
letter "A" in Figure 4.105. 

Once primitives are extracted, each prototype (such as the set of five 
in Figure 4.105) is used to develop a set of fractional power filters 
(Kumar, 1992) based on Fourier coefficients gotten from the image. 
This set of filters provide one part of the classification strategy, 
because they are used to compute the correlation between the trained 
filter (of a particular primitive) and a detected primitive in an image 
that is to be classified. For example, the set of primitives in Figure 
4.105 would result in a set of five correlation filters which act as 
peak detectors for each foveation point produced by the PCNN. 

Structural information about the relationships of primitives to 
each other is imbedded in a set of membership functions as follows. 
For each foveation point in a primitive, a "fuzzy fan" is constructed 
that looks for each of the other primitives that are expected for the 
template being used. The fuzzy fan acts jus t like an angle - limited 
sweep searchlight whose intensity falls off as the angle from the 
center of the search increases on either side of the expected location 
of the target (which here is another primitive in this particular 
template). Figure 4.106 (Figure 8 of Srinivasan and Kinser, 1998) 
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shows the four fuzzy fans (not to be confused with the FANs = fuzzy 
aggregation networks in Section 4.7) that are centered at the 
primitive a that search for the other four primitives in the letter 

"A" that are shown in Figure 4.106. 

Figure 4.106 Fuzzy £EUIS from a to: a , a , a and a 

In each of the four views in Figure 4.106 Imagine yourself positioned 
at the center of primitive a . Suppose that you sight directly towards 
the known center of the prototypical primitive a as shown in the 
upper left panel of Figure 4.106. Since a is directly in your line of 
sight, the membership of this sighted crisp primitive will be 1 in the 
fuzzy set of locations near the expected (angular) location for a . On 
the other hand, if instead of a , the foveation point that you see is 

either left or right of the center of search by an angle 0̂  or 0j., the 
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membership of the sighted point will decrease as the angle from 
center increases. Srinivasan and Kinser (1998) specify limits on 
each set of sweep angles. For a searchlight centered at a , the four 
sets of limit angles depicted in Figure 4.106 starting at the upper left 
panel and working clockwise, i.e., a , a , a and then a , are: 

e, ={30M0°,25°,30°}, er={15M5°,20M5°}. The membership 

function m^g ̂ a^ • l^- ̂ ^° 1 '"̂  l^' 1̂ decreases linearly with 6 from 1 at 
0 = 0 to 0 at the left and right limits of each search pattern. Thus, 
the structural relationship (here angular information) between a 
and the four other foveation points that can be related to just this 
primitive for the letter "A" is captured by the values of the four 
membership functions m^^-^ak . k = 1, 3, 4, 5. 

For the letter "A" each of the 5 primitives shown in Figure 4.105 will 
produce 4 membership values, so application of the structural 
template for this letter to any test input results in a set of 20 
membership values. In operation then, each character will have a 
crisp template which consists of: a set of primitives such as the ones 
in Figure 4.105; a set of correlation filters, one for each primitive; 
and a set of (angle measuring) membership functions, one for each 
primitive. When an input image is submitted to the recognition 
system the PCNN detects all foveation points in it. Each foveation 
point is expanded into a set of images for each possible template. 
Next, a given point is compared to all templates by computing its 
"fuzzy score". Srinivasan and Kinser (1998) use any one of four 
scoring indices. Finally, the input character with the highest fuzzy 
score is declared the winner, and the input character receives this 
crisp label. 

Srinivasan and Kinser (1998) give some very limited results based 
on training and testing with a few dozen samples of the letters "A" 
and "M". Error rates are not discussed at length, so the general 
utility of this model as a character recognition system is very hard 
to assess (and, as we have already mentioned, these authors really 
have other fish to fry an5rway). However, this is a nice example of 
how fuzziness can be used to incorporate structural information 
into classifier design that is not dependent on either the formal 
language or relational graph approach, so we think it has a lot of 
pedagogical value in the context of this section. 
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4.11 Comments and bibliography 

Feature analysis 

We first stated and illustrated the importance of feature analysis in 
Section 2.5, and have iterated this point many times over in this 
chapter, and will do so again in Chapter 5. Using many features 
increases the time and space complexity of classifier design. More 
surprisingly, increasing the number of independent features used 
during supervised learning beyond some (theoretically unknown) 
optimal number can actually degrade classifier performance! 
Hughes (1968) demonstrated that when the number n of samples 
available for design is fixed, increasing the number of features p 
beyond a certain size is counterproductive - that is, the apparent 
error rate of D will increase as p increases. Another point worth 
repeating is that the quality of a set of features depends importantly 
on the algorithm that uses them. Thus, features liiat endow a k-nn 
classifier with a low error rate might not be useful for training good 
1-np designs. 

In some cases, mapping the original features into a new set can 
actually improve performance in classification problems. This is 
effectively what is done by multilayered neural networks, where we 
can regard in outputs of any hidden layer as new features derived 
from the input values to the layer in question (Haykin, 1994). 
Chiang and Gader (1997), and Gader et al. (1997b) demonstrate this 
quite effectively in the omnipresent handwritten word recognition 
domain. The problem is the same as that discussed in Example 
4.12, where dynamic programming is used to combine groups of 
primitives (pieces of characters resulting from an oversegmentation 
of a word) to generate the match confidence between that actual 
image and a string from a lexicon. The key to improved 
performance is in generating "good" upper and lower case character 
confidences for the various unions of primitives. The baseline 
system used was a pair of MLP's (one for upper case and one for lower 
case) which had standard input feature sets and 27 output nodes: one 
for each character and one node for "non-character". It is this last 
situation that is problematic: how do you characterize "non-
characters"? 

The approach taken in (Chiang and Gader 1997, and Gader et al. 
1997b) was to train a 15 x 15 Self-Organizing Feature Map (SOFM) on 
the original feature data only for valid characters. After training, 
the activation levels of the 225 SOFM nodes for a given input were 
used as features to train a MLP. In a test (using standard US Postal 
Service data sets), the baseline MLP's did considerably better than 
those trained with SOFM activations at doing isolated character 
recognition (77.5% vs. 73.9% correct in testing). However, the goal 
is not isolated character recognition, bu t handwritten word 
recognition. Hence, this is again a situation that calls for the 
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principle of least commitment. In fact, valid characters produced 
well-defined activation regions, while non-characters generally had 
uniformly low activation values across the SOFM. Putting both 
neural network confidence generation devices into the dynamic 
programming module demonstrated the advantage of the feature 
mapping. Using the SUNY "BD" city data set (317 words), the 
transformed feature networks produced a 10% increase in word 
recognition over the baseline on lexicons of average size 100 (89.6% 
vs. 79.8% correct in testing). The paper in IEEE Computer (Gader et 
al., 1997b) contains a very hip picture - reproduced here as Figure 
4.107 - which demonstrates the topological properties of the SOFM 
in a digit recognition problem - the node prototypes(weight vectors) 
for a lOx 10 SOFM trained on the raw digit images are displayed as 
images. Note how the "prototype images" blend into each other in the 
topological display space. 

il 
I 
I 
ii 

* 

Figure 4.107 A SOFM represents fiizziness of the character classes 
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Any and all numerical features that can be extracted from objects 
can be used as a basis for fuzzy clustering and classifier design. 
However, not much work has been done on extracting fuzzy 
numerical features or features from fuzzy subsets of objects. We will 
discuss some of the topics mentioned in this paragraph in more 
detail in Chapter 5, but we include a few sentences on them here 
because you might expect to find this discussion at the end of 
Chapter 4. For two dimensional fuzzy subsets Rosenfeld (1979, 1984, 
1992) and Rosenfeld and Haber (1985) extended many concepts from 
crisp geometry to fuzzy geometry, and generalized many terms that 
are traditionally used in the analysis of spatial properties of objects 
in binary images to the fuzzy case. 

Some of the spatial properties that were defined by Rosenfeld that 
will be discussed in Chapter 5 include fuzzy area, fuzzy perimeter, 
fuzzy height, fuzzy extrinsic diameter, fuzzy intrinsic diameter, and 
fuzzy elongatedness. Pal and Rosenfeld (1988), Pal and Ghosh (1990) 
and Pal (1992b) have defined similar geometric attributes such as 
index of area coverage, degree of adjacency, length and breadth, and 
have developed low- and intermediate-level vision algorithms based 
on such attributes. Dubois and Jaulent (1987) showed that some of 
Rosenfeld's definitions of the geometric properties of fuzzy regions 
namely area, height and perimeter correspond to expected values in 
evidence theory. Krishnapuram et al. (1993a), Krishnapuram and 
Medasani (1995), and Medasani et al. (1999) consider the 
computation of fuzzy features from real images. 

Apart from the fact that the definitions for properties of fuzzy 
regions reduce to the corresponding crisp definitions when the 
images are binary, no other theoretical justification has been 
provided in the literature for the use of fuzzy set theory to measure 
geometric and non-geometric properties of image regions (Medasani 
et al., 1999). In addition to our discussion on spatial relations in 
Section 4.10.B, several other authors have developed methods of 
defining fuzzy spatial relationships among regions in the plane 
(Keller and Sztandera, 1991, Keller and Wang, 1996, Krishnapuram 
et al., 1993a, Miyajima and Ralescu, 1994, Wang and Keller, 1999a). 
In Chapter 5 fuzzy spatial relations will be defined and used in 
image processing applications. 

Gitman and Levine (1970) augment the measured features with the 
"importance" of each feature, and cluster with this added 
information as part of the data. Bezdek and Castelaz (1977) report 
that a fuzzy 1-np classifier (the prototypes being the cluster centers 
generated by FCM) increases by about 10% the apparent probability 
of correct classification above (an estimate of) the asymptotic error 
rate of all k-nn classifiers for a set of n=300 stomach disease patients 
each represented by 11 binary-valued features. (Bear in mind that the 
apparent error rate is a finite sample based statistic - the asymptotic 
optimality of k-nn rules via Cover and Hart's famous theorem (1967) 
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is well known.) Dl Gesu and Maccarone (1986) used cluster analysis 
together with possibility theory for selecting the most significant 
variables from electron spin resonance spectroscopy measurements 
on patients with a brain injury. Bezdek and Chiou (1988) use FCM 
clustering of labeled data followed by feature extraction with 
principal components, Sammon's algorithm or triangulation to 
produce visual displays of high dimensional data. Petersen et. al 
(1997) study the use of fuzzy decision trees (Cios and Sztandera, 1992) 
to select subsets of features from biosignals collected to assess the 
depth of anesthesia of medical patients. 

Pal and Chakraborty (1986) use fuzziness measures such as the 
index of fuzziness and entropy to compute interset and intraset 
ambiguities for feature evaluation. Pal (1992a) extended this idea to 
evaluate the importance of any subset of features, to provide an 
average quantitative index of goodness and a comparison of the 
algorithm with statistical measures like divergence, J-M distance, 
and Mahalanobis distance. The application of Pal's algorithm has 
also been demonstrated on six class, three feature vowel data, four 
class five feature consonant data, and three class fifteen feature 
mango leaf data. One drawback of this approach is that it can be 
used only to assess features for a pair of classes (c=2). 

When c > 2, it may happen that feature f is good for discriminating 
between class i and j , while feature f may be a better discriminator 
between classes k and q. Further, some other feature f may be, on 
average, a better discriminator for the classes i, j , k, and q taken 
together. Thus, Pal and Chakraborty's feature evaluation index is 
not particularly useful for assessing the goodness of a feature with 
respect to all c classes taken Jointly. To get around this problem Pal 
(1992b) extended his earlier work by defining the average/eature 
evaluatton index (AFEl) as the weighted sum of the FEl's for all pair-
wise classes, where the weights are sample-based estimates of the 
prior probabilities of the classes used to compute the FEI. Thus, the 
AFEI depends on the cardinalities of the different classes - an 
undesirable dependency. De et al. (1997) further modified the AFEl 
by defining an overall feature evaluation index, which is not 
directly influenced by the size of the classes, and which considers all 
possible pairs of classes. They compare these fuzzy indices to several 
non-fuzzy methods for feature selection based on multilayer 
perceptron neural networks. 

Recently Thawonmas and Abe (1997) proposed a feature selection 
method based on class regions generated by the fuzzy classifier 
discussed in Abe and Lan (1995). Their (Thawonmas and Abe, 1997) 
feature selection algorithm eliminates irrelevant features based on 
an index they call the exception ratio, which is computed using the 
degree of overlap between class regions. The exception ratio is 
defined so that given two feature subsets of the same cardinality, the 
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feature set with the lowest sum of exception ratios is expected to 
contain the most relevant features. Based on this idea their 
algorithm uses a backward selection search (Fukunaga, 1991) which 
starts with all the given features and eliminates irrelevant features 
one by one. Thawonmas and Abe evaluate the quality of the selected 
features using the fuzzy classifier described in Abe and Lan (1995) 
and a FFBP neural network. The reported performance is quite 
satisfactory. 

Among the many non-fuzzy techniques that have been employed for 
feature selection, methods based on the k-nearest neighbor rules 
have been particularly effective. See Devijver and Kittler (1982) or 
Dasarathy (1990) for good introductions to this vast (non-fuzzy) 
literature. A simple but effective method to reduce the number of 
subsets considered is called forward sequential search. In this 
method all subse ts of 1 feature are used. In a s tandard 
training/testing paradigm such as "leave-one-out" or n-fold cross 
validation (jackknifing) as discussed in Section 4.1, these subsets 
are scored for overall recognition. Leave-one-out requires that the 
classifier is trained on all but one sample, that sample is applied as 
a test, the result is noted, and the process is repeated until all 
training samples have been left out for testing. The recognition rates 
are compiled from the tests. This technique is resource consuming, 
but is good, particularly if the size of the training set is limited. The 
idea is that most (all but one vector) of the data is used to build the 
classifier, so it should behave like the final version using all the 
data. But each time, an unused data point is shown to the algorithm 
for testing. N-fold cross validation is just a less exhaustive version 
of leave-one-out. Here, all but one nth of the data is used to train the 
system, the left out portion is scored, and the process is repeated n 
times. 

After the best single feature is chosen, subsets of two features are 
considered. However, instead of looking at all such sets, only the 
sets which contain the single best feature are used. Scoring rates for 
the two feature subsets should increase over those for one feature. 
This process is repeated always adding one feature to the winner of 
the previous step. Clearly, it is possible that the best two features do 
not contain the best one feature, but this approach is a reasonable 
compromise to having to try all subsets. What should happen is that 
after a while, the increase in scoring rate upon adding features will 
level-off. That's when you can stop the process. 

Genetic algorithms have also been used for feature selection and 
extraction (Kuncheva and Bezdek, 1998, Pal et al., 1998). See 
Velthuizen et al. (1996) for a study of the effectiveness of using GAs for 
feature selection when various fitness functions (including FCM 
functional J ) are used to evaluate linear combinations of the 

m 
original features. 
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Prototypes and prototype classifiers 

Multiple prototype classifier design is not heavily represented in the 
literature. Chang (1974) discussed one of the earliest (non-fuzzy) 
methods for generating multiple prototypes from labeled data, and 
illustrated it by finding 14 prototypes in the Iris data that were 
consistent (zero resubstitution errors). A modified version of Chang's 
algorithm given in Bezdek et al. (1998a) achieves consistency for Iris 
with 11 prototypes. Dasarathy (1994a) discusses a technique for 
finding what he calls a minimal consistent subset of the training 
data (recall that a set of labeled prototypes is consistent if they 
produce zero resubstitution errors). This technique selects points 
from the labeled data (cf. Figure 4.1) as opposed to extracting points 
from it (cf. Figure 4.2), and finds 15 vectors in the Iris data that 
provide a consistent 1-nearest neighbor (Section 4.4) design for Iris. 
Kuncheva and Bezdek (1998) show that Dasarathy's method is not 
minimal by finding 11 consistent points in Iris using a genetic 
algorithm technique. Yen and Chang (1994) develop a nearest 
multiple prototype classifier by modifying FCM, resulting in a 
method they call MFCM. The best results they report for Iris are 8 
errors using 7 relabeled MFCM prototypes. Yan (1993) uses a two 
layer feed forward neural network to construct prototypes from the 
training data. 

We offer a conjecture about the efficacy of using sequential versus 
batch models to generate multiple prototypes for the 1-nmp 
classifier. Sequential updating of the prototypes in CL models such 
as LVQ, SOFM, GLVQ-F, FOSART and SCS encourages "localized" 
prototypes which are able, when there is more than one per class, to 
position themselves better with respect to subclusters that may be 
present within the same class. This leads us to conjecture that 
batch algorithms are at their best when used to erect 1-np designs; 
and that sequential models are more effective for 1-nmp classifiers. 
When c is small relative to n (e.g., c = 5 regions in an image with n = 
65,536 pixel vectors), batch models (Chapter 2) probably produce 
more effective protot3rpes, because they take a global look at the data 
before deciding what to do; but if c = 256 (e.g., when using a VQ 
algorithm for image compression), sequential updating may hold an 
advantage, as it localizes the update neighborhood, and that 
objective is more in line with sequential models. Karayiannis (1997c) 
discusses a general methodology for constructing fuzzy LVQ-type 
competitive learning algorithms. 

Another factor that must be weighed here is the number of 
parameters, say np, that an algorithm is asked to learn. The integers 
c (number of classes) and p (number of features), along with n 
(number of samples) determine np in almost all of these models. 
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Usually p and n are fixed, so n increases with c (not necessarily 
linearly). There is very little theory that relates to the adequacy of 
the four parameters c, p, n and n as functions of each other, and 
whatever you believe about this, your decision about what prototype 
generator to use should also reflect the difference between the type of 
optimization done by sequential (local) and batch (global) methods. 

We pointed out in section 4.4 that one way to regard the k-nn rule is 
as an extreme form of the multiple prototype classifier (or vice 
versa), where every point in the training data is regarded as a 
prototype for its class. In this case the 1-nn and 1-np rules coincide. 
We have not devoted much space to algorithms that select a subset 

X c Xtj- of "high quality" points from the training data X (as 
illustrated in Figure 4.1), because there have not been many fuzzy 
models developed towards this end. This is an important and viable 
option for both crisp and soft classifier design, and we want to 
devote a paragraph or two to this topic for system designers, who, 
after all, just want the best possible classifier. 

Kuncheva and Bezdek (1999) develop a setting for generalized 
nearest prototype classifier design that provides a common 
framework for a number of prototype generators discussed in 
Chapter 4. These authors discuss prototype classifiers based on 
clustering and relabeling (Section 4.23.B); radial basis function 
networks (Section 4.8.C); learning vector quantization (Section 
4.3.D); nearest neighbor rules (Section 4.4); and Parzen windows 
(Duda and Hart, 1973). Five questions are discussed by Kuncheva 
and Bezdek: (i) how many prototypes to look for? (ii) how to look for 
the prototypes? (iii) how to label the prototypes? (iv) how to define 
similarity between the training data and prototypes? and (v) how to 
combine the label information with the similarities? 

Numerical examples based on the (real) Iris data and the 2-spirals 
data lead Kuncheva and Bezdek (1999) to conclude that methods 
which don't use the labels during the extraction or selection of the 
prototypes (such as clustering and relabeling) cannot generally be 
expected to compete with supervised learning methods that use the 
labels actively during acquisition of the prototypes. Their best 
result for the Iris data is 2 resubstitution errors using c = 3 selected 
prototypes (points in Iris) found by an edited 1-nn rule. Compare 
this with the results in Table 4.10, where LVQ needs c = 7 extracted 
prototypes (points built from Iris) to achieve 3 resubstitution errors 
on Iris. Of course, we have seen in Example 4.21 that a standard 
multilayered perceptron can achieve 0 resubstitution errors on Iris 
without using prototypes. This may leave you wondering - why 
bother with prototype classifiers at all? Well, it's certainly a point 
worth thinking about. Perhaps the best answer we can make is to 
reiterate that they are simple, cool, and effective in many problems, 
and beyond this, they are pleasingly intuitive. Why? We remind you 
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of our quote by Pavlidis (1977, p. 1): "the word pattern is derived 
from the same root as the word patron and, in its original use, 
mccins something which is set up as a perfect example to be imitated. 
Thus pattern recognition means the identification of the ideal 
which a given object was made after.". 

k-nn rules 

Apparently Jozwik (1983) wrote the first paper on the fuzzy k-nn 
rules. Keller et al. 's (1985) version of fuzzy k-nn rules was discussed 
at length in Section 4.4. Bezdek et al. (1986c) gave a somewhat 
different presentation of fuzzy k-nn rules, and made a comparison 
between their approach and that of Jozwik. Kuncheva and Bezdek 
(1999) discuss a very general framework for generalized nearest 
prototype classifiers that includes soft k-nn rules as one instance of 
their model. 

There are many other interesting variations of the k-nn rule. For 
example, Dudani (1976) weighted the i-th nearest neighbor x.̂ , of the 

point z to be classified as follows. Let {8,̂ , = 5(x.j., z): i = 1 k) be the 
ascendingly ordered set of nn distances to z, and define 

^ ( 1 ) = ^ °(k) "(1) 
1 :S(k)=S,i) 

,i = l,...,k 

Then vector z is assigned to the class for which the sum of the 
weights is the maximum among the k-nearest neighbors. 

Denoeux (1995) recently proposed a classification scheme which 
integrates the evidence aggregation characteristic of Dempster-
Shafer theory and the voting feature of k-nn rules. Let 
X„ J ={x.j •i = l k}be the k-nearest neighbors of z, and suppose 

that x,j. comes from class q. The point x.̂ . increases our belief that z 
could be a member of class q but it does not provide evidence that 
ensures 100% confidence in this belief. This evidence can be 
represented by a basic probability assignment (bpa). Let C = (1, ..., c} 
be the index set on the c classes, P(C) be the power set of C, and put: 
mj({q}) = a,; and m^(C) = 1 - a^ , where mj(A) = OVAe{P(C)-{C.(q}}} 
and 0 < ttj < 1. A bpa like this can be written for each x.j, e X,j^., and 

the k bpa's can then be combined using Dempster's rule to get a 
composite bpa. If the composite bpa provides the maximum support 
for class q, tiien z is assigned to class q. The success of this scheme 
depends on the choice of the {a^}. Denoeux suggested using 
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aj=aQe ^i*'"""!'̂ ' , p 6{1,2 , . . .} .Y, >OVi,andO<aQ <1 . According to 

Denoeux (1995), a good choice for a^ is a^ =0 .95 , and he asserts 
that this algorithm often performs better than the standard crisp li
nn classifier. 

There is another family of nn classification algorithms for 
univariate data that uses ranks instead of distances. The rank 
nearest neighbor (rnn) classifier was first proposed by Anderson 
(1966) for c = 2 classes. Instead of using the distance to z from the 
training samples the ranks of the training samples are used. 
Anderson's work was further investigated by Das Gupta and Lin 
(1980) and later extended by Bagui (1993) to more than two classes. 
Bagui's algorithm sorts (ranks) the training data along with z and 
classifies z as follows : (1) if both the immediate left hand (LH) and 
right hand (RH) neighbors belong to the same class, then classify z to 
that class; (2) if z is either the smallest or the largest element then 
classify z to the class of its immediate mn; (3) if the immediate LH 
and RH mn's belong to two different classes then classify z to either 
class arbitrarily. This algorithm is known as the 1-stage univariate 
rank nearest neighbor (1-Urnn) rule. The 1-Urnn rule can be 
generalized in two ways (Bagui and Pal, 1995) : (1) like the k-nn rule, 
the 1-Urnn is extended to consider m rnns on either side of z 
resulting in the m-stage univariate rank nearest neighbor (m-Urnn) 
rule; (2) extension of the m-Umn rule to multivariate data, i.e., the 
m-stage multivariate rank nearest neighbor (m-Mmn) rule. 

The m-Umn rule, like the 1-Umn rule, has three steps. The first two 
steps of 1-Umn remain the same for m-Urnn. Step (3) is changed to : 
(3') If the immediate LH and RH mn's belong to two different classes 
check the second LH and RH mn's. If they belong to the same class 
assign z to that class; else check the 3rd LH and RH mn's and so on. 
The process is continued until we get both qth LH and RH mn's , q < 
m are from the same class; otherwise z is arbitrarily assigned to 
either class of the mth LH or RH mn. 

Although the m-Umn scheme has interesting theoretical properties, 
classification rules for univariate data are not very useful for 
practical applications as we hardly ever encounter real problems for 
univariate data. To overcome this limitation Bagui and Pal (1995) 
generalized the m-Umn rule to multivariate data. The m-Mmn rule 
applies the m-Umn rule to each of the p features. For every feature j , 
m-Umn can produce two types of outcomes which can be represented 

as either (1) u „ = j Q ! J I O r (here the m-Umn rule for the jth feature 

[0.5 ;i = s l 
unambiguously suggests class s); or (2) u = ] 0.5 ; i = r I (here the 

[O.O ;i ;^s,r j 
m-Umn rule at the mth stage for the jth feature suggests either of 
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p 
classes s or r ). Tlien compute Uj = X u . If u = max{u.} is unique, 

then z is assigned to class q; otherwise, z is arbitrarily assigned to 
any class among the set of labels that attains the maximum value. 

Fuzzy integrals 

We have often used the term "the fuzzy integral". This is a bit 
misleading because "the fuzzy integral" is a general term that 
identifies a wide family of functionals which comprise two basic 
subgroups - the Sugeno and Choquet integrals. There are many 
variations of fuzzy integrals in each of these subgroups. Keller et al. 
(1994a) summarize a few of the many variants that have been used 
in pattern recognition. A new book on fuzzy integrals contains 
extended discussions about many tools based on this technology 
that are germane to our field (Grabisch et al., 1999). 

Rule-based classifiers 

Safavian and Landgrebe (1991) provide a nice survey of many topics 
connected with decision trees (with the curious and notable 
exception that they completely ignore the Important interacttue IDS 
and C4.5 methodologies of Quinlan (1983, 1986, 1993)), and we have 
borrowed heavily from their paper for some of the descriptive 
material in Section 4.6. Jang (1994) and Jang et al. (1997) give a nice 
account of the use of CART in connection with s tructural 
identification in fuzzy systems. We have not been able to find any 
work on the fuzzification of CART itself, or the use of CART in fuzzy 
classifier tree design. Some of the fuzzy decision trees discussed in 
Section 4.6 can be regarded as fuzzifications of C4.5 trees, even 
though the authors refer to IDS as the tree building principle used, 
because C4.5 adds the idea of outpoints for continuous variables to 
the basic structure of IDS. 

The work of Tani and Sakoda (1992) is often mistakenly cited as 
having a "fuzzy IDS" method in it, but these authors apply crisp IDS 
as we have given it in Section 4.6.C to the system identification 
problem for a TS system. In this respect Tani and Sakoda is very 
similar to Jang (1994), which is often quoted as describing a "fuzzy 
CART" method, but which uses crisp CART to initialize some of the 
parameters of TS systems. 

Lee (1992) gives a straightforward application of Wang and Suen's 
(1987) fuzzy decision tree classifier to Chinese character recognition 
data. Lee's example uses 64 apparently different (from Wang and 
Suen's) features extracted from each character, including mesh 
counts, crossing counts, contour line lengths, peripheral areas, 
connective pixels and Fourier descriptors. Lee also provides a 
comparison of error rates using the 1-nn rule, Chang and Pavlidis's 
fuzzy decision tree with branch-and-bound-backtracking search. 
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and Wang and Suen's fuzzy decision tree method with pruning and 
probabihstic similarity matching. In his study the two fuzzy 
decision trees had recognition rates that were roughly twice as good 
as the 1-nn rule, with the Wang-Suen design being slightly better 
than the Chang-Pavlidis classifier. 

Yuan and Shaw (1995) discuss a modification of ID3 for categorical 
data that uses the fuzzy entropy of Deluca and Termini (1972) to 
measure the vagueness of each linguistic term in a set of given 
memberships associated with each attribute value in categorical 
data. They assess the ambiguity of each attribute by averaging a 
measure built from normalized possibility distr ibutions of 
memberships for each object due to Hagashi and Klir (1983). This 
can be done for each attribute value, and for the given possibilistic 
label vectors attached to the training data. Tree induction follows 
the standard ID3 design, except that the impurity function for node 
splitt ing is based on classification ambiguity instead of 
probabilistic entropy. 

Yuan and Shaw give one example of their technique using a set of n = 
16 examples with 4 linguistic variables that collectively possess 8 
linguistic values. Their data supposedly have c = 3 crisp target 
classes, but each training datum is labeled by a possibilistic 
Uj e N ^. The data also come mysteriously equipped with a complete 
set of fuzzy label vectors attached to each of the four attributes for 
each of the 16 cases. Yang and Shaw apply their method to this data 
to find a fuzzy decision tree with three levels and 6 pure leaves with 
crisp labels. They allude to computing path firing strengths for test 
inputs, but are not specific, sajdng only that the consequent of rule i 
is set equal to its premise membership. Running the tree on the 
training data produces 3 errors in 16 tries - the resubstitution error 
is nearly 19% on 16 inputs. It's hard to imagine that this version of 
fuzzy decision tree classification will be useful for real data. 

Weber (1992) reports on a version of fuzzy IDS that can be used with 
numerical or categorical feature data. Tree induction again follows 
the standard ID3 design, except that Weber's impurity function for 
node splitting is based on Deluca and Termini's (1972) fuzzy entropy. 
Weber conditions the training data by fuzzifying it with 
probabilities of fuzzy events. In a very similar spirit, Cios and 
Sztandera (1992) investigate the use of four measures of fuzziness as 
impurity functions to accelerate the tree building process in their 
version of IDS for ordinal data. They report that the best one of the 
four tried was Kosko's (1992) fuzzy entropy combined with Dombi's 
generalized fuzzy set operations (see Klir and Yuan, 1995 for a nice 
discussion of various intersection and union operators, including 
those of Dombi). 

Hall (1996) describes the use of the crisp C4.5 decision tree classifier 
(Quinlan, 1993) for detecting microcalcifications in mammograms. 
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His work used 40 images from the Nijmegen data base (see Bezdek 
and Sutton, 1998). The images were paired views of breasts of 21 
patients, each of whom had microcalcifications in at least one 
breast. Each image was 2048x2048 in size with 12 bit intensity 
values. One or more clusters of microcalcifications in each of the 40 
images were marked (circled) by two radiologists (type GTl ground 
truth) . Thus , each circled area ("cluster") contains pixels 
corresponding to both microcalcified and normal tissue. He alludes 
to generalizing this to a fuzzy decision tree, but we are unaware of a 
follow-up study. 

Bensaid et al. (1998) present a straightforward application of Chi 
and Yan's (1996) fuz2y IDS method that we discussed in Section 4.9 to 
the classification of electrocardiogram data. The one new wrinkle 
added to Chi and Yan's method by these authors is that they use a 
feed forward cascade correlation neural network (Fahlman and 
Lebiere, 1990) instead of a multilayered perceptron to perform the 
"optimized defuzzification" as done by Chi and Yan. Bensaid et al. 
report that with 53 training data, 53 test data, and 48 validation 
data, they achieved zero error rates on both the test and validation 
data sets. They also state that with the same data, a feed forward 
cascade correlation network commits 7.5% errors on the test set, 
and 14.6% errors on the validation set. Finally, they state that crisp 
rules from a decision tree built with ID3 commit 27% errors on the 
validation data. Bensaid et al. opine that pruning the crisp IDS 
decision tree before fuzzification of its rules would likely lead to a 
smaller tree. 

Another decision tree based classifier for real data (crisply labeled, 
with c classes) is called real IDS (RIDS) by its creators (Pal et al. 1997, 
Pal and Chakraborty, 1997). RIDS is a p-level decision tree, where p 
is the number of features, that uses a ranking of the features. 
Features are used in the order of their importance. Every internal 
node has exactly c children. A node in level k is associated with a 
threshold value and a prototype with the top-ranked k feature 
values of the prototypes. Of the k components, the first k-1 
components are inherited from the parent node. The prototypes are 
computed as the centroids of the respective classes. Each leaf node 
represents a crisp class uniquely - that is, RIDS builds pure decision 
trees. 

An unlabeled data point z starts at the root of the tree, and at each 
level RIDS tests the similarity of z to some prototype. This is done by 
computing membership values using the fuzzy c-means formula in 
(2.7a), and then assigning the input datum to the clan of the node 
with the highest membership value, provided the highest 
membership value is greater than the associated node threshold. 
Otherwise, input z traverses but one path in the tree, ending up at a 
pure, crisply labeled leaf with a high level of agreement. RIDS has an 
"adaptive" feature in that during the initial tree creation process, all 
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thresholds are set to 0.5, and they are further refined using a genetic 
algorithm. 

When X e 9tP has continuously valued real features, learning the 
rules of a crisp BDT amounts to finding the constants along each 
coordinate axes that define hyperplanes that give tree T its crisp rule 
patches. For example, the hyperplanes in Figure 4.24 have 8 
parameters that we could write as a parameter vector w = 
(a,b,c,d,e,f,g,h)^. When T is interpreted as a network, w is a network 
weight vector as in Section 4.9. These are the parameters we need to 
acquire by training with the lO data. The goal is to find a w so that 
the resultant tree classifier is consistent, E_, (X. IX.) = 0. 

°DT,w t t 

Cast in these terms, it is not surprising to learn that many authors 
have given methods for transforming decision trees into various 
types of neural network classifiers (Cios and Liu, 1992, Sankar and 
Mammone, 1993, Sethi, 1990, 1995). Sethi (1995) gives a nice 
introduction to the conversion of soft decision trees into various 
neural networks. Sethi regards a decision tree that has internal 
node functions which compute probabilities for the outcome of a 
test, and inferencing based on Bayes rule at each leaf, as a soft 
decision tree, and so his results are directly applicable to many 
types of fuzzy decision trees. In particular, the fuzzy decision tree of 
Chang and Pavlidis (1997) is a special case of the mathematical 
structure used by Sethi, so the tree at Figure 4.32 and many of its 
descendants can be implemented as neural network classifiers. 

Sethi argues that the search problem attacked by Chang and 
Pavlidis and others- vi, that all paths in a soft decision tree must be 
traversed to their leaves before an input can be labeled - is handily 
solved by mapping the soft decision tree onto a feed forward neural 
network. At the very least this seems computationally attractive, 
since (at least conceptually) all M paths from the root to the leaves 
can be traversed in parallel in the NN implementation. After this 
conceptual hurdle is cleared, an additional advantage of this scheme 
is that the node decision functions [<^^} at internal vertices in the 
tree representation become node functions {^^} in the hidden layer 
neurons of the neural network. This paves the way for any of the 
node functions discussed in Section 4.7.C or elsewhere to become 
candidates for decision functions in soft decision trees. For 
example, the hyperplane/sigmoidal combination that is so heavily 
favored at computing nodes in FFBP networks and many of the 
methods for training NNs that you know and love become ways to 
implicitly construct soft decision trees. We say implicitly, because 
soft decision trees can be converted to multilayered neural 
networks, but to our knowledge there is no general procedure for the 
converse operation of finding a soft decision tree that corresponds 
to a given multilayered network. 
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Given the equivalence of some types of soft decision trees and 
certain neural networks, it should come as no surprise that many 
authors have compared these two styles of classifier design (Weiss 
and Kapouleas, 1989, Atlas et al., 1990, Shavlik et al., 1991, Chi and 
Jabri , 1991, Sethi, 1995). For example. Atlas et al. compare 
classification and regression trees built with CART to multilayered 
perceptrons. Their opinion is that theoretical evidence to favor trees 
or NNS is inconclusive, but their computational experiments 
indicate that multilayered perceptrons are always at least as good as 
CART built decision trees. We conjecture that this is because CART is 
at its best in regression analysis, and that C4.5 might have done a 
lot better. Sethi (1995) shows more: he transforms decision trees 
into NNs and compares various features of the two styles. Cios and 
Liu (1992) give an 1D3 algorithm for ordinal data that converts 
decision trees into hidden layers in FFBP neural networks. The 
slant in this paper is a little different - these authors propose using 
1D3 to determine the structure of the NN. In some of these studies, 
the neural implementation is identified as a better choice for one 
reason or another; but in others, the decision tree seems to be the 
preferred structure. From our knothole, this aspect of classifier 
design is still to close to call. 

With the exception of the work on character recognition (Chang and 
Pavlidis, 1977, Wang and Suen, 1983, 1984, 1987, Chi and Yan, 1996, 
Chi et al., 1996a, b) and perhaps, the electrocardiogram data used by 
Bensaid et al. (1998), none of the papers we are aware of apply fuzzy 
decision tree classifiers to real or challenging data. Examples with 8 
or 12 or 16 cases are nice in a paper, since they are manageable for 
writing, and useful pedagogically. But we need classifiers to do real 
work, and tree classifiers have a lot of strikes against them. For one 
thing, it's hard to postulate a real situation where data of the type 
used by, say. Yuan and Shaw (1995) or Janikow (1998) provides a 
natural and easily obtainable representation of a real problem. 
Then there is the matter of complexity. Trees usually have a lot of 
leaves (the tree in Figure 4.39 has 5 leaves for n = 8 training 
examples). For large data sets, the number of leaves (and hence, the 
number of rules obtained using decision trees to extract them) can be 
staggering - recall that Wang and Suen (1987) used several thousand 
leaves in pruned decision trees for classification of handwritten 
characters, and we know of applications of crisp decision trees that 
discuss leaves on the order of 10 . Evaluating all paths to the leaves 
in soft decision trees of this size can take time, compared to, say, 
computing distances to c nearest prototypes. 

You might argue that the conversion of a decision tree to a neural 
network shows that decision trees are useful, but we would counter 
that in this case, why not jus t start with a neural network? Well, 
maybe there are some good answers to our hypothetical question. 
First, it's hard to see what the rules are when they are imbedded in a 
neural network, and the tree structure may provide a useful 
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explanation device for computations made by the neural network 
(provided the number of rules is pretty small). Second, crisp decision 
trees don't usually require the excessive training times that are 
often needed in say, back-propagation style training schemes for 
neural networks (Section 4.7). Perhaps most importantly, trees 
provide us with an alternate way to look at a very useful 
computational structure, and this is always good, because different 
views can only increase our understanding of the underlying models 
we choose and use. 

Our overall impression of fuzzy decision trees for classification is 
that they are not really competitive with some of the other 
techniques discussed in this chapter, and they are not better than 
their crisp counterparts (especially C4.5) that have evolved within 
the machine learning community. It is curious, in light of the heavy 
emphasis placed on pruning trees after building them in the 
machine learning community, that so little effort has been 
expended towards this end in the fuzzy decision tree literature. 

Function approximation 

We have covered four methods for building MA and TS systems from 
data: decision trees, rule extraction by clustering, neural networks, 
and heuristic methods. And we have ignored many more methods 
than we have discussed! Superficially, this field seems important 
for pattern recognition only if the fuzzy system is a rule-based 
classification system. Although this criterion would seem to rule 
out 95% or so of all the papers published about "system 
identification", the fact is that many of the methods developed to 
find, for example, a set of rules for a fuzzy controller, can also be 
used to find a rule-based classifier. This is not always true of course, 
because of the special nature of the output training data, which in 
classifier design are almost always crisp label vectors, not 
observations of (usually) smooth system variables. Moreover, as we 
have seen in subsection 4.6.F, pattern recognition methods (in this 
case clustering) are being used as tools to build fuzzy systems for 
function approximation, and in this respect our interest in this area 
is entirely appropriate. 

Hall and Lande (1998) discuss two methods for extracting fuzzy rules 
for function approximation with crisp decision trees based on 
modifications of the strategy developed by Sugeno and Yasukawa 
(1993). They assume the training data XY has continuously valued 
Inputs and outputs. The output training data set Y set is fuzzified by 
partitioning it with fuzzy c-means clustering, which provides a 
fuzzy label vector for each target output. Cluster validation during 
this step is guided by the validity function of Fukuyama and Sugeno 
(1989). Unpruned decision trees are generated with Quinlan's C4.5 
(Section 4.6.B), and combined Avith the fuzzified outputs using two 
strategies: a fuzzy controller generator model that generates fuzzy 
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CLIPS rules; and a model that uses fuzzy entropy. Two numerical 
examples are given that compare these two models to each other. 
One example is based on approximation of the SISO quadratic 
function S(x) = x^ + x + 168; the authors report a generalization 
MSE of 2.71% on test sets with 122 samples from the interval [50, 
111], and state that a typical design used either 18 or 22 rules. Hall 
and Lande also discuss rule extraction with the well-known Box-
Jenkins (1970) gas furnace data, a perennial favorite for function 
approximators. 

Nie and Lee (1996) extract rules for function approximation from 
labeled lO data by generating point prototypes in the product set XY 
(Section 4.6.G). They develop three variations of LVQ (Section 4.3.D), 
several of which use fuzzy sets, that produce prototypes suitable for 
implementing rules based on the strategy illustrated in Figure 4.56. 
The set of prototype vectors V^^ shown in Figure 4.56 are replaced 
by a set V^" of "rule center vectors" that are found using any of the 
three variations of LVQ. The prototypes have radii (user-specified in 
two algorithms, learned in the third) associated with them that 
allow Nie and Lee to define spherical neighborhoods as shown in 
Figure 4.56. These authors define five different measures of 
similarity between an input x and prototype v ^ , and use these 
measures as a basis for several thresholds (sum of similarities, 
maximum similarity) that control the number of prototypes (and 
hence, number of rules) discovered in XY by their algorithms. 

Once an initial rule base is established, Nie and Lee (1996) refine it 
by merging rules i and j if two rule centers are "close enough", 

determined by comparing „ X Y _ XY 
1 J 

to the radius of the j th 

neighborhood. Three numerical examples are given to demonstrate 
the effectiveness of their techniques for function approximation. 
One example is based on approximation of the SISO function 
S(x) = 3e~^ • sin(7tx). Nie and Lee construct XY by dividing [-3, 3] into 
399 equal length subintervals, and computing S(x) at each of the 400 
subinterval endpoints. Then 300 of the 400 points are drawn 
randomly for training, and the remaining 100 are reserved for 
testing. In this example all three methods determined 30 rules, with 
MSE test errors ranging from 0.0068 to 0.0114. 

Setnes et al. (1998) use the Gustafson-Kessel (GK, Section 2.2.A) 
clustering algorithm to identify parameters for a first order Takagi-
Sugeno fuzzy system. This work is very similar in spirit to our 
example 4.17, the main difference being the type of clustering 
employed. The numerical example given in Setnes et al. is based on 

2 

approximation of the SISO function S(x) = 3e"'' • sin(7tx) + r\, with a 
Gaussian noise term T] = «(0,0.15) added to the function used by Nie 
and Lee (1996). Setnes et al. use c = 7 clusters chosen by 
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Krishnapuram and Freg's (1992) average within cluster distance 
validity measure. These authors report a resubstitution MSE of 
0.0028 on n = 300 training data computed with S(x) for x e [-3,3] 
using only 7 TS rules. This supports our assertion that higher order 
systems have better approximation capabilities than lower order 
ones do. And it also shows, in conjunction with our previous 
discussions of Kim et al. (1997) and Runkler and Bezdek (1998) that 
the clustering algorithm you choose for rule extraction in 1-st order 
TS systems need satisiy jus t one main criterion: it should produce 
prototypes tha t naturally generate linear approximations to 
clusters. 

We pointed out in Section 4.6.G that one of the advantages of using 
clustering algorithms for parametric estimation in fuzzy systems 
was that non-point prototype clustering algorithms often provide 
direct estimates of the output functions of low order TS systems 
(here we include point prototype algorithms such as the GK (Section 
2.3.A) and FCE (Section 2.3.B), whose covariance matrices afford 
estimates of linear clusters). Many rule extraction studies exemplify 
various ways for using point prototypes obtained by clustering 
algorithms such as the c-means models, especially when designing 
MA fuzzy systems. We are not aware of any study that uses selected 
prototypes in the training data (from, for example, edited 1-nn rules 
or genetic algorithms) as opposed to extracted prototypes from the 
data. However, considering the success of selection in prototype 
classifier design, we think that this is probably a viable alternative 
to finding point prototypes by clustering for use in rule extraction 
problems. Of course, selection can be used this way only for rule 
extraction methods that use points in the given 10 spaces; when you 
seek lines, planes, curves, etc., extracting non-point prototypes 
cannot be done by selection. 

We want to conclude our comments on this topic by referring you to 
pages 8-10 in Dubois et al. (1998), titled "Fuzzy Systems: Modeling 
versus Explaining". These three pages contain the most intelligent 
and thought provoking critique of the use of fuzzy systems for 
function approximation you will ever read. Dubois et al. point out 
the inherent conflict between the use of fuzzy sets for function 
approximation, which aims to mimic and reproduce data 
accurately, with building an "intelligent" system with fuzzy sets 
whose intent is to articulate knowledge from data. They argue that 
fuzzy systems have lost some of their original appeal because they 
are prized more now as universal approximators to functions, and 
less valued as a means to build numerical functions from heuristic 
knowledge, nor as a tool for the linguistic summarization of data. 
From this viewpoint it might be argued that the only method we 
have discussed for designing rule based classifiers that fits into the 
original framework of fuzzy models envisioned by Zadeh is our 
subsection 4.6.G on heuristic methods of classifier design. 
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Dubois et al. point out that in the general scheme of things, fuzzy 
systems are not equipped to compete with well developed methods of 
function approximation (e.g., Powell, 1990) because they: may not be 
general enough to capture a wide class of functions, are not very 
simple because many rules will be needed, are not particularly 
efficient computationally, and do not generally extrapolate as well 
as more standard methods. They ask : "why should we bother about 
if-then rules, and about the 'readability' of fuzzy rules as knowledge 
chunks if the aim is to build a numerical function that best fits a 
data set?" And they answer their own question a little later in the 
same paragraph this way: "It is questionable whether the present 
trend in fuzzy engineering, that immerses fuzzy logic inside the 

1^jungle offunction approximation rl methods will produce path-
breaking results that put fuzzy rule-based systems well over already 
existing tools". It's hard to add anything to this that is either more 
elegantly stated, or, in our opinion, more accurate - so we won't try. 
Instead, we advise you to enter the jungle at your own risk. 

Fuzzy neurons and neural networks 

It's hard to know what to write here. There are probably 5,000 papers 
about fuzzy-neuro, neuro-fuzzy, neuro-soft, pseudo genetic - neuro, 
evolutionary-neuro, quasi adaptive fuzzy neuro, computationally 
Intelllgent-generallzed-soft-evolutionary-neural-self organizing-
vadaptlve, ... well, you get the Idea. The list of classifiers based on 
some combination of all these technologies just goes on and on. 
Where will It stop? We don't know. Will it stop at an optimal 
solution? Perhaps, but only for a veiy limited class of problems. 
When will it stop? When the funding dries up. Has the addition of 
fuzzlness to the standard neurons and neural models such as LVQ, 
ART, FFBP made any of them better classifiers? We are tempted to 
say "perhaps not", because we believe that, given enough time, 
almost any of the classifiers discussed In this chapter, and most of 
those that weren't, will produce pretty similar results on "run-of-
the-mill" data sets. 

We chose not to enter the terminology fray on this topic in the main 
body of this chapter because sometimes buzz-wordology distracts 
you from the main point - does it work? From an engineering point 
of view, it is foolish to dlsccird a model simply because there may be 
another one out there that does just as well. If you have a problem to 
solve, and you find a scheme that solves it that falls within your 
envelope of development criteria (cost, time, size, etc.) - well, that's 
good enough. Published papers, in the main, provide system 
designers with a rich supply of potentially useful tools, and the 
plethora of "fuzzy NN" architectures are among them. 

OK, having devalued the terms "neuro-fuzzy" and "fuzzy neural 
networks" a bit, and vented our cjoiicism about the buzzwords of the 
day, we will make an attempt to at least align you with what some of 
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US perceive to be the main tracks related to these two terms. Then it 
will be up to you to decide where to get off the train. Neuro-fuzzy 
hybridization is done broadly in two ways : neural networks can be 
equipped with the capability to handle fuzzy information; or fuzzy 
systems can be augmented by neural networks to enhance their 
flexibility, speed and adaptability of the fuzzy system. The first set 
of models may be called/uzzy-neural-netujorfcs (FNN); whereas the 
second set may be called neural-Juzzy-systems (NFS). 

FNNs and NFSs are grouped together in the literature under the 
popular name neuro-fuzzy computing. A neural network may be 
called fuzzy when either the input signals and /or connection 
weights and/or the outputs are fuzzy subsets or membership values 
of fuzzy sets (Lee and Lee, 1975, Buckley and Hayashi, 1994). Usually, 
fuzzy numbers (represented by triangular functions for ease of 
computation) are used to model fuzzy signals. The fuzzy neuron of 
Lee and Lee (1975) allows the excitatory and inhibitory inputs, and 
the outputs to be fuzzy. In other words, it entertains graded inputs 
and outputs. Following this, many models of fuzzy neurons besides 
the ones discussed in Section 4.7 have been proposed (e.g., Gupta and 
Qi, 1991) and developed (Yamakawa, 1990). Neural networks with 
fuzzy neurons fall in the category of FNNs as they are capable of 
processing fuzzy information. 

Another kind of FNN does not enhance or change the capability of 
the NN but makes its implementation more efficient. It is well 
known that back-propagation learning is very slow and the choice 
of learning parameters such as the learning rates and momentum 
factors is an important factor in determining rate of convergence of 
iterate sequences. If the learning rate is high, the network may 
oscillate; if it is low, then convergence may be slow. Neuro-fuzzy 
hybridization can accelerate back-propagation training by an 
adaptive choice of the learning rate using the fuzzy control 
paradigm. Let 5E be the change in error E and A be the change in 

5E. We can use fuzzy rules like the following to adapt the learning 
rate and the momentum factor (Choi et al., 1992). Haykin (1994) 
summarizes this procedure in greater detail. 

IF 8E is small 
AND A_is small 
AND sign(E) = constant for several iterations 
THEN increase learning rate and momentum a little. 

In a neural-fuzzy system designed to realize the process of fuzzy 
reasoning the connection weights of the network correspond to the 
parameters of fuzzy reasoning (Keller and Tahani, 1992a, b, Keller et 
al., 1992, Pal et al., 1998). Using back-propagation type learning 
algorithms, the NFS can identify fuzzy rules and learn membership 
functions of the fuzzy reasoning system. Usually it is easy to 
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establish a one-to-one correspondence between the network and the 
fuzzy system. In other words, the NFS architecture has distinct 
nodes for antecedent clauses, conjunction operators and consequent 
clauses. There can be, of course, another black-box type NFS where a 
multi-layer network is used to learn the input-output relation 
represented by a fuzzy system. For such a system the network 
structure has no relation to the architecture of the fuzzy reasoning 
system. 

There are many variations of ART and fuzzy ART. Serrano-
Gotarredona et al. (1998) discuss hardware implementations of four 
such architectures : ARTl and ARTMAP are used for clustering and 
classifier design of binary input data, respectively, while Fuzzy ART 
(FART) and Fuzzy ARTMAP are used, respectively, for clustering and 
classifier design with continuously valued input data. 

Like any sequential competitive learning model, ART outputs are 
dependent on the sequence of data feed. Shih et al. (1992) report that 
in their experiments with optical character recognition, the number 
of categories identified when the characters E, F and L are fed in 
different sequences are different. For example, when the sequence is 
E,L,F then L belongs to the category of E, and F forms a new category, 
but when the sequence is F,L, and E, three different categories are 
recognized. Even with adjustment of the vigilance parameter such 
differences found to continue. For each training pattern, ARTl 
performs the vigilance test for the winning neuron and if the test 
fails the next winning neuron is tried. Thus when a quite different 
pattern comes, ARTl checks the vigilance for all exemplars and 
finally creates a new node or exemplar. This is time consuming, as 
correctly pointed out by Shih et al. (1992), who remarked that a 
threshold may be set up on the activation response so that neurons 
with lower activation need not be considered. Thus, Shih et al. 
(1992) proposed an improved ART (lART), more specifically an 
improved version of ARTl which essentially modifies the vigilance 
testing. 

Recall from Section 4.8 that in ARTl the vigilance test assesses the 
similarity between an input x and a chosen exemplar v as follows, 

V is the exemplar vector associated with the winner Lg j . 

fcO> 
ll̂ lli 

Pi . (4.160) 

In the context of image processing, for example, equation (4.160) 
represents the percentage of pixels of the input pattern that are 
present in the exemplar pattern. In addition to (4.160), Shih et al. 
(1992) suggested using a second criterion for vigilance testing, 
namely 
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fcl4>, >P2 . (4.161) 

where Vj is the exemplar vector associated with the winner node 
Lgj in the output layer. Resonance is assumed to occur only if both 
(4.160) and (4.161) are satisfied, and then new input is associated 
with the exemplar and the weights are updated. Thresholds pj and 
P2 in (4.160) and (4.161) need not be equal. Except for this additional 
vigilance test, the rest of lART remains edmost the same as ARTl. 

Shih et al. (1992) used lART for optical character recognition based 
on square 16x16 input images. With Pj=p2 = 0.8, two pairs of 
characters, (G, O} and {P, R}, were grouped into the same category. 
Making the vigilance test more strict by choosing p̂  = Pg = 0.9, they 
obtained a higher rate of correct classification. Shih et al. also used 
LART to design a neural architecture for image enhancement. 

Newton et al. (1992) proposed an "adaptive" clustering algorithm 
that combines elements of simple leader clustering, fuzzy c-means, 
and ARTl. Kim and Mitra (1994) discuss a second, improved version 
of this algorithm which purports to be more precise because it 
incorporates a different vigilance criterion and a new distance 
measure. These two algorithms have been used in applications such 
as vector quantization for low bit rate image coding (Mitra and 
Yang, 1999) and image segmentation (Mitra et al., 1999). 

Training radial basis function (RBF) networks has become a topic de 
rigeur in the last few years. Many writers that are knowledgeable in 
the field of approximation theory seem to concede that "the right" 
RBF network affords wonderful approximations to arbitrarily 
complex functions. A quick web search against "RBF training" will 
produce 50-100 papers on this topic, and as we mentioned in Section 
4.8.C, this topic could easily consume a chapter of its own. To avoid 
the embarrassment of not discussing the many fine papers that are 
available on this topic, we want to mention Just one method for 
training RBF networks that is related to other material in this book. 

Medasani and Krishnapuram (1997) offer a modification of the 
GMD-AO algorithm (Section 2.2.C) that is accomplished by adding a 
second term to the likelihood function which is similar to that in 
the competitive agglomeration (CA) algorithm (see equation (2.75)). 
The role of the second term is to assess the number of components in 
the Gaussian mixture, so it is essentially a "built-in" cluster validity 
functional for the GMD model. This algorithm can be used with 
labeled data to determine the mixture parameters for each class. 
When the RBFs to be determined are Gaussian as in (4.124), 
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Medasani and Krishnapuram suggest pooling the parameters 
obtained from clustering each class to initialize the hidden RBF 
layer (the output layer of the left-half net). The number of RBF nodes 
is determined automatically via the hidden validity function. These 
authors then fine tune the RBF parameters of both layers 
simultaneously using standard gradient descent on the squared 
error between the observed and target outputs. This approach seems 
to result in less susceptibility to local trap states than tuning an RBF 
network that has been randomly initialized. 

Classifier Fusion 

Keller et al. (1987) provide examples of both temporal fusion and 
sensor fusion in automatic target recognition utilizing linguistic 
averaging (Dong et al., 1985). Linguistic averaging is an application 
of the extension principle to arithmetic functions. They combined 
the outputs of two classifiers with fuzzy estimates of motion, and 
fused the results of two classifiers on each of two sensors together in 
a hierarchical network. The individual estimates of class 
confidence and consistent motion confidence were represented by 
triangular fuzzy numbers. Examples included in Keller et al. (1987) 
demonstrate how such a fusion methodology can (re)acquire objects 
when they move behind other objects, and that this method also 
reduces random clutter due to sensor motion. For the sensor fusion 
examples, it was shown that a human (or some Al-type agent) which 
was supplying classifier/sensor reliabilities in a non-numeric, i.e., 
linguistic, sense could be incorporated into the fusion mechanism. 

Fuzzy neural networks, such as those presented in Section 4.7, have 
been used for classifier fusion. Krishnapuram and Lee (1992b) 
demonstrate how a multilayer network of Type I fuzzy neurons 
(FANS with multiplicative hybrid operators, <5ĵ ) can be trained to 
perform target recognition by combining evidence from FLIR and TV 
sensor data. These authors show how the trained FANs not only do 
an excellent Job of fusing the information, but the interpretation of 
the nodes provides added insight into the strength of the sensors and 
features. 

Bloch and Maitre (1995) describe various properties of fuzzy 
morphology, and show how morphological tools can be used for data 
fusion and decision making in fuzzy set frameworks. Families of 
fuzzy mathematical morphology operators for erosion, dilation, 
opening, and closing are investigated. A thorough comparison of six 
definitions of morphology and fuzzy sets is presented in terms of 
logic and decision theory. In Bloch (1996c), a classification scheme 
is developed for the main operators used in numerical data fusion to 
combine information from multiple sensors. Three classes of 
operators based on properties such as decisiveness and ability to 
handle conflicting information are discussed. Context independent, 
constant behavior operators do not consider external information 
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because they exhibit the same behavior for any values of the 
Information to be combined, whereas context Independent variable 
behavior operators do depend on the values of the variables to be 
combined (e.g., behaving one way if both values are low). Finally, 
context dependent operators depend on global knowledge or 
measures (e.g., reliability) of the sources to be combined. Synthetic 
examples are provided to demonstrate how probability and 
Bayesian Inference, fuzzy sets, possibility theory, MYCIN-like 
systems, and Dempster-Shafer evidence theory fit into the proposed 
classification. Criteria for determining the choice of operator are 
also described. 

Syntactic pattern recognition 

Decision tree classifiers and rule-based systems often deal with 
structural properties of data. Sometimes the connection to data 
substructure is implicit, as for example in most of the clustering 
algorithms and classifiers we have discussed. On the other hand, 
some trees and rule-based systems contain information which 
allows classification based on specific and explicit s tructural 
properties of objects. Examples of this type of classification include 
chromosome and sometimes character recognition. We will meet 
other examples of this type in Chapter 5. If you expand the concept of 
syntactic pattern recognition to include "structural and syntactic" 
classifiers, for example, (Goos et al., 1996), then both decision trees 
and rule-based classifiers (Section 4.6) fit in this category. Hall (1973) 
demonstrated the equivalence of And/Or graphs and context-free 
grammars. Hence, fuzzy variations of these models arguably belong 
to the category of fuzzy structural and syntactic systems. 

There was a flurry of papers that used fuzzy models in syntactic 
pattern recognition in the first ten years following Zadeh's 1965 
paper - that is, the '70s. This trend mirrored a fairly widespread 
interest in crisp structural approaches that was evident in the late 
1960s and 1970s. After a period of relative quiet in the 1980s and 
early 1990s, there has been a resurgence of sorts for (crisp and soft) 
syntactic methods in the late 1990s. 

We mentioned in Section 2.1 that the first Ph.D. thesis on fuzzy sets 
was written by Bill Wee (1967) at Purdue University. His work was 
directed towards the use of fuzzy automata for applications in 
syntactic pattern recognition (Wee and Fu, 1969). Another early 
Ph.D. thesis on fuzzy sets, titled Fuzzy Languages and their relation 
to Automata, was written by E. T. Lee (1972a) at the University of 
California, Berkeley. Lee produced a number of papers on the use of 
fuzzy tree automata for classifying chromosomes, leukocytes 
(cancer cells), handwritten numerals and even applied his method to 
an early attempt at cataloging images in pictorial databases using 
fuzzy query languages (Lee and Zadeh, 1969; Lee, 1972b, Lee, 1975, 
Lee, 1976a, b, Lee, 1977a, b). In view of Lee and Lee (1970), probably 
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the first paper on fuzzy neurons, it is clear that E. T. Lee was another 
real pioneer in several areas that have enjoyed a lot of growth in the 
last few decades. Other very early work in this area includes 
Thomason (1973), Tamura and Tanaka (1973) and DePalma and Yau 
(1975). 

In Pal et al. (1983b), algorithms were developed to define fuzzy 
memberships of curves in the classes "vertical", "horizontal" and 
"oblique". These definitions were used in Pal and Bhattacharyya, 
(1990) to assist the shape encoding process for cell abnormalities. 
Crisp syntactic pattern recognition was then used to classify the 
abnormalities. Pathak and Pal (1986) use fuzzy feature extraction 
for primitive shapes and develop detailed fuzzy grammars and fuzzy 
fractional grammars (DePalma and Yau, 1975) to recognize eight 
different levels of skeletal maturity of the wrist from x-ray images. 

Parizeau and Plamondon (1995) demonstrate an excellent use of 
fuzzy syntactic approaches in modeling and classifying allographs 
for cursive script recognition. They use attribute memberships for 
primitive encoding, and utilize fuz^ shape grammars (Parizeau et 
al., 1993) to assist in the recognition of highly uncertain objects 
(handwritten script). What is impressive about this work is that: (1) 
the authors have addressed a difficult problem; (2) fuzzy set theory is 
embedded throughout the model, and (3) they tested the approach on 
a fairly large database with excellent results. This paper exemplifies 
the power of the principle of least commitment in complex system 
design (which, as you have noticed by now, some of us really believe 
in a lot - others of us prefer the principle of least remitment, but 
that's another story). 

In another interesting application, Senay (1992) used fuzzy 
grammars to build a command language for an "intelligent" user 
interface. The concept is that the flexibility of fuzzy sets provides 
better opportunity to accommodate human variability in command 
syntax. Kaufmann and Rousseeuw (1990) discuss an algorithm 
called PAM (partitioning around medoids) - a refinement of their k-
medoids algorithm, that is similar to Fu's sgHCM algorithm (Table 
4.60). 

And finally, if you enjoy reading theorems and proofs in the context 
of formal language theory, with a just a hint of a relationship to fuzzy 
syntactic pattern recognition, papers that might interest you include 
Peeva (1991) and Hwang et al. (1998). 



5 Image Processing and 
Computer Vision 

5.1 Introduction 

Digital image processing is the study of theories, models and 
algorithms for the manipulation of images (usually by computer). It 
spans a wide variety of topics such as digitization, histogram 
manipulation, warping, filtering, segmentation, restoration and 
compression. Computer vision deals with theories and algorithms 
for automating the process of visual perception, and involves tasks 
such as noise removal, smoothing, and sharpening of edges (low-
level vision); segmentation of images to isolate object regions, and 
description of the segmented regions (intermediate-level vision); 
and finally, interpretation of the scene (high-level vision). Thus, 
there is much overlap between these two fields. In this chapter, we 
concentrate on some of the aspects of image processing and 
computer vision in which a fuzzy approach has had an impact. We 
begin with some notation and definitions used throughout the 
chapter. 

Let f:5RPh^9t^ denote a function from 9tP to Si^^. The domain and 

range of f are subsets of Si^ and 5R'', Df and /€f = f [Df ] respectively. 

The graph of f is ^j = {(x,f(x)):x e Dj } c Df x /€f. For example, let 

f:9ti->5R"*̂  be f(x) = x^. Suppose we restrict f to [-1, 1], then 

Df = [-1,1];i€f = [0,1]; and Q^ = {(x,x^):xe[-1,1]}. Plotting the graph 

^ c 91X 9t̂  yields the familiar parabolic segment above the interval 
[-1,1]. When q = 1, f is not boldface type. 

The constructions made next are for images with two spatial 
dimensions, but most of what we say generalizes to images with N 
spatial dimensions, and to non-spatial dimensions such as time. Let 
IJ = {(i, j): i = 1 m; j = 1,..., n} c 9t̂  be a rectangular array or lattice 
of integers that specify (mn) spatial locations (pixel addresses). In 
what follows, ij may be used as a short form for (i,j). Next let 
Q = {q:q = 0,L.. . ,G-1} c 5t be the integers from 0 to G -1 . G is the set 

of quantization (or gray) levels of some picture function p: SR̂  f-̂  '^^. 
It is commonly assumed that p is continuously differentiable at 
least once. Confinement of p to the lattice IJ (which is done 
automatically by the digitizing scanner that realizes samples of p) 
creates the m x n digital image denoted by P . 
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Integer N is the number of bands collocated in time that are 
measured by a sensor. When N=l, P is a unispectral image, denoted 
by P ; otherwise, it is multispectral, denoted as P . For example, 
N= 1 for gray level images, N = 3 for most Magnetic Resonance (MR) 
and color images; N = 6 for Coastal Zone Color Scanner (CZCS) 
images, and so on. For 6 bit images G = 2^= 64; for 12 bit images G = 
2^^= 4096, and so on. There are databases with 16 and 24 bit images 
nowadays, bu t our presentation and examples are generally 
confined to 8 bit images, which have 256 intensity levels in them. 

We often define a function over the spatial extent of an image that is 
continuous, differentiable, integrable, etc., and we may want to 
integrate it, differentiate it, or otherwise manipulate it as if its 
domain had continuously valued variables. For example, the 
membership function m^ of a fuzzy region in an image is defined 
only at each pixel of a spatial region in IJ, so its domain is discrete. 
However, when we deal with integrals, derivatives, etc., the domain 
of m^ needs to be a contiguous plane subregion S within IJ. How 

should we write the sum and integral of m ,̂ over S? When S is 
discrete, we can legitimately write S c IJ and use exact notation for 
sums such as XXinp,(i,j). To avoid notational complication, when S 

i J 

is a region within the boundaries of IJ and we want S to support 
integration, etc., we will simply write integrals, for example, as 
JI mp (u, v)dudv, with the understanding that integration over all of 

9t̂  will be zeroed except on S, the domain of positive support for the 
integrand. 

It is worth noting that Pjj c IJ x Q"^ c ^p. In words, the digital image 
is a discrete subset of the graph of the picture function composed of 
the lattice IJ and the values of p on this lattice. More generally, it is 
advantageous to regard several images derived from P as subsets of 
the graph of some function defined on the lattice I J. 

A window Wy related to pixel ij in any image is a subset of the lattice 
IJ. Thus, a window is a collection of addresses with dimensions 
m X n , and when ni and ri are odd integers, we will assume that 
Wy is centered at pixel ij. If the spatial location (i, J) of Wy is clear, we 
may use a single subscript (W) for a window centered at (i, J). Rule 
based systems for image processing often extract feature vectors 
from W. For consistency with previous chapters, we will in this 
chapter only differentiate the spatial locations of a set of pixels 
centered at (i, j) by calling them {X}, and as in previous chapters, x = 
{x } will denote features extracted from the intensities {I(Xp} at these 
locations. 
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There is uncertainty in many aspects of image processing and 
computer vision. Visual patterns are inherently ambiguous, image 
features are corrupted and distorted by the acquisition process, 
object definitions are not always crisp, knowledge about the objects 
in the scene can be described only in vague terms, and the outputs of 
low level processes provide vague, conflicting, or erroneous inputs to 
higher level algorithms. Fuz2y set theory and fuz2y logic are ideally 
suited for dealing with such uncertainty. For example, consider the 
following rule of thumb in image filtering (or low-level vision) for 
smoothing: 

IF a region is very noisy 
THEN apply a large window-based smoothing operator. 

Here, the antecedent clause is vague, and the consequent clause is a 
fuzzy action that can be described only in imprecise terms. By 
constructing fuzzy rules in terms of condition-action relations, we 
can easily represent this type of knowledge. 

As another example, consider the task of segmenting an image into 
object regions. Typically, object boundaries and surfaces need to be 
described in compact terms for further processing. However, object 
boundaries are often blurred and distorted due to the imaging 
process. Moreover, in some cases, object boundaries are truly fuzzy. 
For example, if we are trjang to segment the image of a face, how do 
we decide where the nose ends and the cheek begins? Crisp 
segmentation does not preserve uncertainty of this type. An 
alternative approach is to preserve the uncertainty inherent in the 
image as long as possible until actual decisions have to be made. In 
this approach, each object in the image is treated as a fuzzy region 
represented by a fuzzy set. Such an approach would be consistent 
with Marr's (1982) principle of least commitment. 

To perform high-level vision tasks such as image understanding, we 
need to represent properties and attributes of image regions and 
spatial relations among regions. Fuzzy rule-based systems are 
ideally suited for this purpose. For example, in a rule-based outdoor 
scene understanding system, a typical rule may be: 

IF a region is rather green and highly textured 
AND the region is somewhat below a sky region 
THEN the region contains trees with high confidence 

Terms such as rather green and high confidence are vague. A similar 
comment applies to spatial relations such as somewhat below. 
Fuzzy set theory provides a natural mechanism to represent such 
uncertainty and vagueness effectively. The flexibility and power 
provided by fuzzy set theory for knowledge representation makes 
fuzzy rule-based systems very attractive for high-level vision when 
compared with traditional rule-based systems. Furthermore, rule-
based approaches must address the problem of conflict resolution 
when the preconditions for several (partially) conflicting rules are 
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simultaneously satisfied. There are sophisticated control strategies 
to solve this problem in traditional systems. In contrast, we have 
already seen several examples of fuzzy rule-based classifier systems 
in Chapter 4, where problems such as these are attacked by 
manipulating certainty factors and/or firing strengths to combine 
the rules. We will see several new examples of this in Chapter 5. 

This chapter is not a comprehensive survey of all literature that 
deals with fuzzy approaches to various aspects of image processing 
and computer vision. We don't consider, but will try to point you 
towards, fuzzy approaches to important topics such as compression, 
restoration and coding. Our goal is to introduce you to several basic 
and instructive techniques that use fuzzy models to address 
representative problems in image processing and computer vision. 
This chapter touches upon: image enhancement, edge detection, edge 
following, thresholding, segmentation, region labeling, boundary 
and surface description, fuzzy geometry and properties of fuzzy 
regions, spatial relations between image regions, perceptual 
grouping and high-level vision. 

5.2 Image E^nhancement 

The earliest paper on image enhancement with fuzzy sets is due to 
Pal and King (1981), who discuss extraction of fuzzy properties from 
gray tone images to be used for contrast intensification. Image 
enhancement is usually one of the first procedures applied to an 
image in a computer vision task. According to Gonzalez and Woods 
(1992), the principal objective of enhancement techniques is to 
process a given image so that the result is more suitable than the 
original image for a specific application. Typically, we want the 
enhancement process to be capable of removing noise, smoothing 
regions where gray levels do not change significantly, and 
emphasizing (sharpening) abrupt gray level changes. It is, however, 
hard to incorporate all these requirements into a single framework, 
since smoothing a region might destroy a line or an edge, and 
sharpening might lead to unnecessary noise. A good enhancement 
process is, therefore, required to be adaptive so that it can process 
each region differently based on the region properties. 

Since fuzzy logic can easily incorporate heuristic knowledge about a 
specific application in the form of rules, it is ideally suited for 
building an image enhancement system. This has led to the 
development of a variety of image enhancement methods based on 
fuzzy logic. Here we briefly review some of them. 

Russo and Ramponi (1992) present an image sharpening method 
which amplifies large gray level differences and diminishes small 
gray level differences. Russo (1993), and Russo and Ramponi (1994a, 
1994b) propose fuzzy rule-based operators for smoothing, 
sharpening, and edge detection. They use heuristic knowledge to 
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build rules for each of the operations. For example, the original 
smoothing operator is based on the following heuristic rules: 

IF a pixel is darker than its neighboring pixels 
THEN make it brighter 
ELSE IF a pixel is brighter than its neighboring pixels 
THEN make it darker 
ELSE leave it unchanged 

In this basic approach, the gray level differences between a given 
pixel and its neighbors are inputs, and "gray level increment" is the 
output variable. Assuming that the gray level range is [0, G-1], 
simple triangular fuzzy sets, medium positive and medium negative 
are defined over the interval (-G+1, G-l] to represent brighter and 
darker for the input variables, and triangular numbers small 
positive, zero, and small negative are defined over the same domain 
for the increment specified by the consequents of the rules. The 
inferred output value is added to the original gray level of the pixel. 

The general fuzzy inference ruled by else-action (FIRE) paradigm 
introduced by Russo (1993) will be discussed later in this section. 
Mancuso et al. (1994) propose a fuzzy filter for dynamic range 
reduction and contrast enhancement using a fuzzy rule based 
approach. The method is based on Peli and Lim's (1982) algorithm. 
Peng and Lucke (1994) propose a nonlinear fuzzy filter for image 
processing. Additive Gaussian noise and non-additive impulse noise 
are considered. Averaging filters can effectively remove Gaussian 
noise, and order statistics filters such as the median filter can 
effectively remove impulse noise. Peng and Lucke use fuzzy logic to 
combine these two methods. 

Law et al. (1996) present a fuzzy-logic-based method for image 
filtering which controls the orientation and size of a Gaussian 
kernel. They use the local gradient and straightness as the input 
variables for the fuzzy rules that control the kernel. Gradient and 
straightness are computed based on the gray levels and gray level 
differences in a local window. We first describe the computation of 
the gradient and straightness and then discuss image filtering. 

Figure 5.1 depicts the computation of the gradient and straightness 
for a given center pixel. For each possible direction in the window, a 
dividing line through a pair of opposing pixels as shown in Figure 
5.1 is used to evaluate steepness. The steepness is computed as the 
difference between the average gray level of two regions, one on 
either side of a dividing line. To settle the issue of several directions 
having the same steepness, they also measure the reflective 
symmetry of the gray level pattern in the window with respect to a 
line which is perpendicular to the dividing line that is used for the 
steepness computation. The value of the gradient is then computed 
using the fuzzy rules in Table 5.1. 



552 FUZZY PATTERN RECOGNITION 

Direction with highest degree 
of magnitude ai i d svi i m i e i i \' ^•^- .4.."^ 

Plane in direction of 
evaluated gradient 

^ 

\ 
/ • \ CenU-i 

. .f-. Dividing line 
\ ^ for steepness 

\ 

A 
/ V. 

\ 
\ 

\ 

- ^ 

\ j 
L-v; . ' • " 

> ' 
- " - ; ; • 

j 

Dividing line 
ibr symmetry 

Evaluate for all \ 
pairs of opposing \ _ 
pixels in window *"' 

Figure 5.1 Computation of Law et al.'s gradient 

Table 5.1 lists the fuzzy rules used by Law et al. (1996) for 
determining the gradient. Conceptually, symmetry plays no role 
when the steepness is small, so an alternative to the first two rules is 
the simpler rule : IF steepness is small THEN gradient is low. The 
outputs of the pair of rules in Table 5.1 and this single rule may not 
be exactly the same, but they will be close. On the other hand, there 
may be some conceptual and implementatlonal advantages to 
retaining the rules in their original form, because this form has the 
same number of input variables for each rule. 

Table 5.1 Fuzzy rules for determining the gradient 

steepness symmetry gradient 
small low low 
small high low 
large low medium 
large high high 

The gradient is computed by defuzzifying the output of the fuzzy 
rules in Table 5.1, and the direction for which it is maximum is 
taken as the true gradient direction. Straightness is determined by 
comparing pixels translated along the direction of the edge (i. e., 
perpendicular to the gradient direction). If the edge is straight, the 
translated pixel should line up with a pixel having a similar value. 
Evaluating all pixels in the window yields a value for straightness. 
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Smoothing is done by convolving the image with the Gaussian 
kernel 

W(s,t) = ^ J_ • e x p 
2a^ 

1 
— exp 
a.. 2c' 

(5.1) 

where u is the edge direction and v is the gradient direction. Since we 
do not want to smooth out edges and details, the values of a^^ and a^ 
are controlled by the fuzzy rules shown in Table 5.2. Membership 
functions for linguistic labels such as small and large in Table 5.2 
can be found in Law et al. (1996). Again, the first two rules have an 
easier conceptualization : IF gradient is small THEN Ou and Oy are 
large. Our remarks about the equivalence of the single rule 
replacement of the pair of rules in Table 5.1 apply to this case too. 

Table 5.2 Fuzzy rules for controlling a^ and a, 

gradient straightness a^ Ov 
small low large large 
small high large large 
large low small small 
large high small large 

Example 5.1 Figure 5.2(a) shows the original 256x256 Lena image, ; 
Figure 5.2(b) shows the Gaussian filtered image using variances Ou 
and Ov of the Gaussian controlled by the fuzzy rules in Table 5.2. The 
filter size was 7x7 and the range for a^ and o^ was 0.1 to 5.25. 

(a) Original image (b) Gaussian kernel 

Figure 5.2 Lena filtered vdth a Gaussian kernel 
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Image enhancement almost always means replacing the gray-level 
value of every pixel in an image with a new value depending on some 
type of local information. If the intensities In the vicinity of a pixel 
are relatively smooth, then the new value may be taken as a 
(possibly weighted) average of the local values. On the other hand, if 
the local region contains edge or noise points, a different type of 
filtering should be used. This gives rise to a conditional and 
adaptive smoothing technique. In other words, we could create a 
bank of filters, and one of them could be selected at each pixel 
depending on the local information. However, if a different 
enhancement algorithm is selected at each pixel, the result may not 
be pleasing or useful. Moreover, in many cases the selection criteria 
for the filter can be expressed only in imprecise or vague terms. To 
overcome these problems, Choi and Krishnapuram (1995, 1997) use 
a fuzzy logic approach. The filter selection criteria constitute the 
antecedent clauses of the fuzzy rules, and the corresponding filters 
constitute the consequent clauses of the fuzzy rules. 

Choi and Krishnapuram adopt the FIRE paradigm of Russo (1993) 
for image enhancement. The rule base /? = (R R„ ,} consists of 

1 M+l 

M+1 fuzzy rules. This system is specialized to image enhancement, 
and is set up as follows. Let X = (Xj X^) denote the spatial 
locations of N pixels in a window W within an image that has odd 
side lengths with center at pixel X, and let I(X)= (l(Xi),..., I(XN))^ be the 
vector of gray levels at these spatial locations. The gray level I(Xi) is 
to be replaced. The LHS of rule R has for its input a vector x e 5R̂ J of 
features such as gradient, steepness, smoothness, symmetry, etc. 
which is extracted from W., and in the general case, different rules 
can have different numbers of input variables. The rule base, 
written in the form of equation (4.74), is: 

Rj: IF aj (Xp_) THEN 1̂  (X )̂ = F^ (I(X)) 

R^:IFaj(Xp) THEN y x ^ ) = Fj(I(X)) 
(5.2) 

RM = I F a ^ ( X p J THEN1^(X,) = F^(I(X)) 

RM.rELSEI„^^(X,) = F^^,(I(X)) 

Fj is the output function of the J-th filter and pj is the number of 
input variables in the J-th rule. Equations (5.2) have the appearance 
of a TS system, but there are two major differences. First, the 

dimension of the input vector x e 9?''̂  for rule j is not necessarily 

fixed across the rules - instead, there might be a different number of 
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Inputs for different rules in /€. Second, the argument of each RHS 
output function is not the same as the argument of the LHS, although 
both arguments are functions of the intensities in W. 

As in Chapter 4, oc (x ) denotes the firing strength of rule j . The 
defuzzified output of (5.2) is computed using either the TS or MA 
style defuzzification. MA outputs are some function of the firing 
strengths, consequent values, rule composition and defuzzification 
operator (see Figure 4.29), 

I(Xj) = 0(a(x),{Ij(Xj)},u,Dp) .where (5.3) 

the else clause firing strength satisfies the constraint 

a = 1 - max j a (x)| . (5.4) 
^^+1 Js(l,..,M}l J J 

For a particular set of choices in (5.3) we can get the standard TS 
output form, now used for image enhancement: 

M+l /M+1 
I(X,)= I[a j^(Xj^)I^(Xj)] / la^(x^) . (5.5) 

k=l / k=l 

As pointed out in Chapter 4, (5.5) can be interpreted either as the 
output of a 0-th order TS model; or as the output of an MA model 
using the height defuzzification method with I. (X) = F as the peak 
value of the consequent membership function. 

Choi and Krlshnapuram (1997) discuss a form of enhancement that 
is based on the estimation of a prototypical intensity for a given set 
of gray levels. Again let X = (Xj,...,Xjj) denote the spatial locations 
of N pixels In a window W within an Image that has odd side lengths 

with center at pixel X, and let I(X)= (I(Xi) UX )̂)̂  be the vector of 
their gray levels. The gray level l(Xi) is to be replaced. 

First we consider replacement of I(X,) by an estimate obtained by 
minimizing the objective function 

JA(Ui,X;l(X,))=Iuj,(l(X,)-I(Xj)f . (5.6) 

In (5.6) Uj = (Ujj Ujjj)^eN j^ is specified by the user, and 
minimization is done with respect to I(X). Here we interpret Uji as the 
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degree (or possibility) to which intensity I(X) represents I(X). If we 
assume that the membership function underlying the values {u } is 
bell-shaped and centered at I(X), and that the membership values 
depend on gray level differences and spatial distances between the X 
and its neighbors, then a possible choice for the membership 
function that generates the {u } is 

Ujj=(Ojjexp - ^ ( l ( X j ) - I ( x p n , l < j < N .where (5.7) 
Pi 

« j i = e x p j - i | | x , - X j (5.8) 

In (5.8) IIXi - Xj represents the Euclidean distance between (centers 
of) the pixel locations Xj and Xj. The authors state that for small 
windows, the effect of co on u in (5.8) is negligible, and recommend 
setting it equal to 1 for all j . In this case, the selection of a value for a 
is moot, but more generally, this parameter would deserve some 
attention. The parameter Pi is a scale parameter which can be 
determined on the basis of the variations in pixel intensity values 
in a given spatial window. This is discussed later. 

Differentiating J in (5.6) with respect to I(Xi) and setting the result 
equal to zero leads to filter A, an update rule for the intensity of 
pixel XJ : 

lA(Xi )= iu j j 
J=l 

4' 
Pi 

KXJ / X u „ 1 - - ^ , (5.9) 

where d ĵ = (l(Xj) - I(X )| . If d^ is larger than Pj, then the weight for 

pixel Xj will be negative. If d̂ ^ is equal to pi, then the weight for pixel 
XJ will be zero. Otherwise, the weight for pixel Xj will be positive. The 
negative weight has the effect of sharpening an edge. 

Filter A in (5.9) assumes that 1(X) is a prototype for its neighboring 
pixels. If I(X) is noisy (that is, if I(X) is quite different from the 
intensities in W), this assumption fails, and we need a different 
updating scheme. When I(X) is noisy, we can update the gray level of 
the center pixel in such a way that the new value maximizes the 
degrees of membership to which its neighbors represent the center 
pixel. In other words, we would like to maximize u^.®-^Uj^j, where 



IMAGE PROCESSING AND COMPUTER VISION 557 

(8)="and" is an aggregation operator, i.e., any T-norm or weighted 
mean. 

Different objective functions arise from different choices for (8). 
Here we illustrate two methods: multiplication (the standard T 
norm) and arithmetic averaging (the unweighted mean). Choosing 
multiplication and continuing to use (5.7) and (5.8), we have 

J„(u,,X;l(X,))= n u , , = nco„ exp :4 
j=i J' M J' [Pj 

(5.10) 

Setting the first derivative of J with respect to I(Xi) equal to zero 
leads to Jitter B, an update rule for noisy center pixel XJ: 

I«(XJ= I 
ri(Xj)^ 

- g V ' - j 
J=1.J>1 

V j 

]_ 
(5.11) 

If we choose the averaging operator for <8), the objective function 
becomes 

1 N 1 N - d | 
J,(u,,X;I(X^)) = ^ l u j , = ^ Scoj, e x p j - ^ (5.12) 

and the corresponding update rule defining JiJter C is 

Ic(XJ= I 
^UjJ(X.)^ 

Pj 
(5.13) 

Since Pi is a scale parameter, it should reflect the variance of the 
gray level differences between the center pixel and its neighboring 
pixels. We can simply take the mean of d^ in the neighborhood as (ij, 
i. e.. 

P,= 
1 i df, 

N - 1 j=i,j^i 
(5.14) 

The examples shown in this chapter use the estimate at (5.14) for p.. 
However, the mean value is sensitive to outliers (impulse noise). A 
more robust estimate, such as the median of absolute deviations, or 
MAD (Rousseeuw and Leroy, 1987), can also be used. 
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We need conditions under which each of the update equations (5.9), 
(5.11), and (5.13) should be used. If a given center pixel is an impulse 
noise pixel, the degree to which its neighboring pixels can represent 
this center pixel will be small. If the center pixel is in a 
homogeneous region, the degree to which its neighboring pixels 
represent the center pixel will be large. Again using (5.7) and (5.8) as 
a basis for the filter design, we define the total compatibility of X 

with its neighbors in X as 

^_(X,I(X))= I u , , / I CO.. . (5.15) 

The value of \i^^ in (5.15) is a measure of the homogeneity of the 
intensities of the pixels in X, or the degree to which the neighboring 
pixels represent a center pixel. The smoothest case occurs when all 
the intensities in X are equal, and then |a,.j,g(X,I(X)) = 1. The most 
impulsive case is when I(X) is 0 or Q-1 and the remaining N-1 
intensities are Q-1 or 0, respectively. Then \i^^ takes its minimum 
value for any choice of a and p ; and for the small window choice 
advocated by Choi and Krishnapuram (with p given by (5.14) and 
(Oj. =1VJ), |a.j,^=e-^ 

We can use (5.15) to build the following set of fuzzy rules for image 
enhancement: 

R : IF|J,.j,p is small, then Fj(I(X)) = Ig(Xj) (Impulse noise removal) 

R^ :IF ]x^^ is large, then F2(I(X)) = 1^{X^) (smoothing) (5.16) 

Rg : ELSE F3(I(X)) = I^(X.) (edge sharpening) 

Membership functions for the linguistic values sm.all and large are 
defined on the range of ^..j,^, which is a subset of (0, 1]. The final 
value for the intensity of each pixel is computed using (5.5). 

Example 5.2 We show some examples of Choi and Krishnapuram's 
approach to image enhancement with fuzzy rules. For small 
windows, the effect of coji in (5.8) is negligible. To reduce 
computation time, all of the coji's were set equal to 1 in (5.15). Figure 
5.4(a) shows the original Lena image. Membership functions for the 
linguistic values small and large are shown in Figure 5.3. 
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I 

0.0 0.5 1.0 
Total compatibility M̂xc 

Figure 5.3 Total compatibility of center pixel with neighbors 

To create the noisy image shown in Figure 5.4(b), samples from the 
mixture distribution 0.95«(0, 25) + 0.05^(0, 10000) were added to the 
original intensities (see equations (2.17) and (2.18)). Values < 0 and > 
255 can easily occur, and were set to 0 and 255, respectively. The 
first noise component represents a zero-mean Gaussian with a=5, 
and the second component represents a zero-mean Gaussian with 
a=100. The second component approximates impulse noise because 
values from this component will almost always saturate the affected 
pixel intensity. 

(a) Original Lena (b) Noisy Lena 

Figure 5.4 Lena and her noisy derivative for Example 5.2 

Figures 5.5(a)-(c) show the images produced by applying filters A, B 
and C to noisy Lena. Using any of these filters alone on the entire 
image is not particularly effective at noise removal. Figure 5.5(d) 
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shows the result of applying a crisp version of the filtering system in 
(5.16) to noisy Lena, whereby only one of the filters A, B or C was 
used at each pixel, whichever had the largest firing strength a of the 
antecedent clause (see (5.4)). Certainly it's the best image in this set 
of four views. 

(a) fitter A (b)fiUjerB 

(c)filtierC (^dttierAorBorC 

Figure 5.5 E^nhancement of noisy Lena by various filters 

Figure 5.6(a) shows the result of applying the fuzzy rule-based 
filtering system to noisy Lena, which does a better job of removing 
noise without smoothing out the details. 
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(a) fuzzy rule base filter (b) intensity is a„ <-> I, 
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(c) intensity is â  <̂  Ig (^ intensity is ttg <-> Î , 

Figure 5.6 Fuzzy rule-based filtering of noisy Lena 

Figures 5.6(b)-(d) are images whose intensities are proportional to 
the firing strengths of the three rules : a^ <^ l^, a^ <r^ l^, a^ <-4 I^ for 
filters A, B, and C in the fuzzy rule-based filtering system. The 
weights are scaled by 255 and therefore, a brighter value indicates a 
larger weight. Filter A has a small weight in most of the image 
except in edge regions. Filter B has a large weight in locations 
contaminated by impulse noise. Filter C has a large weight in most 
regions and a small weight in edge regions. 

For comparison, Figure 5.7(a) shows the result of the 5x5 median 
filter and Figure 5.7(b) shows the result of the Saint Marc filter 
(Saint Marc et al. 1991) applied to noisy Lena. The parameters of the 
Saint Marc filter are chosen adaptively during execution. 
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(a) Median FUter (b) Saint Marc Filter 

Figure 5.7 Two otiier well known filters applied to noisy Lena 

Table 5.3 shows that the overall root-mean-squared (RMS) error 
between the intensities of the original Lena and the intensities 
enhanced by the fuzzy filtering system is smaller than that of the 
crisp version rule-based enhancement in Figure 5.5(d). 

Table 5.3 RMS errors produced by various filtering schemes 

Filter A Filter B Filter C Crisp RB Fuzzy KB 
Size 
Error 

5x5 5x5 5x5 5x5 5x5 
14.71 12.44 11.05 7.93 6.94 

The problem with enhancement is that, like many other forms of 
image processing, quantitative assessment of an individual filter is 
unavailable. Performance analysis of these schemes is ultimately 
subjective. Which filter does the best job? You make the call. 

5.3 Edge Detection and Edge E^nhancement 

Edge detection is a critical part of many computer vision systems. 
Ideally, edges correspond to object boundaries, and therefore edge 
detection provides a means of segmenting the image into 
meaningful regions. However, the definition of what constitutes an 
edge is rather vague, heuristic, and even subjective. Jain et al. (1995) 
say this: an edge point locates a pixel where there is "significant 
local intensity change"; an edge fragment is a collection of edge 
points; and an edge detector produces either a set of edge points or 
edge fragments. 
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What is implicitly crisp in these definitions of edges? That either a 
pixel is an edge point, or is not [and therefore, the intensity is either 
black or white]? Regardless of what you read into these definitions, 
it is clear that there are several opportunities to fuzzify the notion of 
an edge, because two variables are involved : spatial location and 
intensity. Our view is flexible: some edge detectors crisply locate 
pixels that are edge points; others use fuzzy sets to describe spatial 
locations of edges - sometimes these are called fuzzy edge points. 
Independently, we can regard the strength of an edge point (spatially 
located crisply) as crisp (black or white) or fuzzy (shades of gray); in 
the latter case, the interpretation of the non-crisp intensity is 
usually referred to as fuzzy edge strength. Some writers describe 
crisp pixel locations with fuzzy (or otherwise non-two-tone) 
intensities at "edges" as edge enhancement, reserving the term edge 
detection for crisp edge points with one of two intensities. In any 
case, there are many fuzzy models that attempt to locate regions in 
images that are related to edges, and this section discusses a very few 
of them. 

Russo and Ramponi (1994b) describe an edge detector that is 
relatively immune to noise, based on the if-then-else FIRE paradigm 
discussed in Section 5.2. They use the gray level differences in a 3x3 
neighborhood as inputs to the fuzzy rules. Let X denote the center 
pixel in the window, and let Xj = I(X)-I(Xj), for j=l, . . .8. Figure 5.8 
depicts Russo and Ramponi's numbering scheme for X =1,...,8. 

[7]|6][5] 

Figure 5.8 The window at center pixel X used by Russo and Ramponi 

Russo and Ramponi use x , j=:l 8, as the variables in the 
antecedent clauses of the rule base in (5.2). As usual, firing strength 
a for rule i is given by (remember that in (5.2) p is the number of 
inputs to rule i) 

Ri: ai(x) = (8)(m*(x))-mlki(xi)(8)--<H)m|,jkp,(Xp,) . (5.17) 

Russo and Ramponi use the mean operator for (8>, which gives. 

at(x) = — 
Pi 

^ P i 
Xm5p((Xj) (5.18) 

Let a (x) denote the overall firing strength of the first M rules and 

a (x) = a (x) be the firing strength of the ELSE rule. From (5.4), 
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a {x)= max (a (x)) ; a (x) = a (x) = l - a „ ( x ) . 
' m€{l M) ™ "̂  ^^+1 ~ 

(5.19) 

The output I(Xj) is obtained by adding the effects of the THEN and 
ELSE actions and then performing a suitable defuzzification - for 
example, the one shown in (5.5). 

Example 5.3 R is shown graphically in Figure 5.9. Russo and 
Ramponi's edge detector uses 4 rules; for k = 2, 4, 6 and 8 rule R is: 

IF Xk is zero 
AND Xkmod 8+2 is zero 
THEN I(X) is white 
ELSE I(X) is black. 

I^D 
KEY=(^=ZEn=VHH=BL) 

ELSE 

Figure 5.9 Representation of Russo-Ramponi rule R 

The membership functions for zero, white and black are shown in 
Figure 5.10 for an image with intensity values between 0 and G - 1. 

zero 

0.0 
-G+1 Intensity differences G-1 

1-^ '̂ •**«- black white 

0.0 
0 Intensity G-1 

Figure 5.10 FMFs and CMFs for Russo and Ramponi's edge operator 
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(a) Lena image (b) Russo-Ramponi output 

(c) Result after thresholding 

Figure 5.11 Fuzzy rule-based edge detection (Russo and Ramponi) 

Figure 5.11 shows a typical result obtained by this edge detector. 
View (a) is the original input image. View (b) shows the output of the 
Russo-Ramponi edge detector, and view (c) is a thresholded version 
of the image in panel (b). 

Bezdek et al. (1998a} also use a 4 rule fuzzy system for edge detection 
and enhancement, but their approach is based on the TS model. 
They describe edge detection as a composition of four operations. 
Specifically, they denote the edge image as E = e[P, 1 so that 

e = s o b o f o c . The function e: Pjj h^ IJ x Q is the edge operator. The 
four functions comprising e are : 
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c: IJ X Q i-> IJ X 9̂  : c[Pjj] = Cjj which conditions (enhances) the 
raw data in P ; 

u 

f:IJx9^ i-> IJx9tP : f[Cjj] = Fj j , which extracts geometrically 

relevant feature vectors in 3i^ from C ; 

b: IJ x 9tP i-> IJ X 5R : b[F,j] = B^which blends or aggregates the 
components of feature vectors in F,,; and 

s: IJ X 9̂  i-> IJ X Q : s[B,, ] = E,,, which scales blended image B., to 
IJ IJ U 

get gray levels in Q. 

Figure 5.12 defines the correspondence used in Bezdek et al. between 
a 3 X 3 window Wj centered at spatial location X and a sequentially 

labeled window vector w^ = (I(Xj),..., I(Xg ))^ of the intensities at the 
locations in it. The center address in this window is X (instead of X..) 
for simplicity, and it occupies position 5. 

[I][2][3] 
SDIl] 

Figure 5.12 The neighborhood of center pisel X used by Bezdek et al. 

Feature extraction functions (f) estimate indicators of geometric 
behavior at edges. The most common choice is an f that 
approximates the gradient of the picture function. The Sobel 
features (Gonzalez and Woods, 1992) do this for 3 x 3 window vectors 
Wj. Letting h, v stand for the horizontal and vertical spatial 
directions, the (absolute value) of the Sobel features are : 

f|s|(^i) = (|fsh(''i)|'|fsv('^i)|) ; where (5.20a) 

fsh(Wi) = (KXg) + 2I(Xg) + KX^)) - (I(X^) + 2I(X2) + KXg)); (5.20b) 

fg^(w,) = (I(X3) + 21(Xg) + I(Xg)) - (I(Xj) + 2I(X J + KX^)). (5.20c) 

The range (r) and standard deviation (s) of the intensities in w^ are 
surprisingly good edge features. The geometric relationship of r to 
edges is clear : it is an order statistic that measures the maximum 
distortion among the intensities in Wj. The standard deviation 
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measures how much variation occurs in intensities in Wj. The 
formulae for (r, s) on a 3 x 3 window are: 

f,JWj) = {f^(Wj),fJWj)) ; where (5.21a) 

f^(Wj)= max{I(X^)}- mln{I(Xj)} 
1=1 9 1=1 9 

{,{w^) = ^\\ lliX^r / 9 1 -1 IKX,) / 9 

and (5.21b) 

(5.21c) 

Equation (5.21c) is a biased estimate of the variance because n is 
used in the denominator. Readers who prefer an unbiased estimate 
should use n-1 instead. Nice things about these features are that 
their functional forms are known for any size window, that they are 
invariant to changes in window indexing, and they are not 
orthogonal (like the Sobel features), so they are not biased towards 
finding only edges parallel to the axes of the spatial grid. Bezdek et 
al. give some examples of processing images for edges using all four 
of the features in (5.20) and (5.21). 

Blending functions (b) aggregate information about edges possessed 
by the features. There are many types of blending functions. Of 
these, Bezdek et al. discuss three parametric families: (i) norms, of 
which the two most common families are the inner product and 
Minkowski norms; (ii) generalized logistic functions; and (iii) 
computational learning models such as neural networks and fuzzy 
systems. For convenience, let z = f(Wj) and b.. ,.(x) = |z{|, where ||*|| is 

any norm on 9t^. The Euclidean norm of f(w.) is often regarded as the 
standard blending function, but there is no reason a priori to prefer 
the Euclidean norm of, for example, the Sobel features fs(Wj) as the 
best way to make Sobel edge images. ANY norm can be used to 
combine the components of f(w). 

X (or y) 

Figure 5.13 Membership functions for bjs4 (same for x and y) 

The blending function discussed here is an analytic realization of a 
two input, one output TS model which Bezdek et al. defined 
subjectively (as opposed to training with lO data). Figure 5.13 shows 
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membership functions for low {m^) and high (mj^) for a 4-ruIe TS 
blending function they call bxs4. 

The numerical domain of the chosen features Is normalized to [0, 4] 
here. This bizarre choice was a historical artifact of the evolution of 
this detector, and there Is certainly no preternatural reason to 
prefer this scaling. The input features to the blending function are 

named (x) = (x,y)^. In example 5.4 x = (Ifsh^'^^l'ksv^'^^l)' ^^* there Is 
no reason for the features to be limited to these, and Bezdek et al. 
show many edge images made with f̂ (̂Wj) = (f^(Wj),f (w^)) that are 

(visually) better than the absolute Sobel features. The output 
functions for bTS4 â re specified to make it a four parameter family of 

models. Let X,%,y,(0e3i and define the rules (see Bezdek et al., 
1995 for more information about the choices for the consequent 
output functions) as : 

Rl. If x = Landy = L ^ Uj(x) = x^+y^ 

R2. Ifx = Landy = H^U2(x) = x 

R3. Ifx = Handy = L^U3(x) = Y 

(5.22a) 
(5.22b) 
(5.22c) 

R4. Ifx = Handy = H=>U4(x) = CO . (5.22d) 

Bezdek et al. chose the T norm for aggregation of values of the 
premise membership functions, i.e., T (a, b) = ab. The functions in 

Figure 5.13 satisfy mj^(x) +mj^(x) = 1, so mj^(x) = l-mj^(x) for x in 
[0, 4], and similarly for y. Since m and m^ are the same for x and y, 

Li H 

the rules in (5.22) can be written In terms of a single membership 
function m(z) = l - | z | / 4 , where z can be x or y In [0, 4]. The firing 
strengths {a^ (x) = T(m(x),m(y))} for the four rules in (5.22) are 

(5.23a) 
(5.23b) 
(5.23c) 
(5.23d) 

Substituting the right sides of (5.22) and (5.23) into equation (4.73) 
jaelds an explicit formula for l>rs4: 

hjs^{x;x,x,j,cd) = m{x)m[y)[x^ + y^ +(i)-x-y] ^̂  24) 
+m(x)[x - 0)] + m(y)[Y - co] + co 

This is a particularly simple fuzzy system as Its output can be 
computed directly with (5.24). Since m(0)=l and m(4)=0, boundary 
conditions can be computed from (5.24) at the four comers of the 
domain [0,4]x[0,4], 

R r ttj (x) = m(x) • m(y) 
R,: ttg (x) = m(x) • (1 - m(y)) 
R3: ag (x) = (1 - m(x)) • m(y) 

R4: a4(x) = ( I -m(x) ) ( l -m(y) ) 
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b™,((0,0);T.A,.p.co} = 0 

b^4((0,4);t.x.Y.«) = X 

b^4((4,0);x.x,Y,co) = Y 

b^4((4,4):x,?L,p,co) = co 

(5.25a) 

(5.25b) 

(5.25c) 

(5.25d) 

This shows that the constants on the right sides of R , R and R in 
(5.22) simply fix the values of bTS4 at the corresponding comers of its 
domain. It would be unusual not to specify % = y, as this would 
destroy symmetry of the surface with respect to the plane {x = y} in 
9t for features such as f„, (w) and f„ (w). 

Sn Sv 
Rule R is the critical rule 

for brs4 because Uj (x) = x^ + y^ controls the shape of its graph in the 
neighborhood of 0. Since m(x) and m(y) will both be close to 1 near 0, 
the value x^ +y^, which is Just the x-th power of the Minkowski x-
norm of x, will dominate (5.24) near 0. 

Example 5.4 The blending function b.j^^ was applied to the Lena 
image in Figure 5.4(a) with the following protocols: input features to 

the blending function were x = (|fgj^(w)Ufg^(w)|j, scaled to the 

interval [0, 4]; x = 4, % = Y= 2 and o) = 3. The output image was 
dynamically scaled (Bezdek et al., 1998a). Figure 5.14, right view, is 
the graph of the surface bi34 over the input domain [0, 4] x [0, 4]. For 
this X the blending function is locally convex near 0, resulting in 
suppression of all but the brightest edges in the input image. The 
output is shown on the left side of Figure 5.14. 

•i 

r/^^ C I) 

Figure 5.14 TS4 edge image and graph of b__. for x = 4 
TS4 
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The left side of Figure 5.15 shows the output of the TS4 edge detector 
made with exactly the same computations as those discussed for 
Figure 5.14, except that for the right side of rule 1, x = 1. At this 
setting the blending function is locally linear near the origin (see 
the right view in Figure 5.15), resulting in an edge image that 
enhances structural details such as the feathers along the tail of the 
hat. 

r F 
r.> 

Figure 5.15 TS4 edge image and graph of the b.^^ for x = 1 
TS4 

As X decreases, the shape of the blending surface defined by the 
function b^^continues to sharpen. The effect of this is seen in the 
left view of Figure 5.16, which depicts the TS4 edge image at x = 0.25. 

(~rT2i7T~2TT) 

Figure 5.16 TS4 edge image and graph of the b,j,_, for x = 0.25 
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These three views of Lena show that a very wide range of edge-
enhanced images can be reahzed by simply adjusting a single 
parameter (x) in the TS4 blending function. Bezdek et al. {1998a) 
discuss the utility of this feature for digital mammography, where 
an on-line viewing facility might enable practicing radiologists to 
view and tune enhanced edge images for optimal visual assessment 
in near real time. 

Compare Figures 5.14-5.16 to previous and subsequent edge images 
of Lena. You will notice that the TS4 Images have a "3D" like sheen 
to the edges. This is due in part to the fact that these three images are 
not thresholded. Instead, the pixel intensities are dynamically 
rescaled so that there is a full, 8 bit output range available for each 
pixel in these images. Applying any thresholding techniques 
discussed in Section 5.5.A to these three images would result in 
black and white edge images that have a more conventional 
appearance, such as those in Figure 5.20. 

Summarizing, the key points made in Bezdek et al. are: (i) statistical 
features such as the range and standard deviation of window 
intensities can be as effective as more traditional features such as 
estimates of digital gradients; (ii) blending functions that are 
roughly concave near the origin of feature space can provide 
visually appealing edge images; (iii) geometric considerations can be 
used to specify the parameters of generalized logistic functions and 
TS systems that yield a rich variety of edge images; and (iv), 
understanding the geometry of the feature extraction and blending 
functions is the key to using models based on computational 
learning algorithms such as neural networks and fuzzy systems for 
edge detection. 

gradient 
direction 

comer triple 
point 

uniformity 
evaluation 

regions 

Figure 5.17 Comer and triple points in Law et al.'s edge detector 
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Law et al. (1996) propose a fuzzy logic based edge detector in which 
local features such as gradient, symmetry and straightness (see 
Section 5.2) are combined to determine edgeness, comerness, and 
tripleness. They argue that the traditional definition for an edge 
point as the point of high gradient between two uniformly flat 
regions is not valid at corners (where a uniform region has a sharp 
corner) and Junctions (where three regions meet). Figure 5.17 shows 
these situations. 

The fuzzy rules used to compute memberships in the fuzzy sets 
edgeness, comerness, and tripleness are summarized in Table 5.4. 
As in Tables 5.1 and 5.2, some compactiflcation of these rules can be 
realized. For example, the first four rules can be replaced by the 
single rule : IF gradient is low THEN edgeness, comerness and 
tripleness are low (and similarly for rules 5 and 6). 

Table 5.4 Fuzzy rules for edgeness, comerness and tripleness 

gradient symmetry straight- edge- corner- triple-
ness ness ness ness  

low low low low low low 
low low high low low low 
low high low low low low 
low high high low low low 
high low low low low high 
high low high low low high 
high high low low high low 
high high high high low low 

The memberships for gradient, symmetry and straightness are 
determined using gray-level values within the window, as explained 
in Section 5.2. The memberships in edgeness, comerness, and 
tripleness are used to trace edges and Join edge segments, as will be 
described in the next section. 

5.4 Edge Unking 

Section 5.3 discussed several fuzzy algorithms that identify pixels 
that may belong to an edge in an image. Many "edges" are (visually) 
fragments of larger edge structures. Edge linking techniques attempt 
to bind edge fragments, forming an image with better visual acuity 
than images made by edge detection. 

Law et al. (1996) use edgeness, comerness, and tripleness along with 
the edge direction perpendicular to the gradient direction to Join 
edge fragments. They consider the four possible pairs of pixel 
neighbors (1,9), (2,8), (3,7) and (4,6) to a center pixel X as shown in 
Figure 5.18. If the edgeness of the central pixel exceeds that of the 
neighboring pixels, then the central pixel is marked as a crisp edge 
point. Then the edgeness image is thresholded to remove weak edge 
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points, and T-, Y-, and X-shaped patterns are removed to simplify 
tracing. Law et al. do not specify how these patterns are detected. 
This removes junction points, but such points are taken into 
account by using comemess and tripleness features. 

1 

1—4. 
7 

2 3 
- —^-*y' 

Y- -*— 

1 

1—4. 
7 8 LlJ 

Figure 5.18 Four possible pairs of neighbors to X 

To trace and join edge segments. Law et aL consider the four cases 
shown in Figure 5.19: joins between aligned edge segments (two end 
points), between two segments at a comer (two end points), between 
three segments that represent a "Y" junction (three end points), and 
between two segments at a triple point (one end point, one mid 
point). 

comer point 

(a) between two 
aligned fragments 

• < 

(c) between three 
fragments at a Y 

• < 

(b) between two 
comer fragments 

triple points 

(d) between two fragments 
at a triple point 

Figure 5.19 Types of joins considered by Law et al. (1996) 

In addition to edgeness, comemess and tripleness, fuzzy rules that 
govern the joining process are based on alignment and proximity. 
Alignment is the difference in angle between two edge fragments 
containing the end points, and proximity is the Euclidean distance 
between two end points. The fuzzy rules to compute joinness are 
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listed in Tables 5.5-5.8. In Table 5.5, interim edgeness is computed 
by using the rules for edgeness in Table 5.4. The first rule from Table 
5.5 reads: 

IF alignment is low 
AND proximity is low 
AND interim edgeness is low 
THEN joinness is low. 

Table 5.5 Fuzzy ndes for aligned-edge join (Figure 5.19(a)) 

alignment proximity interim 
edgeness 

Joinness 

low low low low 
low low high low 
low high low low 
low high high medium 
high low low low 
high low high medium 
high high low medium 
high high high high 

Table 5.6 Fuzzy rules for comer join (Figure 5.19(b)) 

comemess at proximity joinness 
intersection 

low low low 
low high low 
high low low 
high high high 

Table 5.7 Fuzzy rules for 3-edge triple join (Figure 5.19(c)) 

tripleness at proximity Joinness 
intersection  

low low low 
low high low 
high low low 
high high high  

Table 5.8 Fuzzy rules for 2-edge triple join (Figure 5.19(d)) 

tripleness near proximity Joinness 
intersection 

low low low 
low high low 
high low low 
high high high 
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Membership functions for linguistic values such as low and high 
can be found in Law et al. (1996). As in several previous examples, 
the first two rows in each of Tables 5.6-5.8 can be combined into 
single rules, but Law et al. (1996) show them as above. 

Example 5.5 Figure 5.20 illustrates the edge joining process 
proposed by Law et al. (1996). Figure 5.20(a) shows the basic skeleton 
of edge fragments. Figure 5.20(b) shows the result after short lines 
with less than three pixels are removed. Figure 5.20(c) is the result 
after the joins are completed. Figure 5.20(d) is the final result after 
unconnected lines are removed. 

„ mm f 
(a) ba^c edge skeletcm (b) short lines are removed 

(c) joins are completed d) unconnected lines are removed 

Figure 5.20 Edge joining as given in Law et al. (1996) 
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Figure 5.21(a) shows the original "camera man" image, and view 
5.21(b) shows the result of Law et al.'s procedure after the steps of 
fuzzy filtering, edge detection, tracing and Joining. 

(a) "camera man" image tb) final result 

Figure 5.21 Law et al.'s procedure illustrated on the camera man 

Kim and Cho also (1994) describe a fuzzy reasoning method to 
perform edge linking. Their algorithm is based on the relaxation 
labeling approach proposed by Hanson and Riseman (1978). The 
basic idea is to increase or decrease the edge strength associated with 
a crack edge depending on its compatibility with the crack edge 
strengths in the neighborhood. Figure 5.22 illustrates the idea of a 
crack edge. 

DIDID 
, + -e-+ 
DIDID 

g 

I I pixel 

— crack edge 

+ vertex 

Figure 5.22 A neighborhood of crack edges 

A crack edge occurs between a pair of adjacent pixels. A 
neighborhood consisting of the center crack edge e and six other 
crack edges labeled a, b, c, f, g, and h are shown in Figure 5.22. Kim 
and Cho heuristically select 10 compatibility relationships between 
an edge and its neighboring edges based on considerations such as 
linearity of edges. The edge strength associated with a compatible 
crack edge is increased, and the edge strength associated with an 
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incompatible crack edge is decreased. This relaxation process is 
repeated until convergence. Figures 5.23(a)-(c) show examples where 
the edge strength of the central crack edge (denoted by a blank 
rectangle) should be decreased. Here, filled rectangles indicate 
strong crack edges and dotted lines indicate weak edges. Similarly, 
Figures 5.23(d)-(f) show examples where the strength of the central 
crack edge should be increased. Kim and Cho associate one fuzzy rule 
with each of 10 cases (6 of the 10 rules are shown). 

I 1 

(a) 

I 1 

(b) 
I ' 1 

(c) 
I 

(d) 

I I 

(e) 

I 
I 

(f) 

J, 
I 

Figure 5.23 Incompatible (a-c) and compatible (d-f) crack edges 

For example, the rule corresponding to Figure 5.23(d) is 

IF a is small 
AND b is big 
AND c is small 
AND f is small 
AND g is big 
AND h is small) 
THEN e is increased by positive large. 

Kim and Cho use Gaussian-shaped membership functions for the 
antecedents big and sm.all and tune the parameters of the 
membership functions by training a neural network with a set of 
synthetically generated crack edge data . The consequent 
membership functions that represent positive large and negative 
large are modeled by crisp singletons (±1 respectively), so this is 
another instance of the 0-th order TS model. Kim and Cho show that 
fuzzy edge relaxation is faster and gives better results when 
compared with traditional techniques. 

Example 5.6 Figure 5.24(a) shows the 128x128 noisy image of a ring 
used by Kim and Cho (1994). Figure 5.24(b) shows the corresponding 
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edge image obtained by applying the crack edge operator (see 
Rosenfeld and Kak, 1982) and then thinning the result by non-
maximal suppression. 

(a) Original noisy image (b) Initial edge image 

Figure 5.24 Raw data for edge linking examples 

(a) 1 iteration (b] 5 iterations 

.25 Kim and Cho's edge linking method 

(a) 1 iteration tb) 40 iterations 

Figure 5.26 Hanson-Riseman's edge linking method 

The result after one iteration of applying Kim and Cho's fuzzy 
relaxation algorithm to the image in 5.24(b) is shown in Figure 
5.25(a). The result after five iterations is shown in Figure 5.25(b). 
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The results of applying the Hanson-Rlseman method to the edge 
image in Figure 5.24(b) after 1 and 40 iterations are shown in 
Figures 5.26(a) and (b) respectively. Visually, the Kim and Cho output 
at 5 iterations is quite superior to the Hanson-Riseman output after 
40 iterations. 

5.5 Segmentation 

Image segmentation is an important step in many computer vision 
algorithms. The objective of segmentation is to divide an image into 
(meaningful) regions. Errors made in this stage will impact all 
higher level activities. Therefore, methods which incorporate the 
uncertainty of object and region definition and the faithfulness of 
the features to represent various objects (regions) are desirable. Pal 
and Pal (1993) and Bezdek and Sutton (1999) have contributed to the 
plethora of surveys on this topic. 

In a segmented image, ideally each region should be homogenous 
with respect to some characteristics or features such as gray level or 
texture, and adjacent regions should have significantly different 
characteristics or features (Haralick and Shapiro, 1992). As in 
Section 5.1, let IJ denote the two-dimensional domain of the image 
P „ . More formally (Fu, 1982), segmentation is the process of 
partitioning the entire image P into c crisp and maximally 
connected subregions such that each region R is homogeneous with 
respect to some predicate P, i. e., 

R j n R j = 0 Vi, j , i , i j 

R , 1,..., c are connected . (5.26) 

^(Rp = TRUE Vi 

p[K^ u R.) = FALSE if i ?t j and R̂  is adjacent to R 

The crisp membership function mj^ : IJ -^ {0,1} of a region Rj is 

" - H , n . J ) = { i : i ; : ] ! : H ; } • (5.2^ 

In many situations it is not easy to determine if a pixel should 
belong to a region or not. This is because the features used to 
determine homogeneity may not have sharp transitions at region 
boundaries. This is especially true when features are computed 
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using, say, a local 3x3 or 5x5 window. To alleviate this situation, we 
can insert fuzzy sets concepts into the segmentation process. The 
first reference to fuzzy segmentation was made by Prewitt (1970), 
who suggested that the results of image segmentation should be fuzzy 
subsets rather than crisp subsets of the image plane. In a fuzzy 
segmentation, each pixel is assigned a membership value in each of 
the regions. If the memberships are taken into account while 
computing properties of regions, we often obtain more accurate 
estimates of region properties. This will be discussed further in 
Section 5.7. 

The result of a fuzzy segmentation is a partition of P into c fuzzy 

subsets {RJ. Each R is represented by its membership function 

mj^ :IJ->[0,1], which replaces the membership function in (5.27). 

For (i, j) 6 Pjj, mj^ (i, j) represents the degree to which (i,j) belongs to 

R. A fuzzy segmentation of an image into c regions is a fuzzy cxn 

partition matrix U = [u ], where u = m (i, j). This construction 

loses the connectivity among regions that is presumably enforced by 
construction of the predicate P in (5.26). 

A. Segmentation via thresholding 

Thresholding is one of the simplest methods to obtain a crisp 
segmentation a unispectral image. Thresholding generates a binary 
image in which the pixels belonging to objects have the value 1 and 
pixels belonging to the background have the value 0. Binary images 
are popular, but images are normally acquired as gray-scale images. 
Ideally, objects in the image should appear consistently brighter (or 
darker) than the background. Under such conditions, a binary 
image of the object can be obtained by thresholding the gray level 
image. Using Xj for location (i, j ), the thresholded image is given by 

There are several traditional thresholding techniques in the 
literature to determine the "correct" threshold t (Sahoo et al. 1988, 
Pal and Pal, 1993). Two broad categories of fuzzy techniques are: (1) 
methods that search for a threshold x which maximizes or 
minimizes an index of fuzziness based on the membership values 
assigned to pixels in the image; and (2) methods that cluster the gray 
values into two classes. Methods based on clustering will be 
discussed in the next section. 

Typically it is assumed that the gray-level of a pixel is related to the 
degree of membership of the pixel in the object. If the object is 
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lighter than the background, then it is reasonable to suppose that 
the higher the gray-level value, the higher the membership value of 
the pixel in the object region. Therefore, the membership function 
mj^ (Xj) is obtained by mapping gray levels into the interval [0,1]. 

This mapping is generally monotone increasing. Let I{X) e [0, G -1] 
denote the gray level of a pixel. Here we present two of the most 
frequently used mappings for generating membership functions. Let 

m„ (I(X)) = 
0 
al{X) + b 
1 

I(X) < aj 
a^ < 1(X) < 
I(X) > a^ 

a^ < 1(X) < a^ , where (5.29) 

B.n — a i 
and b = (5.30) 

If a^ is the minimum gray level in the image and a^ is the maximum 
gray level, then we have a simple linear mapping. Equation (5.30) 
has the following advantages: it provides a reasonably smooth 
transition between background and object regions, it can be easily 
manipulated by fuzzy operators, and it lends itself to hardware 
implementations if speed is crucial. Another popular mapping is the 
so-called S-function 

m^^(l(X)) = S(I(X)) = 

fo 
i r i ( X ) - a 
2!, b - a 

l . l f M l ^ f ;b<I(X)<C 

;I(X)<a 

; a < I(X) < b 

1 
2V c - b 

;I(X)>c 

(5.31) 

In (5.29) (ai+a2)/2 is the cross-over point; in (5.31), b is the cross-over 
point. Gray values above the cross-over point have memberships 
greater than 0.5, and gray values below the cross-over point have 
memberships less than 0.5. Therefore, a thresholded image can be 
obtained by choosing x to be the cross-over point. 

To find the optimum cross-over point or threshold, we can compute 
measures such as the linear/quadratic index of fuzziness (Pal et al. 
1983a, Murthy and Pal 1990), fuzzy compactness (Pal and Rosenfeld 
1988), or index of area coverage (Pal and Ghosh 1990). Usually a and 
c in (5.31) are fixed, and b is varied. For each b, the index of fuzziness 
is computed, and for any of the three indices just mentioned, we pick 
X = b in (5.31), corresponding to either the global minimum or 
maximum, depending on which measure is used, as the threshold. 
The linear index of fuzziness (Kaufmann 1975) is 
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y,(P„) = ^l^^l^n^(X^).l-m^^(X )] . (5.32) 

The quadratic index of fuzziness (Kaufmann 1975) is 

'^''^^' = ^ ^ min\m^JX^U-m^^[XJ (5.33) 

Definitions of compactness and index of area coverage are given in 
Section 5.7. We mention that any measure of fuzziness can be used 
for thresholding; see Pal and Bezdek (1994) for an extensive list of 
other indices. Fuzzy divergence and probability measures can also 
be used for object-background segmentation of images (Bhandari et 
al., 1992). 

Object boundaries in gray-scale images are often blurred and 
distorted due to the imaging process. The thresholding operation 
does not preserve the uncertainty in the image, and could distort the 
shape and size of the object. An alternative approach is to preserve 
the uncertainty inherent in the image as long as possible until 
actual decisions have to be made. This will be discussed further in 
Section 5.7. 

B. Segmentation via clustering 

In general, pixel intensity is not directly related to membership 
degrees of the pixel in the objects/regions (for example, a textured 
region). Therefore, we need to generate membership functions for 
regions in the image. If we extract p features at pixel X., then X can be 

represented by a feature vector x in 3{^. The components of x. may be 
jus t intensities (in the case of multispectral images), or jus t 
functions of the intensities, or both. Moreover, If we select the 
features judiciously, then the feature vectors corresponding to each 
meaningful region may form clusters in 9^^. Presumably, the object 
data X = {x ,x ,...,x } corresponding to the n pixels in the image 
can be clustered into a required number c of clusters using a suitable 
hard/fuzzy/possibilistic/probabilistic clustering algorithm. 

Clustering algorithms generate a cxn partition matrix U = [u ], 
where Uj^ is the membership of the k-th pixel X^ in the i-th region R. 
The i-th row of U contains values of the membership function 
mj^ of R. Hardening the columns of U with (1.15) then gives us a 

crisp segmentation of the image. However, since clustering is 
unsupervised, it is not possible to predict what clusters will emerge 
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from a perceptual standpoint. Moreover, there is no guarantee that 
the {RJ generated by hardening U will be connected regions in the 
image, or regions satisfying a predicate like those in (5.26). And as 
usual, you have to worry about how to specify or identify the number 
of classes c. 

In terms of generating membership functions for later processing, 
the c-means clustering models have several advantages. They are 
unsupervised; they can be used with any number of features and 
classes; and they distribute membership values across the classes 
based on "natural" groupings in feature space. 

When n is large, (e.g. n=65,536 for a 512x512 image) clustering 
methods are time consuming. However, some simplifications are 
possible if features have quantized values. For example, if the gray 
level of a pixel is a feature, then typically there are only 256 possible 
values for the feature. In a given image, there will usually be many 
pixels with identical feature vectors. Therefore, X can be stored in a 
more compact form as X = {(hj,Xj^),--,(h,^,Xj^),•••,(h ,x )}, where the 
feature vectors x are all distinct, h is the frequency of occurrence of 
X , and q is the total number of distinct feature vectors. The values 
{h} can be obtained from the p-dimensional histogram of the 

feature vectors. Since the membership of a feature vector in a cluster 
depends only on the values of the features, (2.7b) or (2.8b) can be 
written as 

J<Vk 
^ = k 3 i _ J L J L J L , i = i c . (5.34) 

^ " i k • ^ k k=l "" ^ 

If q « n , then (5.34) is considerably more efficient than the original 
formulation. Since an array of size cxq (rather than cxn) can be 
used to store all the memberships, there will be considerable savings 
in memory as well. 

The segmentation obtained depends very much on the distance 
measure used in the c-means algorithm. Euclidean distance is 
effective only when the clusters are well separated, when they are 
expected to be hyperspherlcal, and when they are approximately 
equal in size. When this is not the case, other algorithms such as the 
Gustafson-Kessel (1978) algorithm (see Section 2.4) or the Gaussian 
mixture decomposition (GMD) algorithm (see Section 2.3) can be 
used. 



584 FUZZY PATTERN RECOGNITION 

Example 5-7 As an illustration we compare the performance of FCM 
with the Euclidean norm with that of the GK and GMD algorithms 
on a simple segmentation problem. In all cases the number of 
clusters specified was c = 3. FCM used the first three feature vectors 
as the initial prototypes. GK and GMD use the fuzzy partition 
generated by 5 iterations of FCM for their initializations. 
Termination in all cases occurred when the absolute change in every 
membership Uy (or posterior probability py) was less than 0.001. 

That is, the termination norm was U. - U 
t-ill 

< 0.001. 

Figure 5.27(a) shows the original 256x256 image of an outdoor scene. 
The original image is a color image with red (r), green (g) and blue (b) 
components. We used two Ohta (1985) features, intensity =(r+g+b)/3 
and excess green =(2g-r-b). For convenience we call this 9t^(0hta). 
Since the sky is very uniform, the sky feature vectors form a highly 
compact cluster (bottom left in Figures 5.27(b-d). Figures 5.27(b-d) 
show the clustering results in 9t^(Ohta). The black dots are the 
estimated centers and the ellipses enclose points within a 
Mahalanobis distance of 2 of each center point. The third ellipse in 
Figure 5.27(d) - the sky - is really tiny, but it's there - see if you can 
find it. Equation (2.27) is used to compute the covariance matrix in 
the Mahalanobis distance after the algorithms terminate. We have 
repeated the original image, panel (a) on this page, in the lower right 
panel of the next page so you can compare the segmentations shown 
there to the input image without flipping back and forth to this page. 

(a) An outdoor scene we've all seen (b) FCM clusters in "^ (Ohta) 

Figure 5.27 Segmentation via clustering 
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(c)CaC dusters in 3t^(Ohta) 
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Figure 5.27 (con't.) Segmentation via clustering 
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Figures 5.27(e) and (f) show the segmentation results achieved by the 
FCM and GK algorithms respectively, where the feature points from 
the sky and road regions are lumped into one cluster and the feature 
points from the tree region are divided into two clusters. The 
segmentation result from the GMD algorithm in Figure 5.27(g) is 
quite good, giving a clear distinction between the road and sky. 

In many segmentation applications (e.g., outdoor scenes), the 
number of clusters is not known in advance. In such cases, the 
methods discussed above cannot be applied without using, for 
example, an ancillary validity measure to determine the number of 
clusters (see Section 2.6). This approach can be computationally 
expensive. An alternative is to use an algorithm such as RCA (see 
Section 2.5), which determines the number of clusters d5Tiamically 
during execution of the algorithm. 

Example 5.8 Figure 5.28(a) shows the intensity representation of a 
color image of a house. The color image has red (r), green (g) and blue 
(b) components. The outputs shown are based on a reduced image 
that was made by using only every third pixel in the image in both 
the horizontal and vertical directions to reduce computation time. 
Figure 5.28(b) shows the five clusters identified by RCA in the 2D 
feature space extracted from the 3 intensities, where x = red-blue 
difference (r-b) and x = excess green (2g-r-b). 

(a) Original image (b) Clusters in feature space 

Figure 5.28 Segmentation by the RCA algorithm 
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(c) Segmented image 

Figure 5.28 (con't.) Segmentation by the RCA algorithm 

The GK distance at (2.28) was used in this example. The ellipses 
enclose points within a Mahalanobis distance of 4. RCA was 
terminated when the prototypes did not change significantly 
between two successive iterations. Since each "prototype" consists of 
a point prototype v and a covariance matrix C the termination 
condition was jointly applied to both sets of parameters, viz., 

J B ^ { l K t - V - i | | J < 0 - 0 1 and max{||c,^-C^^^_J|}<0.1, where t 
1<1<C 1<1<C ^ ' 

represents the iteration number. 

Outlier points (i.e., points for which the possibilistic weights are 
equal or nearly equal to zero in all clusters) are shown as small 
squares in Figure 5.28(b). Figure 5.28(c) shows the segmentation 
corresponding to Figure 5.28(b), where each point is assigned to the 
cluster with the largest membership. Outlier points are shown in 
white in this figure, and they correspond to small and narrow 
classes such as the edge of the roof and the trees on the left and right 
sides of the house. The vertical region to the left of the house is 
segmented incorrectly in several places. This is probably due to 
small differences in color which are visible in the original image 
that are differenced out during feature extraction. An alternative 
explanation is that the sampling used made these classes have too 
few points in the 2D feature space to be Identified as legitimate 
clusters. 

Boujemaa et al. (1992a) present a segmentation algorithm that 
models the uncertainty in pixel information based on fuzzy 
clustering (e.g., FCM). They use the idea of a "gradually focusing 
decision". The algorithm proceeds in two steps. The first global step 
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selects (in a non-sequential way) the most "ambiguous" pixels, 
which are close to regions boundaries. The ambiguity is measured by 
fuzzy memberships. The "strongest" ( or least ambiguous) pixels 
represent the coarse information of the scene and locate the inner 
parts of regions. The second step performs fine segmentation of 
boundaries. It focuses exclusively on the ambiguous pixels and 
ignores all the others already classified in the previous global stage. 
Each ambiguous pixel is merged with one of the neighboring regions 
in the local neighborhood of the pixel. This way, "weak" and "vague" 
pixels, representing transition zones, are disambiguated by strong, 
contextual region membership information. This coarse to fine 
segmentation strategy provides finer boundary localization and 
smooth edge detection. Boujemaa et al. (1992b) apply this technique 
to images in several medical domains, including ventricular 
endocardium detection. 

C. Supervised segmentation 

If segmentation is unsupervised (the input data is not labeled), then 
either humans or an additional level of post-processing is needed to 
assign meaningful physical labels to algorithmically determined 
regions. Each object or region in the segmented image is labeled 
based on one or more properties of the region. (See Section 5.7 for a 
discussion of properties of fuzzy regions.) 

However, in many situations, unsupervised methods do not give 
good segmentation results, because feature vectors belonging to 
different objects in the image may not be well separated (for 
example, see Figure 5.27(b)). To overcome this problem, 
segmentation and labeling can be performed simultaneously, by 
using the labels of some pixels extracted from the input data prior to 
the training phase of the segmentation process. The semi-supervised 
FCM algorithm discussed in Section 2.3 is one example of this 
approach (Bensaid et al. 1996a), and our Example 4.7 is an another 
illustration of supervised segmentation that uses the crisp k-nn rule 
as the classifier. We will comment on other supervised approaches 
to segmentation with fuzzy models in Section 5.11. In this 
subsection, we consider an approach based on fuzzy aggregation 
networks (FAN's) (Section 4.7.D). In this approach, labeled feature 
vectors are used to train a FAN, and the output of the FAN is used to 
segment and label the image simultaneously. 

Example 5.9 Figure 5.30(a) shows a 256x256 image of a guy checking 
out the neighborhood - an outdoor scene we've all seen. The original 
image was in color, and from it we extracted feature vectors 
consisting of the three Ohta (1985) color features and a position 
feature. The color features are computed from the r, g and b (red, 
green and blue) components of the image as: excess green = (2g-r-b), 
red-blue difference = (r-b), and intensity = (r+b+g)/3. The position 



IMAGE PROCESSING AND COMPUTER VISION 589 

feature is simply the row number. Here we describe a situation where 
about 0.5% of the image data was used for training and the whole 
image was used in testing. Krishnapuram and Lee (1992a, 1992b) and 
Keller and Chen (1992a) show examples where the training and 
testing scenes are different. These experiments were conducted with 
several information fusion structures. 

The features were normalized so that all values fell between 0 and 
255. The training data consisted of 60 feature vectors for each type of 
object. In this example, 6 objects (classes) were chosen: sky, tree, 
roof, wall, grass and road. In the fuzzy aggregation network 
approach, we need to compute the membership of each feature in 
each of the classes. Therefore, we need to estimate the membership 
function for each feature for each object. The smoothed and 
normalized histogram of the values of feature i of pixels from class 
k was used as the membership function mj^, k=l,. . . ,6, i=l 4. 
Smoothing was achieved by averaging the histograms twice using a 
window of length 11. The overall training data consisted of 60x6 
entries of 6x4=24 memberships. The training method adjusts the 
parameters of the aggregation operator used at the top nodes by a 
gradient descent technique. 

We present the results of three kinds of aggregation operators: the 
multiplicative y-model (O neurons), the additive y-model (<& 
neurons) and the additive y-model with Yager's union and 
intersection operators (<I> neurons). These operators behave like 
intersection operators when y is close to 0 and like union operators 
when yis close to 1. In addition, they all have parameters Wi that 
reflect the relative importances of the features (see Section 4.7). The 
O model has an additional parameter TI that regulates the severity 
of the union/intersection operators. This parameter may be chosen, 
or can be learned, as was done In this example, using the gradient 
descent procedure. 

Figure 5.29 shows the FAN used. While training, the desired output 
of node k in the top layer was 0.99 if the 24-dimensional 
membership vector came from class k, and 0.01 otherwise. After 
training, the resulting network was used for segmentation of the 
image. The features corresponding to each pixel in the image were 
fed to the network and the memberships in the 6 classes generated 
by the top nodes were recorded. For display purposes, the fuzzy 
segmentation was hardened in the usual way, i.e., each pixel is given 
the label of the node that has the highest membership. Since the 
memberships generated by the network need not sum to 1, they can 
be considered as possibilistic memberships. 
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"136 i ni4i 

intensi ty blue-red 
difference 

excess green [ position 

Figure 5.29 The FAN structure used for image segmentation 

Table 5.9 The parameter values of FAN using the O model 
M 

Node w s 
s k y 0.83 1.50 0.46 0.38 1.66 
tree 0.68 2.35 0.21 0.52 0.93 
roof 0.82 1.36 0.85 0.33 1.46 
w a l l 0.84 1.57 0.00 0.00 2.42 
grass 0.99 0.01 0.02 0.30 3.67 
road 0.95 0.09 0.73 1.17 2.00 

Table 5.10 The parameter values of FAN using the O model 

Node w s 
s k y 0.05 
tree 0.15 
roof 0.10 
wa l l 0.09 
grass 0.83 
road 0.79 

0.31 0.02 3.41 0.26 
3.35 0.10 0.10 0.45 
0.31 3.49 0.03 0.17 
0.32 0.00 3.14 0.54 
0.01 0.01 0.16 3.83 
0.01 0.76 0.97 2.25 

Table 5.11 The parameter values of FAN using the 4> model 

Node w s 
s k y 0.02 2.93 
tree 0.02 3.12 
roof 0.02 2.99 
wa l l 0.01 0.79 
grass 0.50 3.24 
road 0.75 2.08 

0.36 0.38 0.57 0.30 
0.94 0.28 0.32 0.43 
0.30 0.42 0.27 0.33 
0.13 0.00 0.04 0.41 
1.26 1.00 0.93 0.39 
2.79 0.94 0.80 0.73 
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The final parameters of each node after training are displayed in 
Tables 5.9, 5.10, and 5.11 respectively. For all models, the w's of the 
nodes for grass and road are union-like since they are close to 1. We 
can also conclude that the second feature "b-r" is redundant for the 
class wall since all models produce a value of w that is almost 0 for 
this feature. 

y I 
H mfw 

,t,- ± • 1 

L^^^^^^^:>iio£^^k 
(a) original image (b) labeling by O model 

(c) labeling by O model (4)labelingby O model 

Figure 5.30 Image segmentation and labeling using a FAN 

The segmented images corresponding to the O , O , and O models 
M' 

M ^ " ^ * Y are shown in Figures 5.30(b)-5.30(d) respectively. The O 
neuron model results are similar to each other, and somewhat better 
than <& , which is similar to other published segmentations of this 
scene. For those pixels belonging to the six defined classes, the 
segmentation results are quite good. Most misclassified pixels 
belong to the objects which are not defined as a class, i.e., the 
human, bushes and windows, or at the boundaries between regions. 



592 FUZZY PATTERN RECOGNITION 

D. Rule-Based Segmentation 

The most difficult aspect of automated segmentation is that no 
matter how good the training data are, unseen images will contain 
new objects, or objects that are sufficiently different from those in 
the training data, that the new image falls well outside the 
"experience" of the system. For example, different abnormal 
patients (with, say, brain tumors), simply have very different 
pathologies and anatomical structures from each other, so it is very 
hard to find a classifier that generalizes well across many abnormal 
patients. Most vision-aided assistance systems are aimed more 
towards separating images into normal and abnormal groups 
(perhaps with an additional "don't know" class), and then calling for 
help. In the context of automatic target recognition, for example, 
much progress has been made in the detection of targets in their 
background (where is an object?), but much less progress is evident 
in recognition (what is the object?). In this subsection we show how 
rules that attempt to capture human expertise can be used to 
augment low level segmentation - a step, we think, on the way 
towards truly automatic scene interpretation systems. 

Bezdek et al. (1997a) summarize an ongoing body of work (Hall et al., 
1992, Li et al., 1993, Clark et al., 1994, Vaidyanathan et al., 1995, 
Cheng et al., 1995, Bensaid et al., 1996b, Clark et al., 1998)) by 
comparing the results of unsupervised, supervised and rule-based 
segmentations of images in the medical domain obtained with a 
knowledge-based (KB) system. We repeat part of an example given in 
Bezdek et al. which ties together several algorithms discussed in 
Chapters 2, 4 and 5. In this discussion a true positive (true negative) 
is a correctly identified tumor (non-tumor) pixel; while false 
positives and false negatives correspond, respectively, to "false 
alarms" (pixels which are called tumor that are not), and "missed 
targets" (pixels classified as not tumor which are tumor pixels). 

The image shown in Figure 5.31(a) is the Tl data of an MR image 
from a (Tl, p, T2) MR slice of a patient with a tumor in the middle left 
section of the brain. The numerical features extracted from this 
image are the intensities of the pixels in these three dimensions. In 
this example we denote the 3D pixel data as X. The tumor is the white 
area that appears as an outline or boundary of a darker region 
within it. The white pixels are the tumor, and possibly blood vessels 
feeding it. The darker region within the tumor is (possibly) a 
combination of white matter, gray matter, and dead tissue. 

Views (b)-(h) in Figure 5.31 are a set of black and white images made 
from the original (3D) image data by various techniques, each of 
which is an estimate of the tumor pixels in X. In these views "Seg" 
stands for "segmentation of. Figure 5.31(b) shows the ground trutii 
image for the tumor, hand-labeled by an expert radiologist. 
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Black pixels in this view 
(which are white in the LHS of 
panel (a)) are the tumor pixels 

(a) original Tl MR image 

y 

\ 

(c) tumor estimate from 
a k-nn segmentation 

^ 

[b) Radiologist ground truth 
obtained by hand labeling 
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(d) X° s pathology mask 
created with crisp rules 

€i 
(e) X̂  =Seg(X°)byFCM (f) X^ =Seg(X^ )withVGC/FCM 

m m m m 

Figure 5.31 Several approaches to image segmentation compared 
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Acquisition of the training data for the computational schemes was 
done as follows. First, the operator selected a subset of training 
pixels from each tissue class (approximately 50 pixels per class, by 
eye). These training data were used by the k-nn classifier to label the 
remaining unlabeled pixels in the source image. If visual evaluation 
of the result was accepted, the training data were fixed. If the 
segmentation was judged unsatisfactory, the procedure was repeated 
with new training data until an "optimized" k-nn segmentation was 
found, and the training data that produced it were taken as the 
training data for this image. Figure 5.31(c) shows the tumor region 
estimated by segmenting X into c = 7 regions (tissue classes) by this 
supervised, operator-optimized scheme using a crisp k-nn rule of the 
type given in Section 4.4. 

Most of the remaining views in Figure 5.31 are based on the 
following steps. First, an initial segmentation of X is made by 
clustering it into c=7 classes with unsupervised FCM. In this, as well 
as all successive views that utilize the FCM algorithm, the basic 
parameters are m = 2, the Euclidean norm for both J and 
(successive prototypes termination norm) E , and e = 0.001. The KB 
system (which has itself been trained with other input image data) 
removes the skull tissue and air classes using crisp rules. The rule 
base is divided into sub-blocks that have different rules for different 
parts of the human brain. Structure in the upper slices is 
represented by 40 rules, and 83 rules are used for the lower slices. 
Stage 5 is the final thresholding on the Tl image, and has 31 
additional rules that pertain to all slices. Rules in this system are 
not fuzzy; they are crisp rules implemented in the CLIPS rule-based 
expert system shell (Giarratano and Riley, 1994). Rules for the intra
cranial mask (Figure 5.31(d)), for example, use histograms of the MR 
bands for pixels in the mask in crisp rules of the following form: 

IF Tl(i,j) > Tl histogram peak 
AND p(i,j) > p histogram peak 
THEN keep (i,J) as possible tumor 
ELSE mark (i,j) as non-tumor 

For another example, given an 8-connected component image of 
candidate tumor pixels and a known tumor region, a tj^Dical crisp 
rule looks like 

IFTl mean value of region i is within one standard 
deviation of the mean of the known Tl tumor region 
in the Tl feature spectrum 

THEN keep region i as tumor 
ELSE remove region i from tumor list 

Rules of this type provide an initial segmentation of the tumor 
pixels from remaining tissue classes that have already been isolated 
in previous stages. 
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At this stage the KB system identifies the patient as abnormal and 
removes what it believes to be the CSF, white matter and gray matter 
and extracranial pixels. This leaves the KB mask X° shown in 

m 
Figure 5.31(d), which is the set of (mostly) pathological pixels in the 
image. The vectors associated with X° are a reduced image which is 
believed to contain the suspicious region which is now reclustered 
into c = 5 classes using various techniques. 

View 5.31(e) shows the results of segmenting X using unsupervised 
FCM at c = 5, followed by hand labeling of the pixels in the resultant 
segmentation by a human operator. You can see a number of Islands 
in the southeastern quadrant of this output that are mistakes. Let 
X^ denote the pixel vectors associated with the spatial locations in 

5.31(e). View 5.31(f) shows the results of reclustering X^ using 
validity guided (re)-clustering (VGC, see Bensaid et al., 1996b). It is 
pretty hard to see any improvement, but the number of false 
positives in 5.31(f) - as measured against the ground truth in 5.31(b) -
is reduced slightly by VGC. However, the island mistakes persist. 

Training data set X° is processed by the ssFCM algorithm to create 

view 5.31(g), the pixels of which we call X^ . Figure 5.31(h) is the 

output obtained by appljdng the KB to X^ . This view compares well 
with the ground truth in view 5.31(b). Most of the southeastern error 
Islands are eliminated, but there are few new islands sprinkled 
around emd in closer to the tumor mainland. 

@ X^ = Seg( X^ ) by ssFCM (h) Seg( X^) by the KB system 

Figure 5.31 (con't.) Several approaches to image segmentation 

Clark et al.'s (1998) system comprises 6 stages. The first step is still 
unsupervised segmentation of MR slices with FCM. Initial FCM 
segmentations are used two ways. First, brain tissue regions are 
separated from extracranial clusters, and crisp morphological 
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operations are used to clean up the initial tumor segmentation. The 
FCM output is also used to create the intracranial mask (Figure 
5.31(d)). The remaining stages apply to the mask, and can be broadly 
lumped together as tumor recovery through region analysis of the 
tissues that have been retained, which consist of tumor and other 
tissue classes. Very roughly, initial tumor segmentation is done 
with adaptive histogram thresholding, which is then refined by 
"density screening", and then removal of the regions that do not 
contain tumor. 

The system described by Clark et al. (1998) is completely automatic -
no human intervention is needed on a per volume basis. The system, 
trained on 3 sets of MR slices, and tested on 13 new sets of unseen 
slices, almost replicates the radiologist ground truth in many of the 
test cases. Next we provide an example of simple fuzzy rule 
generation by returning to the fuzzy aggregation network discussed 
in Section 4.7. The following example using the FAN is adapted from 
Krishnapuram and Rhee (1993a, 1993b). 

Example 5.10 We return to a 200 x 200 subset of the image shown in 
Figure 5.27(a), an outdoor scene consisting of three regions, "road", 
"sky", and "vegetation". Two texture features computed from 15x 15 
windows over the input image, homogeneity and entropy (Haralick 
et al., 1973), along with intensity (gray level) were used in this 
experiment. One hundred samples from each of the three regions 
were used to represent the classes in the training data. 

Entropy 
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Figure 5.32 Views of pairwise features for the outdoor scene 
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Figure 5.32 (con't.) '̂ ^ews of pairwise features for the outdoor scene 

Figure 5.32 scatterplots two of the three sets of 2D features from the 
original 3 features for the outdoor scene. The top view in Figure 5.32 
plots intensity against entropy, and in this view the three classes 
are fairly well separated (visually, perhaps even linearly). The 
bottom view in Figure 5.32 shows that the vegetation is still fairly 
separate from the other two classes, which seem somewhat more 
mixed in this pair of features. Bear in mind that these plots are for 
the training data, so good separability is not too surprising. 

1.0 r 

0.0 0.2 0.4 0.6 0.8 1.0 
Homogeneity 

Figure 5.33 Smoothed histograms of the three features 
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0.4 0.6 
Entropy 
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Figure 5.33 (con't.) Smoothed histograms of the three features 

Figure 5.33 shows the smoothed histograms of the three features for 
the training data. These graphs certainly resemble mixtures of 
Gaussians with well separated means. The sky is the region of high 
brightness and homogeneity with low entropy, and in this example 
it is not hard to simply postulate reasonable rules without further 
processing. 

0.0 
0.0 0.2 0.4 0.6 

Homogeneity 
0.8 1.0 

Figure 5.34 Linguistic labels for homogeneity 
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Figure 5.34 (con't.) Linguistic labels for entropy and intensity 

Figure 5.34 shows the membership functions obtained by fitting 
each composite histogram (obtained by adding the individual 
histograms corresponding to road, sky and vegetation) in Figure 
5.33 by a mixture of normal distributions for the linguistic labels 
tha t describe the three features. First, the histogram was 
approximated by a polynomial to determine the number of 
Gaussians: then, gradient descent was used to approximate the 
histogram by a Gaussian mixture. See Krishnapuram and Rhee 
(1993a) for more details on the fitting procedure. 

Figure 5.35 shows the results of rule generation and redundancy 
detection using the method described in Section 4.7.E. View (a) 
shows the initial network, and note that it is not fully connected. 
This is due to the small a-cut criterion discussed in Section 4.7. 
Here, as there, a was 0.05. View (b) shows the network at the 
termination of training, where three of the initial connections 
between the input layer and the hidden layer have been pruned from 
the network because their connection weights were small (less than 
0.01). 
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(b) pruned network at termination 

Figure 5.35 Rule generation and redundancy detection using a FAN 

In this case the generalized mean in equation (4.103a) was used as 
the aggregation operator at the top and hidden layers. Values for the 
exponent q at nodes 1, 5 and 7 were -0.17, 7.52 and 7.51, respectively. 
Interpreting node 1 as conjunctive, and nodes 5 and 7 as disjunctive 
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leads to the rule Rroad below. The other two rules are inferred from 
values of the network parameters in a like manner. The rules 
obtained from the final network are similar to those an expert 
might elaborate. Here they are: 

R^d : IF entropy is (L OR M) AND intensity is (L OR M) 
THEN the class is road 

Rsiq,: IF intensity is H 
THEN the class is sky 

Rveg : IF homogeneity is L OR entropy is H 
THEN the class is vegetation 

As will be discussed in Section 5.8, spatial relations between objects 
play an important role in computer vision. Krishnapuram and Rhee 
(1993b) show how rules involving the relations LEFT-OF, RIGHT-OF, 
ABOVE and BELOW can be generated using a similar approach. 

5.6 Boundary Description and Smface Approximation 

Boundary description can be viewed as an alternative approach to 
intensity image segmentation. In this approach, an edge operator 
(including those described in this chapter) is applied to the image to 
detect edge elements. The edge elements are considered to be parts of 
boundaries between various objects or regions in the image. The 
boundaries are then compactly described in terms of analytical 
curves such as straight lines, second-degree curves, and other more 
complex curves. For segmentation of range images, the edge 
detection step can be bypassed, and parametrized surfaces can be 
fitted directly to the raw range data. This process, known as surface 
approximation, generates a compact description of the objects 
present in the range image in terms of parametrized surfaces. The 
parametrized description of object boundaries or surfaces can be 
used at a higher level for view-independent object recognition and 
image understanding. There are many non-fuzzy methods that 
exploit the ideas of range image segmentation and surface 
approximation (cf. Hoffman and Jain, 1987, Besl and Jain, 1988, 
Yokoya and Levlne, 1989). 

The boundary and surface description problem can be stated as 
follows: fit parametrized curves/surfaces to an unsegmented data 
set. This problem is exacerbated by the following facts: (i) the 
number of segments (i. e., curves/surfaces) Is usually unknown, and 
(ii) the edge or range data may be noisy and sparse. There is a 
plethora of techniques to fit parametrized curves such as conies to 
segmented edge pixels and to fit parametrized surfaces to segmented 
range data. However, segmentation of edge and range data is difficult 
in the case of jagged edges and noisy or sparse range data, since 
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features such as gradients and curvatures cannot be computed 
reliably. A better approach in such situations would be to perform 
segmentation and boundary/surface fitting simultaneously on the 
data, without making use of features that assume continuity and 
smoothness of the edges and surfaces. Clustering based on non-point 
prototypes as discussed in Section 2.4 (lines, planes, hyperplanes, 
quadric shells, rectangles, etc.) is ideally suited to this approach, 
since it can perform segmentation and fitting simultaneously. 

The shell clustering approach to boundary description and surface 
approximation has several advantages over traditional methods. It 
requires far less computation and memory compared to algorithms 
such as the generalized Hough transform (Hough, 1962, Ballard, 
1981). Since it looks for global structures and does not use edge 
following or region growing, it is insensitive to local aberrations 
and deviations in shape. It does not use features such as gradients 
and curvatures and hence is not sensitive to noise and sharp 
discontinuities at the boundaries. Moreover, it is possible to 
robustify shell clustering algorithms by using a possibilistic 
approach, as discussed in Section 2.4. 

Shell clustering algorithms have the drawback that the number of 
clusters present in a data set needs to be determined. Traditionally, 
the number of clusters is determined by evaluating a global validity 
measure of the c-partition for a range of c values, and then picking 
the value of c that optimizes the validity measure in some sense 
(Section 2.5). However, this is a very tedious and computationally 
expensive process, since the data must be clustered for each value of 
c. Moreover, in the case of shell clustering, the algorithms 
frequently converge to local minima, particularly when the data is 
complex. When the c-partition corresponds to a local minimum 
rather than a global one, the computed validity measure for the 
given value of c will not be correct. This can lead to a wrong choice of 
c. Sometimes these problems can be avoided with dynamic validity 
methods such as "compatible cluster merging" or "progressive 
clustering". However, even these methods have an internal measure 
of cluster validity that can be fooled, so don't expect validity 
miracles; instead, temper your judgment with suspicion and always 
look for satisfactory performance. 

The compatible cluster merging approach begins clustering with a 
(presumably) overspecified number of clusters and then merges 
clusters that meet certain compatibility conditions. In the 
progressive clustering approach, after convergence of the clustering 
algorithm with an overspecified number of clusters, "spurious" 
clusters are eliminated, compatible clusters are merged, "good" 
clusters are identified, and points belonging to the good clusters are 
temporarily removed from the data set. Then clustering is 
performed again with the reduced number of clusters and data 
points. This procedure is repeated until no good clusters can be 
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removed or until no data points are left. Unlike the traditional 
cluster validity approach which uses a global validity measure to 
evaluate the overall c-partition of the data set, the progressive 
approach uses individual cluster validity measures that evaluates 
the goodness or spuriousness of a particular cluster. In the 
remainder of this section we discuss boundary/surface description 
techniques based on these ideas. 

A. Linear Boundaries and Surfaces 

The early work in the area of linear/planar cluster detection was 
done by Bezdek et al. (1981a, 1981b, 1985). Anderson et al. (1982) and 
Dave (1989) extended this work. Krishnapuram and Freg (1992) 
showed that the Gustafson-Kessel (1978) algorithm can also be used 
to find linear and planar structures in data sets. They proposed a 
compatible cluster merging (CCM) algorithm to find the "optimal" 
number of line/plane segments in a data set. The CCM algorithm is 
applied after the GK algorithm (see Section 2.4) is run on the data set 
with a (hopefully) overspecified number c of clusters. The CCM 
algorithm merges compatible clusters among the c clusters to 
obtain the final result. This algorithm can be summarized as 
follows. Let V £ind v in 9tP be the point prototj^je centers of clusters i 
and i; let {?i X } and {X ,..., X } be the eigenvalues of the fuzzy 

11 ip j l jP 

covariance matrices C. and C at (2.27) of clusters i and j , arranged in 
descending order; and let {e ,..., eip} and (e .....Cjp} be their 
corresponding eigenvectors. Clusters i and j are said to be 
compatible if the following three conditions are all satisfied. 

\ ip J p / 
>c. (5.35a) 

e, + e , V, - V . 
ip Jp 1 J 

V — V 
i J 

<C„ ; and (5.35b) 

V — V < C ^1 + (5.35c) 

Equation (5.35a) ensures that the hyperplanes are parallel, and the 
constant c should be chosen close to 1; (5.35b) ensures that the line 
joining the cluster centers is approximately orthogonal to the 
normals of the two lines (planes), and the positive constant c 
should be chosen close to zero; and finally, (5.35c) verifies that the 
cluster centers touch each other if they are uniformly distributed. 
Krishnapuram and Freg suggest that the appropriate range for c is 
[2, 4]. The three constants in (5.35) are user defined, and the utility of 
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CCM as a dynamic clustering algorithm - that is, its ability to 
terminate at a satisfactory number of clusters - is largely dependent 
on good choices for these parameters. Clustering and merging can be 
done either in one pass or iteratively. The iterative merging 
algorithm consists of running the GK algorithm followed by the 
CCM algorithm repeatedly, and stopping when no more clusters can 
be merged. A value of 1.5 is recommended for the fuzzifier m while 
running the GK algorithm. 

Figure 5.36 illustrates the geometric conditions for merging two 
clusters that equations (5.35) attempt to enforce. Clusters A and A 
do not satisfy condition (5.35a). Clusters A and A do satisfy 
condition (5.35a), but not condition (5.35b). Clusters A and A 
satisfy conditions (5.35a) and (5.35b), but not condition (5.35c). A 
and A are the only clusters that can be merged in this case. 

'12 A 

A, 

42 

e.^9.4 A '52 

Figure 5.36 Conditions for merging two clusters 

An approximate value for c in (5.35c) can be derived for the 2-D 
case. Assume that the projections of points in two touching 
compatible linear clusters are uniformly distributed along intervals 
L and L that contain the projected points. Variances of the projected 

2 ho_ = x j^, and the distance between clusters are L^/l2 

their cluster centers is 

X,j and L y i 2 = : 

V — V :(L̂  + Lj)/2 = V3[V^^ + ^ 

Hence c should be at least Vs , and preferably, a little larger. 

Example 5.11 Figure 5.37 shows the results of using the GK 
algorithm with the CCM method on a data set containing samples 
from the characters "UMC". The GK algorithm was started with 
Cinax=14. There are 14 clusters in Figure 5.37(a) before merging. In a 
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color display, it is very easy to see the 14 clusters, but in this black 
and white display it is difficult to see them, so we have manually 
added hand-drawn ellipses that roughly capture the 14 clusters 
(after hardening). These are not the ellipses you could draw using the 
eigenstructure of the fuzzy GK covariance matrices. 

(a) linear GK clusters 

(b) after merging with CCM 

Figure 5.37 Description of linear clusters by CCM 

The results for the letters "UMC" after merging with CCM are shown 
in Figure 5.37(b). Again, we have enhanced the c =10 clusters in this 
final result by bounding them with manually inserted ellipses so 
you can see them. As you can see, CCM merges the two coUinear 
clusters in the left vertical stroke of the "U", the two coUinear 
clusters in the left vertical stroke of the "M", and the three coUinear 
clusters in the vertical stroke of the "C". The values of c , c and c 

used for the outputs shown in Figure 5.37(b) are 0.95, 0.05 and 3.0 
respectively; these values were chosen by trial and error. Results 
similar to those shown in Figure 5.37 can also be obtained with 
linkage-type clustering algorithms (Section 3.3); and by the 
boundary-hunter algorithm discussed in Bezdek and Anderson 
(1985). 
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Figure 5.38 shows the results of using the GK algorithm with the 
CCM method on a range image of a block obtained from the 
Environmental Research Institute of Michigan (ERIM). In this case, 
c =9 , c =0.9. c„=0.1 and c =4.0. 

max 1 2 3 

(a) ariginal range image (b) result of CCM meigiiig 

Figure 5.38 Approzimation of linear surfaces by CCM 

Comparing the processing described for Figures 5.37 and 5.38, we see 
that like most algorithms, judicious selection of {ĉ }, the pcirameters 
of CCM, is needed to obtain satisfactory results for a peirticular data 
set. In both of these examples, all three parameters do satisfy the 
general recommendations that c be close to 1, c be close to zero, and 
c be in [2, 4], but their individual values in these two examples are 
all different. There is a short dark line on the front face of the block 
in panel 5.38(b): this is a small cluster, that appears here due to 
many "noise" points in this region in the range image. 

Hoeppner (1997) proposed a fuzzy c-rectangular shells (FCRS) 
algorithm to detect rectangles and lines in digital images that is 
very similar to the NISP clustering algorithm in Section 2.4. Since 
the history of shell clustering algorithms has shown that Euclidean 
distance is useful in many instances, Hoeppner's FCRS model uses a 
(nearly) Euclidean distance measure that still allows the direct 
computation of prototypes for use in an AO algorithm. 

The contour of a rectangle can be assembled by four lines, each 
described by a normal equation (x - p, n) = 0, in which p is a point 

on the considered line in 9t^and n is a vector perpendicular to the 
line. If n is a unit normal vector, the expression | (x -p ,n ) | yields the 
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Euclidean distance of a point x to the line (see Figure 4.4). This is 
illustrated in Figure 5.39 for the line L through the point p with 
unit normal n . Let the center of the rectangle be v and let r = (r , r ), 
where the edge lengths of the rectangle are 2r and 2r as in Figure 
5.39. You should compare Figure 5.39 to Figure 2.12; for the 
appropriate choices of parameters, these two figures depict the same 
rectangle. 

Figure 5.39 Hoeppner's rectangular shell prototype 

Let (j) be the angle between the positive x-axis and the first side of the 
rectangle encountered by counterclockwise rotation of the positive x 
axis (see Figure 5.39). The triple (v, r, (j)) characterizes the rectangle 
completely; points on the rectangle will be denoted by rect(v, r, <[)). 
The lines that form the edges of the rectangle are enumerated 
counterclockwise, beginning with zero at the right line ((|) = 0 
assumed). The points {p} and normal vectors {n} of the lines are 
numbered in the same way. For the unit normal n = (-cos((|)+k7i/2), 

-sin((t)+kjt/2))^, we require (v-p^,n^j>0. In this way, all four 
normal vectors are directed towards the center of the rectangle. 
The point p can be replaced by p =v-r , „ n , where r = r or r . Since 

^ •^l ^ •' -^ i 1 m o d 2 1 1 0 1 

the normal vectors point towards the center of the rectangle v, the 
orthogonal distance from any point x to side i of the rectangle is 

A (x, rect(v, r, (b)) s (x - p )̂  n = (x-(v-r ^ „ n ))̂  n = (x-v)^ n + r 
1 ^ I . . T/J V *^l' 1 ^ ^ 1 mod 2 r ' i ^ ' i 1 mod 2 
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A yields a positive value for 1 = 0, 1, 2, 3 only if the vector x lies 
within the rectangle. Outside the rectangle A is negative for at least 
one i. 

Given a vector x, the minimum of the four orthogonal distances 
{{A,(x; rect(v, r, 9))} is positive/zero/negative according as x lies 
inside/on/outside the rectangle. The absolute value of the minimum 
of these four distances is the Euclidean distance between x and the 
nearest edge of the rectangle. Therefore, Hoeppner defines the FCRS 

jnin |Aj{x,rect(v,r,(p)j distance measure as 6p(,j^(x,rect(v,r,(p)) = 
1=0,1,2,3 

Note that the lines are clipped (to the true edges) by the min-
function, so they do not have infinite extents like they do in the FCV 
model (see Section 2.4). This distance is substituted for D, in 
equation (2.24a), and the weight vector w in (2.24a) is the zero vector. 
Thus, Hoeppner seeks minima of the function 

J^CRS(u.B)= i i u™52,^^(x,rect(v^,r,.(p^)). 
l = l k = l 

where p = (v , r , (j)) are the parameters of the i-th rectangular 

prototype. The use of the minimum function by Ŝ ĵ̂ g prevents us 
from finding the prototype parameters explicitly because they are 
arguments of the minimum function. In the case of rectangles it is 
insufficient to identify only the rectangle (cluster) to which a point x 
belongs with a certain membership degree. We also need to associate 
one of the four edges of the identified rectangle with x. An initial 
fuzzy partition of the data can be arbitrarily defined. The second 
(possibly hard) partition is produced by associating each x in the 
data with the line that is responsible for the minimum value of 
Aj(x,rect(v,r,(p)). By generating the second partition in this way, we 
actually rewrite the minimum function in another form. Using the 
Kronecker delta function j^5 (^5 =1 if i=j, ĵ 5 =0 otherwise) we 

define for 1=0, ..., 3 four functions called minhj:9t^ i-> {0,1}. The 
action of minh^ is 

minhj(ag,aj,a2,a3)Sj^5j^ 3 a^ = min{aQ,aj,a2,a3}. 

For example minh2(7,8,4,6) = 1 and minhJ7,8,4,6) = 0 for s = 0, 1,3, 
because the minimum of a , a , a and a is a in this example. If 
multiple a are minimal, we can randomly choose only one s in {j : 
a=min{a0, a l , a2, a3}}, i.e., the minimum function must satisfy the 
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3 
constraint X mlnh (a ,a ,a ,a ) = 1. This constraint leads to the 

s=0 s 0 1 2 J 
3 

equal i ty minla^.a^.a^.a^} = lajHiinh^la^.a^.a^.a^). Hoeppner 

interprets minh (aO, a l , a2, a3) as the grade of minimality of a with respect to a , a , a and a . 

For s = 0, 1, 2, 3 let A (x, p ) be the (directed) distemce of the j - th data 
s j i 

point X to the s-th side of the i-th FCRS prototype (3 = (v, r , (p), and 
define, 

u J ^ = minhj A^(x, (3 )̂. A^{x^, p^), A^{x^, p^), A^{x^, p^)). (5.36) 

Then u denotes the crisp membership of Xj in edge s of cluster i. 
The matrices U = [u ], s = 0, 1, 2, 3, are four crisp c - partitions of 

s i,J,s '• ^ 

the data that assign data vectors to the four rectangle edges. 

With this notation, we can find closed-form equations for use in an 
AO algorithm to minimize j"^^^®. Unfortunately the use of crisp 
grades of minimality leads to a convergence problem, as a data 
vector might be assigned to different edges in an alternating 
fashion. To overcome this problem, Hoeppner (1997) replaces the 
crisp minimum functions {minh,} by fuzzy membership functions 

. 3 
minf,: 3i —> (0,1], which still satisfy X minfg(aQ,aj,a2,ag) = 1. 

s=0 
(This constraint is required to avoid the trivial solution.) Hoeppner 
proposes two possible fuzzy minimum functions, and shows that the 
modified distance measures lead to only slight changes in the 
objective function. Therefore, the same protot3q3e update rules as for 
the hard case can be used. 

The chance of terminating at a local minimum with an algorithm to 
detect rectangles is quite large because if a depicted rectangle 
consists only of some of its edges, there are many possible rectangles 
that approximate the data vectors. Furthermore, if some edges are 
parallel they can easily be exchanged between different rectangle 
clusters, which leads to strong local minima (i.e., deep local minima 
that cannot be easUy escaped). 

Example 5.12 Figure 5.40 shows an example of FCRS clustering of a 
data set with 5 rectangles. The number of clusters c was specified to 
be 5. Although the data set in Figure 5.40 is pretty complicated, the 
FCRS algorithm discovers all five rectangles (of course, it is told to 
look for five). The fact that edges of different rectangles never lie 
parallel to each other makes the detection easier. 
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Figure 5.40 FCRS detects rectangles at different angles of rotation 

Figure 5.41 FC2RS approximates rectangles and complex shapes 

In most applications images don't have a nice sequence of equal area 
rectangles such as those used in Figure 5.40. So, the ability to detect 
more complex shapes is useful, and often necessary. FCRS can be 
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easily generalized to polygons other than rectangles. In the 
derivation of the FCRS algorithm, the normal vectors of the edges 
vary in steps of 90 degrees. By using another angle that is a divisor of 
360, more complex shapes can be realized. This is illustrated in the 
inset of Figure 5.41, which shows an octagonal shell as the 
superposition of two rectangular shells. Hoeppner calls this the 
fuzzy c two rectangular shapes (FC2RS) model. (The name FC2RS 
originates from the visualization of the cluster's shape with the help 
of two rectangles.) 

Complex polygons are appropriate for approximating circles or 
ellipses, so FC2RS might handle complicated scenes with rectangles, 
circles and ellipses correctly, as shown in Figure 5.41. Here an angle 
of 45 degrees is used to obtain a polygonal approximation of a data 
set containing a rectangle, a circle, and an ellipse. 

Compare the data in Figure 5.40 to the data in Figure 2.13, which has 
a pair of overlapping rectangles. The difference between the two data 
sets shows you the main difference between the NISP and FCRS 
clustering algorithms. Once the norm is chosen for NISP, all c of the 
rectangles (diamonds for the 1-norm in Figure 2.13) have the same 
fixed orientation and side lengths; but in FCRS, each rectangle can 
have different orientations and side lengths. In this sense 
Hoeppner's FCRS clustering scheme stands to NISP as the GK 
clustering model stands to FCM; FCRS and GK are, at least in 
principle, able to adjust their prototypes to individual cluster 
structures, whereas NISP and FCM impose the topological structure 
of the norm used on all c clusters. 

B. Circular Boundaries 

Description of circular boundaries based on the Fuzzy c-Shells (FCS) 
and Fuzzy c-Spherical Shells (FCSS) algorithms (Section 2.4) can be 
found in (Dave, 1990b) and (Krishnapuram et al. 1992). Man and 
Gath (1994) contains examples involving the detection of ring-
shaped clusters mixed with regular (cloud) clusters. Section 2.6 
discusses validity issues related to circular as well as more general 
shell clusters. Here we present a technique called the divide and 
conquer (D&C) algorithm proposed by Dave and Fu (1994) for the 
detection of circular boundaries. The overall technique of which 
this is a part, called the divide and conquer NFCS (D&C-NFCS) 
algorithm, is summarized in Table 5.12. The D&C technique 
combines good features of the Hough transform with fuzzy shell 
clustering. 
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Table 5.12 The divide and conquer NFCS algorithm 

Store Unlabeled object data X c 9^P 

Pick 
«•• Maximuin number of clusters Cmax 

Merger thresholds e, and e„ 
° 1 2 

ACCjuin = smallest Hough transform accumulator 
array value acceptable as a peak  

Do 

Set peak_parameters[i], i=l,...Cmax. to zero 
Set DS_array[il, i=l,...Cn,ax. to zero 
Fill accumulator array, ACC, using the Hough transform 
Set peak counter c = 0, 
Set PV = highest peak in ACC 
REPEAT UNTIL (PV < ACCn^ or c =Ci„ax) 

increment c 
Record peak_parameters{c) 
Zero out the peak location in ACC and a small 

neighborhood of it 
Put points belonging to a small neighborhood of 

circle corresponding to peak c in DS_array[c] 
Assign value of the highest peak in ACC to PV 

END UNTIL 
FOR (i = 1 to c) 

Run NFCS (with # of clusters = 1) on DS_array[i] with 
peak_parameters(i) as init. prototypes 

Record center Vj and radius r, of cluster i 
Compute a set of validity criteria, val(i) 

END FOR 
Initialize removal counter, Crem = 0; 
FOR (i = 1 to c) 

if (val(i) not acceptable) remove cluster 1, and 
increment Crem 

END FOR 
C = C - Crem: Rc-init ial ize Crem = 0 
FOR (each pair (i, j ) of clusters) 

if I h- < e, and r, - r . < e 

Remove the cluster with lesser number of points; 
increment Crem 

END FOR 
C — C - Cjigfn 

The Hough transform approach is popular in computer vision 
because of its implementational simplicity and robustness in the 
presence of noise. However, if the objective is to find the location 
and size of circles with high accuracy, then the cost of the Hough 
transform is very high due to increased memory requirements and 
computations. It also suffers from other disadvantages such as bin 
splitting and occurrence of false peaks (Dave and Bhaswan, 1992; 
Dave and Fu, 1994). On the other hand, shell clustering methods (see 
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Section 2.4) provide fast and accurate parameter estimates with less 
memory, provided a good initialization for the prototypes is 
available. Hence, it is advantageous to apply the Hough transform 
Avith a coarse resolution to obtain rough estimates of the prototype 
parameters, and then apply a shell clustering algorithm such as FCS 
based on the initialization provided by the Hough transform to find 
more accurate parameter estimates. 

In the shell clustering stage, the data points in the image can be 
divided into subsets such that each subset contains only those 
points that are in a small neighborhood of the circle corresponding 
to each peak in the Hough transform. A robust version of FCS is 
applied with c= 1 to each subset. A robust version is required because 
each data subset can contain many extraneous noise points. Dave 
and Fu use the Noise Clustering (NC) approach (see Section 2.5) to 
robustify FCS. They call the resulting algorithm NFCS. Circle 
detection by NFCS is fast due to (1) the use of a good initialization, 
and (2) the use of only a small fraction of the whole data set. After 
the NFCS stage, clusters with similar parameters are merged and 
spurious clusters are removed to produce the final results. 

Example 5.13 Dave and Fu (1994) applied the above algorithm to a 
problem of detecting spheres in a random packing. Figure 5.42(a) 
shows an Image of spheres in a random packing. The edge map, after 
clean-up, is shown in Figure 5.42 (b). In Figure 5.42(b) there are 2596 
points, and it is noisy due to shadow artifacts and poor image 
quality. There are also partial shapes due to hidden geometry. The 
final result of the above algorithm after applying cluster merging 
and renioval is shown in Figure 5.42(c), where the found circles are 
superimposed on the original data set. It can be seen that all the 
spheres which are in the front (i.e. not hidden) are detected by this 
approach. Figure 5.42 (d) illustrates an individual cluster detection 
step. The dashed circle is the initialization from Hough transform, 
and the solid circle is the final result of NFCS. It's hard to see these 
two circles in Figure 5.42(d); the dashed circle is the one that is 
northeast (above and to the right) of the solid circle. The points 
plotted are the points in the subset used by NFCS. Small open circles 
are points classified as good points, and small filled circles are 
points classified as noise points. As can be observed in the cases 
shown, the visible fit obtained by NFCS is very good. Although the 
fit obtained by the Hough transform alone is not accurate, it is close 
enough to each correct circle so that the its neighborhood contains 
most of the good boundary points. 
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(a) original image (b) edge image 
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(c) circle superposition (d) Hough (initialization 
and final result) 

Figure 5.42 Detection of circular boundaries using D&C-NFCS 

NFCS does have the ability to handle noisy data, and its breakdown 
point is comparable to that of a robust M-estimator (Dave and 
Krishnapuram, 1997). D&C-NFCS may be modified for ellipses as 
well, by roughly estimating the parameters of the ellipses by a circle 
detecting Hough transform, and then using a robust version of an 
elliptical shell clustering algorithm such as AFCS or FCQS (see 
Section 2.4). Thus, this technique, which is computationally 
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efficient and handles the problem of unknown clusters, has good 
potential for solving practical problems. 

C. Quadiic Boundaries/Surfaces 

Examples of boundary description in terms of elliptical shell 
clusters based on the AFCS algorithm (see Section 2.4) can be found 
in (Dave and Bhaswan, 1992). However, the issue of unknown 
number of clusters is not addressed in that paper. 

Krishnapuram et al. (1995a, b) describe an unsupervised clustering 
algorithm called unsupervised boundary description (UBD) for 
describing edges with quadric curves. This algorithm is based on the 
fuzzy c-quadric shells (FCQS) and possibilistic c-quadric shells 
(PCQS) algorithms described in Section 2.4. Before we describe the 
UBD algorithm, we briefly summarize a line detection algorithm 
which is part of the UBD algorithm. 

Images often contain linear boundaries in addition to quadric ones, 
and this can pose a problem. However, the FCQS (or PCQS) 
algorithm can be used to find linear clusters, even though the 
constraint in (2.48) forces all prototypes to be of second degree. This 
is because FCQS can fit a pair of coincident lines for a single line, a 
hyperbola for two intersecting lines, and a very "flat " hyperbola, or 
an elongated ellipse, or a pair of lines, for two parallel lines. 
Hyperbolas and extremely elongated ellipses occur rarely in 
practice. 

When the data set contains many linear clusters, the FCQS 
algorithm characterizes them variously as hyperbolas, extremely 
elongated ellipses, etc. In this case, we can group all the points 
belonging to such pathological clusters into a data set and then run a 
line finding algorithm such as the GK algorithm (see previous 
subsection) on this data set with an appropriate initialization. The 
parameters of the lines can be determined from the centers and the 
covarlance matrices of the GK clusters. 

The various conditions that need to be checked to determine the 
nature of p i as well as the initialization procedures required by the 
line detection algorithm can be found in Krishnapuram et al. 
(1995a, b). Since the initialization is usually good, the GK algorithm 
often terminates in a couple of iterations and yields the parameters 
of the lines. The line detection algorithm is summarized in Table 
5.13. 
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Store 

Table 5.13 The line detection algorithm 

Unlabeled Object Data X c 9tP 

Init. 
Set X, the set of data points in linear clusters to 0 
Set number of lines c = 0 
Start with FCQS or PCQS output as Initialization 

Do 

FOR each cluster i with prototype parameters p j 
IF pi is a pair of coincident lines THEN 

Add aU points assigned to cluster i to % 
c=c+l 
Initialize new linear prototype as the one of 

two coincident lines 
IF Pi is a non-flat hyperbola OR a pair of intersecting 

lines OR a pair of parallel lines THEN 
Add all points assigned to p^ to % 
c=c+2 
Initialize new linear prototypes as asymptotes 
of the hyperbola or as individual lines meiking 
up the pair of lines; 

IF Pi is an ellipse with large major to minor axis ratio 
THEN 

Add all points assigned to p to % 
c=c+2 
Initialize new linear prototypes as two 
tangents to the ellipse at the two ends of the 
minor axis 

IF Pi is a hyperbola with a very large conjugate axis to 
transverse axis ratio THEN 

Add all points assigned to p to x 
c=c+2 
Initialize new linear prototypes as tangents to 
the hyperbola at its two vertices 

END FOR 
Run the GK algorithm on x with c clusters using the 
above initializations for the prototypes 

The UBD algorithm automatically determines the number of curves 
to be used in the description by progressively clustering the data 
starting with an overspecified number c^ax of clusters. Initially, a 
possibilistic version of the FCQS algorithm, known as PCQS (see 
Section 2.4) is run with c = Cmax- The weights Wj in the objective 
function (see (2.24a)) are all set to the square of the estimated 
thickness of the curves. In boundary description applications, this 
value is typically equal to 2. At this stage, spurious clusters are 
eliminated, compatible clusters are merged, good clusters are 
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identified, and points with high memberships in good clusters are 
temporarily removed from the data set to reduce the complexity of 
the remaining data set. The PCQS algorithm is invoked again with 
the remaining feature points. This procedure is repeated until no 
more elimination, merging, or removing occurs. 

Shell cluster validity measures such as shell thickness V^[U,pj, 
shell hypervolume VgHvC^s ). and surface density VggD (U,Ci) are 
used to determine candidates for elimination, merger, or removal. 
These are validity measures for individual shell clusters rather 
than for the partition. Surface density measure T/ggQ (U,Ci) is 
defined at (2.124) in Section 2.6. The definition of shell thickness 
Vg.j,(U,Pj) is 

^n iin^llf II 
^ S T ( U . P , ) = '^^^n' '""-" . (5.37) 

where Pi represents the prototype parameters of shell cluster i, and 
t is the vector from x to the closest point on the shell prototype. 

Recall that the shell hypervolume Vgnv (^s,) for shell cluster i is 

VsHv(Cs,) = Vdet(Cs,) . (5.38) 

where Cg is defined in (2.117). The conditions for elimination, 
merger, or removal are described below. 

Cluster i is considered spurious if the sum of the memberships of all 
feature points in that cluster (cardinality) is very low or if the sum is 
low and the surface density is also low, i.e.. 

Xuu ,<nvL. or X^ik < HL AND VSSD„(U.CI) < S D L . (5.39) 
k = l k= l 

The suggested values for the constants are: ri = 2% of the total 
number of data points n, UL ~ 4% of the total number of points, SDL = 
0.15. To determine if two clusters are compatible so that they can be 
merged, the error of fit and the validity for the merged cluster are 
computed. To do this, all points having a membership greater than 
an a-cut in either of the two clusters i and j are collected. Let this 
data set be denoted by Xy. In practice, a value of about a = 0.25 works 
best, independent of the data set. Then the PCQS algorithm is run 
Avith c=l on this data set. If the fit and surface density for the 
resulting cluster is good, the two clusters are merged. In other words, 
the condition for merging is 
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VsT^U.P.) < ST, AND V33„̂ ^ (U,C,) > SD„ . (5.40) 

where V^[U,p^) and VSSD (U.CJ) are the shell thickness and the 
surface density respectively of the cluster formed by X . Suitable 
values for STL and SDH for this application are about 2.0 and 0.7. 

Cluster i is characterized as "good" if 

VssDi2 (U.Ci) > SDvH . or (5.41a) 

VssDi2 (U.Ci) > SDH AND VsHv(Csi) < SHVL , (5.41b) 

where SDVH is a very high threshold for surface density, SDH is the 
same value that was used for merging, and SHVL is a low value for 
the fuzzy hypervolume. The second condition is designed to handle 
cases in which the surface density has borderline values. Suitable 
values for SDVH and SHVL are about 0.85 and 0.5 in this application. 
Points are temporarily removed from the data set if their 
membership in one of the "good" clusters is greater than UH = 0.5. 

In addition to the above steps, we need to identify noise points and 
temporarily remove them from the data set. Noise points are 
identified as those which have low memberships in all clusters, i.e., 
feature point Xk is removed if 

max{u }<u . (5.42) 
1<1<C "^ "̂  

Noise points have to be removed at the end of each run of the PCQS 
algorithm, because as the number of clusters decreases and points 
assigned to good clusters are removed, the number of noise points 
relative to the good points becomes high, making it difficult to detect 
the few good clusters that are left. A good choice for UL is about 0.1. 
The condition for noise point removal applies only when 
possibilistic memberships are used, and not when fuzzy 
memberships are used. In the case of fuzzy memberships, (5.42) can 
be true even for good points if they are shared among many clusters. 
A similar comment applies to the removal of good points. 

Several comments about the UBD algorithm are in order. First, 
spurious clusters are clusters that have a low validity measure, but 
not necessarily low cardinality. Next, the second pass in Table 5.14 
is needed to improve the reliability of UBD - using one pass often 
terminates at an unattractive solution. Finally, there are a lot of 
thresholds to choose when you implement this algorithm. 
Conditions (5.39), (5.40) and (5.41) are used to decide whether to 
eliminate, merge or temporarily remove a cluster. All of these 
conditions are based on multiple validity measures. Although a 
single validity measure could be used to design each condition, the 
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resultant algorithm would not be as reliable as it is when more than 
one measure is used (see Section 2.6 for a discussion on the 
reliability of a single validity measure). The UBD algorithm is 
summarized in Table 5.14. 

Table 5.14 The unsupervised boundary detection (UBD) algorithm 

Store Unlabeled Object Data XczSJP 

Pick Maximum number of clusters, Cj, 
REPEAT UNTIL (No elimination, merging or removal 

takes place) 
Perform clustering using the PCQS algorithm 

(use FCQS for initialization) 
Run the Line Detection algorithm (Table 5.13) 
Eliminate spurious clusters and update c 
Merge compatible prototypes and update c 
Detect good clusters, save their prototypes in a list, 

remove points with high memberships in them 
and update c; 

Remove noise points 
END UNTIL 

Do Add removed feature points to X 
Append remaining clusters' prototypes from the last 

iteration in the above repeat loop to the list of 
removed clusters' prototypes and update c 

Second Pass 

REPEAT UNTIL (No more merging or elimination takes 
place) 
Perform the PCQS algorithm using the prototype 

list as initialization; 
Merge compatible prototypes and update c 

accordingly; 
Eliminate clusters with small cardinality, and 

update c accordingly 
END UNTIL 

The use of multiple validity measures imposes a higher burden on 
the user when picking thresholds. However, in the boundary 
description case, most of the thresholds are (more or less) fixed by 
the nature of the edge images. For example, ST and SH are 
determined by the expected thickness of the edges. Also, since the 
surface density Vgg^ is always between 0 and 1 it is fairly easy to 

pick SD,, SD„ and SD„„. In the experiments we know of, the UBD 
L H VH 

algorithm seems pretty insensitive to changes in these thresholds; 
most of them can tolerate as much as a 20% change without adverse 
effects on the results. Although changes in these thresholds may 
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affect the sequence in which clusters are eliminated, merged, or 
temporarily removed, the final results are usually the same. 

Example 5.14 Figure 5.43 (a) shows a 200x200 image of objects whose 
boundaries can be described by linear and second-degree curves. 

(a) original image (b) edge image 

(c) prototypes superposed on (a) (d) cleaned edge image 

Figure 5.43 Description of quadric boimdaries in edge images 

Uniformly distributed noise on the interval [-15, 15] was added to 
the image intensity values. The object edges were then obtained by 
applying the Sobel operator and thresholding. The edge images were 
then thinned using a neural net thinning algorithm (Krishnapuram 
and Chen 1993). The thinning procedure is important because it 
makes all edges one-pixel thick, making it easier to pick the various 
validity thresholds in UBD. It also reduces the number of pixels to be 
processed. Figure 5.43 (b) shows the thinned image which is used as 
input to UBD. It can be seen that the boundaries are not always clean 
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and there are many noise points. The image has about 2,000 edge 
points. 

The boundary description algorithm was applied with the initial 
number of clusters Cmax = 25. Figure 5.43(c) shows the final 
prototypes superimposed on the original image. The prototypes are 
shown three-pixels thick for emphasis. The "cleaned edge image" in 
Figure 5.43(d) is obtained by plotting the prototypes only in those 
regions where there were at least 2 edge pixels within a 3x3 
neighborhood. 

D. Quadric surface approjdmation in range images 

Krishnapuram et al. (1995a, b) describe a quadric compatible cluster 
merging (QCCM) algorithm for surface approximation in range 
images. This algorithm s t a r t s with the initial p l ana r 
approximation of a range image obtained by applying the CCM 
algorithm (see (5.35)). At this point, the following condition is 
checked for each pair of clusters. 

V — V 
1 J <a ( « i i ' ^ ) 

+...+JX 
jp ' jp ' ^ ) (5.43) 

In (5.43) Vy=(Vj-Vj)/ is the unit vector in the direction of 

Vj - V . A suitable value for C3 is Vs . A pair of clusters satisfying 

(5.43) is considered "close". 

The points belonging to each pair of "close" clusters are used as the 
input data set to the possibilistic c-plano-quadric shells (PCPQS) 
algorithm (see Section 2.4) with c=l. If the fit of the resulting 
quadric cluster is "good", then the two clusters are merged. The fit is 
considered "good" if the shell thickness measure 1/g.j,(U,Pj) in (5.37) 

is less than a threshold ST A suitable value for ST in this 
application is 0.1. Since the exact distance from a feature point to a 
surface is difficult to compute in the 3D case, the approximate 
distance at (2.55) is used to compute ||tii,|| in (5.37). The QCCM 
algorithm is summarized in Table 5.15. 
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Table 5.15 The quadratic compatible cluster merging 
(gCCM) algorithm 

Store I Unlabeled Object Data X e 9^P  
Pick Max. # of clusters, Cn,ax; oc-cut level a 
Init. Use the CCM algorithm 

Do 

merge = TRUE 
WHILE (merge = TRUE) DO 

merge = FALSE ; 
FOR each pair of clusters i and J DO 

IF clusters i and j satisfy condition (5.43) THEN 

Run the PCPQS algorithm on Xy with c=l 
Estimate error of fit Vg^(U,p.) using (5.37) 

1 F ( V S ^ ( U , P , ) < S T L ) T H E N 

Ujk =max(uik,Ujk) Vk 
Eliminate cluster j and replace parameters of 
cluster i with parameters of combined cluster 
c<—c-1 
merge = TRUE 

END IF 
END IF 

END FOR 
END WHILE 

Example 5.15 Figure 5.44 (a) shows a 200x200 synthetic range image 
consisting of 2 planes, a right circular cone, and an ellipsoid. 

({Qariigbial image (b)CXM (c)gcCM 

Figure 5.44 Approximation of quadric surfaces by QCCM 

Every third pixel was chosen from the original image in both the 
horizontal and vertical directions to reduce the computational 
burden. This also makes the data sparse, illustrating the fact that 
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the QCCM algorithm can work for sparse data. The number of 
feature points after sampling is about 3,000. 

In the CCM algorithm, the GK algorithm was applied with fuzzifier 
m=1.5. The initial number of clusters c was 15. Figure 5.44 (b) 

max =" 
displays the CCM planar approximation for this image. The final 
results of the QCCM algorithm consisting of the correctly identified 
surfaces is shown in Figure 5.44 (c). It is very difficult to see the 
surface of the cone in view (c) of Figure 5.44 correctly because all 
pixels on both sides of the surface belong to the same segment, so no 
matter what color is chosen for this segment, the visually apparent 
ellipse in view (a) which tells you the cone is not solid cannot be 
seen. But it's there. 

Frigui and Krishnapuram (1996a) propose an algorithm for quadric 
surface approximation based on the RCA algorithm (see Section 2.5). 
The algorithm starts by dividing the image into a large number of 
non-overlapping windows. Then RCA is applied on each window 
with c=l . This generates a large number (say c^^x) of initial 
prototypes. The approximate distance in (2.55) is used in RCA. At 
this point RCA is applied on the whole data set with c=Cn,ax- Due to 
the competitive and agglomerative nature of RCA, when the 
algorithm converges, only the clusters corresponding to legitimate 
surfaces survive. Since RCA is robust, it can also handle noisy range 
data. Unlike QCCM, this approach does not require an initial planar 
approximation. 

Example 5.16 Figure 5.45(a) shows a 240x240 synthetically created 
range image that presumably mimics the range image that would be 
obtained by illuminating a real plastic pipe. Every third pixel in the 
horizontal and vertical directions was used to reduce computation. 
The image was divided into non-overlapping windows of size 30x30, 
and initial prototypes for each patch were generated using only the 
points in the window. Figure 5.45(b) shows the initial surface 
patches, where each point in the entire image is assigned to the 
nearest prototype. 

Figure 5.45(c) shows the final result, after RCA is applied with the 
initialization shown in Figure 5.45(b). Each surface is shown in a 
different gray value and the boundaries are black. The termination 

condition used for RCA was max < 0.1, where the 

subscript t represents the iteration number. If the distance criterion 
was not met, the algorithm was terminated at the maximum number 
of iterations, which was set at 50 in this example. 
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(a) "range image" of pipe junction (b) initial approximation 

(c) result of CA metiiod 

Figure 5.45 Boundary description by RCA 

5.7 Representation of Image Objects as Fuzzy Regions 

Geometric and non-geometric properties of objects from images play 
an important role in image understanding. Properties computed 
from regions are typically used for object description and shape 
analysis. By geometric properties, we mean those properties that 
deal with the shape of the silhouette of the object. Some of the 
commonly-encountered geometric properties of objects are area, 
perimeter, height, length, extrinsic diameter, intrinsic diameter, 
elongatedness, and roundness. By non-geometric properties, we 
mean properties that depend on the actual gray-level patterns 
within the object boundary. Examples of non-geometric properties 
are intensity, color and texture. Properties of objects are useful for 
object description, discrimination and shape einalysis. 

If objects in the image appear consistently brighter (or darker) than 
the background, a binary image of the objects can be obtained by 
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thresholding the gray level image (see Section 5.5). However, object 
boundaries in gray-scale Images are often blurred and distorted due 
to the imaging process. The thresholding operation does not 
preserve the uncertainty in the image, and could distort the shape 
and size of the object. Hence, the computed geometric properties may 
not be accurate. An alternative approach is to preserve the 
uncertainty inherent in the image as long as possible until actual 
decisions have to be made. In this approach, each object in the image 
is treated as a fuzzy region represented by a fuzzy set. A fuzzy 
approach would assign lower weights (memberships) to property 
values near the boundaries, thus leading to more accurate estimates. 
The methods discussed in Section 5.5 can be used to generate the 
membership function for the object regions in the image. In this 
section, we discuss various methods to compute properties of fuzzy 
regions. 

A. Fuzzy Geometiy and Properties of Fuzzy Regions 

It is possible to define properties such as perimeter, height, etc. for 
multispectral images, but most of the work we are aware of is for the 
unispectral case. Consequently, in this section images are 
understood to be unispectral. Ideally, each region in a segmented 
image corresponds to an object or object class. In a fuzzy 
representation, fuzzy region F is represented by a membership 
function mp:IJ-4[0,ll. When F is finite we use the variables (i,j) as 
arguments for m ; otherwise, we use the variables (u, v), and remind 
you of our convention about the domain of support for integrals and 
derivatives of functions of (u, v). This notation is designed for 
images with two spatial dimensions, but many of the ideas in this 
section generalize to higher dimensions. 

In gray-scale images it is convenient to represent the object or 
region in terms of crisp a-cuts of m , where ae [0,1] and 

F^={(i,j)eIJ:mj,(i,j)>a} . (5.44) 

Since the gray values of images are quantized in practice, if the a-cut 
values are ordered as 1= aj > a2 >•••> a^ > a^^^ = 0, the level sets 
from (5.44) are nested, i.e., F c F for a. > a,. 

aj a^ I j 

Rosenfeld (1979, 1984, 1992) defined many terms in fuzzy geometry 
that c£in be used in the analysis of fuzzy regions of objects. Pal and 
Rosenfeld (1988), Pal and Ghosh (1990) have defined similar 
geometric attributes. Pal's (1992a) book chapter contains a review of 
this topic. Dubois and Jaulent (1987) generalized Rosenfeld's 
definitions using both fuzzy set and evidence theories. Here we 
briefly summarize the definitions of some geometric properties of 
fuzzy regions. 
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The area of a fuzzy region F is defined as the volume under m^, 
r 

a(F) = Jjmp(u.v)dudv . (5.45) 

In the discrete case, the area of fuzzy region F is 

a(F)= I I m (i.j) . (5.46) 
(i.J)e IJ 

Assuming that m^is piece-wise constant, and that the finite number 
of constant values that m^ takes are given by a^.tta-'-OCn' the 
perimeter per(F) of F defined by (Rosenfeld and Haber 1985) is 

per(F)= I I S 
Kje IJ V k 

« 1 - « J IJk (5.47) 

where {6^^] are the lengths of the arcs along which the discontinuity 

between regions F and F occurs. Assuming that m is smooth, 
a, Oj V 

Krishnapuram and Medasani (1995) define the perimeter of a fuzzy 
region with respect to the Euclidean norm as 

perf2(F) = JJ 
^3m^(u.v)>2 

du 

1/2 

dudv. (5.48) 

The perimeter of a fuzzy region can be defined with respect to any 

norm on 9t , and Krishnapuram and Medasani also consider the 1-
norm distance to measure the lengths of the arcs. 

perfi(F) = JJ 
3m^,(u,v) 

au + 
9m^,(u,v) 

dv 
dudv (5.49) 

The height of a fuzzy region F along the direction u may be defined as 

h, (F) = /max {m„(u,v)}dv , (5.50) 

where v denotes a direction orthogonal to u. In the discrete case, we 
have (Rosenfeld 1979) 

h,(F) = Imax{mj,(i,j)} (5.51) 
J 

The length ^ of a fuzzy region F along the direction u is defined as 
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I (F) = max{|m (u,v)dv} , (5.52) 
u V 

where the integration is performed over the region of the image P 
inside which m^(u, v) > 0. In the discrete case, we have 

F 

(!{F) = max{Im (i,j)} 

i j 

(5.53) 

In a digital picture where (u, v) takes only discrete values (i, j), since 
m (i, j) = 0 outside a bounded region, the max operation is performed 
over a finite set. By default, the height of an object or region F in a 
digital image is taken as the sum of the maximum memberships 
among the rows of positive memberships. This corresponds to using 
the horizontal direction for u in (5.50) and for i in (5.51). 

The width w(F) of a fuz2y region F is the sum of the maximum 
membership values of the columns of positive memberships. This 
corresponds to using the vertical direction for u in (5.50) and for i in 
(5.51). Similarly, the length ([F] and breadth b(F) of a fuzzy region F 
correspond to using only the horizontal (vertical) direction for u in 
(5.52) and for i (5.53). Thus, the length of a fuzzy region F in an image 
gives its largest expansion in the column direction, while the 
breadth gives its largest expansion in the row direction. 

• IS-W.: '-Y-^;£X .•f-fiimi-

Example 5.17 The non-zero values of a membership function m of a 
region F are shown in Figure 5.46(a). The corresponding crisp 
membership function of the same region, obtained by thresholding 
m at 0.5, is shown in Figure 5.46 (b). Pixels that are not zeroed by 

hardening are shown with bold values and shaded cells in view (b). 

Table 5.16 Fuzzy and crisp properties of the region F 

(a) ni for fiiz^ r^ion F (b) nfU of crisp r^km 
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The crisp and fuzzy areas, heights, lengths, widths and breadths of F 
computed from the membership functions in Figure 5.46 are shown 
in Table 5.16. 

Figure ! 5.46 Fuzzy and crisp geometry of image regions 

property crisp geometry fuzzy geometry 

area 12 10.9 

height 1+1+1+1=4 0.1+0.2+0.5+0.8+1.0+ 
0.5+0.2+0.1 =3.4 

length max (1,4,3,3,1) = 4 max (0.1, 0.4. 1.0,2.6, 
3.0,2.3, 1.0, 0.4,0.1) = 3.0 

width 1+1+1+1+1 = 5 0.1+0.2+0.5+0.6+1.0+0.6 
+0.5+0.2+0.1 = 3.8 

breadth max (2,4,4,2) = 4 max (0.1, 0.5, 1.5,3.1, 
3.3, 1.7, 0.6, 0.1) = 3.3 

Rosenfeld (1984) defined the extrinsic diameter of a fuzzy region F as 

e(F) = max{h (F)} , (5.54) 
u " 

where hu is defined in (5.50). The geometric property elongatedness 
is defined in terms of the ratio of the minor extrinsic diameter and 
the major extrinsic diameter, i.e., 

min{h,(F)} 
mEL(F) = l - ^ 

e(F) 
(5.55) 

The compactness of a fuzzy region is defined by (Rosenfeld 1984) as 

a(F) 
comp(F) = • (5.56) 

(P(F))' 

The index of area coverage (lOAC) defined by Pal and Ghosh (1990) is 

a(F) 
lOAC(F) = 

^(F)b(F) 
(5.57) 

It is possible to give unified definitions for both geometric and non-
geometric properties of fuzzy regions (Dubois and Jaulent, 1987, 
Krishnapuram et al. 1993a). In general, each non-geometric 
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property has a feature associated with it. For example, associated 
with the greenness property is the green component of an RGB 
image. If we let P(F ) denote the value of a property in the crisp 

region F , then we may compute the expected value P(F) of the 

property for a fuzay region with n a-cuts as 

P ( F ) = i b p ( F ^ ) P { F ^ ) . (5.58) 
1=1 ' ' 

In (5.58), bp(F ) denotes a weighting function associated with F . 

which is sometimes called a basic probability assignment (bpa) 
(Shafer, 1976, Dubois and Jaulent, 1987), and it must satisfy the 
conditions 

i bp(F^ ) = 1 ; bp(F„ ) > 0 V i . (5.59) 
1 = 1 " ' I 

Dubois and Jaulent (1987) suggested the following definition of the 
bpa, 

bp(F„) = a j -a j^ j , (5.60) 

where it is assumed that 1 = ttj > a2 >•••> a^ > a^+i = 0. Since F^ is a 

crisp set, traditional techniques can be used to compute P(F ). 

Using the definition of bp(F ) in (5.60), Dubois and Jaulent (1987) 

proved that: the expected area a(F) is equal to a(F); the expected 
height h(F) along the v-axis (i.e., in the default direction) of F is 
equal to the height h(F) of F along the v-axis; and the expected 
perimeter p(F) is equal to p(F). For the expected extrinsic diameter, 
the following inequality is true: 

e(F)>e(F) . (5.61) 

Other definitions for the basic probability assignment (bpa) are 
possible. For example, we can define 

F 

SF 
1=1 «' 
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This is the normalized a-cut cardinality. Using (5.62) for bp(F ) we 

can compute the expected value of the property as 

n 
I 

P(F) = i^ 
1 it', » ' 

i=l 

(5.63) 

where P^ denotes the property value of pixels in F and N. is the 

cardinality of F . I n (5.63) the property values of each crisp region 

F are weighted by the cardinalities of the corresponding a-cut 

regions. Alternatively, we can use weighted a-cut cardinalities as 
thebpa, i.e., 

a, 
bp(F„) = -

l a 
1=1 

« i ^ i 

1=1 

(5.64) 

When (5.64) is used in (5.58), the properties of each of the a-cut 
regions are weighted by the cardinalities of the a-cut as well as the 
a-values. 

B. Geometric properties of original and blurred objects 

Krishnapuram and Medasani (1995) show that the definitions given 
in the previous section for properties of fuzzy regions can be used 
directly on a blurred binary image to obtain accurate estimates of 
the geometric properties of the original object. This is important 
because thresholding can change the size and shape of the object, 
and hence the property values computed from a thresholded image 
can be misleading. Here we only consider the properties area, 
perimeter, height, and length, and show the relations between the 
values of these properties computed from a blurred image and the 
values of the same properties computed from the original binary 
image. Similar relations can be derived for other commonly-used 
properties. 

Objects may appear blurred in images either due to the imaging 
process or due to diffuse boundaries. In most instcinces, the blurring 
can be modeled by a convolution operation. In this section we will be 
integrating and differentiating several functions of two real 
variables, so we let x and y denote the horizontal and vertical 
directions in a unispectral image; let f(x, y) denote the original 
picture function of an object in a binary image; and let g(x, y) denote 
the blurred image of the object. We write 
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g{x, y) = IJ f (u, v) • b(x - u, y - v)dudv , (5.65) 

where b(x, y) is the blurring function, and integration extends over 
the object region on which f(x, y) is greater than zero. In practice, f 
and b have finite supports, and if the image is sufficiently large, 
aliasing does not occur. If the membership function mp of the object 
region F is obtained by appljang a linear mapping to pixels in the 
image such as the one in (5.29), ignoring the scale factor, we can treat 
the picture function f(x, y) as the membership function of the 
original object and g(x, y) as the membership function of the blurred 
object. 

Let a{f) denote the original area of an object in the image. From the 
definition in (5.45), the area of the blurred object represented by g(x, 
y) is given by 

a(g) = Jlg(x,y)dxdy 

= jN jj f (u, v) • b(x - u, y - v)dudv [dxdy 

^ . (5.66) 

= jJ j IJ b(x - u, y - v)dxdy [f (u, v)dudv 

= |J a(b)f(u,v)dudv 

This shows that 

a (g ) -a ( f )a (b) = a(f) . (5.67) 

The last equality follows from the fact that we assume that the area 
of the blurring object b(x, y) is unity. In other words, the fuzzy area of 
the blurred function is equal to the original area. This result is quite 
general in that the original object need not be binary. If the area of 
5ie blurring function b(x, y) is not unity, we need to normalize a(g) by 
the area of the blurring function. This can be roughly achieved by 
calibrating the imaging system by imaging an object with a known 
area (while the actual object area may be known, we cannot know its 
area in the digital image, since it is blurred). In what follows, we 
assume that the area of the blurring function b(x, y) is unity, in 
which case, we have the general result, where "*" stands for the 
convolution operator. 

Ij f (x, y)dxdy = jj {f (u, v)* b(u, v)}dxdy . (5.68) 
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Let per (f) denote the fuzzy perimeter of the original binary object 
with respect to the 2-norm, and let per (g) denote the same fuzzy 
perimeter of the blurred object. From (5.48) we have 

Per.olg) = j | 
fdg(x,y)?fdg{x,y) 

,2ni/2 

dxdy 

I! 

— I / O 

f3(f*b](x,y)f ^ f9(f*b)(x,y)^^ 
1, dx ay 

dxdy-

Since 

a(f*b}(x,y) 3f(x.y) , , , 
-5̂  iL_LJ_L. = —L_Lii*b{x,y) , and 

dx dx 
8(f*b)(x,y) 8f(x.y) . , , 
— ' ^ = \ ^ *b(x,y) 

ay dy 

we may write 

Perf2(g) = 11 

^l! 

af(x.y) 
ax 

^af(x.y) 

ax 

*b(x,y) | + 

* b{x, y) 

(af(x,y) , , / 
'•^^*b(x.y) 

V 

+ 

ay 

af(x,y) 

1/2 

dxdy 

ay 
* b(x, y) 

1/2 

dxdy-

It can be shown that 

1/2 
([a(x.y)*c(x,y)f+ [b(x,y)*c(x.yf) <(a2(x,y} + b2(x.y))^ ^*c(x,y) 

when a(x, y), b(x, y) and c{x, y) are always positive. Therefore, we 
have 

per„(g)< 11 af(x.y) 
ax 

af(x.y)^^ 
. ay ) 

\I1 

= b(x,y) dxdy. 

Using the general result in (5.68) we write the fuzzy perimeter as 



P^rj{) = jl 

Hence 
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9f(x,y) 
ax 

3f (x, y) 

ay 

1/2 

*b(x,y) dxdy. 

per„(g) < per (f) 
f2 

(5.69) 

In practice, if the object does not have narrow intrusions or 
protrusions, and if the support of the blurring function is small 
compared to the size of the object, per(g) is a good approximation to 
per(f). A similar result can be shown for the case of the fuzzy 
perimeter in the city-block norm, i.e., p (g) < p,.(0-

In general, the original height and the fuzzy height of the blurred 
object are not equal. However, the fuzzy height of the blurred object 
is a good approximation of the original height, provided that the 
support of the blurring function is small compared to the support of 
the original function. To give an intuitive idea as to why this is so, 
we now derive a result assuming that the original object is 
rectangular. 

y 
A 

-^1 
b(u,v) ^ ^ 

f(u,v) 

0 X , 
> x 

Figure 5.47 A rectangular object convolved with a blurring function 

Let f(x, y) denote the image of the original (unblurred) object. It 
follows that fix, y) can be treated as a binary function whose value is 
either 0 or 1 for all (x, y). Let g(x, y) denote the blurred image. Let h(f) 
denote the height of the original object in the direction of Qie x-axis, 
and let h(g) denote the height of the blurred object. If the object 
extends from x to x in the x-direction and y to y in the y direction, 
as shown in Figure 5.47, we can write 

L L 
h(g) = j max g(x, y)dx = J max 

0 y 0 y 
I J f (u, v)b(x - u, y - v)dudv dx. 
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If the support of the blurring function is smaller than the support of 
the rectangle, then there exists at least one y = yo such that all the 
maximum values of g(x, y) occur at y = yo (see Figure 5.47 ). Therefore, 

h(g) = j 
0 

/ 
J J f(u, v)b(x - u, y^ - vjdudv dx 

X . ( 

= I 
L y2 
j |f(u,v)b(x-u,yQ - v)dxdv 

x=Ov=y; y 
du 

If we assume that the object is rectangular, then we can write f(x, y) = 
f (x)f (y), where f (x) and f (y) are one-dimensional square waves. 
Since f (v) = 1 within the limits of integration. 

h(g)^ 
^2 

U=Xj 

^2 

= J fi(u) 

\ Jf2(v)b(x-u,yQ-v)dxdv 
x=0 v=yj 

du 

I Jb(x-u,yo-v)dxdv 
x=0 v=yj 

du 

The value of the double integral is always 1 for all values of u within 
the limits of integration because it is the area of a reflected version 
of the blurring function. Hence, 

X 2 

h(g)= j f i (u )du = X2 - Xi, from which there follows, 
U=Xi 

h(g) = h(f) (5.70) 

A similar result holds for the length, i.e., assuming that f(x, y) is 
rectangular. 

4g) = 4fl (5.71) 

We conjecture that the above result is true for non-rectangular 
objects as well as long as the support of the blurring function is 
small compared with the intrusions and protrusions in the contour 
of the object. Formalization and proof of this conjecture (or a 
counterexample that shows the conjecture is false) would be very 
interesting. 

Let the extrinsic diameter of the blurred object be denoted by e(g), 
and let e(f) denote the extrinsic diameter of the original object. Since 
the extrinsic diameter is defined as the maximum value of the 
height measured in all possible directions (see (5.54)), if the height of 
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the blurred object is the same as the height of the original object in 
all directions, then the extrinsic diameters of the original and 
blurred objects will also be the same, i.e., 

e(f) = max{h (f)} , and (5.72a) 
u " 

e(g) = max{h {g)} = e(f) , (5.72b) 
u " 

where the max is performed over all possible directions u. 

Example 5.18 Figure 5.48 shows a 200x200 S5Tithetic image of the 
character (+). The image was blurred by convolving it with a 
truncated two-dimensional Gaussian, b(x, y) = n(0, al), notation as 
in (2.18). Different degrees of blurring were produced by varying the 
standard deviation of the Gaussian function. Here we show the 
results for a = 2, 3, and 4 pixels. The size of the Gaussian mask was 
33x33 pixels. The Otsu (1979) algorithm, which finds an optimal 
threshold by minimizing the intra-class variance, was used to 
threshold the image in all cases. 

(a) original (+) image 

(b) (+) blurred with b(x, y) = it(0,21) (c) image (b) tliresliolded 

Figure 5.48 Images for fuzzy geometric properties 
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(d) (+) blurred with b(x. y) = n[0,31) (e) image (d) threshcdded 

(f) (+) blurred with b(x, y) = n{0.41) (g) image (f) thresholded 

Figure 5.48 (con't.) Images for fuzzy geometric properties 

Table 5.17 summarizes the values of the geometric properties: area, 
perimeter (using the city-block or 1-norm distance), height and 
length for the synthetic binary image (+). The table shows that the 
fuzzy area is always equal to the area of the original binary image. 
The value of the area computed by thresholding the image usually 
becomes progressively worse as the variance of the blurring 
function increases, but this is not the case with the fuzzy area. In 
accordance with (5.69), the fuzzy perimeter is always less than or 
equal to the perimeter of the original binary image. The fuzzy 
method gives a better estimate than the thresholding method in 
each case. In the case of height and length, both methods give 
similar results, although the fuzzy method is slightly better. 

Table 5.17 Crisp and fuzzy geometric properties 

a = 2 a = 3 G--= 4 
Orig. Fuzzy Thresh. Fuzzy Thresh. Fuzzy Thresh. 

Area 8241 8241 8012 8241 7988 8241 7992 
Perim. 484 484 480 484 480 484 480 
Height 121 121 120 121 120 121 120 
Length 121 121 120 121 120 121 120 
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Next we give an example that Illustrates the measurement of a non-
geometric property - average gray level - of regions within an image. 
An alternative formulation of the PCM algorithm (Krlshnapuram 
and Keller 1996, Dave and Krlshnapuram 1997) is used in this 
application. In this formulation the objective function is 

min | j^ (U.B:w) = I i u-D^,(x,,p^) + I w I (u^ logu^ - u ^ ) | . 
(U, B) L l=lk=l i=l k=l J 

(5.73) 
and the membership update equation is 

u ^ = e x p | - : 5 i ^ ^ | . (5.74) 

The center v is updated as usual. Since the exponential membership 
function in (5.74) decays faster than the one In (2.8a), this 
formulation exhibits better characteristics when the clusters are 
expected to be close to one another. In Example 5.19 we use the 

Euclidean norm Djĵ (Xĵ ,Pj) = ||xĵ  - vJI , and w, =2af, where of is 
the variance of the cluster estimated after initially running the FCM 
algorithm until termination. After the PCM algorithm terminates 
with this initial estimate of Wj, the variance of each cluster is re-
estlmated by considering only liie most typical points i.e., those that 
have a membership value greater than 0.5. With these updated Wj, the 
PCM algorithm is run once again on each cluster separately In order 
to fine-tune the centers and memberships. 

Example 5.19 We compare estimates of the property P(F) = average 
gray level of a region measured by crisp, fuzzy and possibilistic c-
means. The gray level feature values of pixels are clustered to 
generate membership functions for regions. These membership 
functions are then used to compute P(F) of the regions using two 
different methods. The first method uses the Dubois-Jaulent bpa in 
(5.60), and the second method employs the normalized a -cu t 
cardinalities in (5.62). In both cases the membership values are first 
quantized to 10 levels. The property P(F|jj ) is generated for each of 

the ten a-cuts. P(F) is then computed by equation (5.58), which 
combines the crisp estimates with the bpa. 

There are two regions in the original 256x256 Image shown in 
Figure 5.49(a) with intensities I(i,j) having one of two uniform gray 
levels. The original image was corrupted by adding two kinds of 
Gaussiam noise, one with a small standard deviation ag (to simulate 
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non-impulse noise) and the other with a large standard deviation a^ 
(to simulate impulse noise). 

(a) origjnal image I(i. j) WI^(i , j ) : Cg =7,(7^=100 

. . V . . • . ' - . ' • •'.' 

i 

' • • : • : . ' ' . ' ' • : • ' • • 

(c) Ij,(i, j) : (jg = lO.aj^ = 100 (d) I^(i. j) : o^ = 15. ff^ = 100 

Figure 5.49 Computing non-geometric properties of fuzzy regions 

Gray levels I^ (i, j) of pixels in the noisy image can be represented as 
Iĵ j(i, j)= l(i,j) + 0.95>i{0, Og) + 0.05n(0, a^). Here we show the results 

for Og = 7,10,andl5 with CTJ^=100. The original image and the 
images resulting after adding the three degrees of noise are shown in 
Figure 5.49. 

Table 5.18 summarizes the values of the average gray level of the two 
regions: object = O and background = B. Membership functions were 
generated by running the HCM, FCM and PCM clustering algorithms 
on the noisy images with c = 2 using the unlabeled sets of corrupted 
intensities, Xĵ  ={Ij^(i,j)}, as inputs. From Table 5.18 the average 
intensity value for the object measured using the membership 
function generated by the PCM algorithm is slightly more accurate 
than the other two methods. This might be because in the PCM 
algorithm the membership values represent typicalities. 
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Table 5.18 Crisp and soft computation of average region intensity 

Image in 
Figure 
(5,49) 

Class Orig. HCM FCM 
w i t h 
(5.60) 

FCM 
w i t h 
(5.62) 

PCM 
w i t h 
(5.60) 

PCM 
w i t h 
(5.62) 

5.49 (b) O 
B 

180 
120 

176 
120 

173 
120 

175 
121 

180 
120 

180 
120 

5.49 (c) 
0^=10 

O 
B 

180 
120 

176 
120 

170 
121 

173 
121 

179 
120 

179 
120 

5.49 (d) 
a3=15 

O 
B 

180 
120 

172 
121 

164 
122 

168 
121 

178 
120 

178 
120 

The measured value of P(F) for the object region deviates more from 
the actual value as the variance o^ is increased. As expected, the 
same trend applies to the value of the average intensity property of 
the background region. The two methods for computing bpa, i.e., 
Dubois-Jaulent bpa and normalized a-cut cardinalities, gave 
similar results; Table 5.18 is based on the Dubois-Jaulent bpa. 

In Examples 5.18 and 5.19 membership functions for the object 
regions were generated using a feature (gray level) that is related to 
the property we are trying to measure. Our recommendation is to 
adhere to this as a general rule - generate membership functions 
with features that are related to the property you want to measure. 
This seems obvious, but it is worth saying - if you don't follow this 
rule of thumb, the results can be very disappointing (Medasani et al., 
1999). 

5.8 Spatial Relations 

As explained in Section 5.1, properties of objects and spatial 
relations between objects play an important role in rule-based 
approaches for high-level vision. The partial presence or absence of 
such properties and relationships can supply both positive and 
negative evidence for region labeling hypotheses. In this section, we 
briefly review some fuzzy methods to represent spatial relations 
between image regions. 

In some situations, spatial relations between objects are quite crisp. 
For example, in Figure 5.50 (a), "A is ABOVE B", and in panel 5.50(b), 
"A is to the LEFT OF B". Humans are able to describe spatial 
relationships between objects even when the relations are not so 
crisp. For example, in Figure 5.50(c) "A is somewhat above B" and in 
Figure 5.50(d) "A is somewhat left of B". However, this task has 
turned out to be a rather elusive for automation. When the objects in 
a scene are represented by fuzzy sets, rather than crisp sets, the 
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problem of generating such relational descriptions becomes even 
more complex. 

(a) crisp " A above B" (b) crisp "Aleft of F' 

(c)" A somewhat oboueB' d) "A somewhat left ofB' 

Figure 5.50 Spatial relations between objects 

Approximate spatial relation analysis has also attracted the 
attention of many researchers in the past several years. In many 
situations, precise description of relations among objects may be 
too complex and computationally too expensive. Approximate 
spatial relation analysis provides a natural way to solve real world 
problems Avith a reasonable cost. 

Freeman (1975) was among the first to recognize that the nature of 
spatial relations among objects requires that they be described in an 
approximate (fuzzy) framework. Rosenfeld and Klette (1985) defined 
the relations "adjacency" and "surroundedness" between image 
regions. Retz (1988) examined the intrinsic, deictic, and extrinsic 
use of spatial prepositions and designed a system called CITYTOUR 
that answers natural language questions about spatial relations 
between objects in a scene and about the movement of objects. Dutta 
(1991) applied fuzzy inference and used a generalization of 
Warshall's algorithm to reason about object spatial positions and 
motion. However, modeling spatial relations among image objects 
is not addressed in the last two papers. 
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Cultural aside "Deictic" is a term from logic that means "proving by 
direct argument" as opposed to elenctic, which means "refuting an 
argument by proving the falsehood of its conclusion". In grammar, 
"deictic" represents a word whose reference is determined by the 
context of its utterance. Examples are "here" and "I". Basically, 
deictic refers to the "relative nature" of the term. Spatial relations 
are relative as well. 

Keller and Sztandera (1990) considered the problem of defining 
spatial relationships between fuzzy subsets of an image using 
dominance relations of projections of the regions onto coordinate 
axes. Krishnapuram et at (1993a) presented three methods that can 
be used to characterize both properties and spatial relationships of 
object regions in a digital image. These methods are referred to as (1) 
the centroid method, (2) the aggregation method, and (3) the average-
angle method. Other older versions of the centroid method can be 
found in Winston (1975) and Rosenfeld and Kak (1982). Miyajima 
and Ralescu (1993, 1994) proposed a method to evaluate spatial 
relations, which we will refer to as the compatibility method. Keller 
and Wang (1995) present a comparison of these methods. 

Kundu (1995) defined the fuzzy spatial relation LEFT(A, B) between 
two objects A and B based on a set of seemingly desirable postulates 
such as object independence, translation Invariance, etc. Bloch 
(1996a, 1996b) and Gader (1997) both present definitions based on 
mathematical morphology which are computationally efficient and 
give reasonable results. 

Ideally, the automated system should yield spatial relation 
measures that are consistent with human intuition. However, most 
researchers have not paid attention to this issue. Marks and 
Egenhofer (1994) discuss how people think about spatial relations in 
an attempt to find a realistic basis for defining spatial relations. 
More recently, Keller and Wang (1996) have proposed a method based 
on multilayer perceptrons to mimic spatial relation values 
indicated by human subjects. 

The primitive spatial relations between two objects are (Freeman 
1975): (1) LEFT OF, (2) RIGHT OF, (3) ABOVE, (4) BELOW, (5) BEHIND, 
(6) IN FRONT OF, (7) NEAR, (8) FAR, (9) INSIDE, (10) OUTSIDE, and 
(11) SURROUND. Both Winston (1975) and Rosenfeld and Kak (1982) 
have discussed the difficulties in defining such relations for crisp 
subsets of the plane. 

The first aggregation method we discuss is actually defined for fuzzy 
regions of the plane (Krishnapuram et al. 1993b). We first consider 
the case of a crisp region, which is equivalent to looking at a specific 
level set of a fuzzy region. This method is based on the observation 
tha t human perception of spatial positions between objects is 
closely related to angular information. Consider two points a and b. 
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in 9?^. Let aB denote the line connecting a and b, and let 9^^ be the 

counterclockwise angle between iB and the horizontal axis as 
shown in Figure 5.51. 

Figure 5.51 Using 6 to define the spatial relation RIGHT OF 

The membership function for RIGHT OF is defined as 

"BRIGHT (^ab^-

1 

(Tt/2He abl 

(7t/2)(l-k) 

0 

71 

2 ' abl 2 

I abl 2 

(5.75) 

The value k > 0 in (5.75) is a constant such that kn /2 is the half 
width of the top (where it takes the value 1) of the trapezoidal 
membership function defined by (5.75). Figure 5.52 shows similar 
membership functions for LEFT OF, ABOVE, and BELOW. 

m(e) 

1 

0 

m LEFT m BELOW m RIGHT m ABOVE m LEFT 

> e 
-71 -7C/2 0 k7t/2 7l/2 71 

Figure 5.52 Membership functions for five spatial relations 
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If A and B are two image regions, to compute the membership for "A 
RELATION B" (e.g. "A is LEFT OF B"), Krishnapuram et al. compute 
the angle 9 . for each pair of elements a e A and b e B, a n d 

evaluate the memberships {m„,^„^(0„ . )}. Finally, the membership 
RIGHT " i ** 1 . , U J 

m A REL B ^°^ ""̂  RELATION B" is computed by aggregating the 

memberships {n̂ j,=n̂ RiGHT^®a b '̂" Several fuzzy aggregation 

operators may be used for aggregation (Krishnapuram and Lee 
1992a, 1992b). One choice is the weighted mean of order q, 

Mq(m,w} = a 
I I w m^ 

Vj=ii=i J \ 

, where (5.76a) 

rp rp n III 

m = (mjj m ^ ) ;w = (w^^ w^^) ; a n d I I W y = l . (5.76b) 

The weight w denotes the relative importance of the corresponding 
membership value m . The weights {w } may be (usually are) chosen 

to be equal to ( l / (nm)) , and then M^(m,ll/(nm)l)oc ||m|q. The 
parameter q is chosen to suit the required (or desired) degree of 
optimism or pessimism. 

Krishnapuram et al. (1993a) also define membership functions for 
relations NEAR, FAR. INSIDE, OUTSIDE, and SURROUND. Figure 
5.53 illustrates how the relation "A SURROUNDS B" can be handled. 

Figure 5.53 The angle that defines the spatial relation SURROUND 

For each point b e B two lines Lj and Lj that touch A are found. Then 
the clockwise angle 9^ between the lines is measured, as shown in 

Figure 5.53 (if no tangents exist, then 9^ =2n). Rosenfeld and Klette 



644 FUZZY PATTERN RECOGNITION 

(1985) discuss one membership function for "A SURROUNDS b", and 
Krishnapuram et al. (1993a) suggested a similar one, namely 

™ A SURROUND.b*^ b^ 
9 b - " 

7i(l - k ) 
0 

e^>(2-k)7t 

n < e^ < (2 - k)n (5.77) 

where the constant k in (5.77) has the same meaning as in (5.75). To 
find m^suRROUND.B-we find memberships mj.svBRomu.b^^^'^^^ fo'" 
all b 6 B and aggregate them with, for example, equation (5.76). 

Now we consider the case when A and B are fuz2y regions. Let the a-
cuts of the two regions be denoted by A ,A .•••,A and 

B ,B ,--,B . The membership value for A RELATION B , 

denoted by m^ ^^^ B^"I^' ®̂ ^^^^ computed for each corresponding 

pair of a-cuts A and B . The overall membership value for "A 

RELATION B" is then computed using an equation similar to (5.58), 

where bp(ai) is the probability mass associated with level cq. 

(5.78) 

In the centroid method used by Krishnapuram et al. (1993a) for fuzzy 
regions, the centroids of the two crisp regions A and B are first 

computed. Then the membership of the spatial relations in terms of 
the angular measurement of the centroids are generated from the 
same functions as in the aggregation method. Equation (5.78) is used 
to obtain the final memberships. The centroid method is 
computationally simple, but the resul ts are not generally 
satisfactory. 

Miyajima and Ralescu (1993, 1994) also present a method for 
computing spatial relations between pairs of points a and b based on 
the angle Q^ as shown in Figure 5.51. In their definition, however, 
positive angles are measured clockwise. The membership function 
they use for "a is RIGHT OF b" is given by 

^ -Q , Jcos^e. 
2 ^ 2\ 

; otherwise 
(5.79) 
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The membership functions for the remaining relationships are 
defined similarly. As with the aggregation method, the case when A 
and B are both crisp regions which are sets of points, i. e., A = {a ,..., 
a } and B = fb^ b^}, is reduced to considering nm pairs of points 
(â , b), i= l,...,n;J = l,...,m. 

Let 0 denote the collection of angles {9 . } where a e A and b e B. 
ajDj i J 

Since different pairs of points may result in the same angle, 0 is a 

multiset. For each 9 ^ 6 0 , let n . 
&i D j f) 

:card^(a,.bj):9^^^^=9 Let 

HgtA.B) = |(9,ng)| denote the histogram associated with 0. The 

frequency n^ is divided by the largest frequency to get the 
normalized frequency. The histogram H is treated as an unlabeled 
fuzay set that captures the spatial relations between A and B. Given 
the membership functions for the fuzzy sets RIGHT OF, LEFT OF, 
ABOVE, and BELOW, the degree to which H matches these spatial 
relations is obtained by measuring the compatibility between the H 
distribution and the fuzzy set that represents the relation. The 
compatibility of a distribution F to a fuzzy set G is a fuzzy set CP(F;G) 
with membership function 

m CP(F;G) 

, sup {m„(s)} •,m'Mv)^0 

0 ; mpi(v) = 0 
(5.80) 

In our context F is the histogram H and G is a fuzzy set for the 
relation, such as the one in (5.79). After the compatibility is 
computed, the final degree to which a spatial relation holds is 
obtained as the center of gravity of the compatibility fuzzy set. 

mpgls) 

1 2 

(a)MF^offi]Z2ysetsGandF (b) compatibility set CP (P, G) 

Figure 5.54 Compatibility between fuzzy sets 
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For the fuzzy sets m^ and m^ shoAvn in Figure 5.54(a), given v , we 
F G ^̂  0 

have V = m (s ) = m (s ) for two points s and s . We find m„(s,) = a, 

and mglSg) = oc^. The compatibihty value at v is then 

m^p(vQ) = max{aj,a2}. By considering all values of v, we generate 
the compatibility fuzzy set shown in Figure 5.54(b). The center of 
gravity of m is the degree to which a spatial relation holds. 

Ihwill 

Example 5.20 Figure 5.55 shows two images containing crisp regions 
named A and B. These images will be used to discuss "ABOVE", 
"BELOW", "RIGHT' and "LEFT'. 

Illlllllllllll HHHHnnillll! 1 • 1 
• 

i 

(a) Test image (a) (b) Test image Cb) 

Figure 5.55 Images of crisp regions used in E ŝample 5.20 

Table 5.19 summarizes the results for the spatial relations "A 
RELATION B" using the aggregation, centroid, and compatibility 
methods. From Table 5.19, we see that for Figure 5.55(a), the 
centroid method tends to give results which are very close to crisp 
values. We think the results are slightly better for the aggregation 
method than for the compatibility method. 

Table 5.19 Spatial relation results for images in Figure 5.55 

Figure 5.55(a) Figure 5.55(b) 
Method Left Above Right Below Left Above Right Below 
aggreg. 

centroid 
compat. 

0.77 0.08 0.24 0.30 
0.94 0.00 0.00 0.07 
0.81 0.07 0.68 0.22 

0.00 
0.00 
0.00 

0.46 0.46 0.46 
0.00 1.00 0.00 
0.66 0.36 0.66 

Compatibility gives an unreasonably high membership value (0.68) 
for "A is RIGHT of B" in Figure 5.55(a) because of the shape of the 
histogram of angles shown in Figure 5.56(a). Continuing with the 
processing associated with Figure 5.55(a), the compatibility fuzzy set 
of the membership function for "RIGHT", as well as the histogram 
computed in the region 1-^/2, jt/2] are shown in Figure 5.56. 
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(a) histogram of angles between objects for Figure 5.55(a) 

nipp(v) 
1 

0.8 

0.6 

0.4 

0.2 

0 AA, Aonat.v 
0.2 0.4 0.6 0.8 1 

(b) compatibility fuzzy set for "A is RIGHT OF B" for Figure 5.55(a) 

Figure 5.56 Histogram and compatibility fuzzy set for Figure 5.55(a) 

When the compatlbiUty fuzzy set has low membership for most 
values, the centroid is usually fairly large. For the image in Figure 
5.55(b), the histogram of angles is shown in Figure 5.57(a}, and its 
graph is much more regular with respect to 9 than the graph of 
histogram angles in Figure 5.56(a). This agrees with a visual 
assessment of the relationship between A and B in right hand image 
in Figure 5.55(b). 

The compatibility fuzzy sets for "A is ABOVE B", "A is RIGHT of B", 
and "A is BELX)W B" are shown in Figure 5.57(b)-(d). After computing 
the centers of gravity of these sets, we can see that the degrees for 
"ABOVE" and "BELOW are much higher than those for "RIGHT'. The 
aggregation method gives almost the same value for "ABOVE", 
"BELOW", and "RIGHT". In the centroid method, the value for 
"RIGHT" Is dominant (Table 5.19). 
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- JC/2 0 7t/2 

(a) histogram of angles between objects for Figure 5.55(b) 

m(,p(v) 

0 0.2 0.4 0.6 0.8 1 
(b) compatibility fuzzy set for "A is ABOVE B" for Figure 5.55(b) 

Figure 5.57 Histogram and compatibility fuzzy sets for Figure 5.55(b) 

Humans probably would not assign the same degree to the three 
relations that was found by the aggregation method. However, it also 
is not reasonable to have "ABOVE" and "BELOW" dominate "RIGHT" 
as in the compatibility approach. In this case, the centroid method 
appears to be more consistent with intuitive perception. 
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m(,p(v) 

0.2 0.4 0.6 0.8 1 
(c) compatibiUty fuzzy set for "A is RIGHT OF B" for Figure 5.55(b) 

m^p(v) 

0.8 

0.6 

0.4 

/"~S\ 

0 4-̂  "q \— > V 

0 0.2 0.4 0.6 0.8 1 
(d) compatibility fuzzy set for "A is BELOW B" for Figure 5.55(b) 

Figure 5.57 (con't.) Histogram and compatibility 
fiizzy sets for Figure 5.55(b) 

Keller and Wang (1995, 1996) proposed a method to learn spatial 
relations by training one or more multilayer perceptrons (Section 
4.7). Target output values were assigned by human perception of 
images obtained from 62 participants with different genders, 
nationalities, ages, working fields, and educational levels. 

The inputs to (multiple) neural networks were: (i) 181 feature values 

representing the angle histogram HQ(A,B) = |(6,ng)} (one value for 
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every 2 degrees in the range of [-jt, jtl), (11) the projected extents of the 
two objects on the x-axis, (Hi) the projected extents of the two objects 
on the y-axls, (iv) the square roots of the areas of the two objects, (v) 
the distance between the centers of gravity of the two objects, (vi) the 
ratios of the overlap projected extent on the x-axis to each of the 
projected extents of the two objects on the x-axls, and (vli) the ratios 
of the overlap projected extent on the y-axis to each of the projected 
extents of the two objects on the y-axis. This gave 192 input features 
for training. Various neural networks were tested on a large variety 
of images. The results were found to be better than those obtained by 
the aggregation, centroid, and compatibility methods, perhaps 
because the networks were interpolating relationships similar to 
ones given by human subjects. Keller and Wang (1996) also suggest 
another approach in which the outputs of multiple neural networks 
are combined using the Choquet integral (see Section 4.5). Example 
5.21 is adapted from Keller and Wang (1996). 

Example 5.21 Figure 5.58 shows two typical test Images used by 
Keller and Wang (1996). Note that the image in Figure 5.58(b) is 
similar to the one in Figure 5.55(b). 

. 1 
••/•./ 

(a) Test image (a) (b) 'Dest image (b) 

Figure 5.58 Images for testing spatial relationship definitions 

Table 5.20 Spatial relations for images in Figure 5.58 

Figure 5.58(a) Figure 5.58(b) 
Method Left Above Right Below Left Above Right Below 

compatibility 
aggregation 

MLP 
human value 

0.00 
0.00 
0.00 
0.00 

0.63 0.28 0.74 
0.26 0.44 0.63 
0.04 0.87 0.25 
0.03 0.85 0.31 

0.00 
0.00 
0.00 
0.00 

0.66 0.36 0.66 
0.46 0.46 0.46 
0.23 0.94 0.32 
0.24 0.86 0.25 

Table 5.20 gives the results of the neural network method, as well as 
the values provided by humans and the values generated by the 
compatibility and aggregation methods. As can be seen from the 
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table, the memberships produced by the neural network method are 
closer to the human ones. This might be expected because of the 
training method used. MLP in Table 5.20 stands for multilayered 
perceptron as we have defined it in Section 4.7. 

With all these definitions, how do we decide the "correct" method to 
calculate spatial relations? Intuition is useful (everyone's method 
has some sort of intuitive appeal), but intuition is biased by 
personal judgments. The real question is (as usual) - which spatial 
relationship provides features that are useful in a particular 
application?. Wang et al. (1997) used memberships from three 
spatial relation definitions together with a few other features in a 
digit recognition application. They report that memberships do 
provide powerful discriminating capability. More interestingly, the 
three definitions used for the spatial relations all provide about the 
same results. This offers some evidence that the most important 
point about spatial relationships may not be which one you use, but 
that you use one at all, based on some reasonable set of definitions 
for spatial relationships. Computational complexity is also an 
important consideration, and may be a way to choose among 
equally useful alternate definitions. 

Work in this area is important because scene interpretation often 
improves if relationships between objects can be inferred 
computationally. A related area in computer vision is to group 
together similar structures (e.g. all the guitar players, all the pickup 
trucks, all the redfish, etc.) at higher levels. This is the subject of 
Section 5.9. Later in this chapter we give an example where spatial 
relationships are used to describe a scene. 

5.9 Perceptual Grouping 

Perceptual grouping involves joining higher level structures (or 
"tokens") from a lower level of representation to build more complex 
entities. Perceptual grouping provides a natural interface between 
top-down and bottom-up reasoning in computer vision systems. The 
lower-level grouping is typically data oriented (bottom-up), whereas 
the higher-level grouping is typically model-driven (top-down). For 
example, lower level grouping might involve merging short line 
segments (edge fragments) based on constraints such as collinearity. 
In contrast, higher-level grouping might involve searching for line 
segments that form the projection of a building modeled as a 
parallelepiped. In either case, the grouping is usually based on 
geometric relations and constraints between tokens to be grouped. 
Since geometric relationships between objects in images are 
typically ill-defined, fuzzy methods are well suited for determining 
to what degree the tokens satisfy geometric constraints. 
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Kang and Walker (1994) discuss several aspects of perceptual 
grouping. At the lower level, they discuss fuzzy strategies for 
grouping based on collinearity, parallelism, symmetry, and 
Junction. At the higher level, they consider strategies for 
recognition tasks such as extraction of curves, natural branching 
structures, and polyhedral objects. Ralescu and Shanahan (1995) 
also discuss fuzzy methods for perceptual organization of lines and 
junct ions. To Illustrate how fuzzy methods can be used for 
perceptual grouping, we discuss the Kang-Walker model for line 
segment grouping based on collinearity in more detail. 

To group line segments into higher-level tokens (longer line 
segments) based on collinearity, Kang and Walker (1994) use three 
constraints related to proximity and similarity. These are: (1) an 
angle constraint, (ii) a perpendicular distance constraint, and (iii) 
an end point constraint. The extent to which the angle constraint is 
satisfied is based on the angle 0^^ (in degrees) between (if needed, 
extensions of) the line segments A and B in question. The angle is 
illustrated in Figure 5.59(a), and the membership function m^(9^^) 
associated with this constraint is shown in Figure 5.59(b). 

(a) angle between A and B (b) MF for angle constraint 

Figure 5.59 Angle constraint of Kang and Walker 

The end point (Euclidean) distance ED^^, which is proportional to 
the empty gap distance between the segments A and B, is defined as: 

ED AB 

min{6^ [a^,h^), Ŝ  (a^, b^), 5^ (b^, a^), 8^ (a^, b^)} 

min{52 (aj, ag), §2 (b^, b2)} 
(5.81) 

where a and a are the end points of segment A, and b and b are the 
end points of segment B. Figure 5.60(a) illustrates the normal case, 
for which ED^^ > 0. When one of the segments is at least partially 
inside a projected envelope orthogonal to and containing the other. 
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as shown in Figure 5.60(b), then equation (5.81) is not used. Instead, 
ED is defined to be zero, ED^^ = 0 (Basically, you find the nearest 
point on the (infinite) extension of B to a or a , and if this point lies 
between b and b , then ED^^ = 0.) A trapezoidal membership 
function similar to the one in Figure 5.59(b) is used with the end 
point (EP) distance constraint, j^elding m x_ (ED^ 

EP5o AB' 

(a) normal case (b) oveilapping case 

Figure 5.60 Endpoint distance constraint 

The third constraint, perpendicular distance, measures how well the 
extension of one segment is supported by the other. When A and B 
are primitive (i.e., ungrouped, single line segments), the longer 
segment is called the dominant one of the pair. As illustrated in 
Figure 5.61, the perpendicular distance PD is the orthogonal 

distance from the mid point (^ )of the non-dominant segment to the 
extension of the dominant segment, which is labeled A in the Figure 
5.61. 

Figure 5.61 Perpendicular distance constraint 

Like the end point distance constraint ED , we need a membership 
function for PD^^. Kang and Walker assert that m^g(PD^^) can be 
increasing or decreasing, and they used a trapezoidal membership 
function for mj^g(PD^^) in their paper. The membership function 
m (A, B) for colltnearity of two line segments A and B is obtained 
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by aggregating the values of the three membership functions 

AB ) ^ d " l x 5 ( P D A B ) . 

™COLL(A.B) = T m^(e^ ) ,m (ED 
AB- •^U^P^AB (5.82) 

Equation (5.82) uses any T-norm such as the min operator. When the 
value of nifjQLL ^̂ "̂  ^ ^^^^ °^ segments is high enough, a merged 
segment is created by extending the dominant segment to span the 
projection of the non-dominant segment. Other ways to create the 
merged segment may also be used. Kang and Walker defined the 
certainty value CV (A) for a line A with endpoints a and b that results 
from grouping a set of smaller line segments {A } with endpoints {(a, 
b }̂ as 

CV(A) = [ I CV(Aj)mcoLL(Ai'A)-52(a,,bj)]/82(a,b). (5.83) 
{A,) 

At the lowest level, if the edge detector provides information about 
the certainty CV(A) of an edge fragment A, this can be used in (5.83) 
when determining CV(A). Otherwise, all edge fragments are 
considered to have equal certainty. For groups of segments, the 
segment with the greatest product of certainty and length is 
considered to be the dominant one. 

Store 

Table 5.21 The collinear grouping algorithm 

Line segments X = {Aj,..., A^} - (e.g., via an edge detector) 

Certainty values CV = {CV(A )̂ CV(A^)} 

Pick a cut value : a e [0,1] 
REPEAT UNTIL (no merger takes place) 

Choose dominant segment Aseed â s seed 
Compute COLL„ = {A,: m^^^L ̂ ^^eed. Aj) > a, i = 1,..., n} 

£)Q Sequentially merge A^ E C O L L ^ 

(in decreasing order of (length x certainty) 
Add grouped segments from previous step to the data 
Eliminate the seed segment and all merged segments 

included in grouped segments from the data 
% When you merge several segments, what results is a 

grouped segment 
END UNTIL 

Kang and Walker's (1994) algorithm for collinear grouping is 
summarized in Table 5.21. Although it may appear that the value of 
a used in the algorithm acts like a threshold, since the system 
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retains the membership values for all the collinear groups, the 
uncertainty can be propagated, and the actual decision-making can 
be deferred. 

ItwftI 

Example 5.22 This example is adapted from Kang and Walker (1994), 
and they supplied the images shown. Figure 5.62(a) shows the image 
of a block and Figure 5.62(b) shows an edge image made from the 
image in view (a). Kang and Walker do not specify the edge detector 
used. Figure 5.62(c), shows the initial set of edge fragments extracted 
from the edge image in view (b). 

(a) Image of a block 

t , 

t *•* 

,tH;-'; 

(b) Corresponding edge image of block 

Figure 5.62 Raw data for collinear grouping 
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(c) Initial tokens from edge image 

Figure 5.62 (con't.) Raw data for collinear grouping 

Figure 5.63 shows a set of five membership functions for the 
hnguistic values {not, slightly, roughly, almost, exact}. Kang and 
Walker (1994) use this termset, with the domain of the membership 
functions normalized to [0, 1] if necessary, to fuzzily several 
numerical variables in different parts of their overall system for 
perceptual grouping. For example, when doing collinear grouping of 
objects A and B at the rough level, the horizontal x axis as shown in 
Figure 5.63 is interpreted as x = m^Qj^j^(A,B), and the vertical axis is 
Interpreted as the extent to which A and B are roughly collinear. 

m,.,(x) 

not slightly 
1 

roughly almost exact 

^ x 
0.25 0.5 0.75 

Figure 5.63 Linguistic term set for perceptual grouping tasks 

Kang and Walker then use the area centroid of the membership 
function for ROUGHLY in Figure 5.63 as the a value in the collinear 
grouping algorithm in Table 5.21. In this example only the function 
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for roughly is used; all five of them are shown here for graphical 
economy - they are not a termset for the input to a set of rules. 

Figure 5.64(a) shows the groupings of the initial edge fragments 
shown in Figure 5.62(c) at the approximation level almost coUinear. 
Figure 5.64(b) and (c) show the groupings at approximation levels 
roughly coUinear and slightly coUinear. 

(a) groups at approziination level almost 

(b) groups at approximation level rough 

Figure 5.64 CoUinear grouping of edge fragments 
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(d) groups at approzimation level slightly 

Figure 5.64 (con't.) CoUinear grouping of edge fragments 

5.10 High-Level Vision 

High level vision tries to take advantage of goals and knowledge to 
guide visual activities. Therefore, we need methods to model goals 
and capabilities and reason about them. A system that employs 
high-level techniques should also be able to evaluate the success of 
Its approaches. Knowledge representation and object modeling is an 
important part of high-level vision. Very often, world knowledge 
can be described In vague and imprecise terms, and therefore, fuzzy 
methods are ideally suited for this application. High-level vision 
also requires powerful inferencing methods, and fuzzy logic can 
play a role here. Other examples of high-level activities to which 
fuzzy methods can contribute are: matching models to data, belief 
maintenance, and constraint relaxation. 

We illustrate one way to use a fuzzy model in this context with an 
abbreviated summary of Wang and Keller's (1999a, b) work in high 
level vision. The fuzzy MA rule base developed for scene description 
contains 242 rules and was implemented using the software package 
CubiCcdc CWatkins, 1990), with product Inference (firing strengths 
are computed with the T norm) and centroid defuzzification (Figure 
4.33, and see Klir and Yuan, 1995). Table 5.22 summarizes various 
combinations of linguistic values for the five premise variables 
representing the 242 rules used by Wang and KeUer. 
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Table 5.22 Siunmaiy of input PMFs for 242 scene description rules 

Rule-
type 

L 
Left 

A 
Above 

R 
Right 

B 
Below 

S 
S u r r o u n d 

1 X X X X H 
2 m, h m, H m, h m, h m 

3 m m, h m I m 

4 h m, h h I m 

5 m m, h h I m 

6 m,h I m, h I m 

7 h h I I, m 

8 m m I I, m 

9 m h I I, m 

10 m,h I I e, m 

11 I I I m 

12 m, h m, h m, h m, h I 

13 m m, h m t I 

14 m m, h h I I 

15 h m, h h I t 

16 m, h I m, h t I 

Note: X denotes "don't care" In Table 5.22 

Wang and Keller used five spatial relations between objects as 
linguistic variables about "RELATION BETWEEN" to fuzzily the LHS 
of the rule base and build a linguistic description of the scene. The 
premise or input linguistic variables were: LEFT_OF = L, RIGHT_OF 
= R, ABOVE = A, BELOW = B and SURROUND = S. 

Table 5.23 summarizes the various combinations of output 
linguistic values for the antecedent clauses in Table 5.22. The output 
or consequent side of their MA rule base was fuzzified with 10 
consequent linguistic variables: TL, TS, TR, TB, TA, AR, AL, BR, BL 
and AM. This notation abbreviates compound words made by 
juxtaposition of T= TOTAL with L, R, A. B and S. So, for example, TA 
= TOTALLY_ABOVE, AR = ABOVE_RIGHT, BR = BELOW_RIGHT, etc. 
AM is a standalone acronym that means "AMONG"; this variable 
was used for groups of objects, as in "Tank is AMONG the Armored 
Personnel Carriers". These variables head the columns of Table 
5.23. Each input and output linguistic variable took 3 linguistic 
values : I = LOW, m = MEDIUM and h = HIGH. 
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Table 5.23 Summaiy of output CMFs for 242 scene description rules 

Rule TL AL TA AR TR BR T B BL T S AM 

1 t I I I I I 1 r h I 

2 I I I I I I 1 ' m 
3 I ( m,h I I I t ' m 
4 t I m,h I I I t ' m 
5 I I I m I I t t m 

6 t i l I I I ', m 
7 I I I h I I ', l,m 

8 I I I h I I '. l,m 

9 I I I I h I I ' l,m 

10 I I h I I I t ' l,m 

11 I I I I I I t ' m 

12 I I I I I I t ' I h 

13 I I m,h I I I i ' I m 
14 I I I m I I 1 '. I m,h 

15 I I m I I I ( ' I h 

16 I I I I I I ( ' I m,h 

If there are two adjacent relations, such as ABOVE and RIGHT, with 
both "medium" or both "high", and the others "low", then the output 
ABOVE_RIGHT will be "high". Because the 4 primitive spatial 
relations are symmetric, we Just list one case; rules for the other 
three cases can be obtained by symmetry. For instance, if the inputs 
are (medium, high, medium, low, medium) for (L, A, R, B, S), then for 
the outputs, TOTAL_SURROUND will be "medium", TOTAL_ABOVE 
will be "high" and the others will be "low". This rule is displayed in 
the third rule-type of Tables 5.22 and 5.23 (note the choice of "high" 
for ABOVE). Now, if the 4 primitive relations of the inputs turn 90 
degrees clockwise, i.e., (low, medium, high, medium, medium) for (L, 
A, R, B, S), then TOTAL_SURROUND will be "medium", 
TOTAL_RIGHT will be "high", and the others will be "low". 

Among the 10 output values, the variable with the highest 
confidence value was picked to describe the relation between objects 
in the scene. This simple linguistic approximation approach 
produced very good results in the experiments described later. After 
the system was constructed, it was tuned using two images to adjust 
some factors which affect the performance of the system, such as 
definitions of the membership functions, the rules, and grouping 
parameters. A typical rule summarizing the spatial relation 
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between a pair of objects Is found by matching a premise row from 
Table 5.22 to a consequent In Table 5.23. For example: 

Premise clauses from row 3 of Table 5.22 

IF L = m 
AND A = m 
AND R = m 
AND B = ̂  
AND S = m 

onsequei nt clauses fr 

THEN TL = ^ 
AND AL = ( 
AND TA=m 
AND AR = < 
AND TR = ^ 
AND BR = ̂  
AND TB = i 
AND BL = ^ 
AND TS = w 
AND AM = ^ 

Wang and Keller (1999a) show that when SURROUND exists, we don't 
need to consider the four primitive spatial relationships. Thus, if 
SURROUND is "high", whatever the other four input variables are, 
TOTAL_SURROUND will be "high" and the other linguistic values 
will be "low" in the consequent membership function (CMF) set. 
When SURROUND exists but to a weaker extent, the other 4 
primitive spatial relations may exist at the same time. So, if 
SURROUND is "medium", then TOTAL_SURROUND will be 
"medium", and the other relations from output will depend on the 4 
primitive relations of the inputs. This is shown, for example, in the 
third rule-type of Tables 5.22 and 5.23, where the inputs are 
(medium, high, medium, low, medium) for (L, A, R, B, S) - (note the 
choice of "high" for ABOVE). These o u t p u t s give 
TOTAL_SURROUND: "medium", TOTAL_ABOVE: "high" and the 
others: "low". 

Writing out the rules amounts to simulating a human's reasoning 
about spatial relations. When humans think about spatial 
relations, they consider the relations comprehensively. For 
example, when the spatial relational membership values (0.88, 0.76, 
0.00, 0.00) are given for (A, L, R, B), humans might reason that the 
compound relationship is "ABOVE_LEFT" because "LEFT" is "high" 
and "ABOVE" is "high" and "RIGHT" is "low" and "BELOW" is "low". 
Since the system attempts to model the reasoning process of a 
human expert, the designer can understand the cause of the change 
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in the performance after he or she manipulates the rules and 
membership functions or uses different parameters. We refer to this 
tuning process as training of the system. This scene description 
approach requires a priori information (domain knowledge) which 
can be encoded as separate rules or procedures. For example, in an 
automatic target recognition application, it was necessary to 
include procedures to decide if individually detected vehicles should 
be considered a group or a convoy, or if some buildings should be 
grouped together for the purpose of scene description. Details and 
other applications can be found in (Wang and Keller, 1998b). In 
Example 5.23 we show the results of applying the Wang and Keller 
rule-based system to the segmentation of the "man-and-house" 
image in Figure 5.30(d). 

Example 5.23 Because angles between all pairs of object points must 
be computed (perhaps many times), direct computation can be quite 
costly. An arctangent lookup table of the same size as the image was 
created to reduce this computational burden. Thus, needed values 
come directly from the table instead of being calculated for each pair 
of pixels. Also, before determining the spatial relations between two 
different objects, we have to decide which pixels belong to the two 
objects. To reduce computation, we do not need to examine the 
region labels for all the pixels in the image. The smallest rectangles 
containing the objects can be generated automatically after 
labeling. We jus t search the rectangle areas, which can be much 
smaller than the entire image. 

Table 5.24 Spatial relationship values for Figure 5.30(d) 

arg, ref L A R B S Output 
roof, tree 0.00 0.17 0.70 0.05 0.00 TR = 0.99 
wall, tree 0.00 0.02 0.61 0.26 0.00 TR = 0.79 
sky, tree 0.01 0.40 0.69 0.01 0.00 TR = 0.98 
wall, roof 0.13 0.01 0.01 0.73 0.00 TB= 1.00 
sky, roof 0.07 0.68 0.12 0.00 0.00 TA = 0.93 
lawn, wall 0.06 0.01 0.02 0.76 0.00 TB= 1.00 
road, wall 0.08 0.00 0.03 0.83 0.00 TB = 1.00 
road, lawn 0.06 0.01 0.03 0.68 0.00 TB = 0.90 

Columns L, A, R, B and S in Table 5.24 show (spatial relation) 
membership values for the labeled regions in Figure 5.30(d) before 
invoking the rule base; these are the input values to the PMFs in the 
242 rules. The neural network approach of Wang and Keller (1995) 
was used to obtain the input values in Table 5.24. The output 
variable having the maximum value after invoking the rule base is 
displayed in the last column of Table 5.24. The crisp output of the 
rule base after hardening by linguistic approximation is shown in 
Figure 5.65 (b). Figure 5.65(a) replicates Figure 5.30(d), the scene to 
which the rule-based statements apply. 
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(a) Figure 5.30(cl). repeated 

The roof is right of the tree 

The wall is right of the tree 

The sky is right of the tree 

The wall is below the roof 

The sky is above the roof 

The lawn is below the wall 

The road is below the wall 

The road is below the lawn 

tb) rule based relationships 

Figure 5.65 Output of the scene description rules for Figure 5.30(d) 

Figure 5.30(d) shows that some parts of the image were labeled 
incorrectly. For example, some roof edges were labeled tree, and the 
black shutters were labeled road, etc. But these parts did not 
dominate the regions to which the parts were assigned, and so the 
system still gave very good results. Wang and Keller's fuzzy rule-
based system also works well on other outdoor scenes. 

5.11 Comments and bibliography 

On stuff we did not cover 

A better title for this chapter would be "Selected Topics in Computer 
Vision and Image Processing", since the algorithms presented in 
this chapter are just a few needles in the haystack of literature on 
fuzzy models in this field. There have been many recent surveys that 
discuss the use of very innovative and clever fuzzy models in various 
imaging applications that we did not discuss. For example. Pal and 
Pal (1993) give a good exposition of many topics that received scant 
attention here. Keller et al. (1996) give an in depth discussion of the 
use of rule based systems in computer vision - touched on here only 
briefly. Bezdek and Sutton (1999) provide a fairly comprehensive 
review of fuzzy models for medical imaging, with concentration on 
segmentation and edge detection in tumor detection. Most of the 
textbooks we are aware of have pretty dispersed coverage of image 
processing, and are content to scatter an example here and there. 
Notable exceptions are the books by Pienkowski (1989) and Chi et al. 
(1997). 
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The topic of how to evaluate image processing algorithms always 
sparks a lively debate. Since humans excel at visual pattern 
recognition, it is easy for most of us to tell really bad outputs from 
good ones. But it is nearly impossible to see a five percent 
improvement (which may be enough to save a life), much less 
measure it, in, say, a segmentation of a digital mammogram to 
detect microcalcifications. Even when participants are domain 
experts (e.g., radiologists evaluating MR segmentations), there is a 
lot of (perhaps unavoidable) subjectivity in performance analysis. 

Heath et al. (1998) provide an interesting and thought provoking 
article on performance evaluation in image processing. The context 
of their paper is edge detection, but their ideas deserve careful 
attention by workers in related areas. For exaimple. Table 1 in Heath 
et al. lists all edge detection papers that were published in the four 
journals IEEE Trans. PAMI, CVGIP, Image Understanding and 
Pattern Recognition from 1993-1995. 21 papers are referenced -
none used real image ground truth! Table 2 in Heath et al. lists 12 
papers that have described evaluation methods for edge detection - 8 
of the 12 require ground truth! What's wrong with this picture? Most 
of us are computer professionals, engineers or mathematicians. We 
develop image algorithms, grab a few images, run them, choose the 
ones we like, and rush to judgment. That's basically what we did 
when we wrote this chapter. Heath et al. advocate the use of 
quantitative rating instruments used by human panelists who 
visually compare outputs of (more or less) comparable algorithms 
that have been exercised in a carefully controlled and integrated 
software setting. We think this is a very useful paper; have a look at 
it. 

Tanaka and Sugeno (1991) provide a different twist to image 
evaluation. Their work focuses not on the comparative evaluation 
of image processing algorithms, but rather, on evaluation of how 
different humans evaluate the content of color images. They build a 
two stage evaluation model based on the Choquet integred (Section 
4.5) that aims to understand how different humans perceive and 
respond to Aasual images, and in particular, how they select the most 
preferable reproduction of a color photograph. 

An important topic that we have virtually ignored in this chapter is 
image compression (probably because none of us know much about 
it!). Fuzzy models have been used pretty successfully in this area, 
competing well with more s tandard approaches to vector 
quantization. Karayiannis and Pai (1996) and Karaj^annis (1997b) 
show some results using various mutations of the FLVQ method 
(Section 4.3) to compress and reconstruct poor Lena, and they report 
very favorable signal to noise ratios using their FALVQ family of 
algorithms. Wang and Karayiannis (1997) use FLVQ and other 
techniques to compress digital mammograms of breasts containing 
microcalcifications. Kosko (1992) has a chapter on this topic 
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written by Kosko and Kong that utilizes fuzzy associative memories 
and competitive learning models for image coding. Kosko (1997) has 
a chapter written by Kim and Kosko that extends this work with 
subband coding and vector quantization. 

Wang et al. (1996) use fuzzy reasoning for image compression. Their 
method adaptively adjusts the 3D position of triangular patches 
that approximate the corresponding luminance curved surfaces of 
the original image. The adaptive adjustment is done considering all 
pixels contained in the projection of a patch using a six-rule fuzzy 
reasoning system. 

Another Important topic that we have paid scant attention to is 
image processing based on fuzzy Tnathematical morphology; and 
again, it's the case that none of us know very much about it. A large 
body of work on this topic is due to Bloch and her colleagues, and for 
an introduction to the literature in this area we can do no better 
than to recommend her eminently readable survey (Bloch, 1995). 
Another important source for fuzzy morphology in image 
processing is the work of Dougherty and his colleagues, which is 
well summarized in Sinha and Dougherty (1995), and which comes 
to fruition in Sinha et al. (1997). 

Binary (crisp) morphological operators such as erosion, dilation, 
opening, etc. are built on the concept of fitting a structuring element 
to structures in the image. We think that Goetcherian (1980) first 
discussed fuzzification of crisp morphological operators by 
applying standard operators to a-cuts of fuzzy images, and 
aggregating the results over the a-cuts to get a final result. Bloch and 
Maitre (1993) also suggested fuzzification of morphological 
operators in the context of a-cuts. 

Sinha and Dougherty (1992) Introduced intrinsically fuzzy 
morphological operators, in which both the input and output images 
are fuzzy. Erosion is defined using fuzzy set inclusion to represent 
the idea of "more or less fits" (the structuring element). Sinha and 
Dougherty (1995) propose a set of axioms that seem desirable for 
these operators based on a fuzzy subset-hood index, and provide an 
extensive study of properties of their system. A general paradigm for 
"lifting" crisp morphological algorithms to fuzzy generalizations is 
given in Sinha et al. (1997). These authors discuss algorithms for 
three important image processing tasks: shape detection, edge 
detection and clutter removal. An example of their fuzzy 
morphological approach to word recognition is provided. 

Bloch et al. (1997) apply the morphological approach to three-
dimensional reconstruction of blood vessels to assist vascular 
lesion interpretation. Fuzziness is incorporated in four different 
a reas (segmentation, modeling imprecision, mathemat ical 
morphology and data fusion), without a priori geom^etrical model 
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information. The approach fuses information from digital 
angiographic and echographic data to make a final binary decision, 
resolving possible contradictions between the two modalities. 
Redundancy in the combined data from two orthogonal X-ray 
angiographic projections (which provide longitudinal information 
and overall 3D geometry of the vessel), and a series of endovascular 
echographic slices (high resolution vessel cross sections) helps to 
reduce imprecision and uncer ta inty in the final model. 
Segmentation of the endovascular echographic images is based on 
fuzzy classification and mathematical morphology, whereas the 
digital angiographic images are segmented based on dynamic 
tracking of vessel centerlines and contours. During model 
reconstruction, fuzzy dilation is used to handle the spatial 
Imprecision of the detected contours. The data are then fused using a 
fuzzy operator, and a binary decision about the contour is based on a 
3D watershed algorithm which connects maximal membership 
points. Example images from a dog aorta are provided. 

Park and Keller (1997) developed a segmentation approach to detect 
white blood cells in human bone marrow images that combines 
mathematical morphology with fuzzy relaxation labeling. Other 
work in this area includes DiGesu et al. (1991) and Koskinen et al. 
(1991). 

Feature analysis in image processing 

Perhaps the most important choice you will make in image 
processing is which numerical features to extract from raw sensor 
data. We cannot give you a set of guidelines for getting good features, 
because here, as in Chapters 2 and 4, "good" is very problem 
dependent - what are the features used for? what properties of a fuzzy 
model do we hope they match up with? what type of data do we have? 
And so on. Many authors have fuzzified input features to classifier 
networks, including features used in image processing. And of 
course all of the papers discussed in this chapter use features, but 
these are rarely selected or extracted using fuzzy techniques. Most 
always, conventional features are used in fuzzy models and 
algorithms. 

Shell type clustering algorithms, for example, provide a way to 
extract features related to boundaries of objects in images. The 
divide and conquer noise fuzzy clustering method presented in 
Section 5.6 combines the Hough transform (HT) with fuzzy shell 
clustering towards this end. There are many alternatives to the 
methods we have discussed. lUingworth and Kittler (1987) discuss an 
adaptive (crisp) Hough transform which probably could be made 
better by generalization to the fuzzy domain. 

The concept of the fuzzy Hough transform was Introduced by Han et 
al. (1993). In Han et al. (1993) fuzziness is used to generalize the HT 
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by extending the HT to points that have memberships other than 0 
or 1. The membership degrees are summed to aggregate information 
about points on a circle, just as the membership value of 1 is added 
in the ordinary HT. The membership functions for the fuz2y points 
are taken to be isotropic, i.e., all a-cuts are disks. This approach is 
used by Philip et al. (1994) to extract features from medical images. 
Geci (1996) defined another fuzzy Hough transform that makes the 
angle as well as the spatial location of each point fuzzy, and used it 
to determine stained cell counts in images of rat livers. 

Bhandarkar, (1994) proposed a fuzzy probabilistic model for the 
generalized Hough transform (GHT) based on qualitative labeling of 
scene features and used it in object recognition and localization. A 
popular paradigm for model-based vision is recognition via 
localization, which is banked up on propagation and satisfaction of 
local constraints arising from matching of local geometric features. 
The GHT is a frequently used technique for constraint propagation 
and satisfaction. The GHT works well when the scene has a single 
object or there are no occlusions of objects in a multi-object scene. 
Multiple object scenes with partial occlusion results in a 
combinatorial explosion In the size of the search space of possible 
scene interpretations and generates several spurious scene 
hypotheses. 

The conventional GHT computes a range of transform values for a 
given match between a scene feature and a model feature. The range 
of transform values is represented by a volume in the Hough space 
(accumulator) H, and all buckets in H that intersect this volume are 
incremented. For a given quantization level of H, the main reason 
for this redundancy of GHT is uncertainty in the computed 
parameters due to occlusion. For occluded objects, using the lengths 
of the scene feature (s) and the length of the model feature (m), the 
author defines a "degree of occlusion" measure m . Values of m ̂ ^̂  

are viewed as the extent to which the qualitative attribute 
"occlusion" is satisfied. In this fuzzy generalization of the GHT 
(Bhandakar calls it the weighted GHT (WGHT)), if a bucket intersects 
the volume in the parameter space defined by the match, then the 
bucket count is incremented by the fuzzy membership value m ^. 
Note that for the GHT this increment is 1. As a result, the WGHT 
tends to favor matches with unoccluded features over those with 
occlusion. Unoccluded features typically correspond to objects on 
top of others, and WGHT favors their recognition. This is very 
appropriate. According to the author, for the WGHT the Hough 
accumulator which corresponds to transform values with high 
redundancy factors are selectively de-emphasized. 

One of the central ideas in microcalcification studies for digital 
mammography is the use of wavelet-based correlation filters to 
extract features that can be used as a basis for discriminating 



668 FUZZY PATTERN RECOGNITION 

clusters of microcalcifications. Wang and Karayiannis (1997), 
Strickland and Lukens (1997) and Strickland and Theodosiou (1998) 
all use wavelet-based features with various fuzzy models in digital 
mammography. Runkler and Bezdek (1997) propose several fractal
like features that are derived from images, and illustrate their use 
for segmentation of a digital mammogram with several fuzzy 
models. 

Li and Yang (1989) give an image enhancement technique based on 
fuzzy relaxation. Lee and Hsueh (1995) proposed a simple filter based 
on fuzzy reasoning for noise removal. They first convert the digital 
image into a fuzzy one where each pixel intensity represents the 
degree to which the pixel is uniform with respect to its local 
surroundings. The fuzzy image is then smoothed using a set of three 
fuzzy rules. The smooth digital image is finally obtained by 
defuzzifying the output of the rule-base with the inverse of the 
fuzzification function. 

Ekige detection and enhancement 

There have been many attempts through the years to improve edge 
detection and edge enhancement with fuzzy models. However, the 
issue of how best to do this runs deeper than just "to fuzzify or not to 
fuzzify". The most important aspect of edge detection may well be the 
features used, and this issue is independent of the incorporation of 
fuzzy uncertainty into an edge detection model. To appreciate this, 
contrast Jain et al.'s view of edge images in Section 5.3 to that of 
Hall (1979), who states that human psychovlsual perception of 
contrast at some spatial location depends on more than jus t the 
gradient or difference in intensity levels between a pixel and its 
background. What we learn from this is that different authors have 
very different ideas about edges in images, so there are many models 
of edge detection, and while the gradient is often predominant, 
many other numerical features are also used in some of these 
models. 

The first work on fuzzy edge detection was apparently Pal and King 
(1983a). Tyan and Wang (1993) use gray level values as input 
variables to a fuzzy rule based edge detector. Two fuzzy sets, bright 
and dark, are defined on the gray level domain. Their idea of fuzzy 
edge detection is based on the following heuristic rule: 

IF a dark region and a bright region meet 
THEN the transition area is an edge 

Tyan and Wang use a 2X2 mask. There are 16 cases where dark or 
bright pixels can occur in a given 2X2 window. Out of these, there 
are 4 cases where an edge occurs, and 12 cases where a non-edge 
occurs. Tyan and Wang build a fuzzy rule for each case, so there are 
16 rules in the rule base. 
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Tao et al. (1993) use gray-level differences between a center pixel and 
its eight neighboring pixels. Two linguistic labels, small and large 
are used for the input gray level differences. Sixteen structures 
corresponding to possible edge configurations are considered using 
the small and large linguistic labels. One rule is associated with 
each edge structure. 

In psychophysiology the perceived contrast C between an object o 
and its background b is the ratio of the absolute difference in 
illumination between o and b to the average intensity of the 

surroundings, C , = I - L / r , where I and I denote the intensities 
'^ Ob \ o by h o b 

of o and b. Pal and Mukhopadhyay (1996) argue that most edge 
detection models ignore the wide variation in the perceived contrast 
over the scale of intensities encountered in real images (Buchsbaum, 
1980). They propose a simple edge detector that attempts to integrate 
psychovisual theory with MA style fuzzy reasoning as described in 
Section 4.7, and thus, call their model a psychovisually motivated 
fuzzy reasoning edge detector (PSYFRED). Here are the basic 
elements of their approach, the forerunner of which was ostensibly 
Bezdek and Shirvaikar's (1994) fuzzy reasoning edge detector 
(FRED), which had roughly the same architecture but very different 
input features. 

Let 1 denote the background intensity at location X, the pixel under 
consideration. Among the many possibilities for computing I from, 
say, a 3 X 3, window W centered at X, Pal and Mukhopadhyay use the 
average intensity in the window. The authors then obtain an 
estimate of the horizontal and vertical digital gradients g^ and g , 
respectively, from the intensities in W. This can be done using any 
of the standard estimates (Sobel, Prewitt, Roberts operators, 
Gonzalez and Woods, 1992), but these authors use an aggregation 
operator instead. 

The two gradients and the background intensity (as embodied by IJ 
are used by a pair of simple fuzzy rule bases /€ and /€ to produce 
estimates of the strength of an edge, say E and E , in the horizontal 
and vertical directions. TTie inputs to /€ are (g^, I J , and the inputs to 
R are (fi , I J . /? and R are Identical except for the inputs. The 

overall output is the edge strength E(Xj); of the many possible ways 
to compute this aggregate, Pal and Mukhopadhyay use the 
maximum, E(Xj) = max{Ej^(Xj),E^(X,)}. 

Three linguistic values, {positive big = PB, positive small = PS, zero = 
ZE} oversee the action of both gradient estimates and the overall 
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edge strength E(Xj); and four linguistic values, {positive big = PB, 
positive small = PS, medium = ME, zero = ZE} are used for I , the 
average intensity of the window centered at X. Each rule base in 
PSYFRED has 12 rules (four of which can be combined into one rule) 
of the form : Ifg^ is PB and I is PB then E^ is PS. This rule, for 
example, would give X a low edge value even though the gradient is 
very high because the background intensity is also very high. 
Defuzzifciation in each rule base was done using the local mean of 
maximum rule (Klir and Yuan, 1995). 

Segmentation 

Once features have been extracted, the most frequently used low 
level image processing operation is segmentation. Some authors 
also refer to edge images as segmented images, but we classiiy edge 
detection as a separate operation. In any case, there are literally 
hundreds of papers about fuzzy models for segmentation, and we 
have barely scratched the surface of this vast and important subject. 
Jus t to give you a feel for the extent of this topic, we briefly discuss a 
very few of these articles. 

First, many, many studies and even entire textbooks of non-fuzzy 
segmentation methods have been published. For example, Morrison 
and Attikiouzel (1994) describe segmentation by statistical and 
neural network models; Jain and Fl)Tin (1996) provide a wonderful 
survey of image segmentation by non-fuzzy cluster analysis. Fuzzy 
rule-based segmentation has been discussed by many authors (Keller 
etal., 1996). 

There are many ways to classify segmentation methods, none of 
which leads to a crisp partition of them. For example, Dellipiane 
(1997) gives a classification tree rooted at image segmentation that 
subdivides segmentation algorithms based on the parameters that 
guide them to their goal. Dellipiane identifies three main groups of 
segmentation methods based on density, topology and geometry. All 
of the methods covered in our Chapter 5 fall into the first and 
perhaps oldest category (density), where leaves at a depth of 5 in 
Dellipiane's tree include segmentation approaches for regions (2D 
regions or 3D volumes); and for boundaries (2D edges or 3D surfaces). 

Perhaps the leading source of fuzzy models for image segmentation 
is in medical computing. First, there is a rich variety of imaging 
sensors (PET, X-Ray, MR, CATSCAN, Sonic, Gamma, etc.), all of 
which produce diagnostically useful information to clinicians and 
physicians. Second, there are powerful economic forces driving the 
development of medical imaging devices. And most importantly, the 
problems that can be solved with medical imaging are attractive; it 
is hard to imagine a more rewarding accomplishment than, say, 
reducing the fatality rate from breast cancer by even a few percent 
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with the use of an imaging technology you helped develop. We have 
already mentioned the survey by Bezdek and Sutton (1999), which is 
specialized to medical image processing. We repeat a few of the 
references to papers discussed by Bezdek and Sutton, and add 
comments on some other papers that are not discussed there. 

Microcalcifications in the female breast often appear as small 
bright areas in mammogram images (i.e. tiny dots), and are taken as 
a potential early indication of the onset of a breast tumor. 
Brzakovic et al. (1990) study a fuzzy p5Tamid linking scheme for the 
detection of microcalcifications and nodules. Lo et al. (1996) focus 
on the detection of clustered microcalcifications using fuzzy 
classification modeling. 

Strickland and Lukens (1997) and Strickland and Theodosiou (1998) 
discuss the use of a TS fuzzy system for the detection of 
microcalcifications in digital mammograms. They process images 
by first applying a wavelet filter, and then using a TS system with 
eight rules to classify pixels in the image. The TS system is trained 
with labeled data which is manually extracted from the images. 
Surprisingly, this is one of the few applications of fuzzy models to 
mammography that we are aware of; see Bezdek and Sutton (1999) 
for several others. 

Sameti and Ward (1996) begin segmentation with an Initial fuzzy 
membership function m^^ whose domain is P . First, these authors 
normalize the gray levels; then they find T, the value at which the 
histogram of the normalized intensities (I } minimizes. T is used to 

set the crossover point where mj^Q(T)=0.5. The graph of m^Q is 
displayed in their paper, but its equation is not. The function shown 
bears a striking resemblance to a truncated unipolar sigmoid. 
Following initialization, an Iteration scheme that mimics gradient 
descent updates m^^ until a termination criterion is satisfied, 
resulting In a binary image (i.e., a crisp 2-partitlon of the image). 
This procedure is subsequently applied repeatedly to each of the two 
crisp subsets created by successive phases of the processing until a 
satisfactory segmentation of P is obtained. Consequently, P is 

segmented into c crisp regions where c = 2̂ ^ 3 k . Sameti and Ward 
segment 20 MR images into c = 4 crisp regions this way, and allude to 
comparing suspicious regions in them to known suspicious regions. 
Details about the evaluation procedure are incomplete. 

Hata et al. (1997, 1998) have an approach to the segmentation of 
medical Images based almost entirely on reasoning with a set of 
fuzzy if-then rules. Both referenced papers describe the use of a fuzzy 
rule base that processes numerical pixel-based features. Numerical 
features Include Intensities, spatial locations, Euclidean distances 
and boundary proximities. Membership functions for the rules are 
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given, but no tuning or training is described. Instead, the shapes and 
parameters of these functions are evidently based on domain 
specific knowledge about human physiology, such as intracranial 
s t ruc ture (for MR brain images), and joint s t ruc ture (for 
computerized tomagraphic (CT) images of the human foot). Hata et 
al. (1997, 1998) use a fuz2y rule base to represent a single fuzzy 
membership function m: P ^ i-> [0,1] on digital images, and then 

apply region growing based on thresholding the values {m(i, j)} to 
segment P,, into a prespeclfled number of crisp clusters. 

Many authors have used one of the c-means models or a derivative 
of one for image processing on a wide variety of medical Imagery. 
Boudraa (1997) and Boudraa et al. (1993) concentrate on cardiac 
images and FCM processing. Brandt and Kharas (1993) compared the 
effectiveness of HCM, FCM and PCM for unsupervised segmentation 
to separate three simulated clusters in brain images as the amount 
of boundary overlap is increased. Rezaee et al. (1995) combine FCM 
with the Hough transform to segment MR Images of the ventricle. 

Namaslvayam and Hall (1995) assert that over a large set of MR 
images from different patients, rules perform reliably when they are 
based on relative differences in pixel intensities for different tissue 
types. These authors state that fuz^ rules and ssFCM applied to the 
unlabeled pixels in test MR images of normal patients can yield 
more accurate and much faster segmentation than naive FCM 
segmentation (but see our discussion about crisp rules for the Images 
in Figure 5.31). In this application crisply labeled training pixels 
are chosen by a set of rules that identify tissue types with a high 
degree of confidence. 

A very different approach to supervised segmentation from the 
methods discussed in this chapter is region growing from user 
selected seed pixels (or voxels). Delliaplane et al. (1996) give a fuzzy 
isovolumes approach to segmentation of 2D and 3D images based on 
this idea. A connectivity measure based on fuzzy topology and 
homogeneity is constructed from Image intensities and is used to 
drive the segmentation process. Supervision is begun by an expert 
user, who interactively chooses a single pixel (or voxel) from a 
known class as the seed for a region (or volume) growing technique 
(the training data is thus a crisply labeled singleton). One class at a 
time is built by thresholding an image that possesses a property they 
call (fuzzy) intensity connectedness, which is an extension of 
Rosenfeld's (1984) idea of fuzzy connected components in a digital 
image. A number of potential fuzzy isovolumes are grown from the 
selected seed, and the operator then chooses the most appropriate 
one before proceeding to the next region (tissue class) in the image. 
This style of segmentation proceeds non-iteratlvely, one region at a 
time, and is terminated by a human expert - not an algorithmic 
criterion. 
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Udupa et al. (1997b) also discuss segmentation models based on 
various topological notions of fuzzy connectedness and region 
growing. Pixel intensities are used as a basis for measures of fuzzy 
similarity between image elements in the same tissue class of 
various medical images. Their technique is, like Dellipiane et al.'s, 
initiated by a user chosen seed for each object. Image segmentation 
and object classification are achieved by thresholding a fuzzy 
relation in the given image, resulting in various output images. 
These authors give some nice examples of their model to 
visualization and rendering of lesions in multiple sclerosis 
patients. 

Hemdon et al. (1996) discuss the use of crisply labeled training data 
created by pooling opinions from experts who label every pixel in 
training images. This training data are then used to derive a 
classifier that segments an input image into c "fuzzy tissue images", 
one for each labeled tissue class. Technically, this classifier is 
possibilistic since the pixel memberships assigned to the c tissue 
images are not constrained to sum to 1. This method of 
segmentation is very different than the other tj^jes discussed so far, 
and is subsequently used for tissue volume estimation in 
normalized Tl MR images. 

Bombardier et al. (1997) investigate automated enhancement 
strategies in digital subtraction angiography. In this work two 
cooperating fuzzy segmentation operators based on textural and 
geometric properties are used to successively enhance aorta and 
renal artery boundaries. First, fuzzy linguistic rules are derived 
from their definition of an edge as "...a high transition near an 
homogeneous region". These rules are applied as a set of 5x 11 masks 
over the whole image to find characteristic homogeneous and 
heterogeneous regions Indicative of aorta outlines. Second, 
bifurcation points along these outlines then determine the regions 
of Interest where subsequent analysis using an FCM-based edge 
operator extracts renal artery boundaries. Results are provided for a 
real 2D angiogram. The final edge image created would still need to 
be post-processed to characterize any lesion boundary 
abnormalities (e.g., narrowing of the artery diameter, as in 
stenosis). 

Much remote sensing work has been done with fuzzy models for 
segmentation of aerial photographs, LANDSAT images, SEASAT 
images, etc. Cannon et al. (1986b) use PCM to segment a thematic 
mapper image. Fuzzy models have been used in remote sensing 
applications such as tax assessment, crop damage, thermal 
pollution, bioresources analysis, and so on. Chi and Yan (1993) 
segment map images based on fuzzy rules and thresholding. Other 
representative literature includes Burroughs and Frank (1996), 
Fisher and Pathirana (1990), Gopal and Woodcock (1994), Wang 
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(1990a, b). Canters (1997), Blonda et al. (1991, 1996b, c), and Binaghi 
et al. (1996, 1997). 

Roux and Desachy (1997) use an interesting combination of 
possibility theory and representation of fuz2y rules by neural 
networks to segment a LANDSAT image. The image is 4 band data, 
augmented by information about the image region such as distance 
to rivers, elevations, etc. Each image provides training data pixels 
chosen by an operator in one of c = 9 classes that are related to 
vegetation and cultivation. A possibility distribution is assigned for 
each band from histograms of the labeled pixels. Another 
possibility distribution is obtained for the geographical data using a 
set of neural networks that represent rules obtained from a photo 
interpretation expert. The possibilities are then fused with a 
conjunctive fusion operator (Bloch, 1996c) to create a final decision 
stream for each of the 9 classes. In operation, the possibility 
distribution for an unlabeled pixel is computed, and hardened in the 
usual way to 5aeld a crisp label. 

Another fertile area for fuzzy image processing is the analysis of 
(non aerial) color and black and white photographs. Here we meet 
app l ica t ions in f ingerprint ana lys i s , face recognit ion, 
environmental monitoring, etc. Lim and Lee (1990) segment color 
images with a two stage coarse-fine strategy based on FCM 
partitions, and compare their method to several crisp segmentation 
techniques. Araki et al. (1993) segment photographs of office scenes 
to identify the occupants in a room using a region growing technique 
combined with FCM and several of the validity criteria we discussed 
in Section 2.5. Moghaddamzadeh and Bourbakis (1997) discuss the 
combination of edge detection and region growing approaches to 
segmentation using two fuzzy criteria. Applications to both image 
compression and object detection are described and illustrated with 
a color photograph of a pic (ture) of (pickled) peppers, a house, some 
fruits, and of course, last and always, Lena. 

Trivedi and Bezdek (1986) proposed an unsupervised segmentation 
algorithm for aerial imagery based on FCM clustering that used a 
hierarchical pyramidal data structure to represent regions at 
different resolutions in different levels of the pyramid. A 
homogeneity test is done on the FCM determined regions at a 
particular level to decide whether regions should be split at the next 
level. A recent twist on using multiple resolutions appeared in 
Tolias and Panos (1998), who combine fuzzy segmentation at 
different resolutions with an "adaptive" fuzzy clustering 
segmentation scheme that is a hybrid algorithm. No objective 
function is optimized: rather, update equations based on FCM/PCM 
that localize the prototypes to neighborhoods in the image are 
defined using heuristic arguments. These authors demonstrate their 
method by segmenting -who else, but ? Lena. Zugaj and Lattuati 
(1998) discuss the fusion of region and edge segmentation outputs -
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two types of algorithmic information - for segmentation of color 
images. 

Fuzzy logic has been successfully used in human face 
characterization (Grabisch et al., 1996, Figue et al., 1998). Grabisch 
et al. proposed a multi-stage scheme for interpretation of human 
faces. The system has three complementary channels for extraction 
of (1) face boundary, (2) face features like eyes, mouth, eyebrows, and 
(3) detection of eyes. Each channel has three stages : segmentation of 
objects of interest from the raw data; quantitative characterization 
of the extracted regions and interpretation of the segments. The 
interpretation stage integrates domain knowledge and the features 
extracted from the segmented regions using fuzzy rules. Finally, the 
outputs from all three channels are fused again using fuzzy 
reasoning. The authors report quite satisfactory performance of 
their system in identifying eyes, mouth, eyebrows etc. 

Digital surfaces and boundary representation 

Anderson and Bezdek (1984) emd Bezdek and Anderson (1985) give a 
method for solving problems of the type illustrated in Example 5.11. 
Their scheme finds comers in linear fits to data based on the use of 
fuzzy c-lines clustering and thresholding of cluster memberships. 
Corners are defined using commutators (functions of the 
eigenvalues) of scatter matrix pairs of points in the plane. Examples 
using both spatial coordinates and chain coded data sets in the 
plane are very similar to the results in Figure 5.37. However, the 
number of clusters must be specified a priori, and is fixed during the 
iterative procedure. 

Section 5.7 presented a few of the many concepts that may be useful 
for accurate description, rendering, visualization and analysis of 
objects and object regions in 2D images. As 3D sensors become more 
widespread, generalization of the material in Section 5.7 to 
multidimensional digital images is inevitable. Udupa (1992, 1994) 
provides an in depth treatment of some aspects of this evolving 
discipline for the crisp 3D and multidimensional cases. Udupa and 
Samarasekera (1996) give a very general framework for fuzzy 
connectedness and object definitions, and illustrate their theory 
with 3D rendering of patient knee joints. Udupa et al. (1997a) use 
their definitions of fuzzy affinity, adjacency and connectivity for 
the multidimensional case, and give an application of their fuzzy 
model in an interactive system for viewing 3D renderings of blood 
vessels. 

High level vision and spatial relations 

Defining spatial relations is a popular topic nowadays. Del Bimbo 
and Vicario (1998) discuss spatial relationships as if no previous 
work had been done with them. Why? Because humans are good at 
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perceiving spatial relationships and we all want to try out our 
intuition. How do you pick an appropriate definition for a spatial 
relation? The development in Section 5.8 argues intuitively or uses 
comparisons of reactions by human subjects in a limited study. In 
computer vision the payoff is whether or not spatial relation 
features can be used as features, either to recognize objects or 
describe the regions in a scene (Wang et al., 1997, Wang and Keller, 
1999a, b). 

Literature on the application of fuzzy methods to high-level vision 
problems is rather sparse. This might be partially attributed to the 
fact that interest in fuzzy methods peaked only in the 90's, well after 
most researchers in computer vision abandoned developing large 
rule-based computer systems that involved high-level vision 
techniques. However, there are some notable exceptions. Miyajima 
and Ralescu (1993) discuss how fuzziness can be incorporated in 
modeling object attributes and in matching. Zhang and Sugeno 
(1993) propose a memory model that contains the necessary 
knowledge for scene understanding. Fuzzy sets are used to represent 
the knowledge and fuzzy logic is used for reasoning. Gasos and 
Ralescu (1995) discuss how (fuzzy) knowledge about location and size 
of objects can be used to guide object recognition and scene 
interpretation. Kawade (1995) discusses how to represent and use 
(fuzzy) knowledge in an interactive vision system to recognize 
objects in a dynamic environment. Nakagawa and Hirota (1995) 
discuss an image understanding system for road scenes that uses 
fuzzy if-then rules to incorporate weather conditions in the 
knowledge base and generates answers to user queries. 

There are several other aspects of image processing and computer 
vision where fuzzy methods can be used effectively. For example, 
model-based interpretation of 3D reconstruction algorithms has 
received much attention in the recent years. Specifically, 3D data 
matching relative to a reference model, produced either 
interactively or automatically is of crucial importance. Tarel and 
Boujemaa (1995) proposed a new 3D registration method in three 
steps. First, view-invariant 3D features in the data as well as in the 
object model are selected, and 3D matching transformation 
parameters are obtained by using a combinatorial approach similar 
to the generalized Hough Transform. Then, coarse 3D object pose is 
obtained by applying a robust fuzzy clustering algorithm in 
parameter space. Data participation in the fuzzy clustering process 
is weighted by their relevance according to a confidence value based 
on the geometric feature-to-feature correspondence. Finally, local 
fine fitting is performed between data and the model to obtain 
accurate 3D registration. 

Much work remains to be done in all of the areas covered in Chapter 
5 before reliable automatic interpretation of scene content is 
achieved in fielded applications. Potential areas for the future are: 
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image matching, solving the correspondence problem, extraction of 
linguistic descriptions from images, searching image databases 
based on linguistic queries and hand-drawn sketches, segmentation 
and volume estimation in 3D (voxel) data, and rule-based high-level 
vision. 
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Epilogue 
We four have had a lot of fun working in many of the areas covered 
in this book. Writing the book has taken us a lot more time than we 
thought it would [if four guys who all think they are right all of the 
time write a book together, then there will be endless bickering 
about small points!)- and it could easily be twice the size it is now. 
We hope you have had fun reading the book, and that you will look 
us up when you have a chance, to let us know what you like (love) and 
dislike (hate) about it. Here is our group portrait. It illustrates the 
truth of that old saying. 

"Never wear a hat that has more attitude than you do" 
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Appendix 1 Acronyms and abbreviations 

Short form Long form 
iFLVQ descending fuzzy learning vector quantization 
1-nmp nearest multiple prototype (classifier) 
1-np nearest prototype (classifier) 
1-snp nearest syntactic prototype (classifier) 
1 -Urnn 1-stage univariate rank nearest neighbor (rule) 
ID one-dimensional 
2D two-dimensional 
3D three-dimensional 
4D four-dimensional 
ACE alternating cluster estimation 
ADDC adaptive distance djniamic clusters 
AFC adaptive fuzzy clustering 
AFCE adaptive fuzzy c-elliptotypes 
AFCM approximate fuzzy c-means 
AFCS adaptive fuzzy c-shells 
AFCV adaptive fuzzy c-varieties 
AFEI average feature evaluation index 
ANFIS adaptive-network-based fuzzy inference system 
ANN artificial neural network 
AO alternating optimization 
AP assignment prototype 
APC armored personnel carrier 
ART adaptive resonance theory 
ARTMAP adaptive resonance theoretic MAP 
ATR automatic target recognition 
AVR average 
BBB branch and bound backtracking 
BK background 
BKS belief knowledge space 
BNN biological neural network 
bpa basic probability assignment 
CA competitive agglomeration 
CART classification and regression trees 
CATSCAN computerized axial tomography scan 
CCM compatible cluster merging 
CFAR constant false alcirm rate 
CI centromeric index 
CL competitive learning 
CLIPS C language integrated production system 
CM c-means 
CMF consequent membership function 
CNN computational neural network 
ax> center of gravity 
COLL colllnear 
CP Chang-Pavlidis (fuzzy decision tree) 
CPU central processing unit 
CRE crisp rule extraction 
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CS 
CSF 
CT 
CV 
CZCS 
D&C 
D&C-NFCS 
DARPA 
DEVLIN 
DS 
DT 
dt 
DYNOC 
EBLVQ 
EM 
EP 
ER 
ERIM 
F-
FALVQ 
FAN 
FANNY 
FART 
FARTMAP 
FC2RS 
FCE 
FCES 
FCHP 
FCL 
FCM 
FCP 
FCPQS 
FCQ 
FCQS 
FCRM 
FCRS 
FCS 
FCSS 
FCV 
FDT 
FF 
FFBP 
FHMM 
FI 
FIRE 
FKCN 
FLD 
FLIR 
FLVQ 
FM 

compact and separated 
cerebro-spinal fluid 
computerized tomographic 
certainty value 
coastal zone color scanner 
divide and conquer 
divide and conquer-noise fuzzy c-shells 
defense advanced research procurement agency 
deviation from linearity 
Dempster-Shafer 
decision tree 
decision template 
dynamic cluster validation 
extended batch learning vector quantization 
expeactation-maximization 
end point 
equivalence relation 
Environmental Research Institute of Michigan 
fuzzy 
fuzzy adaptive learning vector quantization 
fuzzy aggregation network 
fuzzy analysis 
fuzzy adaptive resonance theory 
fuzzy adaptive resonance theory MAP 
fuzzy c two-rectangular shells 
fuzzy c-elliptotypes 
fuzzy c-ellipsoidal shells 
fuzzy c-hyperplanes 
fuzzy c-lines 
fuzzy c-means 
fuzzy c-planes 
fuzzy c-plano quadric shells 
fuzzy c-quadrics 
fuzzy c-quadric shells 
fuzzy c-regression models 
fuzzy c-rectangular shells 
fuzzy c-shells 
fuzzy c-spherical shells 
fuzzy c-varieties 
fuzzy decision tree 
feed Forward 
feed forward back propagation 
fuzzy hidden Markov model 
fuzzy integral 
fuzzy inference rules-else 
fuzzy Kohonen clustering network 
Fisher's linear discriminant 
forward-looking infrared (radar) 
fuzzy learning vector quantization 
fuzzy measure 
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FMLE fuzzy maximum likelihood estimation 
FNC fuzzy noise clustering 
FNM fuzzy non-metric 
FNN fuzzy neural network 
FOSART fully self-organized ART 
FPCM fuzzy possibilistic c-means 
FRC fuzzy robust clustering 
FRED fuzzy reasoning edge detector 
FSART fuzzy adaptive resonance theory 
FTCP fuzzy trimmed c-prototypes 
GA genetic algorithm 
GHT generalized Hough transform 
CK Gustafson-Kessel 
GLVQ generalized learning vector quanitization 
GM gray matter 
GM-2 falsely labeled gray matter 
GMD Gaussian mixture decomposition 
GMVE generalized minimum volume ellipsoid 
GPR ground penetrating radar 
GTl ground truth (type 1) 
H- hard (crisp) 
HCM hard c-means 
HF heterogeneous fuzzy (data) 
HFD heteregeneous fuzzy data 
HMM hidden Markov model 
HT Hough transform 
lART improved adaptive resonance theory 
IDS interactive dichotomizer 3 
IDW inverse distance weighted 
IEEE Institute of Electrical and Electronics Engineers 
lO input-output 
lOAC index of area coverage 
ISODATA iterative self-organizing data analysis 
ISOETRP iterative self-organizing entropy 
Iris (?) we use this if we are not sure what version of Iris 

was actually used (cf our remarks in the preface) 
k-nn k-nearest neighbor (rule) 
KB knowledge based 
LADAR Lasar radar 
LANDSAT land satellite (a guess) 
IBG Lloyd-Buzo-Gray 
LDC linear discriminant classifier 
LHS left hand side 
LMS least mean squared (error) 
LODARK low and dark 
IJCX3 logistic discriminant classifier 
LOS linear order statistic 
LVQ learning vector quantization 
m-Mrnn m-stage multivariate rank nearest neighbor (rule) 
m-Urnn m-stage univariate rank nearest neighbor (rule) 
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M3 
MA 
MAD 
MAJ 
MAX 
MCM 
MFV 
MIMO 
MIN 
MINPRAN 
MISO 
MLE 
MLP 
MP-RAGE 
MPC 
MR 
MS 
MST 
MYCIN 
NB 
NC 
NERFCM 
NERHCM 
NFCS 
NFS 
NISP 
NIST 
nmp 
NN 
np 
OFCM 
OFR 
OLS 
OP 
OR 
or 
OWA 
P-
p-D 
PAM 
PCA 
PCM 
PCNN 
PCPQS 
PCQS 
PDF 
PET 
PMF 
PPR 
PRO 

modified mountain method 
Mamdani-Assilian 
median of absolute deviations 
majority 
maximum 
mountain clustering method 
mountain function values 
multiple input, multiple output 
minimum 
minimize the probability of randomness 
multiple Input, single output 
maximum likelihood estimation 
multilayered perceptron 
magetization-prepared rapid gradient echo 
modified partition coefficient 
magnetic resonance 
multiple sclerosis 
minimal spanning tree 
shorthand for many drugs such as spectromyacin 
naive Bayes 
noise clustering 
non-Euclidean relational fuzzy c-means 
non-Euclidean relational hard c-means 
noise fuzzy c-shells 
neuro-fuzzy systems 
norm Induced shell prototypes 
National Institute of Standards and Technology 
nearest multiple prototype 
neural network 
nearest prototype 
object (data) fuzzy c-means 
optimized fuzzy rules 
orthogonal least squares 
optimized prototypes 
oracle 
other 
ordered weighted average 
posslbillstic 
p-dlmensional 
partitioning around medolds 
principal components analysis 
possibllistic c-means 
pusle coupled neural network 
posslbillstic c-plano quadric shells 
possibllistic c-quadrlc shells 
probability density function 
positron emission tomography 
premise membership function 
probabilistic product 
product 
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PSYFRED 

PT 
QCCM 
QDC 
RACE 
RADAR 
RBF 
RCA 
RFCM 
RGB 
RHS 
RIDS 
RMS 
rnn 
ROC 
RoFCM 
SAHN 
SART 
SB 
SBM 
SCM 
SCS 
SEASAT 
sg 
sgFCM 
sgHCM 
sgPCM 
SHCM 
SIMO 
SISO 
SLP 
snp 
SOFM 
SRE 
SRS 
ssFCM 

ssfcm 
TFCM 
TS 
UA 
UBD 
Urnn 
VGC 
VQ 
WGHT 
WM 

psychovisually motivated 
fiazzy reasoning edge detector 

pathology 
quadric compatible cluster merging 
quadratic discriminant classifier 
relational alternating cluster estimation 
radio detection and ranging 
radial basis function 
robust competitive agglomeration 
relational fuzzy c-means 
red, green, blue 
right hand side 
real interactive dichotomizer 3 
root mean square (error) 
rank nearest neighbor 
receiver operating characteristic (curve) 
robust fuzzy c-means 
sequential agglomerative hierarchical nested 
simplified adaptive resonance theory 
single best 
segmentation-based method 
subtractive clustering method 
soft competition scheme 
sea satellite (a guess) 
string grammar 
string grammar fuzzy c-means 
string grammar hard c-means 
string grammar possibilistic c-means 
sequential hard c-means 
single input, multiple output 
single input, single output 
single layer perceptron 
S5mtactic nearest prototype 
self-organizing feature map 
soft rule extraction 
soft relaxation scheme 
semi-supervised fuzzy c-means 

(Bensald et al., 1996a) 
semi-supervised fuzzy c-means (Pedrycz, 1985) 
temporal fuzzy c-means 
Takagi-Sugeno 
universal approximator 
unsupervised boundary description 
1-stage univariate rank nearest neighbor (rule) 
validity guided reclustering 
vector quantizer 
weighted generalized Hough transform 
white matter 



i)4>pendix 2 The Iris Data: Table I, Fisher (1936) 

Iris sestosa Iris versicolor [ris vlrginica 
Sepal Sepal Petal Petal Sepal Sepal Petal Petal Sepal Sepal Petal Petal 
Leng. Width Leng, Width Leng. Width Leng. Width Leng. Width Leng. Width 
5.1 3 .5 1.4 0 .2 7 .0 3 .2 4 .7 1.4 6 .3 3 .3 6 .0 2 . 5 
4 .9 3 .0 1.4 0 .2 6 .4 3 .2 4 . 5 1.5 5 .8 2 .7 5 .1 1.9 
4 .7 3 .2 1.3 0 .2 6 .9 3 .1 4 .9 1.5 7.1 3 .0 5 .9 2 .1 
4 .6 3 .1 1.5 0 .2 5 .5 2 . 3 4 .0 1.3 6 .3 2 .9 5 .6 1.8 
5.0 3 .6 1.4 0 .2 6 .5 2 .8 4 .6 1.5 6 .5 3 .0 5 .8 2 .2 
5 .4 3 .9 1.7 0 .4 5 .7 2 .8 4 . 5 1.3 7 .6 3 .0 6 .6 2 .1 
4 . 6 3 .4 1.4 0 .3 6 .3 3 .3 4 .7 1.6 4 .9 2 . 5 4 . 5 1.7 
5 .0 3 .4 1.5 0 .2 4 . 9 2 .4 3 .3 1.0 7 .3 2 .9 6 .3 1.8 
4 . 4 2 . 9 1.4 0 .2 6 .6 2 .9 4 .6 1.3 6.7 2 . 5 5 .8 1.8 
4 .9 3 .1 1.5 0 .1 5.2 2 .7 3 .9 1.4 7.2 3 .6 6 .1 2 . 5 
5.4 3 .7 1.5 0 .2 5 .0 2 .0 3 .5 1.0 6 .5 3.2 5 .1 2 . 0 
4 . 8 3 .4 1.6 0 .2 5 .9 3 .0 4 .2 1.5 6 .4 2 .7 5 .3 1.9 
4 . 8 3 .0 1.4 0 .1 6 .0 2 .2 4 .0 1.0 6 .8 3 .0 5 .5 2 .1 
4 . 3 3 .0 1.1 0 .1 6.1 2 .9 4 .7 1.4 5 .7 2 . 5 5 .0 2 . 0 
5 .8 4 . 0 1.2 0 .2 5 .6 2 .9 3 .6 1.3 5 .8 2 .8 5 .1 2 . 4 
5 .7 4 . 4 1.5 0 .4 6 .7 3 .1 4 .4 1.4 6 .4 3.2 5 .3 2 . 3 
5 .4 3 .9 1.3 0 .4 5 .6 3 .0 4 . 5 1.5 6 .5 3 .0 5 .5 1.8 
5.1 3 .5 1.4 0 .3 5 .8 2 .7 4 .1 1.0 7 .7 3 .8 6 .7 2 .2 
5 .7 3 .8 1.7 0 .3 6.2 2 .2 4 . 5 1.5 7 .7 2 .6 6 .9 2 . 3 
5.1 3 .8 1.5 0 .3 5 .6 2 . 5 3 .9 1.1 6 .0 2 .2 5 .0 1.5 
5 .4 3 .4 1.7 0 .2 5.9 3 .2 4 . 8 1.8 6.9 3.2 5 .7 2 .3 
5.1 3 .7 1.5 0 .4 6.1 2 . 8 4 .0 1.3 5.6 2 . 8 4 .9 2 .0 
4 . 6 3 .6 1.0 0 .2 6 .3 2 . 5 4 .9 1.5 7 .7 2 .8 6 .7 2 .0 
5.1 3 .3 1.7 0 . 5 6 .1 2 .8 4 . 7 1.2 6 .3 2 .7 4 .9 1.8 
4 . 8 3 .4 1.9 0 .2 6 .4 2 .9 4 . 3 1.3 6 .7 3 .3 5 .7 2 .1 
5 .0 3 .0 1.6 0 .2 6 .6 3 .0 4 .4 1.4 7.2 3 .2 6 .0 1.8 
5 .0 3 .4 1.6 0 .4 6 .8 2 .8 4 . 8 1.4 6.2 2 .8 4 . 8 1.8 
5.2 3 .5 1.5 0 .2 6 .7 3 .0 5.0 1.7 6.1 3 .0 4 . 9 1.8 
5.2 3 .4 1.4 0 .2 6 .0 2 .9 4 . 5 1.5 6 .4 2 .8 5 .6 2 .1 
4 .7 3 .2 1.6 0 .2 5 .7 2 .6 3 .5 1.0 7 .2 3 .0 5 .8 1.6 
4 . 8 3 .1 1.6 0 .2 5 .5 2 .4 3 .8 1.1 7 .4 2 .8 6 .1 1.9 
5 .4 3 .4 1.5 0 .4 5 .5 2 .4 3 .7 1.0 7 .9 3 .8 6 .4 2 .0 
5.2 4 .1 1.5 0 .1 5 .8 2 .7 3 .9 1.2 6 .4 2 . 8 5 .6 2 .2 
5 .5 4 .2 1.4 0 .2 6 .0 2 .7 5.1 1.6 6 .3 2 .8 5.1 1.5 
4 .9 3 .1 1.5 0 .2 5 .4 3 .0 4 . 5 1.5 6.1 2 .6 5 .6 1.4 
5.0 3 .2 1.2 0 .2 6 .0 3 .4 4 . 5 1.6 7 .7 3 .0 6 .1 2 .3 
5 .5 3 .5 1.3 0 .2 6 .7 3 .1 4 .7 1.5 6 .3 3 .4 5 .6 2 .4 
4 .9 3 .6 1.4 0 .1 6 . 3 2 . 3 4 .4 1.3 6 .4 3.1 5 .5 1.8 
4 . 4 3 .0 1.3 0 .2 5 .6 3 .0 4 .1 1.3 6.0 3 .0 4 . 8 1.8 
5.1 3 .4 1.5 0 .2 5 .5 2 . 5 4 .0 1.3 6.9 3.1 5 .4 2 .1 
5.0 3 .5 1.3 0 .3 5 .5 2 . 6 4 .4 1.2 6 .7 3.1 5 .6 2 .4 
4 . 5 2 . 3 1.3 0 .3 6.1 3 .0 4 .6 1.4 6.9 3 .1 5.1 2 .3 
4 . 4 3 .2 1.3 0 .2 5 .8 2 .6 4 .0 1.2 5 .8 2 .7 5.1 1.9 
5 .0 3 .5 1.6 0 .6 5 .0 2 . 3 3 .3 1.0 6 .8 3.2 5 .9 2 .3 
5.1 3 .8 1.9 0 .4 5 .6 2 .7 4 .2 1.3 6 .7 3 .3 5 .7 2 . 5 
4 . 8 3 .0 1.4 0 .3 5 .7 3 .0 4 .2 1.2 6 .7 3 .0 5 .2 2 .3 
5.1 3 .8 1.6 0 .2 5 .7 2 .9 4 .2 1.3 6 .3 2 . 5 5 .0 1.9 
4 .6 3 .2 1.4 0 .2 6.2 2 .9 4 . 3 1.3 6 .5 3 .0 5 .2 2 .0 
5 .3 3 .7 1.5 0 .2 5.1 2 . 5 3 .0 1.1 6.2 3 .4 5 .4 2 . 3 
5.0 3 .3 1.4 0 .2 5 .7 2 .8 4 .1 1.3 5.9 3 .0 5 .1 1.8 



Index 
Acceleration, 36-37 
Adaptive algorithms, 39-40 
Adaptive distance dynamic clusters 

(ADDC), 42 
Adaptive fuzzy c-elliptotypes (AFCE), 

47-50, 48-50 
Adaptive fuzzy c-shells (AFCS), 54-55, 

615 
Adaptive fuzzy c-varieties (AFCV), 

50-52 
Adaptive learning, 188 
Adaptive-network-based fuzzy 

inference systems (ANFIS), 396 
Adaptive resonance theoretic MAP 

(ARTMAP), 423-424, 542 
fuzzy, 423-424 

Adaptive resonance theory (ART), 204, 
413-442, 542-543, see also 
Radial basis function networks; 
Simplified adpative resonance 
theory 

fuzzy, 421-424, 431, 440-441, 
542-543 

improved, 542 
Additive clustering models, 181 
Additive ;f-model, 398-401, 407 

segmentation and, 589-591 
with Yager's union and intersection 

operators, 589-591 
Affine subspace, 191 
Agglomerative algorithms, 137 
Aggregation method, 299, 641, 646, 

647, 650 
Algorithmic labels, 207-208 
Alignment, 573-574 
Alphabet of G, 496 
a-cuts, 153, 630, 639 
Alternating cluster estimation (ACE), 

133-134, 180 
rule extraction and, 330, 334, 358 
syntactic pattern recognition and, 

504 
Alternating optimization (AO), 15, 17 
Analjrtical model, 497 
Anesthesia depth evaluation, 526 
Angle constraint, 652 
Angles, 5 
Apparent error rate, 184 
Approximate fuzzy c-means 

alternating optimization 
(AFCM-AO), 37 

Approximate houses, 501 
Area of a fuzzy region, 626 

Arithmetic, 397 
ARTl, 413-421, 431-432, 440-441, 

542-543 
algorithm of, 414-421 
fuzzy relatives of, 421-424 

ART2, 414, 417, 421 
ART3,421 
Assignment matrices, 161 
Assignment-prototype (AP) model, 

160-165, 167-168 
Attributed edge sets, 510 
Attributed graphs, 509-518 
Attributed vertex sets, 510 
Automatic target recognition (ATR), 

259-260, 261-262, 458-460 
Average-angle method, 641 
Average feature evaluation index 

(AFEI), 526 
Average gray levels of a region, 

637-639 
Average linkage clustering algorithms, 

151 
Average (AVR) operator, 481-483, 489 
Average partition density, 103 
Average radius of the shells, 113 
Average shell partition density, 112 
Average shell surface density, 114 
Average shell thickness, 113 

Bar feature vectors, 365 
Basic probability assignment (bpa), 

530, 629-630 
Batch point-prototype clustering 

models, 14—39, see also C-means 
models; Semi-supervised 
clustering models 

probabilistic, 29-34 
reformulation theorem in, 37-39, 

166 
Bayes classifiers, 183, 188, 405, 458 
Bayes rule, 20, 221-222 
Behavior knowledge space (BKS), 483 
Bha data, 266 
Bias of a node, 375 
Binary morphological operators, 665 
Biological neural networks (NN), 

370-371, 372-378, 421 
Bipolar logistic functions, 376, 386 
Blending functions, 567-568, 569-571 
Bottom-up approach to decision tree 

design, 278 
Bottom-up search, 308 
Boundary description, 601-624, 675 
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of circular boundaries, 611-615 
of linear boundaries, 603-611 
of quadric boundaries, 615-621 
unsupervised, 615-621 

Brain imagery, 131-132, 526, 672 
Branch and bound backtracking 

(BBB) algorithm, 308 
Branch b, 467-468 
Breadth of a fuzzy region, 627 

C4.5, 275, 280, 314-315, 414, 532, 
533-534, 536 

Camera man image, 576 
Categorical attributes, 271, 272 
Categorical data, 3 
Categorical values, 282 
Categorical veiriables, 282 
C diagonal norm, 310 
Center of gravity (COG) method, 

299-300, 301, 350, 363 
Centroid method, 641, 644, 646, 647, 

648, 650 
Centroids, 5 
Centrometric Index (CI), 361 
Certainty value (CV), 654 
Chang-Pavlidis fuzzy decision tree, 533 

described, 303-308 
fusion techniques and, 473 
ID3-related, 308-309, 318 

Chinese characters, recognition of, 
510-518, 532 

Cholesky decomposition, 60 
Choquet fuzzy integral, 256, 258-260, 

261, 264, 532, 664 
fusion techniques and, 458, 

459-460, 462, 463-464, 489 
Circular boundaries, 611-615 
Circular clusters, 111-112 
CITYTOUR, 640 
C language integrated production 

system (CLIPS), 594 
Class conscious (CC) operators, 481, 

482-^83, 484 
Classification and regression tree 

(CART) approach, 280-281, 532, 
536 

Classifier design, 183-546, see also 
Adaptive resonance theory; 
Fusion techniques; Fuzzy 
integrals; Fuzzy rule-based 
classifiers; Nearest neighbor 
classifiers; Neural networks; 
Prototype classifiers; Syntactic 
pattern recognition 

Classifier fusion, 187,454-491 
Classifiers, 7 

Hayes, 183, 188, 405, 458 

crisp, 7, 183, 329, 382-385 
first level, 455 
linear, 192 
linear discriminant, 483, 490 
logistic, 483 
Markov chain, 325 
non-crisp, 7 
optimized fuzzy rules, 471 
quadratic discriminant, 483, 

487-489, 490 
soft, 183, 455 
temporally adaptive, 188 

Class indifferent (CI) operators, 
482-483 

Closed ball, 64-65 
Closure, 140-141 

reflexive, 140, 141, 143 
symmetric, 140, 141, 142, 143 
transitive, 141, 142-143, 144-146, 

155-158, 169, 180 
Cloud clusters, 340, 611 
Cluster analysis, see Object data; 

Relational data 
Cluster center, 190 
Clustering, 11, 12 

by decomposition of fuzzy relations, 
153-158 

hierarchical, 137, 149-152, 181 
probabihstic, 29-34 
progressive, 602-603 
relational, see Relational clustering 
robust, 75-87 
rule-based approximation based on, 

325-359 
segmentation via, 582-588 
validity guided, 595 

Clustering algorithms, 130-134, 309 
Clustering tendency, 11 
Cluster validity 

Davies-Bouldin index in, 90-91, 94, 
100, 109, 116, 117 

direct meastires in, 90 
Dunn's index in, 89, 92-96, 103, 109 
dynamic, 134-135 
fuzzification of statistical indices in, 

117-122 
indirect index standardization and 

normalization in, 105-109 
indirect measures for non 

point-prototjfpes in, 109-116 
indirect measures in, 96-105 
for object data, 12, 87-121, 134-136 
performance-based, 134 
for relational models, 178-180 
static, 134 
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C-means models, 16-23, see also 
Fuzzy c-means; Hard c-means; 
Possibilistic c-means 

competitive learning networks and, 
230-232 

sjTitactic pattern recognition and, 
504 

Coastal Zone Color Scanner (CZCS), 
548 

CoUinear grouping algorithm, 654-658 
Compact and separated (CS) 

c-partitions, 93 
Compact clouds, 109 
Compactness of a fuzzy region, 628 
Compactness to separation ratio, 102 
Compatibility fuzzy sets, 645-647 
Compatibility method, 641, 646, 650 
Compatible cluster merging (CCM), 

335, 602, 603-606 
quadric, 621-624 

Competetive agglomeration (CA), 
82-84, 543 

Competitive layers, 203 
Competitive learning (CL) networks, 

203-207, 413-417, 419 
c-means models and, 230-232 

Complement coding, 423 
Complete circular clusters. 111 
Complete linkage clustering 

Eilgorithms, 151 
Completeness of the rule-base, 292, 

293 
Composition-based inferencing, 301 
Computational neural networks (NN), 

183, 371, 372-378, 421 
Computerized tomagraphic (CT) 

imaging, 672 
Computer vision, 407-410, 547-679, 

see also Image processing 
Computing layers, 379 
Conftision matrices, 184, 229 
Consequent, 290 
Consequent membership functions 

(CMFs), 293, 299, 301, 302 
high-level vision and, 660, 661 
ID3-related fuzzy trees and, 324, 325 
rule extraction and, 338, 346, 352, 

354, 358 
Consequent parameters, 290 
Consistency index, 485 
Constant false alarm rate (CFAR), 458, 

459 
Continuous functions, 347-348 
Continuous perceptrons, 427 
Convergence, 36 
Convex decomposition, 156-158, 180 
Convex hulls, 156 

Comemess, 572-574 
Co-trained fusion operators, 456 
Covariance matrices, 6 
C-partitions, 12, 13, 14-15, 93 
Crack edge strengths, 576-577 
Crisp a-level sets, 153 
Crisp classifiers, 7, 183, 329, 382-385 
Crisp decision trees, 533-534 

ARTl and, 413-414 
Chang-Pavlidis fuzzy tree compared 

with, 303, 304-306 
described, 269-272 
design of, 278-288 
function approximation with, 

537-538 
ID3-reIated fuzzy trees compared 

with, 309, 310, 314-315 
incompleteness of, 293 
rules from, 273-278 

Crisp k-nearest neighbor rule (k-nn), 
242-243,248-249 

Crisp label vectors, 4, 187, 340-341, 
343, 344 

Crisp matrices, 98-99 
Crisp membership functions, 349-350 
Crisp morphological operators, 665 
Crisp nearest prototj^jes, 190-191 
Crisp partitions, 20, 158 

ARTl and, 414 
cluster validity and, 96, 117-121 
fuzzy relations and, 153 
rule extraction and, 346-348, 349 

Crisp regions, 641-642, 644, 645, 646 
Crisp relations, 138-143 
Crisp rule extraction (CRE), 349-350, 

352 
Crisp rule patches, 274, 275, 277, 350 
Cross-validation, 185-186 
Cubicalc, 361, 363, 367 
Cumulative rank, 489 
Cutpoint quantization, 275 
Cutpoints, 274-275 

Data dependent densities, 463-464 
Data level fusion, 443-452 
Data selection, 189 
Davies-Bouldin index, 90-91, 94, 100, 

109, 116, 117 
Decision level fusion, 454 
Decision profiles, 480-481, 484, 485, 

486, 490 
Decision templates, 478-491 
Decision trees, 290, 376-377, see also 

Crisp decision trees; Fuzzy 
decision trees 

Decomposition of fuzzy relations, 
clustering by, 153-158 
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Defense Advanced Research Projects 
Agency (DARPA), 198, 443 

Defuzzification 
height, 295 
in Mamdani-Assilian model, 299-300 

Degenerate fuzzy c-partitions, 108 
Deictic use of spatial prepositions, 640 
Dempster-Shafer (DS) theory, 

257-258, 262, 460, 483, 484, 
489, 530 

Dendrograms, 151-152, 154, 178 
Dense circular clusters. 111 
Dental patient study, 133 
Derivation trees, 497 
Deviation from linearity (DEVLIN), 

458, 459 
Digital subtraction angiography, 673 
Direct data indices, 93 
Direct parametric data indices, 91 
Direct parametric indices, 88 
Dissimilarity relations, 158, 159, 169 
Distance, 5 

Euclidean, see Euclidean distance 
Levenshtein, 503, 506 
Mahalanobis, see Mahaleinobis 

distance 
Distance ties, 245 
Divide and conquer (D&C) algorithm, 

611 
Divide and conquer NFCS 

(D&C-NFCS) algorithm, 611, 612, 
614 

Dog-rabbit prototype generation 
algorithm, 216 

Dot products, 5 
Dubois-Jaulent basic probability 

assignment (bpa), 637, 639 
Dunn's index, 89, 92-96, 103, 109 
D5mainic cluster validation (DYNOC), 

134-135 
D3Tiamic off-line adaptive training, 188 

Edge detection, 562-572, 664, 668-670 
Edge enhancement, 562-572, 668-670 
Edge fragments, 562, 655, 657, 658 
Edge images, 620-621 
Edge interpreters, 510, 512 
Edge linking, 572-579 
Edgeness, 572-574 
Edge operators, 565-566 
Edge points, 562 
Effective radius, 114 
Electron spin resonance spectroscopy, 

526 
Elliptical prototypes, 54-56 
Ellis Fischel Cancer Center, 361 
Elongatedness of a fuzzy region, 628 

ELSE rule, 563-564 
End point constraint, 652-653 
Entropy 

crisp decision trees and, 279-280, 
283, 284-285 

ID3-related fuzzy trees and, 309 
iterative self-organizing, 131, 

309-311 
partition, of U, 97-98 
quadratic, 280 
segmentation and, 596-601 

Environmental Research Institute of 
Michigan (ERIM), 265, 606 

Equivalence relation (ER), 140, 141, 
154 

Error rates, 184-187 
apparent, 184 
leave-one-out estimate of, 186-187 
neural networks and, 384-385 
oracle model and, 485-486 
recall, 184 
resubstitution, see Resubstitution 

error rate 
S3nitactic pattern recognition and, 

506 
Errors 

generalization, 184, 279, 387 
neural networks and, 382 
test, 184, 185, 333, 384 
training, see Training errors 
VEilidation, 185 

EST methods, 355-356 
Euclidean distance, 34, 147 

assignment-prototype model and, 
162 

cluster validity and, 100, 110 
competitive learning networks and, 

204 
fusion techniques and, 452 
hierarchical clustering and, 149 
image enhancement and, 556 
linear boundaries and surfaces and, 

606, 607, 608 
nearest neighbor classifiers and, 

241, 245 
nearest prototypes and, 192, 

194-195 
neural networks and, 393 
perceptual grouping and, 652-654 
prototype generation and, 201 
segmentation and, 583 

Euclidean inner products, 374 
Euclidean norms, 6, 35, 132, 133, 148 

Davies-Bouldin index and, 90 
edge detection and enhancement 

and, 567 
feature analysis and, 126, 127 
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fusion techniques and, 450, 474, 
485 

fuzzy regions and, 626, 637 
neairest multiple prototjrpes and, 

213,214 
nearest neighbor classiliers and, 

242, 247, 251 
nearest prototypes and, 193, 196 
non point-prototypes and, 42, 51, 

64-65, 77 
rule extraction and, 342, 355 
segmentation and, 584—586 
soft competition scheme and, 221 

Euclidean space, 448 
Expanded batch learning vector 

quantization (EBLVQ), 232 
Expectation-maximization (EM) 

algorithm, 29, 31 
External criteria, 117 
Extrapolation, 288-289 
Extrinsic diameter of a fuzzy region, 

628, 634 

False alarms, 454, 458, 459-60, 592 
Fast commitment and slow receding, 

423 
Feature analysis 

in classifier design, 523-527 
in image processing, 666-668 
for object data, 121-130 

Feature extraction, 121, 123-126 
in edge detection and enhancement, 

566 
feed-forward back-propogation in, 

385-391 
Feature level fusion, 453-454 
Feature selection, 121, 124-127, 189, 

391-392 
Feature space, 3 
Feature value, 3 
Feature vectors 

bar, 365 
in edge detection and enhancement, 

566 
segmentation and, 583, 584, 588 
transition, 365 

Feed-forward back-propogation (FFBP) 
networks, 313, 382, 399, 409, 536 

Iris data on, 385-391 
Feed forward (FF) networks, 382 
Filters, 556, 557, 560, 561 
Firing strength, 292, 295 

Chang-Pavlidis fuzzy tree and, 307 
crisp decision trees and, 288, 303, 

304, 306 
edge detection and enhancement 

and, 563, 568 

fusion techniques and, 469, 470, 
473, 475 

ID3-related fuzzy trees and, 310, 
311, 312,317,320,323 

image enhancement and, 561 
Mamdani-Assilian model and, 299, 

300, 301 
rule extraction and, 354—355 

First level classifiers, 455 
First order neurons, 375 
Fisher's classical measure of 

separation, 90-91 
Fisher's linear discriminant (FLD), 483 
Fitting errors, 467 
Forward looking infrared (FLIR) 

images, 261-262, 443-444, 544 
Forward sequential search, 527 
Foveation, 519, 520, 522 
Fowlkes-Mallow measure, 119 
Frame of discernment, 257-258 
Fully self-organized simplified adaptive 

resonance theory (FOSART), 424, 
431-441 

Function approximation, 288-303, 
537-540 

Fusion operators, 455-456 
Fusion techniques, 442-491, 544—545 

classifier, 454-491 
data level, 443-452 
decision level, 454 
feature level, 453-454 

Fuzzification 
of input domains, 292 
of Mamdani-Assilian model, 299 
of statistical indices, 117-121 

Fuzzy adaptive resonance theoretic 
MAP (FARTMAP), 423-424 

Fuzzy adaptive resonance theory 
(FART), 421-424, 431, 440-441, 
542-543 

Fuzzy aggregation networks (FAN), 
398, 403-410, 544 

rule extraction with, 410-413 
segmentation and, 588-591, 

596-601 
Fuzzy analysis (FANNY), 180 
Fuzzy automata, 500-501 
Fuzzy binary relations, 138 
Fuzzy c-ellipsoidal shells (FCES), 

55-56 
Fuzzy c-elliptotypes (FCE), 46-48, 135 

adaptive, 47-50, 48-50 
rule extraction and, 330-334 

Fuzzy c-least median of squares 
(FCLMS), 81-82 

Fuzzy c-lines (FCL), 46, 48-50, 78, 331 
Fuzzy clusters, 96-105 
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Fuzzy c-means (FCM), 16-23, 130 
cluster validity and, 104, 107, 120, 

134 
in dental patient study, 133 
feature analysis and, 125, 126, 

127-129 
fusion techniques and, 450-451 
fuzzy leaiming vector quantization 

and, 231, 232 
fuzzy regions and, 638-639 
learning vector quantization and, 

212, 222-223 
linear boundaries and surfaces and, 

611 
M3 model and, 239-241 
mountain clustering method and, 

236 
nearest neighbor classifiers and, 247 
non point-prototypes and, 39, 

45-47, 61-62, 67-68, 79, 83 
l-norm in, 79 
probabilistic clustering and, 31 
reformulation theorem and, 37, 39 
relational fuzzy c-means model 

compared with, 167 
remarks on various aspects of, 

34-37 
robust, 80-81, 82, 84 
rule extraction and, 331, 353-357 
segmentation and, 584-586, 588, 

594-596, 674 
semi-supervised, see 

Semi-supervised c-means 
subtractive clustering method and, 

237 
temporal, 132-133, 182, 456 
in tumor volume estimates, 131-132 

Fuzzy c-means alternating 
optimization (FCM-AO), 18-23, 
130-131 

approximate, 37 
cluster validity and, 99, 100-102 
fuzzy learning vector quantization 

and, 223-224, 226 
Gaussian mixture decomposition 

and, 32-33 
non point-prototypes and, 42-44, 

48, 79-81 
rule-based approximation and, 334 
semi-supervised, 23-28 

Fuzzy compactness, 581-582 
Fuzzy covariance matrices, 41 
Fuz2y c-planes (FCP), 46 
Fuzzy c-plano-quadric shells (FCPQS), 

61 
Fiazzy c-quadrics (FCQ), 57 

Fuzzy c-quadric shells (FCQS), 59, 
61-62 

cluster validity and, 115-16 
quadric boundetries/surfaces and, 

615, 616 
Fuzzy c-rectangular shells (FCRS), 69, 

606-611 
Fuzzy c-regression models (FCRM), 

69-75, 335 
Fuzzy c-sheUs (FCS), 52-54, 65, 78 

adaptive, 54-55, 615 
circular boundaries and, 611, 613 
regression models and, 73 

Fuzzy c-spherical shells (FCSS), 52, 
54, 61+62, 611 

Fuzzy c two rectangular shapes 
(FC2RS) model, 609, 610, 611 

Fuzzy c-varieties (FCV), 45-52 
adaptive, 50-52 

Fuzzy decision trees, 532-537 
Chang-Pavlidis, see Chang-Pavlidis 

fuzzy decision tree 
ID3-related, 308-325 

Fuzzy decision values, 306, 310 
Fuzzy densities, 254 
Fuzzy edge points, 563 
Fuzzy edge strength, 563 
Fuzzy fans, 520-521 
Fuzzy geometry, see Geometric 

properties 
Fuzzy grammars, 499-500 
Fuzzy Hough transform (HT), 666-667 
Fuzzy hypervolume of U, 102 
Fuzzy inference ruled by else-action 

(FIRE) paradigm, 551, 554, 563 
Fuzzy input-output systems, 183 
Fuzzy integral filters, 258-260 
Fuzzy integrals, 457-458, 532 

described, 253-268 
fusion techniques and, 483, 484 
in pattern recognition, 260-263 

Fuzzy isovolumes, 672 
Fuzzy k-nearest neighbor rules (k-nn), 

244, 248, 530-531 
Fuzzy Kohonen clustering network 

(FKCN), 223 
Fuzzy label vectors, 4, 5, 12, 368-370 
Fuzzy languages, 499, 500 
Fuzzy learning vector quantization 

(FLVQ), 211,231,232 
described, 222-230 
mountain clustering method and, 

233 
radial basis function networks and, 

4 3 6 ^ 4 1 
Fuzzy mathematical morphology, 665 
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Fuzzy maximum likelihood estimation 
(FMLE), 44-45, 103-105 

Fuzzy m^easures (FM), 253-257, see 
also Sugeno A fuzzy measure 

Fvizzy morphological operators, 665 
Fuzzy neural networks (FNN), 

393-403, 541 
Fiazzy neurons, 540-544, see also 

Type I fuzzy neurons 
Fuz2y noise clustering (FNC), 79-80, 

84 
Fuzzy non-metric (FNM), 159-160, 

167-168 
Fuzzy partitions, 158, 158-178, 180, 

292, see also Relational clustering 
degenerate, 108 

Fuzzy pattern recognition, 1-7, 371 
Fuzzy-possibilistic c-means (FPCM), 

130 
Fuzzy reasoning, 665 
Fuzzy reasoning edge detector (FRED), 

669 
Fuzzy regions, 624-639 

geometry of, see Geometric 
properties 

spatial relations and, 641, 644 
Fuzzy relations 

clustering by decomposition of, 
153-158 

described, 143-146 
Fiizzy robust clustering (FRC), 79 
F u z ^ rule-based classifiers, 268-370, 

532-537, see also Crisp decision 
trees; Fuzzy decision trees; Rule 
extraction 

function approximation and, 
288-303 

rule-based approximation and, 
325-359 

Fuzzy similarity relations, 144 
Fuzzy simplified adaptive resonance 

theory (FSART), 424 
Fxozzy transitivity, 143-144 
Fuzzy trimmed c-prototypes (FTCP), 

81-82 
Fuzzy version of hidden Markov model 

(FHMM), 461-464 

Gaussian kernels, 551, 553 
Gaussian membership functions, 335, 

404, 410-412, 577 
Gaussian mixture decomposition 

(GMD), 31-34, 39, 543 
cluster validity and, 103-105 
Gustafson-Kessel model and, 41-45 
regression models and, 70-72 
robust clustering and, 75 

segmentation and, 583, 584-586 
Gaussian noise, 551, 637-638 
Gaussian radial basis functions, 426, 

429, 431, 442, 543-544 
Generalization, 184 
Generalization errors, 184, 279, 387 
Generalized coordinates, 445 
Generalized Hough transform (GHT), 

602, 667 
weighted, 667 

Generalized learning vector 
quantization - fuzzy (GLVQ-F), 
204, 211-212 

nearest multiple prototypes and, 
212-219 

Generalized mean neurons, 397-398, 
402-403 

Generalized minimum volume ellipsoid 
(GMVE) algorithm, 80 

Generalized nearest prototype 
classifiers, 529 

Generalized radial basis functions, 
426-427 

Generating function of RBF, 425 
Generation mode, 497 
Genetic algorithm (GA), 38-39, 357 
Geo-Centers, Inc., 443, 453 
Geometric means, 398 
Geometric properties 

of fuzzy regions, 625-630 
of original and blurred objects, 

630-639 
Gini diversity index, 279-280, 281 
Global convergence theory, 73 
Global methods of prototype 

generation, 202 
Global training, 311 
Gradient, 551-552, 572 
Grammars, 491, 495-496, 498, 502, 

507 
fuzzy, 499-500 
stochastic, 499, 500 
string, see String grammar 

Granularity of the variable, 272, 291 
Gray levels, 547, 550-551, 554, 555, 

556 
average, of a region, 637-639 
fuzzy regions and, 625 

Ground Penetrating Radar (GPR), 
197-201, 443-444, 453-454 

Grouped coordinate descent, 133 
Growing approach in decision tree 

design, 278 
Gustafson-Kessel (GK) model, 4 1 ^ 5 , 

48-50, 538 
linear boundaries and surfaces and, 

603,604-606,611 
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quadric boundaries and, 615 
quadric protot3rpes and, 61-62 
quadric surface approximation and, 

615, 623 
robust clustering and, 85-87 
rule extraction and, 357 
segmentation and, 583, 584-586, 

587 

-1 Handbook of Neural 
Computation-0, 379 

Handwritten word recognition, 
523-524 

fusion techniques and, 460-478 
fuzzy integrals and, 264-267 
heuristic rule extraction and, 

364-368, 369-370 
S3mtactic pattern recognition and, 

465-466, 495, 502, 510-522 
Hard binary relations, 139 
Hard c-means (HCM), 16-23, 130 

cluster validity and, 101 
fuzzy regions and, 638-639 
ID3-related fuzzy trees and, 309-310 
nearest neighbor classifiers and, 247 
nearest prototypes and, 191 
non point-protot3^es and, 76-77 
remarks on various aspects of, 

34-37 
string grammar, 504-506 

Hard c-means alternating optimization 
(HCM-AO), 18-23, 130-131 

cluster validity for, 93-95 
Hardening of U with H, 20 
Harmonic means, 397 
Height defuzzification, 295 
Height of a fuzzy region, 626, 633-635 
Heterogeneous fuzzy data (HFD), 

445-452 
parametric, 447, 450 

Heuristic rule extraction, 359-368 
Hidden layers, 379, 383, 385, 404, 

427, 428, 431 
Hidden Msirkov model (HMM), 

461-464, 474, 477 
Hierarchical clustering, 137, 149-152, 

181 
Higher order neurons, 375 
High-level vision, 658-663, 675-677 
Homogeneity, 596-601 
Honeywell 500 data, 468 
Horizontal structural relations, 511 
Hough transforms (HT), 611-613, 

666-667 
fuzzy, 666-667 
generalized, 602, 667 

Human face chairacterization, 675 

Hybrid fuzzy connectives, 396-397, 
398-399 

Hybrid learning networks, 429 
Hybrid Mamdani-Assilian (MA) model, 

353 
Hybrid methods in decision tree 

design, 278 
Hybrid Takagi-Sugeno (TS) model. 

353, 354, 355-356 
Hyperbolic tangents, 376 
Hyperbox diagonal method, 214 
Hyperplane, 191-193 

separating, 192, 196 
Hyperquadric shells, 110-111 

ID3, 275, 286, 532, 533 
ARTl and, 414 
described, 280-283 
fusion techniques and, 471-473, 477 
fuzzy decision trees related to, 

308-325 
real, 534-535 

Identity matrices, 6 
If-then rules, 290 
Image enhancement, 550-562 
Image processing, 547-679 

boundary description and, see 
Boundary description 

edge detection and enhancement 
and, 562-572, 664, 668-670 

edge linking and, 572-579 
fuzzy regions and, see Fuzzy regions 
high-level vision and, 658-663, 

675-677 
image enhancement and, 550-562 
perceptual grouping and, 651-658 
segmentation and, see Segmentation 
spatial relations and, 639-651 
surface approximation eind, see 

Surface approximation 
Image segmentation, see Segmentation 
Improved adaptive resonance theory 

|IART), 542 
Impulse noise, 551 
Impurity function, 279-280, 282, 309 
Index of area coverage (lOAC), 

581-582, 628 
Index of inclusion, 485 
Indirect indices, 135-136 

standardizing and normalizing, 
105-109 

Indirect parametric data indices, 91, 
99-100, 112 

Indirect parametric indices, 103 
Indirect parametric measures of 

partition qusdity, 88 
Inferencing, 299, 301 
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Initialization, 35 
Inner product norm-induced shells, 65 
Inner products, 5 
Input domains, fuzzification of, 292 
Input layers, 203, 204, 379, 391 
Input nodes, 373, 385 
Input-output (lO) data, 270, 288 
Input vectors, 385-386, 394 
Integer grid points, 233 
Integrator functions, 374, 395 
Intensity connectedness, 672 
Internal criteria, 117 
Internal nodes, 270, 271, 279-280, 

288, 303, 304, 317 
Interpolation, 288-289 
Interveils, 447 
Inverse distance weighted (IDW) k-nn 

algorithms, 249-252 
Iris data, 187, 202, 759 

cluster validity in, 94-95, 101-102 
comparison of LVQ, SCS and FLVQ 

in, 228-230 
feed-forward back-propogation in, 

385-391 
multi-layer perceptrons in, 382-385, 

386 
nearest multiple prototjrpes in, 

212-217, 218 
prototype MCM and FCM in, 236 
SAHN models in, 181 
subtractive clustering method in, 

344-346 
UR-ID3 in, 313-314 

Iterative self-organizing data analysis 
(ISODATA), 130-131, 134, 223, 
309-311 

Iterative self-organizing entropy 
(ISOETRP), 131,309-311 

Joint types, 511 

Karyotyping, 359-363 
K-nearest neighbor rules (k-nn), 188, 

197, 239-240, 241, 368, 369, 
527, 529 

crisp, 242-243 
ftizzy, 244, 248, 530-531 
possibilistic, 244, 248, 369 
soft, 504 

Knowledge-based (KB) systems, 
592-596 

Kuhn-Tucker theory, 180 

Label ties, 245 
Label vectors, 4—6 

crisp, 4, 187, 340-341, 343, 344 
fuzzy, 4, 5, 12, 368-370 

possibilistic, 4, 5, 12, 14 
probabalistic, 4, 5, 12 
sets of, 13 

LADAR range, 259-260 
LaGrange multipliers, 58, 83, 159, 

161, 180 
Landmine detection, 197-201 
LANDSAT, 487, 673, 674 
Language-based methods of syntactic 

pattern recognition, 493-506 
Language over G, 497 
Languages, 491 

fuzzy, 499, 500 
string, 503 

Lasar Radar (LADAR), 458-460 
Layers, 379 

competitive, 203 
computing, 379 
hidden, 379, 383, 385, 404, 427, 

428, 431 
input, 203, 204, 379, 391 
output, 204, 379, 383, 385, 427, 

428, 433-434 
Leaf labeling, 278 
Learning rate distribution, 204 
Learning rates 

ARTl and, 415-417, 420 
competitive learning networks and, 

230-231 
fuzzy learning vector quantization 

and, 224, 227 
learning vector quantization and, 

222 
soft competition scheme and, 

219-20, 221 
Learning rule, 381 
Learning vector quantization (LVQ), 

204, 222-223, 227-229, 231-232 
ARTl and, 4 1 9 ^ 2 0 
described, 209-211 
expanded batch, 232 
fuzzy, see Fuzzy learning vector 

quantization 
generalized, see Generalized 

leeuming vector quantization -
fiizzy 

nearest multiple prototypes and, 
212-219 

radial basis function networks and, 
438 

soft versions of, 211-212 
Least mean squared (LMS) algorithm, 

430, 431 
Leave-one-out estimate of the error 

rate, 186-187 
Leaves, 270, 271, 310-311, 317, 320, 

535 
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Lebesgue integral, 256 
Left half-net, 429-430, 431, 432, 434, 

436 
Left hand side (LHS), 290, 293-294, 

295, 296, 298 
Lena image, 553, 558-562, 565, 

569-571, 664 
Length of a fuzzy region, 626-627 
Length of a string, 494 
Levenberg-Marquardt algorithm, 56 
Levenshtein distance, 503, 506 
Levenshtein metric, 502 
Linear boundaries, 603-611 
Linear classifiers, 192 
Linear discriminant classifiers (LDC), 

483, 490 
Linear integrator functions, 374-375, 

377,397 
Linearly separable data, 192, 196 
Linear manifolds as prototj^ies, 45-52 
Linear order statistic (LOS) filters, 258 
Linear surfaces, 603-611 
Line detection algorithm, 615, 616 
Line type membership functions, 

467-468 
Linguistic values, 292, 322, 366 

edge detection and enhancement 
and, 669-670 

high-level vision and, 658-660 
perceptual grouping and, 656 

Linguistic variables, 272, 323 
Linkage algorithms, 137 
Link constraints, 433-434 
Lloyd-Buzo-Gray (LBG) algorithm, 130 
Localized shape matching, 39-40 
Local methods of prototype generation, 

201-202 
LODARK, 458-459 
Logistic classifiers (LOG), 483 

McPitts (standard) neurons, 376, 394, 
395, 397, 402-403 

Magnetic resonance (MR) imaging, 
548, 671-672, 673 

crisp k-nearest neighbor and, 
248-249 

M3 and, 238-241 
radial basis function networks and, 

434-440 
segmentation and, 592-596 

Magnetization-prepared rapid gradient 
echo (MP-RAGE), 434-440 

Mahalanobis distance, 32, 34-35, 526 
robust clustering and, 86 
segmentation and, 584, 587 

Mahalanobis norms, 30, 103 
Majority (MAJ) operator, 481-482 

Mamdani-Assilian (MA) model, 288, 
290-291, 293, 295, 299-302, 323, 
537, 539 

architecture of, 291 
heuristic rule extraction and, 359, 

363, 367 
high-level vision and, 658, 659 
hybrid, 353 
image enhancement and, 555 
rule extraction and, 326, 330, 337, 

338, 342, 348, 349, 350, 351, 
352-353, 358 

Mammography, 534, 667-668, 671 
Map-fields, 424 
Markov chain classifiers, 325 
Matching matrices, 118 
Match-tracking, 423 
Mathematical neural networks (NN), 

see Computational neural 
networks 

Maximal rule-base, 291 
Maximum coordinate, 7 
Maximum likelihood estimation (MLE), 

30-31 
fiizzy, 4 4 ^ 5 , 103-105 

Maximum membership partitions, 20 
Maximum (MAX) operator, 481-483, 

489 
MC index, 120 
Means squared error (MSE) 

neural networks and, 402 
rule extraction and, 329, 335, 357 

Median of absolute deviations (MAD), 
86, 557 

Membership of a string, 499 
Mexican hat function, 206, 324, 326 
Minimal spanning tree (MST), 152 
Minimize the probability of 

randomness (MINPRAN), 80 
Miniumum (MIN) operator, 481-483, 

489 
Minkowski norm metrics, 6, 233 
Minkowski norms, 6 

edge detection and enhancement 
and, 569 

fusion techniques and, 484 
neural networks and, 397 
non point-prototypes and, 65, 66 

M3 modle, 238-241 
Modified partition coefficient (MPC), 

107 
Monomorphism, 513-514, 515 
Mountain clustering method (MCM), 

133 
described, 232-241 
rule extraction and, 352-353 
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MountEun function values (MFVs), 
233-234 

M rules, 470, 563 
M-stage multivariate rank nearest 

neighbor (m-Mmn) rule, 531-532 
M-stage univariate rank nearest 

neighbor (m-Umn) rule, 531-532 
MST algorithm, 152 
Multi-layer perceptrons (MLP), 

382-385, 386, 391-393, 394 
feature selection and, 391-392 
fusion techniques and, 469, 474, 

475-476 
radial basis function networks vs., 

425, 427, 429 
Multiple-input multiple-output 

(MIMO), 288 
Multiple-input single-output (MISO), 

288, 295, 335, 352, 355, 356 
Multiple prototype classifier designs, 

196-201, 528 
Multiple sclerosis, visualization of, 673 
Multiplicative z-model, 398-400, 407, 

589-591 

National Institute of Standards and 
Technology (NIST), 265 

Native Bayes (NB) combination, 483 
Nearest multiple prototype (1-nmp) 

classifiers, 196-197 
designs of LVQ and GLVQ-F for, 

212-219 
Nearest neighbor classifiers, 193 

described, 241-253 
k-, see K-nearest neighbor classifiers 
rank, 531-532 

Nearest prototype classifiers (1-np), 
190-196 

generalized, 529 
S5Titactic, 504 

Nearest protot3^e partitions, 207 
Negative half-space, 192 
Network weight vectors, 379, 380 
Neural-fuzzy-systems (NFS) models, 

541, 542 
Neural networks (NN), 290, 329, 333, 

370-413, 483, 535-537, 540-544 
biological, 370-371, 372-378, 421 
computational, 371, 372-378, 421 
defined, 378 
fuzzy, 393-403, 541 
fuzzy aggregation, see Fuzzy 

aggregation networks 
heuristic rule extraction compared 

with, 366, 367-368 
models of, 378-393 
pulse coupled, 520, 522 

spatial relations and, 649-651 
Neurons 

first order, 375 
fuzzy, see Fuzzy neurons 
generalized mean, 397-398, 402-403 
higher order, 375 
McHtts (standard), 376, 394, 395, 

397, 402-403 
second order, 375 

Newton's method, 53, 73, 188 
Node decision functions, 304, 305, 310 
Node functions 

neural networks and, 376-378, 397 
radial basis function networks and, 

427 
Node reuse, 234 
Nodes, 204, 373 

bias of, 375 
input, 373, 385 
internal, 270, 271, 279-280, 288, 

303,304,317 
nonterminal, 507 
nonwinner, 231 
offset of, 375 
terminal, 507 
winner, 231 

Node spUtting functions, 278, 
279-280, 286, 305, 309 

Node weights, 204 
Node weight vectors, 374 
Noise, 550, 556, 557, 558, 559-560 

Gaussian, 551, 637-638 
impulse, 551 

Noise clusters (NC), 79, 613 
Noise fuzzy c-shells (NFCS), 613-614 
Noise points, 618, 621 
Nomination of features, 121 
Non-adaptive off-line training, 188 
Non-crisp classifiers, 7 
Non-crisp partitions, 13-14, 20, 96, 

350 
Non-Euclidean relational fuzzy 

c-means (NERFCM), 168-178, 181 
Non-Euclidean relational hard 

c-means (NERHCM), 181 
Non point-prototype clustering 

models, 39-87 
elliptical, 54-56 
Gustafson-Kessel, see 

Gustafson-Kessel model 
indirect measures for, 109-116 
linear manifolds as, 45-52 
norm induced shell, 64-69, 606, 611 
quadric, 56-63 
regression models as, 69-75 
robust clustering and, 75-87 
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rule extraction and, 328, 337, 346, 
352 

spherical, 52-54 
Non-terminal nodes, 507 
Nonterminals, 496, 497, 507 
Non-trainable fusion operators, 456 
Nonwinner nodes, 231 
Norm induced shell prototypes (NISP), 

64-69, 606,611 
Norm metrics, 5 
Norms, 5 

choice of, 34-35 
Euclidean, see Euclidean norms 
Mahalanobis, 30, 103 

Null strings, 496 
Numerical approach to pattern 

recognition, 2 
NumericEd features, 271 

Object data, 3, 11-136, see also Batch 
point-prototype clustering models; 
Cluster validity; Non 
point-prototype clustering models 

classifier design for, 183-190 
feature analysis for, 121-130 
to relational data, 146-149 

Object data matrices, 445 
Oblique code 1, 269, 278 
Offset of a node, 375 
1-Stage univariate rank neairest 

neighbor (1-Umn) rule, 531 
Optimized fuzzy rules (OFR) 

classifiers, 471 
Optimized prototypes (OP), 474, 477 
Oracle (OR) model, 485-485, 489 
Ordered weighted aggregation (OWA) 

operators, 483 
Ordered weighted average (OWA) 

filters, 259-260 
Ordinal data, 272 
Orthogonality, 5 
Orthogonal least squares (OLS), 

430-431 
Otsu algorithm, 635 
Outlier points, 587 
Output layers, 204, 379, 383, 385, 

427, 428, 433-434 
Overall feature evaluation index, 526 

Parameter estimation, 88, 289 
Parameters, 34 
Parametric heterogeneous fuzzy data 

(HFD), 447, 450 
Partial circular clusters. 111 
Partition coefTicient of U, 97-98 
Partition entropy of U, 97-98 
Partitioning for substructure, 88 

Pattern recognition, 1-10 
definitions for, 1 
fuzzy, 1-7, 371 
fuzzy integrals in, 260-263 
neural networks in, see Neural 

networks 
numerical approach to, 2 
process description and, 2 
syntactic, see Syntactic pattern 

recognition 
Perceptron convergence theorem, 394 
Perceptual grouping, 651-658 
Performance-based validity, 134 
Perimeter of a fuzzy region, 626, 

632-633, 636 
Perpendicular distance constraint, 

652, 653-654 
Phoneme, 487-491 
Physical labels, 207 
Piecewise polynomials, 332-334 
Plasticity, 415-417, 421 
Plasticity problem, 206 
Point prototypes, 15, 328, 337, 340, 

346, 347, 348, 352 
Population covariance matrices, 30 
Positive half-space, 192 
Possibilistic c-means (PCM), 16-23, 

130 
cluster validity and, 120, 134 
fuzzy regions and, 637, 638-639 
learning vector quantization and, 

212 
nearest neighbor classifiers and, 247 
non point-prototypes and, 80 
remarks on various aspects of, 

34-37 
subtractive clustering method and, 

237 
Possibilistic c-means alternating 

optimization (PCM-AO), 18-23, 
130 

Possibilistic c-plano-quadric shells 
(PCPQS), 621 

Possibilistic c-quadric shells (PCQS), 
615, 616-617 

Possibilistic k-nearest neighbor rule 
(k-nn), 244, 248, 369 

Possibilistic label vectors, 4, 5, 12, 14 
Possibility measures, 254 
Premise, 290 
Premise membership functions 

(PMFs), 292, 294, 296, 299 
fusion techniques and, 469 
high-level vision and, 659, 662 
ID3-related fuzzy trees and, 

316-317, 319, 321, 324, 325 
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rule-based approximation and, 220, 
332-334, 335, 338, 344, 346, 
349, 350 

rule extraction and, 352, 353, 
357-358, 358 

Premise parameters, 290 
Primitives, 466, 491, 492-494, 495, 

498^99 , 502, 505-506, 507, 511, 
519, 520-522 

valid edge, 510 
valid vertex, 510 

Principal components analysis (PCA), 
388-389 

Principle of least commitment, 183, 
363, 369, 524, 549 

Prior probabilities, 29 
Probabalistic decision trees, 303 
Probabalistic label vectors, 4, 5, 12 
Probabilistic clustering, 29-34 
Probabilistic product (PPR), 483 
Probability density functions (PDFs), 

29-30, 208 
Probability measures, 254 
Process description, 2 
Production rules, 491, 493, 496, 

497-498, 502 
Product (PRO) operator, 481-483, 489, 

490 
Progressive clustering, 602-603 
Prototype classifiers, 190-201, 

528-532 
methods of generating, 201-241 
multiple, 196-201, 528 
nearest, 190-196 
soft, 458 

Prototype relabeling, 207 
Prototjrpe weight matrices, 161 
Proximity, 573-574 
Proximity relation matrices, 146 
Proximity relations, 138 
Pruning of decision trees, 276, 278, 

281,286-288,307,536 
Psychovisually motivated fuzzy 

reasoning edge detector 
(PSYFRED), 669, 670 

Pulse coupled neural networks 
(PCNN), 520, 522 

Pure classification trees, 271, 
285-286, 288, 307, 312 

Quadratic discriminant classifiers 
(QDC), 483, 487-489, 490 

Quadratic entropy, 280 
Quadratic regression models, 73-74 
Quadric boundaries, 615-621 
Quadric compatible cluster merging 

(QCCM), 621-624 

Quadric prototypes, 56-63 
Quadric surface approximation, 

615-621 
in range images, 621-624 

Radial basis function (RBF) networks, 
424, 4 2 5 ^ 4 2 , 543-544 

Rand index, 119 
Random variables, 29 
Rank nearest neighbor (rnn) 

classifiers, 531-532 
Real binary relations, 138 
Real ID3, 534-535 
Realization of R, 168 
Real numbers, 447 
Recall error rate, 184 
Receiver operating characteristic 

(ROC) curve, 459, 460 
Reflexive closure, 140, 141, 143 
Reflexivity, 139-140, 144, 145, 

153-154, 155-158 
Reformulation theorem, 37-39, 166 
Regression models as prototypes, 

69-75 
Regular fuzzy systems, 292 
Reject option, 468 
Relational Eiltemating cluster 

estimation (RACE), 180 
Relational clustering, 158-178 

assignment-prototype model in, 
160-165 

fuzzy non-metric model in, 159-160 
non-Euclidean relational fuzzy 

c-means model in, 168-178 
relational fuzzy c-means model in, 

165-168 
Relational data, 3, 137-182 

cluster validity for, 178-180 
crisp relations in, 138-143 
fuzzy relations in, see Fuzzy 

relations 
hierarchical methods in, 137, 

149-152, 181 
object data to, 146-149 
with objective functions, see 

Relationad clustering 
Relational dual, 166 
Relational fuzzy c-means (RFCM), 

165-168, 337 
non-Euclidean, 168-178 

Relation-based methods of syntactic 
pattern recognition, 507-522 

Relation matrices, 3, 138 
Relative indices, 117 
Relative length (RL), 361 
Relaxation labeling approach, 576-577 
Replacement, 189, 190 
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Representation space, 452 
Resolution identity, 153 
Resubstitution error rate, 184, 185 

crisp decision trees and, 270, 285 
nearest multiple prototypes and, 

213 ,216 ,217 ,218 
neural networks and, 383, 384, 

387-388, 390, 392, 402, 408 
rule-based approximation and, 336 

Right half-net, 429, 430, 431 
Right hand side (RHS), 290, 295 
Robust clustering, 75-87 
Robust competitive agglomeration 

(RCA) algorithm, 586-587, 623, 
624 

Robust c-prototypes (RCP), 84, 85-87 
Robust estimators, 77 
Robust fuzzy c-means (RoFCM), 

80-81, 82, 84 
Root-mean-squared (RMS) error, 397, 

562 
Rouben's indices, 99 
Rule-based approximation, 325-359 
Rule-based inferencing, 301 
Rule-based segmentation, 592-601 
Rule extraction 

based on clustering, 325-359 
crisp, 349-350, 352 
with fuzzy aggregation networks, 

410-413 
heuristic, 359-368 
possible problems in, 358-359 
soft, 351, 355 

Rule induction, 270 
Russo-Ramponi edge detector, 564, 

565 

Saint Marc filter, 561 
Sammon's method, 124 
Satimage, 487-491 
Scalar products, 5 
Search parameters, 417 
SEASAT, 673 
Second order neurons, 375 
Segmentation, 579-601, 670-675 

fuzzy isovolumes approach to, 672 
rule-based, 592-601 
supervised, 410-413, 588-591 
via clustering, 582-588 
via thresholding, 580-582 

Segmentation-based method (SMB), 
461-464 

Selection, 189, see also Data selection; 
Feature selection 

Self-organizing feature maps (SOFM), 
190, 204, 210-211, 523-524 

fusion techniques and, 469, 475 

radial basis function networks and, 
431, 432-433, 437-441 

Self-scaling property, 420 
Semantic nets, 507-510 
Semi-supervised clustering models, 

23-29 
Semi-supervised fuzzy c-means 

(ssFCM), 25-28 
non point-prototypes and, 39 
segmentation and, 595 

Semi-supervised fuzzy c-means 
alternating optimization 
(ssfcm-AO), 23-28 

Separately trained fusion operators, 
456 

Separating hyperplane, 192, 196 
Separation indices, 92 
Sequential agglomerative hierarchical 

non-overlapping (SAHN) models, 
149-152, 179, 181, 309 

Sequential hard c-means (SHCM), 
204, 208-209, 419 

Set distance, 149-150 
Sets of label vectors, 13 
S-function, 581 
Shape recognition, 498-499 
Shell clusters, 40, 602 

circular boundaries and, 612-613 
cluster validity and, 109-116 
rule-based approximation and, 340 

Shell density, 617-618, 619 
Shell hypervolume, 617-618, 619 
Shell surface density, 113 
Shell thickness, 617-618, 619, 621 
Similarity measures, 146 
Similarity relations, 153-154 

fuzzy, 144 
Simplified adaptive resonaince theory 

(SART), 424 
fuUy self-organized, 424, 431-441 
fuzzy, 424 

Single best (SB) models, 485, 486, 488 
Single-input multiple-output (SIMO), 

288 
Single-input single-output (SISO), 

288, 332, 352, 354 
Single layer perceptrons (SLPs), 427, 

428 
Single linkage clustering algorithms, 

151, 152, 155, 156 
Smoothness, 327-330, 332, 334, 358 
S-norms, 143 
Sobel features, 566, 568, 620 
Soft classifiers, 183, 455 
Soft competition scheme (SCS), 211 

described, 219-222 
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fuzzy learning vector quantization 
and, 225-230 

Soft decision trees, 312-313, 535-536 
Soft k-nearest neighbor rule (k-nn), 

504 
Soft labels, 368-370 
Soft prototype classifiers, 458 
Soft rule extraction (SRE), 351, 355 
Sparse circular clusters, 111 
Spatial locations, 547 
Spatial relations, 639-651 
Spherical prototypes, 52-54 
Square binary relations, 139, 140 
Square fuzzy relations, 143-144 
Stability, 415-417, 420, 421 
Stabilization, 419, 420 
Stack filters, 258 
Starting symbol of sentence, 496 
Static cluster validity, 134 
Static off-line adaptive training, 188 
Statistical indices, 117-121 
Steepness, 551-552 
Steepness parameter, 375, 376 
Stochastic grammars, 499, 500 
Stochastic relaxation scheme (SRS), 

219 
Stopping criteria, 278 
Straightness, 551-552, 572 
String grammar, 497-498, 502-504 
String grammar hard c-means 

(sgHCM), 504-506 
String language, 503 
Strings, 502-504, 507 
Stroke types, 511 
Structure definition, 289-290 
Subtractive clustering method (SCM), 

237, 241, 343, 344-346, 353 
Sugeno A fuzzy measure, 254, 255, 

256, 261, 263, 267, 458, 459, 
462, 532 

Superfluous features, 406 
Superquadrics, 69 
Supervised learning, 7, 183-184, 288, 

289 
Supervised segmentation, 410-413, 

588-591 
Surface approximation, 601-624, 675 

of Unear surfaces, 603-611 
of quadric surfaces, see Quadric 

surface approximation 
Switching regression models, 70-72 
Symmetric closure, 140, 141, 142, 143 
Symmetric trapezoidal fuzzy numbers, 

447-448 
Symmetric triangular fuzzy numbers, 

447 

Symmetry, 139-140, 144, 145, 154, 
155-158, 551-552, 572 

S3Titactic nearest prototype (1-snp) 
classifiers, 504 

Syntactic pattern recognition, 2, 
465^66 , 491-522, 545-546 

language-based methods of, 493-506 
relation-based methods of, 507-522 

System identification, 289 
System validation, 289 

Takagi-Sugeno (TS) model, 288, 
290-291, 295-299, 301, 302, 323, 
532, 537, 539 

architecture of, 291 
edge detection and enhancement 

and, 565, 567-568, 569, 
570-571 

edge linking and, 577 
fusion techniques and, 469-470, 475 
hybrid, 353, 354, 355-356 
image enhancement and, 554, 555 
rule extraction and, 326, 328, 

330-331, 332, 333-334, 335, 
336-339, 342, 343, 344, 346, 
348, 352, 353, 354, 355-356 

T-conorms, 329, 358 
Temporal fuzzy c-means (TFCM), 

132-133, 182, 456 
TemporEjly adaptive classifiers, 188 
Terminal nodes, 507 
Terminals, 496, 497 
Termination, 35 
Test data, 184 
Test errors, 184, 185, 333, 384 
Test sets, 184 
Thickness of circular clusters. 111 
Three-way object data, 131 
Thresholding, segmentation via, 

580-582 
Time-based fusion, 456 
T-norms, 143, 145-146, 293, 294, 

295, 296, 297, 299, 300 
Chang-Pavlidis fuzzy tree and, 303, 

306-307 
ID3-related fuzzy trees and, 317, 320 
rule extraction and, 329, 356, 358 

Top-down approach to decision tree 
design, 278 

Top-down search, 308, 311 
Trained linear combinations, 483 
Training 8md testing dilemma, 186 
Training data 

generation of fuzzy labels for, 
368-370 

heterogeneous fuzzy data as, 452 
Training errors, 184 
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crisp decision trees and, 280, 286 
radial basis function networks and, 

428 
in rule-based approximation, 333 

Training sets, 184 
Transfer functions, 375 
Transition feature vectors, 365 
Transititive square fuzzy relations, 

143-144 
Transitive closure, 141, 142-143, 

144-146, 155-158, 169, 180 
Transitivity, 139-140, 154 

fuzzy, 143-144 
Trapezoidal membership functions, 

332, 472-473 
Triangular membership functions, 332 
Tripleness, 572-574 
Tumors 

estimates of volume, 131-132 
identification via segmentation, 

592-596 
Tuning constant, 81 
Type I fuzzy neurons, 391, 393, 

395-397, 399-401, 402-403, see 
also Fuzzy aggregation networks 

Uninformative features, 406, 410 
Unipolar logistic functions, 375 
Univariate data, 531 
Universal approximation (UA) theory, 

326-329, 381, 425 
Unreliable features, 406, 410 
Unstable learning, 414-415 
Unsupervised boundary description 

(UBD), 615-621 
Unsupervised learning, 7, 12 
Unsupervised optimal fiizzy clust ling 

(UOFC) algorithm, 103 

Update neighborhoods, 210-211 
UR-ID3 algorithm, 311-312, 313-314 

318 

Validation, 11 
Vedidation errors, 185 
Validation sets, 185 
Valid edge primitives, 510 
Validity functionals, 88 
Validity guided clustering (VGC), 595 
Valid vertex primitives, 510 
Vector subspace, 191 
Vertex interpreters, 510, 512 
Vertical planes, 198 
Vigilance parameters, 418, 420, 432 
Vocabularies of G, 496 
Volumetric clusters, 340 
Voting strategies, 457 

Warshall's algorithm, 142, 640 
Wavelet-based correlation filters, 

667-668 
Waveshapes, 494, 496 
Weighted Borda counts, 461 
Weighted generalized Hough transfom 

(WGHT), 667 
Weighted mean of order q, 643 
Weight vectors, 373, 394, 427, 428 
Width of a fuzzy region, 627 
Windows, 548, 549 
Window vectors, 566 
Winner nodes, 231 

Xie-Beni index, 89, 99-100, 102, 109, 
136 

XOR data, 196 




